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Abstract: Digital fingerprints are being used more and more to secure applications for logical and
physical access control. In order to guarantee security and privacy trends, a biometric system is often
implemented on a secure element to store the biometric reference template and for the matching with
a probe template (on-card-comparison). In order to assess the performance and robustness against
attacks of these systems, it is necessary to better understand which information could help an attacker
successfully impersonate a legitimate user. The first part of the paper details a new attack based on
the use of a priori information (such as the fingerprint classification, sensor type, image resolution
or number of minutiae in the biometric reference) that could be exploited by an attacker. In the
second part, a new countermeasure against brute force and zero effort attacks based on fingerprint
classification given a minutiae template is proposed. These two contributions show how fingerprint
classification could have an impact for attacks and countermeasures in embedded biometric systems.
Experiments show interesting results on significant fingerprint datasets.

Keywords: fingerprint classification; logical attack; evaluation; robustness; fingerprint features

1. Introduction

Biometrics is a commonly used technology for unlocking smartphones, secure border controls
or physical access to buildings. Yet, biometrics data are sensitive, since it is not possible in general to
revoke them in case of an attack. Thus, these data have to be protected as well as possible. In the case
of digital fingerprints, the reference template (a set of minutiae) is usually stored in a secure element
(SE) (such as e-passports). Due to the limitation of memory size and computational capabilities,
the reference template is stored following the ISO Compact Card II standard [1]. This representation
facilitates the comparison between the reference template and the probe sample. The security of
embedded biometric systems on a SE is therefore a primary requirement.

Regarding security, biometric systems have many vulnerabilities. As presented by Ratha et al. [2]
and more recently Jain et al. [3], authors have classified the attacks of a generic biometric system into
eight categories (as summarized in Figure 1). For each of the identified points, there are different types
of attacks. Uludag and Jain [4], Martinez [5] and Soutar [6] considered points 2 and 4 to perform a
hill-climbing attack. This attack can be performed by an application that continuously sends random
data to the system. The application retrieves the matching score between the reference template
and the probe sample and continues its disturbances only when the correspondence score increases
and until the acceptance threshold is reached. Note that on-card-comparison (OCC) systems never
provides as output the matching score in order to avoid this attack, and the decision is realized inside
the secure element.

In general, the attacker has to generate a biometric template to carry out an attack.
Considering embedded biometric comparison algorithms on a SE, the attacker sends random probes
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in an attempt to pretend to be the legitimate user until success. Since theoretically and in the worst
case, the attacker generates all possible combinations of template, this attack is called brute force.
Different studies have been investigated to prevent this type of attack [4,5]. Another attack consists
in using a biometric probe calculated from impostor’s own biometric data, this attack is called “zero
effort”. This attack has very little chance of being efficient, but it can serve as a basis for more
advanced ones.

Figure 1. Locating vulnerabilities on a biometric system (defined by [2]).

In this work, we consider the vulnerability on point 4 (namely data alteration in Figure 1) within
the context of an OCC implementation (the most secure case). It corresponds to the scenario where
an impostor tries to impersonate a legitimate user in order to open its smartphone protected by a
fingerprint sensor as for example by injecting digital attempts. To the best of our best knowledge, very
few study on the a priori information that could be exploited by an attacker has been carried out in the
literature [7].

We summarize in the following the main contributions of the paper. The first one concerns the
identification of useful information for an attacker to impersonate a legitimate user identity while
using a biometric system. Very few works in the literature have investigated this question. We believe
it is important for the security of biometric systems. We investigated four kinds of information that
could be obtained by an attacker: (1) the type of sensor, (2) the fingerprint image resolution, (3) the
minutiae number and (4) the fingerprint type. This methodology is new and could be used for any
other a priori information. The second contribution is the design of a fingerprint classification method
only considering information contained in a minutiae template (i.e., without any access to the original
image). Once again, very few works have concerned this topic in the literature. This method could
be useful to detect brute force and zero effort attacks by checking the fingerprint type of probes.
The common point of these two contributions concerns the fingerprint classification that could be
useful both for attackers and defenders of biometric systems.

The paper is organized as follows. Section 2 focuses on the impact of a priori knowledge an
impostor could use for attacks. In Section 3, we address the problem of fingerprint classification from
a minutiae template in order to detect brute force and zero effort attacks. Finally, we conclude and
give some perspectives of this study in Section 4.

