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ABSTRACT. We consider predictor functions in generalized abs-linear form, which generalize neural
nets with hinge activation. To train them with respect to a given data set of feature-label pairs, one has
to minimize the average loss, which is a multi-piecewise linear or quadratic function of the weights, i.e.
coefficients of the abs-linear form. We suggest to attack this nonsmooth, global optimization problem
via successive piecewise linearization, which allows the application of mixed binary convex quadratic
optimization codes amongst other methods. These solve the sequence of abs-linear model problems
with a proximal term. Preliminary experiments on a simple regression problem verify the validity of
the approach but require a large number of Simplex pivots by the solver Gurobi.

RÉSUMÉ. Nous considérons les fonctions prédictives sous une forme abs-linéaire généralisée, qui
généralisent les réseaux neuronaux avec activation de la charnière. Pour les entraîner par rapport à un
ensemble de données donné de paires étiquette-caractéristique, il faut minimiser la perte moyenne,
qui est une fonction linéaire ou quadratique multi-morceaux des poids, c’est-à-dire des coefficients de
la forme abs-linéaire. Nous suggérons d’attaquer ce problème d’optimisation globale non lisse via une
linéarisation successive par morceaux, qui permet l’application de codes d’optimisation quadratiques
convexes binaires mixtes entre autres méthodes. Ceux-ci résolvent la séquence de problèmes du
modèle abs-linéaire avec un terme proximal. Des expériences préliminaires sur un problème de ré-
gression simple vérifient la validité de l’approche mais nécessitent un grand nombre de pivots Simplex
par le solveur Gurobi

KEYWORDS : Abs-Normal/Linear Form, Successive Piecewise Linearization, Mixed Binary Linear/Quadratic
Optimization, Proximal Term.

MOTS-CLÉS : Forme Abs-Normale / Linéaire, Linéarisation successive par morceaux, Optimisation
binaire mixte linéaire / quadratique, Terme proximal.
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1. Introduction and Notation
Neural nets with hinge activation have been proven theoretically [5] and experimen-

tally [7] to produce prediction functions f(w;x) that are able to represent a wide variety
of relations in machine learning. These predictor models are piecewise linear [9] with
respect to the feature vector x and multi-piecewise-linear (see explanation below) with
respect to the weight vector w, which consists of various transformation matrices and in-
homogeneous shifts. It is well known that every piecewise linear vector function from
x ∈ Rn to y ∈ Rm can be expressed in an abs-linear form

y = f(w;x) ≡ b+ Jx+Nz + Y|z| s.t. z = F (w;x) = c+Zx+Mz +L|z| (1)

where z ∈ Rs is a vector of switching variables and the various coefficient vectors and
matrices can be combined to the weight vector

w ≡ (c, Z,M,L, b, J,N, Y ) ∈ R(s,s×n,s×s,s×s,m,m×n,m×s,m×s) ' Rs̄

with s̄ = (s+m)(1+n+2s). To make sure that f(w;x) can be unambiguously evaluated
as a piecewise linear continuous function of x we assume throughout that the square
matrices M,L ∈ Rs×s are strictly lower triangular.

In the case of multi-layer neural networks z represents nodal values and the matrices
M and L are block diagonal, with M = L in the case of hinge activation. By induction
on the s components zi of z one can easily see that they are piecewise linear functions
zi(x) of x, which then also holds for the resulting vector

y = f(w;x) = b+ Jx+Nz(x) + Y |z(x)| ∈ Rm .

However, it is important to note that the dependance of f(w;x) on the coefficients w is
only multi-piecewise linear, i.e. piecewise linear with respect to each component of w
when the others are kept constant. In other words for each Cartesian basis vector ej ∈ Rs̄
and fixed x the univariate function f(w + tej ;x) is piecewise linear. Therefore one can
rather efficiently perform global coordinate searches even when the loss function on y is
not piecewise linear but for example quadratic.

