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Argument for a twin primes theorem. Landscapes, panoramas and horizons within Eratosthenes sieve

We explore three ways on the twin primes problem. We start with the intermediate sets produced by Eratosthenes sieve implementation. Properties related to the proportions of integers eliminated during process on one hand and the distances generated between integers on the other hand allow twice deducing the infinity of prime numbers and twin prime numbers. In the former case, the analysis of the proportions also allows getting an asymptotic evaluation similar to Hardy-Littlewood formula, but without fully valid proof. In the latter case, the analysis of the spacings between remaining integers yields a replica of Bertrand's postulate with approximate 2p i spacing and the asymptotic evaluation of the maximum of the distances between pairs of numbers (of spacing 2), which is ranging around ∑ i 2p k , enables to conclude to the divergence of twin prime numbers below abscissa p i 2 . Finally, an alternative method, that is readily generalizable to many Diophantine equations, is proposed as an invitation to new studies. Again, we infer the Euler product suggested by Hardy-Littlewood.

Argumentaire pour un théorème des nombres premiers jumeaux. Paysages, panoramas et horizons du crible d'Eratosthène.

Résumé

Nous étudions trois approches au problème des premiers jumeaux. Nous commençons par les ensembles intermédiaires produits par l'exécution du crible d'Eratosthène. Les propriétés liées aux proportions de nombres entiers éliminés d'une part et aux espacements générés entre nombres entiers d'autre part permettent par deux fois de déduire l'infinité des nombres premiers, puis des nombres premiers jumeaux. Dans le premier cas, l'analyse des proportions permet également d'obtenir une évaluation asymptotique identique à la formule d'Hardy-Littlewood, mais sans pleine et entière démonstration. Dans le second cas, l'analyse des espacements entre nombres restants permet d'obtenir une réplique du Postulat de Bertrand avec un espacement de l'ordre de 2p i et l'évaluation asymptotique du maximum de la distance entre paires de nombres (d'écart 2), évaluation qui est équivalente à ∑ i 2p k , permet de conclure à la divergence du cardinal des nombres premiers jumeaux en dessous de l'abscisse p i 2 . Enfin, une méthode alternative aisément généralisable à de nombreuses équations diophantines est proposée en guise d'invitation à d'autres études. Nous en déduisons à nouveau le produit d'Euler suggéré par Hardy-Littlewood.

Preamble.

Rarefaction of pairs of primes distant of a given value 2n is a simple process based on Eratosthenes sieve. We will establish our theorems thanks to arithmetical laws governing integers' depletions within natural numbers set N while implementing the said algorithm. The article below has certainly nothing complicated for specialists of this topic.

To give more clarity and strength to the argument, we will apply it initially to the enumeration of the prime numbers, i.e. we will attempt to retrieve the prime number theorem (PNT).

Passing from the prime numbers' case to the twin prime numbers will simply consist of replacing a given law of scarcity (p i -1)/p i by another (p i -2)/p i , p i being the i th odd prime number. Although the Hardy-Littlewood formula is deduced, no proof is given (nor for the PNT). Only, the infinitely of twin prime numbers is deduced (following similar work on prime numbers).

We downgrade and overrate the number of solutions in both cases and the resulting framing show upper and lower boundaries converging asymptotically (and tending towards infinity).

The study is also upgraded after that for our two groups of objects, prime numbers and twin prime numbers, by evaluating the distances between elements, the guiding threads being now, more or less, the two expressions 2p i and ∑ i 2p k respectively.

However, more than the results in the p i to p i ² range that allow us to conclude upon the stated problem, we focus attention, when running Eratosthenes algorithm, on the existence of recursive formulas' systems to evaluate asymptotically in the p i to p i +p i # interval, p i # = 2.3.5.7.11…p i denoting the primorial of p i , the integers' populations with given spacing Δ = 2j (populations of pseudo-primes on the one hand, populations of pseudo-twin primes or relative primes on the other hand), knowing less than j/2+1 initial staffs. (The terms "pseudo" and "spacing" will be defined very soon in the present article).

Thus, the interest of this article has also become over the course of the different versions, this aspect having taken more and more importance with respect to the initial purpose, facing apparent absence of such a corpus elsewhere, that of an indepth study of the Eratosthenes sieve.

The reader would have been disappointed with the lack of challenge if he had already found here all the statements demonstrated. On the contrary, and fortunately, he will still be able to exercise all of his insight facing high walls of difficulties, especially in order to appropriate himself the said recursive systems. There is a time for discovery and another for the full comprehension of a subject.

An expeditious proof.

For the reader who does not have time, here is an appetizier for his immediate satisfaction.

Proposition 1

There is an infinity of twin prime numbers.

Proof

Let us apply the Eratosthenes algorithm up to step p i . Then, beyond p i , the intervals of size #p i , the primordial of p i , contain each ∏ (p i -2) pairs of 2-gap numbers. This answers the question of the existence of pairs (not necessarly primes). As the algorithm begins with the removal of the smallest dividers, the first pair is a pair of twin primes (you can challenge anyone to find a counter-example). Let us consider p j the largest number of this pair. Let us continue the depletion algorithm up to p j . Beyond p j , the intervals of size #p j each contain ∏ (p j -2) pairs of 2-gap numbers, the first of which is a pair of twin prime numbers which is different of the first pair. So we get a second coveted pair. The argument applies to infinity by recurrence.

Terminology.

Gap and spacing :

Notions related to the distance between objects in this study can lead to pernicious confusion. Precise terminology is therefore required to avoid it. We will have to manipulate either isolated integers or pairs of integers. We will call "gap" the distance within a pair of numbers and we will call "spacing" the distance between the studied features which are either isolated numbers or pairs of numbers. Thus, for the pair of twin prime numbers (11, 13) considered as one object, the gap is 2, while for the two pairs of integers (11, 13) and (15, 17) considered as two objects, the spacing is 4 and the gap is 2.

Writing convention :

The expression « If(a,b,c) » means : If the condition a is true then the expression evaluates to b, otherwise the expression evaluates to c.

Fundamental theorems.

In addition to the PNT, two supplementary results will be useful and are presented below (theorem 1 and generalization of the Mertens theorem) to which we add the calculation of an integral.

Three theorems.

Theorem 1 Let us have r and s two coprime numbers. There is then a permutation between the two sequences of numbers (0, 1, 2, ..., s-1) and (0, r, 2r, ..., (s-1).r) modulo s.

Proof

The second series' step is constant modulo s (and is equal to r modulo s). The integers r and s being coprime, none of the integers r up to (s-1).r can be zero modulo s (as they do not include any factor equal to s). Integers (0, r, 2r, ..., (s-1).r) modulo s are thus distinct and therefore a permutation of (0, 1, 2, ..., s-1).

Illustration

We will focus, later on, on couples of coprime integers r = 2.3.5.7.11...p i = p i # and s = p i+1 , p i+1 being the prime number next to p i and we give below some examples : According to the PNT, the cardinal π(x) of prime numbers less or equal to x is equivalent, when the real x tends towards +∞, to the quotient of x to its neperian logarithm. Hence : π(x) ~ x , x → +∞ (1) ln(x) Theorem 3 (Mertens theorem)

The third Mertens theorem gives the Euler product associated to (1-1/p). We have, γ being the Mascheroni constant (≈ 0,5772156649), the following result : П (1-1/p) ≡ e -γ /ln(x) (2) p ≤ x, x → +∞

The prime number theorem, proved independently by Hadamard and Vallée Poussin, is one of the fundamentals of number theory [2]. Mertens theorem relative to the product of Euler of 1-1/p is addressed in [START_REF]Troisième théorème de Mertens[END_REF]. We will use a corollary of it that we prove below.

Other useful results are sufficiently known not to be included in the list of the above theorems :

-convergence conditions of П p (1-1/p s ) and П p (1-1/p s +c/p s'>s ), -ratio i.ln(p i )/p i tending towards 1 as i increases (from the prime number theorem).

-… Subsequently, we will use either the sign #(E) or π(E) to refer to the cardinal of a set (E)

Generalization of Mertens theorem.

Corollary

Let us have a > 1 an integer, then :

П (1-a/p) ≡ c a .e -aγ /ln a (x), c a a constant > 0 (3) a < p ≤ x, x → +∞ P 5/142

The a = 2 case is the one useful to us :

П (1-2/p) ≡ c 2 .e -2γ /ln 2 (x), c 2 > 0 (4) 2 < p ≤ x, x → +∞ Proof Let us have a positive integer a. Let us have p an element of the set of prime numbers P, set that we divide in two parts (the first one possibly void) : p ≤ a and p > a.