2. Which a Priori Information Could Be Useful for an Impostor?

Our hypothesis is that an attacker has a logical access to the system and has the possibility to
send fake biometric templates to the OCC by exploiting some a priori information. The available
knowledge on any biometric sensor is categorized as:

• The fingerprint class, according to the Henry’s classification [8] for which five classes were identified:
Arch, Left Buckle, Right Buckle, Tent and Spiral [9,10], as illustrated in Figure 2.

• Sensor type used during the enrollment (among capacitive and optical);
• Image resolution;
• Number of extracted minutiae in the reference template.
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(a) Arch (b) Left Loop (c) Right Loop (d) Tented (e) Whorl

Figure 2. The five types of fingerprints defined by Henry (source [7]).

In this section, we propose to investigate their impact on the success of attacks. We assume that an
attacker can only send digital templates or images to the OCC, thus implementing the vulnerabilities 2
and 4 defined in the Ratha model by (1) modifying the resolution of the image supplied at the sensor
output thereby influencing the minutiae extraction, (2) setting the fingerprint class, (3) providing
information on the type of sensor used during the enrollment process and (4) when the attack is
performed right after the minutiae extraction process, the attacker can know the number of minutiae
extracted saved in the reference template in the SE. All extracted minutiae are stored in a template
following the ISO Compact Card II format.

We want to quantify the contribution of the attacker’s knowledge of the parameters used by
the sensor to increase the efficiency of an attack. This probability is based on the False Acceptance
Rate (FAR) which can be considered as the probability of a successful attack. We define bz as the
biometric reference template for the user z and D a comparison algorithm based on a distance between
a reference and a biometric probe. The success of an attack by an impostor is given by:

FARA(ε) = P[D(bz, Az) ≤ ε)], (1)

where FARA is the probability of a successful attack for a decision threshold ε. The biometric probe
sample Az is generated by the impostor taking into account all the information he/she knows about
the user z or the biometric system. Our goal is to estimate the advantage for an attacker to build Az

when he/she knows the fingerprint class Cz, the sensor type Sz, the number of minutiae MNz, or the
resolution of the fingerprint image Rz used for generating the reference template of the user z. In the
next section, we design the experimental protocol in order to estimate the advantage an impostor has
knowing some or all information.

2.1. Experimental Protocol

We have to define many aspects of the experimental protocol such as the biometric datasets,
the matching algorithms, the testing scenarios and the software platform for running experiments.

2.1.1. Biometric Databases

We used the SFinge software [11] to generate different synthetic biometric databases (Figure 3).
This software tool is well known in biometrics as it has already been used during Fingerprint
Verification Competitions (FVC). Previous works [12,13] demonstrated that SFinge produces synthetic
fingerprints with similar behaviors in terms of recognition rates to those obtained from real databases.
During the generation of synthetic fingerprints, the software allows us to select many a priori
information (type of sensor, number of minutiae, image resolution and especially the fingerprint class).

For each of the four a priori information, two types of databases are designed:

1. Reference database: this database contains the reference templates of all users. We randomly
generated one sample per user for 500 individuals (given a random and distinct seed for each user).
This database contains 500 fingerprints;
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2. Attack database: we generated a database with 1000 different fingerprint samples (one sample
per user). This database has been randomly generated (by using different seeds than the reference
database) and is used for attacks.

When using SFinge, we can choose the type of sensor among capacitive and optical. This leads
to the construction of four databases (a reference database and an attack one by sensor type).
Considering the resolution level of the fingerprint image, we have three possible values (250 dpi,
500 dpi, 1000 dpi) inducing six databases. For the number of minutiae, we have created two categories
(number of minutiae <38 or >38) inducing four databases. Finally, when considering the fingerprint
class (Arch, Left Loop, Right Loop, Tented and Whorl), 10 databases are generated (two per class).

In order to set the decision threshold ε used in Equation (1), we propose to use the threshold
value when the system is defined at the Equal Error Rate value (EER). It is an arbitrary choice, as
this operating point is always accessible for any matching algorithm. In order to compute this EER
value for a given matching algorithm, we generated a dedicated database using SFinge with the default
parameters, that we call DB_SFinge. The only parameters we have set are the number of users (100)
and the number of templates per user (8). Finally, we get a total of 800 fingerprints.