2. Separation, Scaling and Fixed Point Iteration
For the subsequent optimization approaches we normalize the abs-linear system by

relegating the nonsmoothness to the second part of (1) and then scaling the z so that we
can compute Lipschitz constants and an upper bound for z(x).

Separation of Nonsmoothness:
The smoothness condition Y = 0 can always be achieved by extending the originally

given switching vector z to z̃> = (z>, |z|>Y >) and correspondingly extending L,M
and N to

L̃ =

[
L 0
Y 0

]
∈ R(s+m)×(s+m) 3 M̃ =

[
M 0
0 0

]
and Ñ =

[
N I

]
∈ Rm×(s+n) .
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Naturally, we also have to pad the vector c ∈ Rs and the matrix Z ∈ Rs×n bym addi-
tional zero rows. Now the dimension of the coefficient vector w ≡ (c, Z,M,L, b, J,N)
has gone down by ms to (s + m)(1 + n) + s(m + 2s) after the incrementation of s of
course. Thus a typical empirical risk function may look like

ϕ(w) ≡ 1
2k̄

k̄∑
k=1

‖f(w, xk)− ỹk‖22 with f(w;x) = Nz(w;x) (2)

where the (feature, label) pairs (xk, ỹk) ∈ Rn×m for k = 1, 2, . . . k̄ form a suitable
training set. Here N is typically a projection onto the last components of z.

Scaling for Contraction:
Secondly we can scale z to z̃ = Dz with D = diag(d) a matrix of positive entries

0 < di for i = 1 . . . s. Then the state equation can be rewritten as

Dz ≡ z̃ = c̃+ Z̃x+ M̃ z̃ + L̃|z̃| ≡ Dc+DZx+ (DMD−1)Dz + (DLD−1)|Dz| .

Hence we see that the strictly lower triangular matrices M and L undergo a positive
diagonal similarity transformation. Starting from di = 1 the di can be chosen for i =
2 . . . s such that the rows of M̃ and L̃ have `1 norms less than or equal to any given bound
ε
2 with ε < 1. This implies for their `∞ matrix norms

ε ≥ ‖M̃‖∞ + ‖L̃‖∞ ≥ ‖|M̃ |+ |L̃|‖∞ = ‖M̃, L̃‖∞

Obviously, it is sufficient that the sums of the `1 norms of corresponding rows in M̃ and L̃,
which equal to the rows obtained by summing or concatenating |M | and |L| are less than
or equal to ε. Note that if scaling by D is performed, then the matrix N in the response
must be transformed toND−1. Assuming without loss of generality that the norm bounds
already hold for the original M and L we find that the map

G(z) ≡ G(M,L)(z) ≡ z −H(z) with H(z) = Mz + L|z| (3)

is a perturbation of the identity by the map H(z). The latter has the componentwise
Lipschitz property

|H(z)−H (̊z)| = |M(z − z̊) + L(|z| − |̊z|)| ≤ |M ||z − z̊|+ |L|||z| − |̊z||

≤ |M ||z − z̊|+ |L||z − z̊| = (|M |+ |L|)|z − z̊| ∈ Rs (4)

where we have used that by the inverse triangle inequality ||z| − |̊z|| ≤ |z − z̊| compo-
nentwise. This implies for the infinity norms of matrices and vectors

‖H(z)−H (̊z)‖∞ ≤ ‖M,L‖∞‖z − z̊‖∞ ≤ ε‖z − z̊‖∞ ∈ R

so that we have a contraction provided ε < 1. Thus it follows as a consequence of the
Banach fixed point theorem that there is a unique point z∗ = c + Zx + H(z∗), and G
has an inverse G−1 with the Lipschitz constant 1/(1− ε) <∞. Hence we obtain for the
exact solution z∗ the bound

z∗ = G−1
(M,L)(c+ Zx) =⇒ ‖z∗‖∞ ≤ ‖G−1

(M,L)(c)‖∞ +
‖Z‖∞‖x‖∞

(1− ‖M,L‖∞)
. (5)
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Fixed Point Iteration:
Moreover starting from z0 we obtain for the iteration

zk+1 = c+ Zx+Mzk + L|zk| = c+ Zx+H(zk) (6)

from (4) the componentwise bound

|zk − z∗| ≤ (|M |+ |L|)|zk−1 − z∗| ≤ (|M |+ |L|)k|z0 − z∗| . (7)