We get, using the Newton binomial formula, c i being integers :

(1-1/p) a = 1+c 1 /p+c 2 /p 2 +…+c a /p a Of course, we have c 1 = -a Let us write ma = П (1-1/p) p ≤ a

Here, ma = 1 if the set p ≤ a is void. Then, using Mertens theorem П (1-1/p) ≡ e -γ /ln(x) [START_REF]Troisième théorème de Mertens[END_REF] p ≤ x, x → +∞ we get : e -aγ /ln a (x) ≡ П (1-1/p) a . П (1-1/p) a = ma a . П (1-a/p+c 2 /p 2 +…+c a /p a ) [START_REF]Marches aléatoires, loi de l'arcsinus et mouvement brownien[END_REF] p ≤ a a < p ≤ x, x → ∞ a < p ≤ x, x → ∞ Let us write then for a ≠ p (that is for a < p) 1-a/p+c 2 /p 2 +…+c a /p a = (1-a/p).(1+(c 2 /p 2 +…+c a /p a )/(1-a/p))

Hence, using the second and third terms of relation ( 6)

П (1-a/p) . П(1+(c 2 /p 2 +…+c a /p a )/(1-a/p)) ≡ ma -a .e -aγ /ln a (x) a < p ≤ x, x → ∞ a < p ≤ x, x → ∞

We have for 1 < a < p, the development in infinite series 1/(1-a/p) = 1+a/p+m 2 /p 2 +m 3 /p 3 +… Then (c 2 /p 2 +…+c a /p a )/(1-a/p) = (c 2 /p 2 +…+c a /p a ).(1+a/p+m 2 /p 2 +m 3 /p 3 …) = c 2 /p 2 +r 2 /p 3 + higher order terms… Thus ∏ p→∞ (1+(c 2 /p 2 +…+c a /p a )/(1-a/p)) = ∏ p→∞ (1+c 2 /p 2 +r 2 /p 3 +…).

This expression converges towards a constant regardless of the value of c 2 , r 2 , etc. We multiply the reverse of this constant by ma -a and note the new constant so obtained c' a (c' a > 0). Hence : ∏ (1-a/p) ≡ c' a .e -aγ /ln a (x) [START_REF] Hubert | [END_REF] a < p ≤ x x → +∞ For another constant, we get finally :

П (1-a/p) ≡ c a .e -aγ /ln a (x) (8) a < p ≤ x, x → ∞ Let us note that this result remains valid for a non-integer a (> 1), but this result is not useful here.

Logarithm weighted sums.

We focus here on the asymptotic value of the prime number sum Σ p i n /ln m (p i ) (n≥0, m≠0). We use π (x) → x/ln (x), when x → + ∞ written as : π(x) = (1+o(1)).x/ln(x) (9)

The π(x) expression is a step function. Its derivative is 1 at the x = p i abscissas, 0 otherwise. Thus : y ∫ (π(t))'.v(t).dt = Σ v(p i ) (10) 2 p i ≤ y P 6/142

Partial derivation gives : y y ∫ u'(t).v(t).dt = u(y).v(y) -∫ u(t).v'(t).dt (11) 2 2

Let us have u(t) = π(t) and v(t) = t n /ln m (t). Then : v'(t) = t n-1 .(n-m/ln(t))/ln m (t) (12) and thus asymptotically :

v'(t) = (1+o(1)).n.t n-1 /ln m (t) (13) hence asymptotically : v/v'(t) = (1+o(1)).t/n (14) So, asymptotically, derivation consists in multiplication by n/t and therefore integration consists in multiplication by t/n if n ≠ 0. Then : y Σ p i n /ln m (p i ) = π(y).y n /ln m (y) -∫ π(t).t n-1 .(n-m/ln(t))/ln m (t).dt p i ≤ y 2 Thus : y Σ p i n /ln m (p i ) = (1+o(1)).y/ln(y).y n /ln m (y) -∫ (1+o(1)).t/ln(t).t n-1 .n.(1+o(1))/ln m (t).dt p i ≤ y 2 and : y Σ p i n /ln m (p i ) = (1+o(1)).(y n+1 /ln m+1 (y) -n. ∫ t n /ln m+1 (t).dt ) p i ≤ y 2

Yet the integration is "porous" asymptotically to the logarithm as we have seen by relationship (14), so that ∫t n /ln m+1 (t).dt ≈ 1/ln m+1 (y).∫ t n .dt. Then : Σ p i n /ln m (p i ) = (1+o(1)).y n+1 /ln m+1 (y).(1-n/(n+1)).

(15) p i ≤ y Finally :

Σ p i n /ln m (p i ) = (1+o(1)).(1/(n+1)).y n+1 /ln m+1 (y) (16) p i ≤ y and :

Lim y → +∞ Σ p i n /ln m (p i ) =1/(n+1) (17) 
pi ≤ y y n+1 /ln m+1 (y)

This relationship shows easily true numerically (for n positive or zero) and converges much faster as n increases.

Later on, we will need the derived relationships :

Σ 1/ln(p i ) → y/ln²(y) (18) p i ≤ y Σ p i /ln(p i ) → (1/2).y²/ln²(y) (19) p i ≤ y Σ 1/ln²(p i ) → y/ln 3 (y) (20) p i ≤ y 5. Eratosthenes sieve.

Depletion algorithm.

This sieve of antique origin is described again. It is simply to phase out multiples of prime numbers starting with the smallest one. So we get numbers without small divisors. To describe them, we adopt the following term.

In a cycle of length 2*3*5*7, is missing 8 elements (49,77,91,119,133,161,203 and 217 in the first cycle, #A 3 = 8) compared to the previous step, hence #RE 3 = (2-1).(3-1).(5-1)/(2.3.5.7) = 4/105 of integers. We observe a "rho" type process : we have a first part of numbers, we will call the "entry" part, which has a non-repetitive structure and parts that we call "cycles" with repetitive patterns. The amplitudes of these patterns are equal to 2.3.5…p i , p i being the last prime number whose multiples were removed (the number p i being kept). Thus the numbers of the cycle n+1 are those of the cycle n by adding 2.3.5…p i . Cycle 1 starts at p i +2 (except at step 0, where one must choose p i +1 = 3).

We evaluate now disappearing quantities at each step. At step 0, we have #A 0 = 1 erasing. At step 1, #A 1 = 1.

Theorem 4

The number of erasures #A i+1 and the proportion of depletion #RE i+1 in a cycle at step i+1 are given recursively to cardinals in a cycle at stage i (p 0 = 2): i #A i+1 = #A i .(p i -1) = ∏ (p k -1) (21) k = 0 and i #RE i+1 = #RE i .(p i -1)/p i+1 = (1/p i+1 ). ∏ ((p k -1)/p k ) (22) k = 0 where #A 0 = 1.

Proof

Let us get this proof choosing a representative example. A cycle 1 at step i+1 is built from a cycle 1 at step i by 2.3.5…p i add-ons. Thus : As 2…p i mod p i+1 is a non-null integer coprime to p i+1 (here 2.3.5 mod 7 = 2), each previous line contains, according to theorem 1, only one single number 0 modulo p i+1 (the one who disappears) and so 1 among p i+1 numbers (here the proportion of 1 among 7). We illustrate this by restoring the above table modulo p i+1 (p i+1 = 7) : 

) i i-1 #RE i =#A i .∏(1/p k ) = (1/p i ).∏(p k -1/p k ) i ≥ 1 (29) k = 0 k = 0
Then, the cardinal of prime numbers is minored at abscissa p i , starting at some rank i (which can be i = 1), by: πs(c = 1,N) (30)

Proof

It is the simple transcription of the erasing by the sieve of Eratosthenes using depletion ratios. The cardinal's diminution in the cycles at step i+1 is regulated by theorem 4. These withdrawals begin in the first cycle never before p i +2 except for stage 0 (in p i +1 = 2+1 = 3). This therefore causes an excess on population enumeration when counting is anticipated to this boundary. Moreover, as one cannot subtract to a set elements that are not within it, when M i becomes negative, this term and all those who follow are null (thus relation 27). Hence the result.

We give below the value of c which enables matching the prime numbers' cardinal giving approached numerical computation. We expect that this value tends to 1. This is what is effectively observed when a calculation is done near the origin as shown in the graph below :

Graph 1

To mark-up the cardinal, the following alternative choice, where the boundary is taken near p i 2 instead of p i , MC 0 = if(N-4 < 0, 0, N-4) (31) MC i = if(N-p i 2 -1 < 0, 0, N-p i 2 -1) (32)

shows a faster convergence (above).

Theorem 6

Let us have using the same features :

+∞ πs(1, +∞) = lim M -Σ #RE k .MC k (33) N → +∞ k = 0
Then, the choice of the abscissa indexed by p i gives a reduction (minoration) of the prime numbers cardinal and indexing by p i ² will give a mark-up (majoration).

Proof

For p i , it is immediate as multiples of p i are after p i . For pi², it is because of the (a priori) existence of prime numbers between p i and p i ². These numbers not being withdrawn from the cardinal during subtractions the calculation gives an excess of numbers taken into account.
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Moreover, as prime numbers have a density 0 in N, we have the relationship: +∞ Σ #RE i = 1/2+1/6+1/15+4/105+8/385+… = 1 (34) i = 0

We call #RE i the depletion coefficients of the Eratosthenes Sieve (ES) and will give the proof of equality to 1 further on. In the meantime, we illustrate this point by the graph below : (42) x → +∞ The previous sum tending towards infinity, the initial gap between the two above curves is negligible.

The last term contains no (negative) linear component likely to compensate at infinity the linear term ε.M. Yet π(1) increases (according to the PNT) like x/ln (x), and therefore contains no linear term, meaning that :

ε = 0 (43) 
Moreover the last term in the previous relation diverges, so cte1 is negligible in front of infinity, thus leaving only the said last term (cte = cte2.e -γ > 0) :

πs(1, +∞) = lim cte.x/ln²(x) (44) x → +∞ This expression means effectively that the cardinal of prime numbers tends to infinity.