Figure 3. Sfinge: a software for the generation of synthetic fingerprints.

2.1.2. Matching Algorithms

In this study, we used two matching algorithms from the research community in biometrics:

• Bozorth3 algorithm [14]: The EER value of this algorithm was calculated using the DB_SFinge
database. The value obtained was equal to 1.03% with a decision threshold value ε = 26.8;

• Minutia Cylinder-Code (MCC) algorithm [15]: The EER value of this algorithm was also computed
using the DB_SFinge database. The value obtained was equal to 0% for a decision threshold
ε = 0.0315.

2.1.3. Testing Scenarios

For any attack, an impostor provides a biometric probe to be authenticated as a legitimate user.
Two scenarios are used to simulate an attack:
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1. Scenario 1: we simulated a brute force attack. We randomly selected 500 min templates, following a
uniform distribution, in the database generated using SFinge, which constitutes the reference
database. The attack database was generated by building 1000 biometric templates randomly but
respecting the ISO format, itself coming from SFinge.

2. Scenario 2: For each of the given a priori information, a reference database was generated with the
SFinge software containing 500 min templates. In addition, for each of the a priori information,
an attack database containing 1000 biometric probe templates is generated and is compared with
the reference database. For example, considering the sensor type, we obtain four comparisons as
shown in Table 1.

Table 1. Example of scenario 2 for the sensor type.

Reference BDD Attack BDD

Capacitive Capacitive
Capacitive Optical

Optical Capacitive
Optical Optical

2.1.4. Implementation within the Evabio Platform

In order to evaluate the impact of an a priori information on the efficiency of an attack, we use
the EVABIO platform [16] to characterize its influence on the matching decision. The EVABIO platform
has been designed in our research lab in order to facilitate the evaluation of biometric systems with
different modules (see Figure 4). In previous studies, we showed the benefit of this platform to
speedup the computation time of the performance evaluation of biometric systems [17] or assessing
their security [18] thanks to different modules.

Figure 4. General diagram of the EvaBio platform (defined in [16]).

We have developed a new attack module to carry out this study in order to test different attack
methods when evaluating an OCC fingerprint system. In this study, the Attacks module was updated
because it contains methods for testing the useful knowledge for an attacker such as the sensor
type, the image resolution captured by the sensor, the fingerprint class or the number of minutiae
extracted from the image. Given each information, we determined whether this type of knowledge
is important for an attacker to succeed in impersonating individuals. This module also contains a
method for generating an ISO compliant biometric template using SFinge. It is possible to generate
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random fingerprint templates to attack the matching algorithms. The Evaluation module generates
performance metrics such as FARA for different values of the decision threshold ε.

2.2. Experimental Results

In this section, we present the results of this experimental study for each separately considered a
priori information.

2.2.1. Sensor Type

Regarding the knowledge of the sensor type used to generate the biometric reference of the
individual, we compute the value FARA for the two scenarios described above when we set the value
of the decision threshold with respect to the used comparison algorithm, as described in Section 2.1.2.
Table 2 gives the probability value of a successful attack FARA for each sensor type and the two
comparison algorithms. We can clearly conclude that the knowledge of the sensor type used during
enrollment does not help the attacker.

Table 2. Probability value of a successful attack FARA for each sensor type for the two matching algorithms.

Matching Algorithm Capacitive Optical

Bozorth3 0.0158% 0.016%
MCC 0.13× 10−3% 0.23× 10−3%

2.2.2. Number of Extracted Minutiae

With the knowledge of this a priori information, (the number of minutiae in the biometric
reference of the individual), we compute the FARA value for the two scenarios described above when
we set the value of the decision threshold with respect to each algorithm as described in Section 2.1.2.

The obtained results show that for Bozorth3, the probability value of a successful attack is equal
to 0.0141% with the brute force attack and 0.0162% when we know the number of minutiae in the
biometric reference. For the MCC algorithm, the probability value of a successful attack is equal to
1.63× 10−4% considering the brute force attack and 1.6× 10−4% by knowing the number of minutiae.
We can see in both cases that the attacker gets a little gain with only this information.