In fact we do not only have a contraction but can establish finite convergence as follows.
Since |M |+ |L| is strictly lower triangular we know that there is a minimal integer ν such
that

(|M |+ |L|)ν = 0 with ν ≤ s and ν = 0 ⇐⇒ M = 0 = L .

We call ν the switching depth since it counts how often the nonmooth elemental abs()
can be super imposed on each other. In terms of the evaluation graph [4] it is the longest
directed path along abs() nodes. If ν = 0 the prediction function is smooth and thus
linear, and if ν = 1 we say that the problem is simply switched, which is typical for KKT
like systems. In the case of neural networks ν is simply the number of intermediate layers.

Because of the bound (7), the iteration (6) must reach zk = z∗ after at most ν steps
from any z0. This applies irrespective of the scaling. However, in general only the norm
‖D(zk − z∗)‖∞, and not the norm ‖zk − z∗‖∞, will decline monotonically. Of course
from a good warm start we may hope to converge to a satisfactory accuracy in fewer than
ν steps. We also emphasize that a matrix vector product can be much better computed in
parallel rather than forward and backward substitutions on triangular matrices.

3. Mixed Binary Linear/Quadratic Optimization
For fixed w the constraints in (1) are essentially linear, except for the absolute val-

ues. Using general nonsmooth optimization methods in this situation would of course
disregard a lot of structure. We will reformulate the problem as a mixed binary linear
optimization problem, for which standard solvers are available.

Formulation w.r.t. x ∈ Rn:
Assuming without loss of generality that Y = 0 as justified in Section 2 we can

concentrate on the triangular state equation

z = c+ Zx+Mz + L|z| = c+ Zx+Mz + La with a = |z| ∈ Rs . (8)

In order to eliminate the highly nonlinear constraint a = |z| we use a signature matrix
Σ = diag(σ) whose elements σi ∈ {−1, 1} for i = 1 . . . s are binary variables. Then
the components of the vector a = Σz = (σizi)i=1...s are bilinear in the binary variable
σi and the real variables zi. It is well known [3] that the constraints a = Σz ≥ 0 can be
linearized to the system of inequalties

−a ≤ z ≤ a and a+ γ(σ − e) ≤ z ≤ −a+ γ(σ + e) , (9)
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where e ∈ Rs is the vector of ones and γ ∈ R an upper bound on the possible norm values
‖z‖∞ . It can be computed by maximizing the right hand side of (5) over a range of x
that are likely to occur.

From the property γ ≥ ‖z‖∞ it can be easily derived that these four vector inequalities
are equivalent to the nonlinear constraint a = |z|. The key property of the inequalities
(9) is that together with the equation z = c + Zx + Mz + La it can be entered into
Gurobi and other modern mixed integer optimization solvers to characterize a feasible set
with respect to the real variable vector (x, z, a) ∈ Rn+2s and the binary variable vector
σ ∈ {−1, 1}s.

The corresponding objective must be linear or convex quadratic with respect to the
real variables so that for example

f(w;x) = b+ Jx+Nz(x) + 1
2 (x− x̊)>Q(x− x̊) ∈ R (10)

with some positive semi-definite matrix Q ∈ Rn×n and a reference point x̊ ∈ Rn. We
can also include quadratic terms with respect to z, which we will do later in the learning
context. Frequently we may simply have an Euclidean proximal term in that Q = qI for
some scalar 0 ≤ q ∈ R. Given any parameter q > 0 the objective will be bounded below
and a single call to Gurobi will yield a global minimizer.