Fundamental note

The final result for πs(1, +∞), relationship 40, shows as a sum of fractions less than 1. This comes from the fact that we use M-M i in the intermediate calculation. It is essential to note here that nevertheless we do not handle fractions of units. If it were so, our estimate would be false, because we would have to take all these fractions as zeros to form the reduction (since a integer shows up in full, not as a part of it, otherwise it may not show in general), which would amount to an overall reduction equal to 0. In fact, upon calculations, we handle M on one hand and #RE i .M i (cf. relation 33) on the other. The latter are of numbers effectively greater than 1 up to a certain rank (before becoming negative) and are counted as such. When the choice of rounding is done, it necessarily leads to an increase in the reduction and we therefore preferred to plot the graph with a more pessimistic view by not rounding (i.e. we count all positive #RE i .M i that are afterwards subtracted to M). Incidentally, rounding integers or not, the results of the calculations vary very little.

Theorem 8

The cardinal of the prime numbers, less than x, diverges as x/ln(x).

Argument

We wrote above a result of Hadamard and De la Valley-Poussin. There is no need to prove it again. Now, relationship 44 does not resemble to the PNT. But we will show next why. Appearances are deceiving, because we have not yet considered close nature of the x axis. To do this, let us first look at the alternative choice M i = N-p i 2 -1 (which leads, as we have seen above, to a more fast convergence towards the expected value). With this choice, knowing that ε = 0, we get: P 12/142 +∞ πc(1, +∞) = 3.#RE 0 + Σ #RE i .p i 2 (45) i = 1 Then developing #RE i : +∞ i-1 πc(1, +∞) = 3.#RE 0 + Σ p i .∏(p k -1)/p k (46) i = 1 k = 0 Thus : +∞ πc(1, +∞) = cte1'+cte2'. Σ e -γ .p i /ln(p i ) (47) i = 1 Then using relation (17), we get : πc(1, +∞) = lim cte2'.(e -γ /2).x²/ln²(x).

(48) x → +∞ The expression is different from πs(1, +∞), but the result is the same, namely a divergence to infinity. Now let us look at the axis in two expressions πs(1, +∞) and πc(1, +∞). In the first expression, the measurements are made with sampling at p i+1 -p i ≈ ln(p i ) distances. In the second, the distances are now p i+1 ²-p i ² ≈ p i .ln(p i ).. We can deduce backwards what it would be when index i does guide the calculation. To do this, we sketch the following table: First, it should be noted that this is a less accurate result than the prime number theorem. The goal is not to demonstrate again this theorem (namely the multiplicative constant is equal to 1) but only to establish the consistency of the results (i.e. there is effectively a multiplicative constant), which will then entirely meet our ambition here.

Table 4 M i (i ≥ 1) M i = N-p i 2 -1 M i = N-p i -1 M i = N-i-1 (i ≈ p i /
Ratios 1 and 2 remain well respectively constants from one column to another. So to M i = N-p i /ln(p i )-1 → N-i-1 matches up the expression :

π(1, +∞) = lim cte.x/ln(x).

(49) x → +∞ and in the same time (i being the p i index) :

+∞ π(1, +∞) = Σ 1 (50) i

The penultimate expression is actually the PNT by taking cte = 1, while the last is trivial (which does not reduce in any way his great interest here as the result is obvious).

Important note :

We stress here that the expressions (44), (49) and (50) are equivalent: they would give the same result, namely the same numerical value if it happened to be finite. Not so here, they give simply by three times the value +∞. Going from one expression to the other and aligning the data on the same curve (at least approximately) here amounts to a simple elongation (or contraction) of the abscissas.

To conclude here, we came up with the asymptotic evaluation of a set of density 0 within the set of natural integers N by subtraction of elements that do not belong to the set. Subtracted quantities are based on a recurrent series #RE i , where the sum Σ #RE i is 1. This has enabled us to confirm the infinity of prime numbers and rediscover meanwhile its expected P 13/142 asymptotic growth in x/ln(x).

Thereafter, for the twin prime numbers enumeration, we will redo an identical construction to state a similar conclusion by simply replacing p i -1 by p i -2. The precedent study is also essential in the fact that it has helped to define the nature of the x-axis support of the prime numbers count. This support axis' determination will also be indispensable and readdressed for the twin prime numbers count.

Before that, we propose to discover the structure of the spacings between integers generated by the Eratosthenes sieve.

Landscaping of spacings between pseudo primes.

This paragraph is essential to the preparation of paragraph 6.4. Our study is focusing here on an interval of size #p i , the primorial of p i , the aim being to find usable results in the interval [p i , p i 2 ] in the said paragraph.

Panoramas of populations.

The pseudo-primes are here those of the Eras(i) list remaining when running the Eratosthenes algorithm. Thus we briefly analyse spacings in the cycle 1 at step i. This is done in a very different way compared to what we will do and see in chapter 6 for twin prime numbers. What we do here, is to list the distances of an element to the previous one and this one only. We start by counting them for steps 1 up to 9. Theorem 9

The number of spacings at step i (for column i, j = 1 to j max) is equal to the product of the p k -1, k = 1 to i.

∑ j #SP(j,i) = ∏ i (p k -1) (51) 

Proof

It is simply a repeat of theorem 4.

The average spacing Δm(i) = ∏ i p k /(p k -1) is immediately deduced and tends towards e γ .ln(p i ) where e γ ≈ 1,781.

If the maximum spacing is in the order of magnitude of 2p i , the ratio Δmax/Δm tends towards 2e -γ .p i /ln(p i ), hence 2e -γ .i, meaning, it is increasing linearly with i (2e -γ ≈ 1,123).

The distances of 2 and 4 generated by the Eratosthenes sieve will be examined in the next chapter. We will see that they have actually same cardinal and increase by a p i -2 ratio (table 26 page 44). We get here the same counts as in the next chapter due to the fact that these two small spacings, the configurations related to the enumerations are in all points identical. For other quantities appearing in the table (spacings > 4), their anticipation is more complex and we will remain mainly in a conjectural domain of analysis.

Let us address first how quantities do increase when the step is incremented. 

Proof

The two points result from the fact that Eratosthenes algorithm generates in the cycle 1 (and the following) gradually larger spacings at the level of a same x-coordinate. This creates a gradual saturation of small spaces (starting with the smallest one), left spaces that will gradually fit in the "mainstream", i.e. in the base proportion allocated by the depletion process when two numbers are taken into account at the same time (and not just one), proportion which is p i -2 as we will prove, in chapter 6 (theorem 12).

Lemma 2

The spacings' cardinals are even, except for the first two of them (corresponding to 2 and 4).

Proof

Indeed, one of the dividers to each of the n 1 , n 2 , …, n k constituting the vacant spacing between two numbers is in the set {3, 5, …, p i } and similarly so also for 2.3.5…p i -n 1 , 2.3.5…p i -n 2 , .., 2.3.5…p i -n k . However n 1 -2 and n k +2 having no divisors throughout {3, 5, …, p i }, it will be the same for 2.3.5…p i -(n 1 -2) and 2.3.5…p i -(n k +2). So spacings come in pairs. For spacings 2 and 4, the cardinal is odd due to the fact that the elements are centred and self-symmetrical.

Horizons on the iterative enumeration of populations.

Lemma 3

There is a constant c j such that the number of spacings on the j line compared to the total number of spacings at stage i is greater than c j /ln(p i ).

#SP(j,i)/∑ j #SP(j,i) ≥ c j /ln(p i )

Proof

Let us note ij the stage i from which on #SP(j,i) begins to exist (becomes different from 0). According to the relationship (52), #RP(j,i) ≥ p i -2. From there, according to (51), for i>ij, the progression of the #SP(j,i)/∑ j #SP(j,i) ratio is faster than that of the product ∏ i>ij (p k -2)/(p k -1). So, for all i, we have #SP(j,i)/∑ j #SP(j,i) ≥ .∏ i<=ij 1/(p k -1).∏ i>ij (p k -2)/(p k -1) = c j' .∏ i>ij (p k -2)/(p k -1) = c j'' .∏ i (p k -2)/(p k -1). The latter product tends asymptotically (with i) towards c c/ln(p i ) according to Mertens theorem generalization (relationship (3)). Hence the result.

Conjecture 1

The populations #SP(j,i) are expressed by a system of iterative relations (on some given j line) from a certain rank i on.

Examples

Let us give a few examples before explaining how to get these iterative relationships.