In order to analyze whether the knowledge of the number of minutiae of the biometric reference
has an impact on the effectiveness of this attack, we apply the following scenario: we only consider
the scores between the reference template and the tests having the same number of minutiae. In this
case, we have two sets of 4× 800 = 3200 matching scores. We can calculate the FARA value for
both classes with the same number of minutiae. If we consider the Bozorth3 matching algorithm,
the attacks succeed more for 1 < ε < 35 when the number of minutiae is greater than 38. For the MCC
matching algorithm, the same remark can be formulated for 0.0011 < ε < 0.0023. Table 3 gives the
probability value of a successful attack FARA for each class of the number of minutiae for the two
matching algorithms. We can see clearly that if we have more than 38 minutiae, this information helps
the attacker more but it is not enough to significantly increase the success of the attack.

Table 3. Probability value of a successful attack FARA for the two classes of the number of minutiae
for the two matching algorithms.

Matching Algorithm <38 >38

Bozorth3 0.0038% 0.0391%
Minutia CC 0.8× 10−4% 2.5× 10−4%

2.2.3. Image Resolution

In terms of knowledge of the image resolution, we calculate the FARA value for both scenarios
when we set the decision threshold to get the value at the EER. The obtained results show that when
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we use the Bozorth3 matching algorithm, the probability value of a successful attack is equal to 0.019%
with the brute force attack and 0.035% knowing the resolution of the original image. Considering the
MCC algorithm, the probability value of a successful attack is equal to 0.51 × 10−3% with the brute
force attack and 0.8× 10−3% knowing the resolution of the original image.

We can see, in both cases, the small advantage for an attacker to know the resolution of the
original image extracted by the sensor. In order to analyze whether the resolution of the original image
has an impact on the efficiency of this attack, we apply the following protocol: we only consider the
scores between the reference and attack models with the same resolution images. In this case, we have
three sets of 4× 800 = 3200 matching scores. Thus, we can compute the evolution of the FARA value
for each image resolution, as shown in Figure 5.

(a) Impact of image resolution with Bozorth3 (b) Impact of image resolution with Minutia
Cylinder-Code (MCC)

Figure 5. Evolution of the effectiveness of attacks by considering the three resolutions of the sensor for
the two matching algorithms. The dot line corresponds to the threshold value associated to the Equal
Error Rate (EER) performance (see Section 2.1.2).

For the Bozorth3 matching algorithm, we can see that it is quite impossible to have a successful
attack with a high resolution image (1000 dpi), as opposed to a low resolution image (250 dpi). The same
remark can be formulated for the MCC algorithm. Table 4 gives the probability value of a successful
attack FARA for each image resolution for the two matching algorithms. We can clearly see that low
resolution helps an attacker three times more than the average resolution (500 dpi). Avoiding the use
of low-resolution images permits to limit this type of attack.

Table 4. Probability value of a successful attack FARA for each resolution of the original image for the
two matching algorithms.

Matching Algorithm 250 dpi 500 dpi 1000 dpi

Bozorth3 0.165% 0.047% 0%
Minutia CC 0.45× 10−3% 0.176× 10−3% 0%

2.2.4. Fingerprint Class

We also compute the value FARA when the impostor knows the fingerprint class of the legitimate
user to impersonate. Considering the Bozorth3 matching algorithm, the probability value of a
successful attack is equal to 3% with the brute force attack and to 4.7% knowing the fingerprint
class. The obtained results show that when using the MCC matching algorithm, the probability of
a successful attack is equal to 1.7% with the brute force attack and 2.6% with the knowledge of the
fingerprint class. We can deduce that the knowledge of the fingerprint class enrolled in the secure
element helps an attacker to be authenticated on the system. However, we must study how this
knowledge influences the effectiveness of the attack.
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In order to analyze its impact, we apply the following methodology: we only consider the scores
between the reference template and attack probes having the same fingerprint class to calculate the
FARA value for each class. In this case, we have five series of 4× 800 = 3200 matching scores allowing
us to calculate the FARA value. The results are presented in Figure 6. Considering the Bozorth3
matching algorithm, Figure 6a allows us to deduce that the Arch type has the highest success rate,
whereas the right-loop has the lowest one. For the MCC matching algorithm, we observe in Figure 6b
that the Whorl type has the highest attack rate contrary to the Right loop. A first remark that we can
make is that the right loop fingerprints are the least simple to usurp. Table 5 gives the probability
value of a successful attack FARA for each fingerprint class for the two matching algorithms. We can
clearly see that some fingerprint classes are easier to attack depending on the used matching algorithm.
For example, with Bozorth3, Arch fingerprints can be spoofed in 50% of cases, which is very high.