Proximal Term via Quadratic Overestimation
One possible origin of such a proximal term is that we have originally a nonlinear state

equation
z = F (x, z, |z|) with F ∈ C2(R(n+2s),Rs) . (11)

It can be abs-linearized at a reference point x̊ with z̊ = z(̊x) to

z̃ = z̊ + Z̊(x− x̊) + M̊(z̃ − z̊) + L̊(|z̃| − |̊z|) (12)

where the matrices

Z̊ =
∂

∂x
F (x, z, |z|) ∈ R(s×n), M̊ =

∂

∂z
F (x, z, |z|) ∈ R(s×s) 3 L̊ =

∂

∂|z|
F (x, z, |z|)

are all evaluated at the point (̊x, z̊, |̊z|). Again the square matrices M̊, L̊ of order s must
be structurally strictly lower triangular so that z(x) and z̃(x) can be evaluated unambigu-
ously by (11) and (12), respectively. As shown in [2] the error in this abs-linearization
can be bounded by

‖z̃(x)− z(x)‖∞ ≤ q
2‖x− x̊‖

2 for some q > 0 .

If the original scalar response was just f(w;x) = b+Jx+Nz(x) we get the upper bound

f(w;x) ≤ b+ Jx+Nz̃(x) + ‖N‖∞‖z(x)− z̃(x)‖

≤ f̃(w;x) ≡ b+ Jx+Nz̃(x) + q̃
2‖x− x̊‖

2 with q̃ = q‖N‖∞ . (13)

Hence we have exactly an objective of the proxlinear form (10) with z̃(x) defined by the
abs-linear triangular system (12). It can of course be rewritten as a mixed binary linear
system using the reformulation (9) and then solved by Gurobi.
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While upper bounds for q̃ = q‖N‖∞ can be derived from the evaluation procedure of
F at (̊x, z̊, |̊z|) it may also be updated iteratively like the size parameters in trust region
or quadratic overestimation methods. As usual being conservative, i.e. making q̃ large
enforces convergence but may slow down the actual computation.

Outer Loop:
So the full method consists of forming the constraints (12) at the current iterate x̊,

replacing |z̃| with an a satisfying (9) and minimizing the objective (13) by Mixed Binary
Quadratic Optimization. The global minimizer x̂ can then serve as the new reference
point x̊ provided we have for the real objective

b+ Jx̂+Nz(x̂) < b+ Jx̊+Nz(̊x) .

Otherwise the estimate for q̃ was too small and must be increased significantly without a
change in x̊. As shown in [8] for a method that only computes local minimizers of the
successive abs-linearizations, all clusterpoints x∗ of the sequence generated in this way
are first order minimal, i.e. minimizers of the abs-linearization at x∗. Unfortunately, even
globally solving each local abs-linear problem does in general not guarantee that the clus-
ter point is a global minimizer of the underlying problem.

Piecewise Linearization w.r.t. w:
So far we have assumed that the coefficientsw = (c, Z,M,L) are constant throughout

the minimization. For abs-linear learning we cannot make this assumption and rather have
to consider w as variable and x as constant. Now the vector constraint z = c + Zx +
Mz+La contains the terms Mz and La which are bilinear in the components of the real
variables (z, a) and w. That means unfortunately that they cannot be linearized exactly.
To overcome this difficulty we perform a piecewise linearization of the original state
equation z = c + Zx + Mz + L|z| at a reference point (̊c, Z̊, M̊ , L̊, z̊) with x fixed and
z̊ the corresponding z value such that z̊ = c̊+ Z̊x+ M̊ z̊ + L̊|̊z|. Thus we obtain with G
as defined in (3) immediately the relation

G(̊z) = G(M,L)(̊z) = c̊+ Z̊x−∆Mz̊ −∆L|̊z|

where naturally ∆M = M−M̊ and ∆L = L−L̊. Assuming that M̊ and L̊ are scaled as
described above and also ‖M,L‖∞ ≤ ε < 1 we find that the inverse operator G−1 =
G−1