Table 7 j Formulas

1 #SP(1,1) = 1 #SP(1,i) = (p i -2).#SP(1,i-1) 2 #SP(2,1) = 1 #SP(2,i) = (p i -2).#SP(2,i-1) 3 x1(2) = 2 x1(i) = (p i-1 -3).x1(i-1) #SP(3,1) = 0 #SP(3,i) = (p i -2).#SP(3,i-1)+x1(i) 4 x1(3) = 2 x1(i) = (p i-2 -4).x1(i-1) x2(2) = 0 x2(i) = (p i-1 -3).x2(i-1)+x1(i) #SP(4,1) = 0 #SP(4,i) = (p i -2).#SP(4,i-1)+x2(i) P 16/142 j Formulas 5 x1(4) = 4 x1(i) = (p i-2 -4).x1(i-1) x2(3) = 2 x2(i) = (p i-1 -3).x2(i-1)+x1(i) #SP(5,2) = 0 #SP(5,i) = (p i -2).#SP(5,i-1)+x2(i) 6 x1(5) = 12 x1(i) = (p i-3 -5).x1(i-1) x2(4) = 8 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(3) = 0 x3(i) = (p i-1 -3).x3(i-1)+x2(i) #SP(6,2) = 0 #SP(6,i) = (p i -2).#SP(6,i-1)+x3(i) 7 x1(6) = 36 x1(i) = (p i-3 -5).x1(i-1) x2(5) = 20 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(4) = 2 x3(i) = (p i-1 -3).x3(i-1)+x2(i) #SP(7,3) = 0 #SP(7,i) = (p i -2).#SP(7,i-1)+x3(i) 8 x1(6) = 24 x1(i) = (p i-4 -6).x1(i-1) x2(5) = 12 x2(i) = (p i-3 -5).x2(i-1)+x1(i) x3(4) = 0 x3(i) = (p i-2 -4).x3(i-1)+x2(i) x4(3) = 0 x4(i) = (p i-1 -3).x4(i-1)+x3(i) #SP(8,2) = 0 #SP(8,i) = (p i -2).#SP(8,i-1)+x4(i) 9 x1(7) = 144 x1(i) = (p i-4 -6).x1(i-1) x2(6) = 120 x2(i) = (p i-3 -5).x2(i-1)+x1(i) x3(5) = 8 x3(i) = (p i-2 -4).x3(i-1)+x2(i) x4(4) = 0 x4(i) = (p i-1 -3).x4(i-1)+x3(i) #SP(9,3) = 0 #SP(9,i) = (p i -2).#SP(9,i-1)+x4(i) 10 x1(8) = 240 x1(i) = (p i-5 -7).x1(i-1) x2(7) = 336 x2(i) = (p i-4 -6).x2(i-1)+x1(i) x3(6) = 24 x3(i) = (p i-3 -5).x3(i-1)+x2(i) x4(5) = 0 x4(i) = (p i-2 -4).x4(i-1)+x3(i) x5(4) = 0 x5(i) = (p i-1 -3).x5(i-1)+x4(i) #SP(10,3) = 0 #SP(10,i) = (p i -2).#SP(10,i-1)+x5(i) P 17/142 j Formulas 11 x1(9) = 1152 x1(i) = (p i-5 -7).x1(i-1) x2(8) = 1728 x2(i) = (p i-4 -6).x2(i-1)+x1(i) x3(7) = 372 x3(i) = (p i-3 -5).x3(i-1)+x2(i) x4(6) = 28 x4(i) = (p i-2 -4).x4(i-1)+x3(i) x5(5) = 2 x5(i) = (p i-1 -3).x5(i-1)+x4(i) #SP(11,4) = 0 #SP(11,i) = (p i -2).#SP(11,i-1)+x5(i) 12 x1(9) = 2880 x1(i) = (p i-6 -8).x1(i-1) x2(8) = 1800 x2(i) = (p i-5 -7).x2(i-1)+x1(i) x3(7) = 216 x3(i) = (p i-4 -6).x3(i-1)+x2(i) x4(6) = 20 x4(i) = (p i-3 -5).x4(i-1)+x3(i) x5(5) = 0 x5(i) = (p i-2 -4).x5(i-1)+x4(i) x6(4) = 0 x6(i) = (p i-1 -3).x6(i-1)+x5(i) #SP(12,3) = 0 #SP(12,i) = (p i -2).#SP(12,i-1)+x6(i) 13 x1(9) = 2580 x1(i) = (p i-6 -8).x1(i-1) x2(8) = 1186 x2(i) = (p i-5 -7).x2(i-1)+x1(i) x3(7) = 50 x3(i) = (p i-4 -6).x3(i-1)+x2(i) x4(6) = 2 x4(i) = (p i-3 -5).x4(i-1)+x3(i) x5(5) = 0 x5(i) = (p i-2 -4).x5(i-1)+x4(i) x6(4) = 0 x6(i) = (p i-1 -3).x6(i-1)+x5(i) #SP(13,3) = 0 #SP(13,i) = (p i -2).#SP(13,i-1)+x6(i)
To evaluate the initial values xi(...), numbering int((j+2)/2) including possibly some 0's of the j line, it suffices to know at most the int((j+2)/2) first non-zero values of #SP(j,i). This is done by extracting successively from the later the remnants of Euclidian divisions by p i-k -(k+2).

For example, for the line j = 6, we have to use the int((6+2)/2) = 4 first values at most (some of which are therefore possibly 0) corresponding below to the part of the table double framed. Performing the 4 successive Euclidian divisions, like the calculations shown in the last column below, we observe systematically the appearance of values equal to 0 to the right of the double frame. The last line, usually omitted in the following text, is implied.

General expression of recursive systems

The general writing of the recursive relationships' system is as follows Table 10 x(j,i-int

(j/2)) x(j,i-int(j/2)+1) … x(j,i) x(j,i+1) … x(j-1,i-int(j/2)+1) … x(j-1,i) x(j-1,i+1) … … … … … x(j-int(j/2),i) x(j-int(j/2),i+1) … 0 … with x(k,i) = (p i-(k-1) -2-k-1).x(k,i-1)+x(k-1,i) (55) and #SP(j,i) = x(j,i) (56) 

Numerical examples

The values below have been checked up to rank i = 9. Beyond that, the values are speculative.

In the tables below, the values of #SP(j,i) in parentheses allow us to establish the constants xi(r) necessary to apply the iterative formulas. In view of the (conjectured) regularity of the iterative formulas, the anticipation of these constants xi(r) would completely solve the problem of counting. This could not be achieved here.

We can however specify the location of the first non-zero element on the j-line of the population table 5 : For j such as p i-2 +1 ≤ j ≤ p i-1 , this first element is necessarily at position i (generally) or beyond. For j = p i-1 , i ≥ 1, moreover, the population, therefore the value of this first element, is systematically equal to 2 except for j = p 0 = 2 with initialization to 1. We note the notable exception of the case of column p i = 23 where we find a non-zero number beyond the j = p i-1 line (in j = p i-1 +1). We think it unique but we are hardly able to prove it.

Let us now compare the initial values (of Table 7), at the point where we were able to determine them, to the data of the population table (Table 5). These initial values are inscribed in red font below within the said population table (except zeroes) : The populations close to the maximum of ΔP = 2j are equal to the initial values and gradually only a portion of it is to be taken into account (as initial values).

Malleability of systems

Finally, and this applies to the other formulas of the same type that we will find in this article, it should be noted the malleability of these iterative formulas. Indeed, we can swap the order of the c k in the (p i-k -c k ) expressions at leisure while finding exactly the same #SP(j,i) by simply adjusting the initial conditions xk(r).

We wrote a specific article on this subject "Invariance in a triangular system of recursive equations and unitriangular matrixes" [START_REF] Hubert | [END_REF].

Needless is to say that the ascending order of k (and c k ) is the obvious one and is the one that has been retained here.

Besides, giving concrete meaning to the initial coefficients in the context of an arbitrary order is not obvious.

The example for j = 13 is given below.
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Tables 13 and14 13

x1(9) = 2580 x1(i) = (p i-6 -8).x1(i-1) x2(8) = 1186 x2(i) = (p i-5 -7).x2(i-1)+x1(i) x3(7) = 50 x3(i) = (p i-4 -6).x3(i-1)+x2(i) x4(6) = 2 x4(i) = (p i-3 -5).x4(i-1)+x3(i) x5(5) = 0 x5(i) = (p i-2 -4).x5(i-1)+x4(i) x6(4) = 0 x6(i) = (p i-1 -3).x6(i-1)+x5(i) #SP(13,3) = 0 #SP(13,i) = (p i -2).#SP(13,i-1)+x6(i) x1(9) = 5052 x1(i) = (p i-6 -6).x1(i-1) x2(8) = 1236 x2(i) = (p i-5 -8).x2(i-1)+x1(i) x3(7) = 58 x3(i) = (p i-4 -3).x3(i-1)+x2(i) x4(6) = 2 x4(i) = (p i-3 -5).x4(i-1)+x3(i) x5(5) = 0 x5(i) = (p i-2 -2).x5(i-1)+x4(i) x6(4) = 0 x6(i) = (p i-1 -4).x6(i-1)+x5(i) #SP(13,3) = 0 #SP(13,i) = (p i -7).#SP(13,i-1)+x6(i) x1(9) = x1(i) = (p i-6 -4).x1(i-1) x2(8) = x2(i) = (p i-5 -2).x2(i-1)+x1(i) x3(7) = 64 x3(i) = (p i-4 -8).x3(i-1)+x2(i) x4(6) = 2 x4(i) = (p i-3 -7).x4(i-1)+x3(i) x5(5) = 0 x5(i) = (p i-2 -3).x5(i-1)+x4(i) x6(4) = 0 x6(i) = (p i-1 -5).x6(i-1)+x5(i) #SP(13,3) = 0 #SP(13,i) = (p i -6).#SP(13,i-1)+x6(i)

Asymptotic behaviour

The resulting numerical values follow. The numbers in parentheses are obtained from the initial xk(r) conditions to be adjusted, and then remain the same, regardless of the permutation adopted. A similar study up to i = 2150 for all of the examples j = 1 to 13 allows us to draw the following curves :

In the early stages i, the comparative numbers of populations of 2j-spacings are in significantly different proportions, for example a ratio of more than 1 to 10000 between {i = 6 (p i = 17), j = 13} and {i = 6, j = 1}. As i tends towards progressively towards infinity, values are shunned as a result of contributions supplemented by the increase in the number of equations in the recursive system (a new equation for each 2 added value to j). Thus, the ratio mentioned above drops to a ratio 1 to 3.66 (ratio close to its asymptotic value).
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Starting from theorems 9 and 12, assuming that the order of magnitude of the #SP(j,i) is that of #SP(1,i) when i tends towards infinity, there would then exist a constant c such as ∏ i→+∞ (p i -1) = ∑ j #SP(j,i→+∞) > c.j max .#SP(1, i→+∞) = c.j max .∏ i→+∞ (p i -2). Hence j max < (1/c).∏ i→+∞ (p i -1)/(p i -2) and, from Mertens's theorem, we might conclude that there is a constant c' such as j max < c'ln(p i ).