(a) Impact of fingerprint type with Bozorth3 (b) Impact of fingerprint type with MCC

Figure 6. Evolution of attack efficiency taking into account all fingerprint classes for the two
biometric systems.

Table 5. Probability value of a successful attack FARA for each fingerprint class for the two
matching algorithms.

Matching Algorithm Arch Right Loop Left Loop Tented Whorl

Bozorth3 50% 0% 2% 5% 6.3%
Minutia CC 0.6% 0% 0.2% 0.2% 2%

2.3. Discussion

In this study, we wanted to know which a priori information could be important for an attacker
in order to impersonate an individual enrolled on an embedded biometric system. We have shown
that the knowledge that helps an attacker the most is the fingerprint class. Indeed, our experiments
show that knowing the fingerprint class generally increases the probability of usurping a legitimate
user. On the contrary, the knowledge of the number of minutiae, the sensor type or the image
resolution are less informative. The algorithm on which we obtain the best rate of identity theft
is Bozorth3 with Arch-type fingerprints. We hypothesize that this algorithm is less efficient and
not optimized for Arch-type fingerprints. If we look at the other types of fingerprints for the two
matching algorithms, we notice that the usurpation rate is quite low which is quite logical and
coherent. Moreover, for both algorithms, the highest acceptance rate is on Whorl, which are the most
common fingerprint type [19]. In general, we deduce that the success rate of an attack depends almost
exclusively on the operation of the matching algorithm. We could extend this work by analyzing the
combinations of a priori information.

In the next section, we propose a second contribution on fingerprint classification. This could
be useful in detecting brute force and zero effort attacks, i.e., detecting attempts with different
fingerprint classes.
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3. Fingerprint Type Recognition

In the previous section, we identified many attacks consisting it sending a fake probe to the
biometric system. The brute force attack is realized by sending random templates and the Zero
effort by one some real samples captured directly from the impostor. Both attacks could be easily
detected if the fingerprint class of the probe does not correspond to the legitimate one. Consequently,
it is necessary to recognize the fingerprint class from an ISO fingerprint template [20]. Because the
fingerprint image is not always available (not possible to store the fingerprint image in the SE),
we consider in this work that we only have the minutiae template to achieve this goal. In the next
section, we make a literature review on fingerprint classification.

3.1. State-of-the-Art Review

In 1996, Karu and Jain defined the first method for fingerprint classification based on singular
points in fingerprint images [21]. They obtained very good results on the NIST SD4 dataset [22]
(accuracy of 93% for 4 and 5 classes recognition). Li et al. [23] in 2008 proposed an algorithm based
on the interactive validation of singular points and the constrained nonlinear orientation model.
The final features used for classification are the coefficients of the orientation model and the singularity
information. They obtained an accuracy of 95% on the NIST SD4. In 2013, Cao et al. [24] proposed
a regularized orientation diffusion model for fingerprint orientation extraction combined with a
hierarchical classifier for fingerprint classification. They obtained very good results on the NIST SD4
dataset, i.e., a classification accuracy of 95.9% for five-class classification and 97.2% for four-class
classification without any rejection. In 2016, Wang et al. [25] proposed a deep learning approach for
fingerprint classification. They obtained on the NIST SD4 dataset an accuracy of 91%.

All these methods provide very good results but require having the fingerprint image as input.
This induces a lot of computational resources as well as time. This is not possible in embedded
biometric systems. Indeed, it is not possible to store the fingerprint image in such devices, only the
minutiae template is available mainly due to memory limitation. Our objective is to propose a
fingerprint classification method with only the minutiae template as input, i.e., without any access
to the fingerprint image. However, very few works have considered this problem. To the best of our
knowledge, the paper by Ross et al. [26] is the only work addressing this problem. The proposed
method uses minutiae triplet information to estimate the orientation map of the associated fingerprint.
They obtained, on the NIST SD4 dataset, an accuracy of 82%.