(M,L) still has the Lipschitz constant 1/(1− ε).
Then we obtain for ∆z = z − z̊ the bound

‖∆z‖∞ ≤
‖∆c+ ∆Zx+ ∆Mz̊ + ∆L|̊z|‖∞

1− ‖M,L‖∞

≤ ‖∆c‖∞ + ‖∆Z‖∞‖x‖∞ + ‖∆M,∆L‖∞‖z̊‖∞
1− ‖M,L‖∞

(14)

where naturally ∆c = c− c̊ and ∆Z = Z − Z̊.
Now we do want to find a piecewise linearization of the abs-normal function

z = F̂ (w) = G−1
(M,L)(c+ Zx)

i.e. an abs-linear function z̃ = F̊ (w) approximation in the variables w = (c, Z,M,L).
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Proposition. The vector function

z̃ = F̊ (w) ≡ G−1

(M̊,L̊)
(c+ Zx+ ∆Mz̊ + ∆L|̊z|)

is abs-linear and can be evaluated by solving the triangular system

z̃ = (c+ Zx+ ∆Mz̊ + ∆L|̊z|) + M̊ z̃ + L̊|z̃| . (15)

Moreover, provided
‖M̊, L̊‖∞ + ‖∆M,∆L‖∞ ≤ ε < 1 (16)

the discrepancy between F̂ (w) and its abs-linearization F̊ (w) is bounded by

‖F̂ (w)− F̊ (w)‖∞ ≤
‖z̊‖∞

(1− ε)2
‖∆M,∆L‖2∞ ≤

s‖z̊‖∞
(1− ε)2

‖∆M,∆L‖2F .

The proof of this result can be found in the appendix Section 6.

The overall Mixed Binary Quadratic Problem:
Using (z+z̃)>N>N(z−z̃) = ‖Nz‖2 − ‖Nz̃‖2 we obtain for a single loss term in (2)

1
2‖Nz−ỹ‖

2
2 − 1

2‖Nz̃−ỹ‖
2
2 = 1

2 (N(z + z̃)−2ỹ)>N(z−z̃)

≤ ‖Nz̊−ỹ‖2‖N(z−z̃)‖2+O(‖∆w‖32)

≤ ‖Nz̊−ỹ‖2‖N‖1
s‖z̊‖∞

(1− ε)2
‖∆M,∆L‖2F +O(‖∆w‖32) . (17)

For each one of the sample points (xk, ỹk) we get a different z̃ = z̃(w;xk) which will
be denoted simply by zk(w). Then the resulting mixed binary quadratic problem has the
convex quadratic objective

ϕ(w) ≡ 1

2k̄

k̄∑
k=1

‖Nzk(w)− ỹk‖22 +
s‖N‖1‖∆w‖22
k̄(1− ε)2

k̄∑
k=1

‖z̊k‖∞‖Nz̊k − ỹk‖2 . (18)

So the first term is the approximation to the original quadratic loss risk via the piecewise
linearization of the state equation and the second term is a proximal quadratic that tries to
bound the resulting error in the objective.

For each data index k = 1 . . . k̄ we get with ak ∈ Rs and σk ∈ {−1,+1}s the bilinear
constraint set

zk = c+ Zx+ ∆Mz̊k + ∆L|̊zk|+ M̊zk + L̊ak (19)

−ak ≤ zk ≤ ak and ak + γ(σk − e) ≤ zk ≤ −ak + γ(σk + e) .