The order of magnitude of the number of lines j in row i, (including non-zero values) would then be asymptotically in ln(p i ). This order of magnitude is much lower than what is observed really (j max around of p i in fact as we will see later on) as there are in fact intermediate values between the populations of the line j = 1 and those of the line j max .

However, what we are looking to highlight here is the very strong de facto constraint on the maximum value of j for given i. It is difficult, and in actual fact impossible, to reconcile the growth in the populations generated by recursive formulas with a j max that would regularly be beyond p i (value given below). Indeed, any effective population (change from zero to a non-zero value) immediately triggers afterwards a steady increase of the said population on following ranks i and conversely any delay in apparition will have to be catched up without fail, the ratio ∏ i→+∞ (p i -1) of the overall populations been forced at each stage i. Recursive links existence and coercion due to the relationship (53) is self-regulating the asymptotic increase of the maximum value of j (for given j).

Evolution of aggregated populations.

We give below the cumulative staffs that correspond to spacings greater than a given value. 

#SPC(1,1) = 2 #SPC(1,i) = (p i -1).#SP(1,i-1) 2 x1(2) = 1 x1(i) = (p i-1 -2).x1(i-1) #SP(2,1) = 1 #SP(2,i) = (p i -1).#SP(2,i-1)+x1(i) 3 x1(2) = 2 x1(i) = (p i-1 -2).x1(i-1) #SP(3,1) = 0 #SP(3,i) = (p i -1).#SP(3,i-1)+x1(i) P 23/142 j Formulas 4 x1(5) = 32 x1(i) = (p i-2 -3).x1(i-1) x2(4) = 28 x2(i) = (p i-1 -2).x2(i-1)+x1(i) #SP(4,3) = 4 #SP(4,i) = (p i -1).#SP(4,i-1)+x2(i) 5 x1(6) = 18 x1(i) = (p i-3 -4).x1(i-1) x2(5) = 46 x2(i) = (p i-2 -3).x2(i-1)+x1(i) x3(4) = 20 x3(i) = (p i-1 -2).x3(i-1)+x2(i) #SP(5,3) = 2 #SP(5,i) = (p i -1).#SP(5,i-1)+x3(i) 6 x1(6) = 54 x1(i) = (p i-3 -4).x1(i-1) x2(5) = 58 x2(i) = (p i-2 -3).x2(i-1)+x1(i) x3(4) = 10 x3(i) = (p i-1 -2).x3(i-1)+x2(i) #SP(6,3) = 0 #SP(6,i) = (p i -1).#SP(6,i-1)+x3(i) 7 x1(8) = 576 x1(i) = (p i-4 -5).x1(i-1) x2(7) = 1062 x2(i) = (p i-3 -4).x2(i-1)+x1(i) x3(6) = 442 x3(i) = (p i-2 -3).x3(i-1)+x2(i) x4(5) = 56 x4(i) = (p i-1 -2).x4(i-1)+x3(i) #SP(7,4) = 2 #SP(7,i) = (p i -1).#SP(7,i-1)+x4(i) … ...
The reader will also be able to build the systems of recursive equations corresponding to the aggregations like "spacings ΔP ≤ 2j " instead of above resolved "spacings ΔP ≥ 2j ".

Having failed on the anticipation of the initial values in the previous paragraph, the purpose of this paragraph was to find some way this here. However, for these two types of aggregations, there seems to be not more success possibility than before.

Cradle of the multiplicative factors.

The reader will find underneath the wise course in order to find a proof for the existence of recursive relationships. Indeed, the multiplier factors observed in these linear relationships do appear at once when we carry out successive sortings based on modulo #p i /p k aggregations where p k is the decreasing list of the prime dividers of the primordial #pi. The evidence sought is therefore intimately linked to the proper understanding of these sortings. Below we describe this method and the properties of the relevant objects.

Method of sorting.

Starting from the integers over an interval [x 0 , x 0 +p 0 p 1 p 2 …p i [, (x 0 > p i ), we remove all multiples from p 0 = 2 to p i . The remaining numbers are in quantity (p 1 -1)(p 2 -1)…(p i -1) and are sorted according to the increasing values of spacing (to the preceding ones).

The numbers x of spacing 2 are then sorted according to the increasing values of x modulo p 0 p 1 p 2 …p i /p i . They appear in families with p i -2 identical modulo values and are all 1 modulo 6 valued. The total amount of elements responds to a system of one recursive equation. For spacing 4, the routine is then analogous except that the elements are all 5 mod 6 valued. For these first two groups of families of cardinal p i -2-0, the proof is that of the theorem 12 (and of the preliminary theorem 4).

The numbers x of spacing 6 = 4+2 are then sorted according to the increasing value of x modulo p 0 p 1 p 2 …p i /p i . Those that appear in families with p i -2 identical modulo values are grouped apart. The others appear modulo p 0 p 1 p 2 …p i /p i-1 in families with p i-1 -2-1 identical modulo values and are grouped on their side. The set responds to a system of two recursive equations.

P 24/142 … The numbers x of spacing 4+2.(j-2) are then sorted according to the increasing value of x modulo p 0 p 1 p 2 …p i /p i . Families with p i -2 identical modulo values that appear are grouped apart when they exist. We then proceed with the same way modulo p 0 p 1 p 2 …p i /p i-k , k being gradually incremented while making groups of numbers showing p i-k -2-k identical modulo values to the k-1 sequence.

We do this until the stock runs out. The number of sorting, at a given spacing, cannot exceed i. The resulting recursive system cannot have more than i equations.

Origin of the multiplicative ratio

The p i-k -2-k identical modulo-values at the k+1 sequence answer to the following count. We operate modulo p 0 p 1 p 2 …p i /p i- k . In an interval of size p 0 p 1 p 2 …p i , we initially come up exactly with p i-k integers. For these trivially, being remotely equidistant, there are exactly 1 integer x that is multiple of p i-k and 1 other among x-2j+r.p 0 p 1 p 2 …p i /p i-k , r = 0 to p i-k -1, which is also multiple p i-k , and this regardless of the value of j. This is trivial in contrast to the following feature : The elimination of the additional k integers is due to exactly 1 elimination for the sorted modulo p 0 p 1 p 2 …p i /p i series, 1 elimination for the sorted modulo p 0 p 1 p 2 …p i /p i-1 series, …, 1 elimination for the sorted modulo p 0 p 1 p 2 …p i /p i-(k-1) series, these k cases being all to be found in the 2j-spacing set of numbers (see examples below).

Symmetry property

In an interval [x 0 , x 0 +p 0 p 1 p 2 …p i [, x 0 > p i , subject to Eratosthenes sieve, there will remain, with the provision of an offset, the same quantities of integers as in the interval ]-p 0 p 1 p 2 …p i /p 0 , +p 0 p 1 p 2 …p i /p 0 [ subject to the same algorithm provided you also remove p 0 , p 1 , p 2 , …, p i (and -p 0 , -p 1 , -p 2 , …, -p i ). The result of the latter after sieving being perfectly symmetrical, there i therefore in the initial interval also a symmetry modulo p 0 p 1 p 2 …p i for an axis to be determined. We will thus systematically find for any configuration, a concept that we will define below, a symmetrical configuration, unless it is its own symmetrical.

It should also be noted that the count properties observed for the part of the integers beyond p i when running the Eratosthenes algorithm are the same as if one studies these numbers in an interval beginning at 0, provided that 2, 3, 5, 7, 11, ... p i are removed too.

Supplementary remarks.

First of all, the conjecture is clear for in steps i = 1 to 9.

Using sufficient initial conditions, any population can be analysed in the form of recursive formulas, since an adjustment of one unit on the lower diagonal (table 10) changes each of the values vertically from the same unit exactly. The point here is to show that a finite number of initial values will suffice for the asymptotic assessment for a given 2j-spacing and that the multiplier factors are then appropriate.