3.2. Proposed Method

In this study, we only process ISO Compact Card II minutiae templates. This format consists of
four features (xi, yi, Ti, θi), i = 1 : Nj where:

• (xi, yi) corresponds to the location of the minutiae in the image (the image being of course unavailable),
• Ti is the type of the minutiae (bifurcation or ridge ending),
• θi is the orientation of the minutiae relative to the ridge. This information is represented by 6 bits,

i.e., it has 64 different values.
• Njk is the number of minutiae for the sample j of the user k.

The proposed method consists in defining new features from the minutiae template.

3.2.1. Features Computation

From the minutiae template, we design a first statistical features vector called IsoStructjk.
For each parameter of this vector, the normalized histogram is generated with a fixed quantization
level. We normalize the histograms in order to be invariant to the number of minutiae present
in each template. We obtain then an IsoStructjk vector of size 3× NQ + 2 by concatenating these
histograms, where NQ is the number of quantization level in the histogram computation and the value
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2 corresponds to the histogram built on the type of minutiae that contains only two different values.
This statistical vector IsoStructjk is then defined as follows:

IsoStructjk = {HistoXjk, HistoYjk, HistoIsoAnglejk, HistoTypejk}, (2)

where HistoXjk, HistoYjk, HistoIsoAnglejk and HistoTypejk are normalized histograms. In order to
have several levels of precision on each of the histograms, they are generated with a variable number
NQ of quantification levels.

In order to take into account the spatial distribution of minutiae, we propose to use the Delaunay
triangulation as translation and rotation invariant representation [27,28]. Delaunay triangulation
is used in various domains, such as algorithmic geometry [29] to solve problems, or in surface
reconstruction [30–32]. This representation has often been used for digital fingerprints [33–35].
This representation allows us to create a structure containing parameters describing each template,
as shown in Figure 7. This structure is composed of many elements: length of the edges of the triangles,
the angles, the area of the triangles and thei perimeter. Figure 8 shows an example of triangulation
obtained by considering the minutiae as the vertices of the generated triangles. For each triangle,
we extract (1) all the three angles values, (2) all the three edge lengths, and (3) the triangle area.

Figure 7. Features computation from the Delaunay triangulation (source [20]).

Thus, each template j of an individual k can be represented by a feature vector TriInfjk composed
of three sets of parameters:

TriInfj,k = {{AngleAjkl , AngleBjkl , AngleCjkl},
{LengthABjkl , LengthACjkl , LengthBCjkl},
{Areajkl}}, ∀l ∈ [1; Mjk], (3)

where {AngleAjkl , AngleBjkl , Angle Cjkl} is the vector of angle values of the Mjk triangles of the
template j for user k. {LengthABjkl , LengthACjkl , LengthBCjkl} represents the vector of lengths for
each triangle and {Areajkl} is the data vector associated to the area of the triangles. We added
some parameters concerning the orientation of minutiae even if this parameter is not related to the
Delaunay triangulation:

IsoAngleInfj,k = {Orientationjki}, ∀i ∈ [1; Njk], (4)

where Orientationjki represents the vector of angles of the Njk minutiae in the template j of user
k. From these two feature vectors TriInfjk and IsoAngleInfojk, a new statistical vector is generated.
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We compute a normalized histogram to approximate a probability density for each characteristic that
is not dependent on the number of minutiae in the template. These histograms are calculated by
considering a fixed value of the quantization level. We then obtain a TemplateStructjk vector of size
4× NQ, where NQ is the number of quantization levels in the histogram calculation. This statistical
vector TemplateStructjk is obtained by a histogram concatenation defined as follows:

TemplateStructjk = {HistoAnglejk,

HistoDistancejk, HistoAreajk,

HistoISOAnglejk}, (5)

where HistoAnglejk, HistoDistancejk, HistoAreajk et HistoISOAnglejk are normalized histograms
calculated from their associated subvector TriInfjk and IsoAngleInfojk. These histograms are generated
with a variable number of levels NQ of quantization, allowing to refine the precision of the histogram.

Figure 8. Example of Delaunay triangulation of a minutiae template (source [20]).