Hence we see that we have the same binary variables as in the formulation w.r.t. x and
the only thing that changes compared to (8) is that we have the new linear terms ∆Mz̊
and ∆L|̊z|. The bound γ can of course be adjusted individually to γk for each k. The
minimizing of (18) subject to the linear constraints (19) and (9) with the σk binary can be
delegated to solvers like Gurobi. The global minimizer ŵ of the model problem can then
serve as the reference point ẘ for the next abs-linearization, where we have to recompute
the proximal term in (18).
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4. Preliminary Numerical Experiment and Conclusion
Given the limitations of space and time we have not been able to conduct and report

numerical results that are in any way conclusive. We simply minimized the averaged loss
defined in (2) for the Griewank function [1]

ỹ(x) = 1 +
1

4000

d∑
k=1

x2
k −

∏d

k=1
cos

(
xk√
k

)
over 50 training points and 8 testing points x ∈ R2 chosen uniformly at random in the
cube [−8, 8]d. The results reported are for the model sizes s = 3, 4, 5 over 5 successive
linearizations. This results in 15 mixed integer quadratic optimization problems specified
in (2) and (19). The following graph shows the true objective function values achieved by
successive linearizations.

Empirical Risk

# of models

s=3

s=4

s=5

Model size

1 2 3 4 5

0.11

0.12

0.13

0.14

0.15

0.16

As one can see for the two smaller prediction models the minimal objective function is
essentially already reached at the second linearization whereas the model with s = 5
switching variables can bring the objective further down. The number of weights, Gurobi
variables and Simplex iterations are listed in the following table. The bad news is that
the latter appears to be growing rapidly with respect to the model size. Nevertheless the
exact solution can serve as a reference point for other methods and hopefully Gurobi can
be accelerated by exploiting more of the special structure.

s #w #variables pl 1 pl 2 pl 3 pl 4 pl 5
3 21 471 303810 353703 1716277 581060 681025
4 31 631 1129639 263007 1015447 1339147 1068608
5 43 793 1153345 22793377 22895320 21241422 16513124
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6. Appendix
Proof(Proposition). According to (8) the exact solution z = F̂ (w) satisfies the triangu-
lar system z − M̊z − L̊|z| = c+ Zx+ ∆Mz + ∆L|z| and thus

z = G−1

(M̊,L̊)
(c+ Zx+ ∆Mz + ∆L|z|) .

The difference between the two right hand sides of z̃ and z is ∆M (̊z− z) + ∆L(|̊z|− |z|)
so that by the Lipschitz continuity of G−1

(M̊,L̊)

‖z̃ − z‖∞ ≤ ‖∆M (̊z − z) + ∆L(|̊z| − |z|)‖∞
(1− ‖M̊, L̊‖∞)

≤ ‖∆M,∆L‖∞‖∆z‖∞
(1− ‖M̊, L̊‖∞)

.

Since with ∆z̃ = z̃ − z̊

‖∆z‖∞ ≤ ‖∆z̃‖∞ + ‖∆z −∆z̃‖∞ = ‖∆z̃‖∞ + ‖z̃ − z‖∞

we can collect the terms in ‖z̃ − z‖∞ on the left hand side and then divide both sides by
its factor yielding

‖z̃ − z‖∞ ≤
‖∆M,∆L‖∞‖∆z̃‖∞

(1− ‖M̊, L̊‖∞ − ‖∆M,∆L‖∞)
.

The penultimate inequality follows since again by Lipschitz continuity ofG−1

(M̊,L̊)
between

the arguments c+ Zx and c+ Zx+ ∆Mz̊ + ∆L|̊z|

‖∆z̃‖∞ ≤
‖∆Mz̊ + ∆L|̊z|‖∞

(1− ‖M̊, L̊‖∞)
≤ ‖∆M,∆L‖∞‖z̊‖∞

(1− ‖M̊, L̊‖∞)
.

For the final bound we use that the the `∞ norm of a (2s × s) matrix is the maximal `1
norm of any one of its s rows, which is the bounded by

√
2s times its `2 vector norm,

which in turn is bounded by the Frobenius norm of the full matrix. This bound is sharp
when ∆M,∆L has one nontrivial row of constants.
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