Below, we give the population #ΔP evaluation as it stands for the spacing of ΔP = 14 for steps i = 1 to 9. As for calculation purposes, recursive formulas work perfectly provide the correct adjustment of the lower diagonal. However, it would be irrelevant to seek meaning in the numbers displayed when the multiplier factor of a line becomes negative as in line 5 for p i = 17. Appropriate explanations are only to be sought up to line 4 and starting with non-zero population.

Numeric examples.

The underneath numerical examples are intended to give a clearer understanding of the sequences of integers that give rise to previous arguments.

The spacings are taken, as agreed in this article, between the number displayed and its previous one respecting the spacing ΔP. For example, for m = 11 some integer effectively inscribed in the table, the associated integer for ΔP = 4 will be 7 (not 15). We start from step i = 1 using the sorting method.
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Step 1 : p 0 p 1 = 6.

We initially choose the interval [11, 17[, but any other interval modulo 6 of initial abscissa greater than p 1 = 3 could be chosen. This initiates Table 5.

Note here the way how to set the modulo condition in the form p 0 p 1 …p i /p i . Besides p i -2 = 1 is indeed the cardinal of the elements for spacing 2 and 4 respectively.

Step 2 : p 0 p 1 p 2 = 30. The numbers 13 and 11, of the preceding step, are generators of the families 1 and 2 through the property 1 mod 30/5 for the first one and 5 mod 30/5 for the second one. We have demonstrated, using the arguments of depletion developed in pages 8 and 44 and illustrated by Tables 3 and27, that by going from stage i-1 to stage i, there are p i candidates in which only p i -2 are suitable and indeed here for family 1, only 25 and 37 are not suitable (the first to be multiple of 5, the second as 37-2 is multiple of 5) and the same for the family 2, where 29 and 35 are excluded (the first as 29-2 is multiple of 3 and the second to be multiple of 5).

Family 3 "recovers" the previously excluded numbers 29 and 37 (but not 25 and 35 that are multiple of a divider of 30). This is then, for these numbers, their final position because 29-6 and 37-6 are not multiple of a divider of 30. We do the p i-1 -2-1 count getting so value 0. Thus the elements of family 3 are neither in p i -2 quantities nor in p i-1 -2-1 quantities. In some way, we can say that they are "self-generating" being not subject to any particular multiplier factor (which is a somewhat exaggerated word, since in fact they are only outside the previous classifications). So there is no possibility to attach them a property x modulo p 0 p 1 p 2 …p i /p i or x modulo p 0 p 1 p 2 …p i /p i-1 (hence the empty box).

Here and later, we will call the spacing arrangement a "configuration". Any circular permutation of the spacings is the same configuration.

The configurations here are symmetrical to themselves, i.e. the symmetrical of {6, 12, 12} is {12, 12, 6}, the latter being identical by circular permutation to {6, 12, 12}.

Step 3 : p 0 p 1 p 2 p 3 = 210. We have p i -2 = 7-2 = 5, p i-1 -2-1 = 5-3 = 2 and p i-3 -2-3 is negative. Only searches according to the properties x modulo p 0 p 1 p 2 …p i /p i = 210/7 and x modulo p 0 p 1 p 2 …p i /p i-1 = 210/5 with groupings by 5 and 2 therefore make sense.

In the "properties" column at the top of Table 19, we collect the list of integers in Table 18. We find them on the previous spacing lines, filling them entirely for spacings 2 and 4 and partially for spacing 6, the largest spacing in the previous step. They are developed thanks to the property modulo p 0 p 1 …p i /p i in the new lists. Let us recall again here that it is established that any number present at the i-1 step generates p i -2 numbers at step i in the same spacing line.

The numbers #ΔP for ΔP = 2 and ΔP = 4 are given by a one-equation recursive system. Each number in the previous table ( The population #ΔP for ΔP = 6 is determined by a two-equation recursive system. The same rule applies for a part of the solution numbers, a proportion that is perfectly identified in the population values given by the following two recursive equations, which are derived from the general formula where only the initial values are to be constituted by numerical approach:

p i 3 5 7 Line 1 0 2 14 Line 2 2 4
The cumulative is 14, of which 10 are generated by two numbers (37 (or rather 7) mod 30 and 29 mod 30) in line 1 on the one hand and 4 generated by two numbers in line 2 on the other hand.

The rest of them originate from previous modulo 210/7 rejects. Modulo p 0 p 1 p 2 …p i /p i-1 (here 42), the two generators turn out to be 11 and 37 (or rather 53 mod 42 and 79 mod 42 looking for the head of list of integers among the modulo 210/7 rejects). With distances p 0 p 1 p 2 …p i /p i-1 within a set of size p 0 p 1 p 2 …p i , we generally have p i-1 integers to look at initially. In the following table, we report these p i-1 numbers (here p i-1 = 5) on which we proceed with two types of elimination : Thus 2 initial values correspond to 2 configurations represented by the two tables. This gives a multiplier factor of p i-1 -2-1 = 2 here, the first two under the "standard" elimination of two units (since 6 does not contain the divider 5) and the last by the fact that in an interval of size 210 one has already been listed in a spaced list modulo 210/7.

m
Having only two configurations in total and knowing that there is a symmetrical to any type of positioning modulo p 0 p 1 p 2 …p i , we do check this point here. The relative spacings between the first type of eliminations are the same (value 84 mod 210) and the symmetry axis is the middle of both eliminations. For the elimination of the second type, the integer 179 can be seen as being contiguous to the left of 11 (distance -42) in the first table, while 37 is well contiguous to the right of 205 (distance of 42) in the second table.

The passage of 6-spacing solutions for the part modulo p 0 p 1 p 2 …p i /p i-1 = 210/5 from step 2 to step 3 is given below. It is made modulo (p 0 p 1 p 2 …p i /p i )/p i-1 = (210/7)/5 = 6 (which is not particularly noteworthy for generalization as long as i is small) : The other two pairs of numbers (97, 121) and (209, 221) find their place with spacings 8 and 10 respectively. They selfgenerate, overusing these term, as they are not subject to any particular multiplying factor. Indeed, if we evaluate p i-2 -2-2 at this stage, we get -1 which does not correspond to a possible property x modulo p 0 p 1 p 2 …p i /p i-2 (hence the empty box for both spacings).

Step 4 : p 0 p 1 p 2 p 3 p 4 = 2310. The configuration is the same for all series of numbers generated by the list of 2-spacing.

Note the same configurations identity for the list corresponding to spacing 4 (with a different configuration from the previous one) and the same for spacing 6 for the part corresponding to the elements issued from property "modulo 2310/11", the later spacing being studying underneath. d,d,2d,d,d,d,d,2d,d The 16 remaining values are obtained modulo p 0 p 1 p 2 …p i /p i-1 (hence here modulo 2310/7 = 330). The four generators turn out then to be 13, 79, 257 and 323. In the following tables, we re-enact two types of elimination (always by making a circular swap of the m values to better compare configurations) : The multiplier factor is here, as conjectured, p i-1 -2-1 = 4.

m
The passage of 6-spacing solutions for the part modulo p 0 p 1 p 2 …p i /p i-1 = 2310/7 from step 3 to step 4 is discussed below. It is implemented modulo (p 0 p 1 p 2 …p i /p i )/p i-1 = (2310/11)/7 = 30 : Each configuration has its symmetrical. We have only encountered one configuration so far because only two spacings values were present, thus the symmetrical merges with the original, as illustrated in the example below :

Values

Configurations

Original

x, x, y, x, y, x, x, x, x Symmetric x, x, x, x, y, x, y, x, x Shifting of 2 units of the symmetric x, x, y, x, y, x, x, x, x But this pattern is no longer applicable here.
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The populations #ΔP for ΔP = 8 are determined by a three-equation recursive system based on the table below :

p i 3 5 7 11 Line 1 0 0 2 28 Line 2 0 2 10 Line 3 2 2
We have 2.(11-2) front-line solutions (97 and 121 mod 2310/11), 2.(7-2-1) second-line solutions (127 and 221 mod 2310/7) and two other solutions complete the count (919 and 1399) as initial values.

The populations #ΔP for ΔP = 10 are determined by a four-equations recursive system according to the table below :

p i 3 5 7 11 Line 1 0 0 2 30 Line 2 0 2 12 Line 3 2 4 Line 4 2
We will come back later on how to determine these populations and additional ones (for spacings ΔP = 12 and ΔP = 14), the next step being more expressive and richer by the amount of data available.

Step 5 : p 0 p 1 p 2 p 3 p 4 p 5 = 30030. We have p i -2 = 13-2 = 11, p i-1 -2-1 = 11-3 = 8, p i-2 -2-2 = 7-2 2 = 3 and p i-3 -2-3 = 0. Only searches according to properties x modulo p 0 p 1 p 2 …p i /p i = 30030/13, x modulo p 0 p 1 p 2 …p i /p i-1 = 30030/11 and x modulo p 0 p 1 p 2 …p i /p i-2 = 30030/7 with groupings by 11, 8 and 3 therefore make sense.

The numbers #ΔP for ΔP = 2 and ΔP = 4 are given by a one-equation recursive system with the multiplier factor equal to p i -2 = 11.