3.2.2. Machine Learning

In order to define a model for each of the five classes of fingerprints, we use a statistical learning
technique. From all the existing classification schemes, we have chosen the technique based on Support
Vector Machine (SVM) because of its high classification rate obtained in many works [36–38], as well as
its high level of generalization. We tested other machine learning algorithms (such as Naive Bayes or
Adaboost) but SVM provided the best results. SVMs have been developed by Vapnik et al. [39] and are
based on the principle of minimizing the structural risks of statistical learning theory. SVMs express
predictions in terms of linear combination of kernel functions centered on a subset of the learning data,
called support vector (SV).

Since SVMs are binary classifiers, several binary SVM classifiers are required for a multi-class
classification problem when using a SVM classification technique. A final decision is then taken from
all the outputs of the [37] binary SVMs. The choice of the function of the kernel is essential. The RBF
(Radial Basis Function) kernel function is commonly used with SVM. The main reason is that the RBF
functions can be considered as similarity measures between two examples. A final decision must be
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made from all binary decision functions. Several combining strategies can be used [37]. Among all the
existing strategies, majority voting was chosen in our study for its simplicity of implementation.

3.3. Experimental Protocol

We enumerate here all the elements necessary for our experiments.
SFinge databases: The FVC databases usually used in fingerprint works do not provide any

information about the fingerprint class. We have therefore generated five databases with the SFinge
software [11], one for each fingerprint class as described in Table 6. Each generated database contains
800 biometric samples.

Table 6. Label for generated databases for each fingerprint class.

Label Fingerprint Type

1 Arch
2 Left loop
3 Right loop
4 Tented
5 Whorl

In order to recognize the fingerprint class associated with a template, it is necessary to train
the SVM on a learning dataset. A test dataset is required to measure the effectiveness of the
generated classifier. To do this, several test-learning sequences have been executed. In each sequence,
the fingerprint database was subdivided into separate sets for learning and tests. In each test, 80% of
the database was selected for learning and 20% for testing for each of the 5 databases. More specifically,
each training set contains 640 fingerprints, while the test set contains the remaining 260 fingerprints.
We performed 1000 random draws have and the recognition rate is averaged. We used the libsvm
library [40] with the default settings. The minutiae templates used in the experiments have been
extracted using the NBIS tool, and more specifically MINDTCT [41] from NIST.

3.4. Experimental Results

We analyze the efficiency of the two proposed features vectors (IsoStruct and TemplateStruct) in
the two next sections.

Isostruct Features

One of the first elements we need to test is the number of quantization levels in the normalized
histograms. We tested different quantization levels (8, 16, 32, 64) on the structure of the characteristics.
The results are presented in Table 7. We can observe that the best results are obtained with
16 quantization levels for the structure based on the characteristics. For a quantization level equal
to 64, one observes a severe decrease of the recognition rate (60.8%). This can be explained by the
fact that at this quantization level, redundancy is introduced since many zero values are generated.
Considering a feature vector composed of 50 values (50 = 3× 16 + 2), we obtain 80.37% as recognition
rate of the fingerprint class with SVM (without any optimization). In the following, we keep this vector
feature size.

Table 7. Fingerprint classification results with the IsoStruct features vector.

Quantization Levels Recognition Rate (%)—IsoStruct

8 79.43
16 80.37
32 80.06
64 60.80
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Table 8 presents the obtained results for each fingerprint class. We find that the most recognized
fingerprint classes are Spiral, Arch and Tented with respectively with accuracy 87%, 85% and 80%.
We notice that left and right loops have a recognition rate of 75% which is low compared to the
other classes. We have noticed that loops (whether left or right), are often confused by the SVM,
which explains this result.

Table 8. Fingerprint classification results with the IsoStruct features vector.

Arch Left Loop Right Loop Tented Whorl

Recognition rate—IsoStruct (%) 85 75 75 80 87

Since the minutiae template contains only four pieces of information, we want to know which
ones are important for the fingerprint classification. Table 9 indicates the recognition rate for each
quantization level value and for each parameter in the minutiae template. We can observe that the
H(Type) has the same recognition rate regardless of the number of used quantization levels. This is
due to the two possible values of this parameter, we only have a histogram with two quantization
levels compared to the other parameters. As for the histograms on the H(X) and H(Y) minutiae
position, we have poor results with about 40% recognition rate. This was predictable because the
position of the minutiae depends on the interaction between the finger and the sensor. A finger can
thus be placed sideways on the latter and strongly impacts the recognition of the fingerprint type.
On the contrary, with the histogram of angles, H(ISO_Angle), we have the best recognition rate of
the fingerprint type. These results are coherent because angles are calculated from the ridges of the
fingerprint and the orthonormal coordinates of the sensor, which gives a general idea of the direction
of the various minutiae and thus finds the fingerprint type easier.