The numbers #ΔP for ΔP = 6 are determined by a two-equation recursive system based on the table below : The multiplier factor here is p i-1 -2-1 = 8. The reader attentive to the configurations of the relative positions of the eliminations, numbering The multiplier factor is equal to p i-1 -2-1 = 8. Again, the second type of elimination corresponds to a family with the same spacing (so ΔP = 8 here).

p i 3 5 
There The multiplier factor is equal to p i-2 -2-2 = 3. These tables are the first showing two eliminations of the second type (previously listed). In this case, one comes from belonging to a family modulo p 0 p 1 p 2 …p i /p i and the other to a family modulo p 0 p 1 p 2 …p i /p i-1 (and with ΔP = 8).

The passage of previous solutions of spacing 8 for the part modulo p 0 p 1 p 2 …p i /p i-2 = 30030/7 from step 4 to step 5 is discussed below. The spacing between integers is the same because the two types of configurations are symmetrical to each other.

The populations #ΔP for ΔP = 10 are determined by a four-equations recursive system according to the table below : The multiplier factor of the last line being p i-3 -2-3 = 0 (for i = 5), the last line does not give any contribution to the one above. We only take up an explanation here for the third line. Again, the two eliminations of the second type originate from the belonging to a family modulo p 0 p 1 p 2 …p i /p i and the other to a family modulo p 0 p 1 p 2 …p i /p i-1 (and ΔP = 10).

The passage of previous solutions of spacing 10 for the part modulo p 0 p 1 p 2 …p i /p i-2 = 30030/7 from step 4 to step 5 is implemented modulo (p 0 p 1 p 2 …p i /p i )/p i-2 = (30030/13)/7 = 330 : Regarding configurations, the ranking according to the unit digits is accidental and quite anecdotal. In fact, this ranking is done by taking into account the spacings between integers and responds to the following table (d = 4290 = 30030/7) and shows that all configurations merge because the symmetrical spacings are the same as the initial spacings:

Configurations Spacings 1 et 2 d, 3d, 3d S1 et S2 d, 3d, 3d
The populations #ΔP for ΔP = 12 are determined by a five-equation recursive system based on the table below : For the generation of the first three lines, the previous examples are sufficient. We have also seen that the fourth line is governed by a multiplier factor 0 in p i = 13 without proper contribution. The last 12 numbers self-generate (and indeed modulo p 0 p 1 p 2 …p i /p i-j , j = 1 to 3, no relevant grouping does appear).

The numbers #ΔP for ΔP = 14 are determined by a five-equation recursive system based on the The first two lines respond to the standard assessment operating modulo 30030/13 for elements corresponding to line 1 and modulo 30030/11 for the elements of line 2.

For the third-line generation, there are 20-14 = 6 solutions initialized by 2 configurations. However, we meet four solutions for each of them 877, 18037, 22327, 26617 and 3427, 7717, 12007, 29167 giving respectively 877 mod 30030/7 and 3427 mod 30030/7. This does not call into question the sorting method, because there are at least the three expected solutions, but we do not know here which of the two integers it is appropriate to add in the batch of 14 solutions of line 5 (line 4 contributing for none).

If alternatively, we choose to solve using modulo 30030/13 for the first line, and then modulo 30030/13/11 for the second, the sorting leads to the same sets. Proceeding modulo 30030/13/11/7 for the remaining 20 integers, we get the following results :

Numbers corresponding to lines This time, we can distinguish 6+6+8 = 6+14 integers. Of course, we can also imagine other combinations for these totals.

But what is of interesting to us here is simply to find some form of consistency with respect to relevant populations.

For the population #ΔP including ΔP >14, there is no specific classification to consider at this stage.

Step 6 : p 0 p 1 p 2 p 3 p 4 p 5 p 6 = 510510.

We have p i -2 = 17-2 = 15, p i-1 -2-1 = 13-3 = 10, p i-2 -2-2 = 11-4 = 7, p i-3 -2-3 = 7-5 = 2 and p i-4 -2-4 is negative. Only searches according to properties x modulo p 0 p 1 p 2 …p i /p i = 510510/17, x modulo p 0 p 1 p 2 …p i /p i-1 = 510510/13, x modulo p 0 p 1 p 2 …p i /p i-2 = 510510/11 and x modulo p 0 p 1 p 2 …p i /p i-3 = 510510/7 with groupings by 15, 10, 7 and 2 therefore make sense.

We present this case only partially, the aim being only to confirm the concepts already exposed, limiting ourselves to the spacing ΔP = 12 and the groupings x modulo p 0 p 1 p 2 …p i /p i-3 = 510510/7 and x modulo p 0 p 1 p 2 …p i /p i-2 = 510510/11.

P 36/142 The 0 figure in the last column is the result of a calculation and the 12 figure in the last line is an "adjustment factor". The 24 in line 4 corresponds to the 24 integers at the bottom of Table 22. This population has doubled compared to the previous step and modulo p 0 p 1 p 2 …p i /p i-3 (510510/7 = 72930), we actually have exactly 12 distinct values (given in the same table ).

… … … … … … … … … … … … … … … … … … … … … … … 6619,
We begin by looking at the 12 solutions, which are 6619, 14269, 75499, 90499, 158329, 160129, 218809, 236359, 304189, 364669, 371269 and 440149, governed by a relationship p 0 p 1 p 2 …p i /p i-3 and find the multiplier factor p i-3 -2-3 = 2 expected (and we note that p 0 p 1 p 2 …p i /p i = 510510/17 = 30030, p 0 p 1 p 2 …p i /p i-1 = 510510/13 = 39270, p 0 p 1 p There is only one configuration here in the sense of eliminations location. However, we can distinguish subconfigurations for the second type of elimination. Each has exactly one modulo p 0 p 1 p 2 …p i /p i elimination, one modulo p 0 p 1 p 2 …p i /p i-1 elimination and now one modulo p 0 p 1 p 2 …p i /p i-2 elimination. In addition, the 6 possible permutations of these three subconfigurations are each present in equal proportions (i.e. once here).

For The transition of 12-spacing solutions from step 5 (see Essentially, there are no fundamentally richer teachings to expect than that acquired at the already studied steps.

Maximal spacing.

Now let us have focus on vertical considerations.

Conjecture 2

The maximum spacing ΔP max , between integers of the Eras(i) list at the i depletion stage, is inferior or equal to 2p i -2.

The purpose is to prove that for the series {y, y+2, …, y+2c, …, y+2p i -2}, where y is odd, there is at least an integer c between 0 and p i -1, such as y+2c ≠ 0 mod p k for any k between 1 and i. This conjecture is thus written in a totally equivalent way in the following form :

∀ y = 1 mod 2, ∃ c ∈ {0, 1, 2, … p i -1} \ gcd(y + 2c , 3.5 … p i ) = 1 (57)
This innocuous statement, in our view, is one of the most fundamental of arithmetic. It presents itself after many attempts at resolution as a real headache for its complete resolution. Nevertheless, the problem can be circumscribed in its broad outlines according to the theorems and remarks made below. They are therefore usually not uncommon in the chosen interval, except that when p i tends towards infinity, the amount of 0 per column in the double frame should tend on average, on a purely statistical basis, to 1/3+1/5+1/7+…+1/p i and thus to infinity (with the same reasoning starting with 1/5 instead of 1/3, or 1/7, etc.) which would make seem highly unlikely the systematic existence of c as conjectured here.

Theorem 10

The maximum spacing ΔP max is larger or equal to 2p i-1 .

Proof

The solution ΔP = 2p i-1 is obtained constructively (see theorem 11 below) and hence always exists.

Theorem 11

There is always a pair giving spacing 2p i-1 . One of the elements of the pair is centred in M 1 and the other one in M 2 = 2.3… p i -M 1 and the couple (M 1 , M 2 ) meets the equations' systems :

M 1 = 0 mod 2.3.5…p i-2 M 1 = -1 mod p i-1 M 1 = 1 mod p i M 2 = 0 mod 2.3.5…p i-2 M 2 = 1 mod p i-1 M 2 = -1 mod p i (58) 

Proof

We can limit to the study of the case of M 1 as M 2 is the mere symmetrical of M 1 (i.e. M 1 +M 2 = 2.3.5…p i ) that we have identified in the previous theorem. Again let us use then theorem 1. As 2…p i-2 and p i-1 are coprime, we have that k.2.3.5…p i-2 mod p i-1 , k = 1 à p i-1 .p i , generate p i repetitions of p i-1 distinct numbers (0 up to p i-1 -1). Similarly, k.2.3.5…p i-2 mod p i , k = 1 to p i-1 .p i , generate p i-1 repetitions of p i distinct numbers (0 to p i -1). The two lists, obtained by k incrementing, form pairs of numbers, which, under the Chinese theorem (or theorem 1), are all distinct. One of these pairs is therefore necessarily {-1 mod p i-1 , 1 mod p i } and moreover it is unique.

To get the value of M 1 (or of M 2 ), one just solves two Bachet-Bézout equations. As the cycles are repetitive to infinity, the solution is necessarily also in cycle 1. Such a pair of solutions therefore always exists.