Table 9. Fingerprint classification results for each component of the IsoStruct features vector.

Recognition Rate—IsoStruct (%)

Quantification Level H(X) H(Y) H(ISO_Angle) H(Type)

8 42.87 37.52 77.85 28.13
16 43.62 38.96 80.23 28.13
32 42.25 36.51 80.24 28.13
64 40.45 36.47 78.25 28.13

We can conclude that the characteristic H(ISO_Angle) is an important information for the
recognition of the fingerprint class. With about 80% recognition rate, this is the most important
parameter present in the initial template, the other three parameters do not improve performance.
These results are satisfactory, but we wish to have more relevant information and thus improve
the efficiency.

3.5. Templatestruct Features

We used the same protocol as defined in the Section 3.3 and the number of quantization levels
defined in the Section 3.4 with N = 16. Table 10 gives the accuracy for the TemplateStuct features
vector. If we compare the results with the IsoStruct features vector, we have a great difference of about
9% for the accuracy. This feature obtains a recognition rate of 89%.

Table 10. Comparison of fingerprint classification results for the 2 proposed features vectors.

Recognition Rate (%)

IsoStruct 80.37

TemplateStruct 89.12
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When performing the same procedure as before, we obtain the correct classification rates presented
in Table 11 for each fingerprint class. We note once more that the Spiral and Arch fingerprint classes are
better recognized with an accuracy more than 95%. These results are very satisfactory because it shows
that the TemplateStruct features provide more information and allow the SVM to better categorize
fingerprints. The Tented class is recognized at 89% with an improvement of 9% compared to the result
presented previously. Once again, left and right loops have the lowest accuracy with 82% and the
SVM despite the addition of information with our method always has difficulty to differentiate these
two classes. These features could certainly be improved, and other considerations could be taken into
account like smaller or larger angles in the Delaunay triangulation.

Table 11. Fingerprint classification results with the TemplateStruct features vector.

Arch Left Loop Right Loop Tented Whorl

Recognition rate (%) 95 82 82 89 97.8

3.6. Discussion

The addressed problem in this paper is to determine the fingerprint class given the minutiae
template. We proposed two methods mainly based on the proposal of features vectors. The first
one concatenates histograms of each information in the minutiae template. With this approach
(called IsoStruc), we get 80.37% as the recognition rate. We observed that the orientation of minutiae
was the most discriminating parameter allowing to achieve a good recognition rate of 80.23%. This is
why the second feature vector is based on a geometric approach based on the Delaunay triangulation,
allowing us to obtain more parameters while keeping the ISO_Angle parameter. With this method, we
increase the recognition rate by 9% and we get 89% of accuracy for fingerprint classification.

Table 12 presents the accuracy of proposed methods in the literature for fingerprint classification.
We can see that the proposed methods (especially the one based on the TemplateStruct features vector)
provides very good results. When only the minutiae template is available, we obtain the best results
that are not far from methods processing fingerprint image.

Table 12. Comparison with methods from the state of the art.

Methods Input Accuracy

Karu and Jain [21] image 93%
Li et al. [23] image 95%

Cao et al. [24] image 96%
Wang et al. [25] image 91%
Ross et al. [26] minutiae 82%

Proposed (IsoStruct) minutiae 80%
Proposed (TemplateStruct) minutiae 89%

4. Conclusions and Perspectives

We have demonstrated that only two a priori information help acceptance by the system,
the image resolution and, most significantly, the fingerprint type. Perspectives of this work concern
the study of other a priori information that could be interesting for an attacker. We could think of
the knowledge of the used sensor (brand, specifications) for the enrollment or gender as for example.
A combination of studied a priori information could be investigated to confirm these results.

We proposed in this study some new features allowing us to reach an accuracy of 89% for
fingerprint classification, given a minutiae template as input. In order to improve the fingerprint
classification, we could think of using deep learning approaches to increase the accuracy.
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