Its construction is done in a standard way according to the example below (where M = M 1 ) (i = 6, M = 217140 = 2.3.5.7.11.k and k = 94) : 

X M-9 217131 X M-7 217133 X M-5 217135 X M-3 217137 X M-1 217139 X M+1 217141 X M+3 217143 X M+5 217145 X M+7 217147 X M+9 217149 X M+11 217151 X M+13 217153
Developing in the table according to the allocation (M+p k , p k ), as M has 2 to p i as divisors, all the interstices M+j.p k are addressed (meaning for us here that they are emptied), then M+1 and M-1 places are affected by construction. We get this way the largest free space between numbers. In addition, we can now assess the spacing. It is based on 13 and in the general case on p i-1 and gives therefore a spacing of 2p i-1 . Of course, the most obvious, looking at the example, would be actually to take 2(p i-2 +2) because the contributions of p i-1 and p i are made in M-1 and M+1, but one must not forget small dividers that allow us (thanks again here to theorem 1) to match a "small" divider up to the positions M-(p i-1 -1) and M+(p i- 1 -1) modulo p i-1 .

Any change to this construction gives an intermediate empty space. It is the only one that can reach a value of 2p i-1 spacing. The question is whether an adjacency to another empty space (of integers with small divisors) is possible to further increase the spacing. To do this, simply look at the lower and upper boundaries just adjacent to this space M-p i-1 and M+p i-1 , which are odd numbers, and check if they have or not, one or the other, divisors between 3 and p i . To do this, let us rewrite the equations, resulting for the first of these limits: M = 2.3…p i-2 .k, M = -1+k1.p i-1 , M = 1+k2.p i , M-p i-1 = k3.p j where k, k1, k2, k3 are strictly positive integers and 3 ≤ p j ≤ p i , 1≤ k ≤ p i-1 .p i .

We have three cases: If p j ≤ p i-2 then p i-1 = M-k3.p j = k4.p j -k3.p j = (k4-k3).p j , for some integer k4, which is impossible. If p j = p i-1 then M = k3.p j +p i-1 = (k3+1).p i-1 = -1+k1.p i-1 , thus (k1-k3-2).p i-1 = 1, which is impossible. If p j = p i then M = k3.p i +p i-1 = 1+k2.p i , thus (k2-k3).p i = p i-1 -1 which is still impossible because p i > p i-1 -1. The argumentation is the same for the upper limit.

The previous empty interval is therefore the largest possible which ends proof set-up.

We give in appendix 3 the entire list of the M 1 and M 2 for i = 2 to 50, as well as i = 100, 150, …, 500, 1000 and 1500, using online calculator Pari GP.

Nota :

The fact that it gives the biggest spacing in general stems from its construction which fills the spaces optimally. This filling in itself contains two advantages:

-The first one is its symmetry versus the horizontal axis, which systematically doubles the gain at each new step.

P 41/142 -The second one is the inheritance of the previous setup, namely, there can be only optimum progression without questioning the previous configuration. Any other configuration is dependent, at rank i, on random variation of neighbour spacings, the average value of which is Δ mean (i) → e γ .ln(p i ) ≈ 1,781.ln(p i ). This is to be compared with a undeniable increase of the spacing, for the optimum standard scheme given here, of 2(p i-1 -p i-2 ), an expression that tends towards 2.ln(p i ) asymptotically. The difference between the two is not staggering, but with a systematic routine extending to infinity, this regular asymptotic growth is definitely to the advantage of said scheme. It is reasonable to think that the following example is quite anecdotal, perhaps even unique.

A unique (?) overboosted example For the case i = 8, ΔP max is effectively superior to 2p i-1 . Let us first give the standard scheme. The number of redundancies (more than one cross on a line) is equal here to 2 over 20.

The « high-vitamin » example underneath is such that ΔP max = 2p i-1 +2 = 2p i -6. It shows 6 pairs of solutions. The number of redundancies are equal to 2 over 21.

Note: This maximum spacing corresponds to some case where the two void borders are not made up of a single integer without small dividers but by a pair of numbers. In the next step, it can only increase by 2 (new spacing = 42) and will therefore be smaller than the 2p i-1 spacing of the standard scheme (i = 9, 2p i-1 . = 2p 8 = 46).

Statement 1

When ΔP max > 2p i-1 , we think that framing is systematically realized by a pair of numbers as above. We would thus be in the case of another problem (that of pairs of numbers) in which these exceptions play no role neither predominant nor even notable. These pairs take revenge for their anonymity there by playing here troublemakers.

Minimal spacing.

We are talking of the spacing 2 and integers that in the cycle 1 are not exclusively primes, but specifically numbers with large divisors (which gap 2 and are so named twins). The average density of large twin dividers in the cycle 1 is exactly ∏((p k -2)/p k ), k = 1 to i, at step i. Assuming a relatively uniform distribution in a large enough interval, as for example the interval p i +2 to p i ² (as soon as 30 values are included for example), interval which contains by algorithmic construction only primes, we get a generative density of twin prime numbers of about ∏((p k -2)/p k ) ≈ c 2 .e -2γ /ln 2 (p i ) using the generalization of the Mertens theorem, that is also some c/ln 2 (p i ) upstream of the abscissa p i . This will create progressively in the range 0 to p i (which increases when i increases) a quantity c.p i /ln 2 (p i ) of twin prime numbers.

Note:

Even if the distribution of 2-spacings is not uniform, nothing does influence or reduces their evolution apart from the average ratio (p i -2)/p i . The twin numbers late to the call between p i +2 to p i ² will come up more numerously later on, where those in advance will delay the arrival of followers. Asymptotically the average necessarily prevails over any other phenomenon.

Thus again: Statement 2

The asymptotic evolution of the cardinal of twin prime numbers is c.p i /ln 2 (p i ), c a positive constant (to be determined). So there is an infinite number of twin primes.

We already have a statement along the desired lines. Let us nevertheless develop further the topic, especially that of ratio (p k -2)/p k .

Eratosthenes crossed sieve.

We are just talking of the Eratosthenes sieve to which we add a special counter that we name signature.

Case of the twin prime numbers.

We start with the odd numbers (hence the x-axis scaling with a step of 2, fact which one must pay attention later on) and we gradually remove multiples of prime numbers seeking for couples of twin prime numbers (1 is not a prime number, hence the absence of 2 under the integer 3 in the following In the previous process, when a multiple is removed of a column, the 2 at the following column is removed also (if still there). We call the last line of the tables (containing the figures 2) the signatures' line.

We observe a "rho" type process : we have a first part of numbers, we will call the "entry" part, which has a non-repetitive structure and parts that we call "cycles" with repetitive patterns. The amplitudes of these patterns are equal to 2.3.5…p i , with p i being the last prime number whose multiples were removed (the integer p i being retained). Thus, the integers of the cycle n+1 are those of the cycle n by adding the 2.3.5…p i product and the signatures will repeat identically up to infinity.

Cycle 1 starts at p i +4 (p i +2+2n in the general case of a gap of 2n instead of 2 except for p 0 = 2 (at p 0 +3)).

We can provide a picture of the signatures, odd "survivors" of this process, i.e. numbers which retain 2 facing them on the P 44/142 last row of the said table : The reader must be attentive to the fact that when we are talking of a survivor, we are talking about a pair of integers : this one who has the gap 2 registered under its value and the previous one that makes the pair with it. We do not count numbers but pairs of numbers. We count signatures.

We observe that the number of signatures in the repetitive parts evolves according to the formula :

Theorem 12

The number of signatures per cycle is given recursively by:

#(B i+1 )/#(B i ) = p i+1 -2 (59) 
Proof Relation (59) results from theorem 1. We need to get at stage i, the number of eliminations, i.e. multiples of p i (or integers 0 modulo p i ) present in 1 cycle 1. A sequence (0, r, 2r,..., (s-1).r) modulo s, where r = 2.3... p i-1 and s = p i are coprime, contains exactly a single 0. It is the same by adding a constant c to each of the terms of (0, r, 2r, …, (s-1).r), that is for (c, c+r, c+2r, …, c+(s-1).r) mod s. We will have then exactly for a pair of numbers p and q such as p-q = 2, two eliminations because 2 being coprime with p i , the 0 within (c, c+r, c+2r, …, c+(s-1).r) mod s and the 0 within (2+c, 2+c+r, 2+c+2r, …, 2+c+(s-1).r) mod s are necessarily shifted. We take also B 0 = 1 (p 0 = 2) which initiate in a coherent way the recursive sequence.

It follows immediately: #(B i ) = Π (p k -2) (60) 3 ≤ p k ≤ p i Illustration p-q = 2 and p i = 7 At step 2 (withdrawal of multiples of 5), we have the {13, 19, 31} survivors, as the reader will find above. At the next step, the survivors of interest here are between 11 and 220 (i.e. 7+4+2.3.5.7-1) and are built from {13, 19, 31} modulo 30 (30 = 2.3.5).

We get the following tables :

Table 27 For p (in p-q = 2) It is, a priori, impossible to predict where in each table the eliminations will occur (even at a stage as early as above). But, we have necessarily a permutation of (0, 1, …, p i -1) in each line and therefore a unique elimination (in each line) as 2.3. 5…p i -1 is prime with p i .

13
The positions of the eliminations are shifted from one line to the other in each of the two illustrations. The order of presentation of congruencies is the same following a circular permutation (here the order is 0, 2, 4, 6, 1, 3, 5), but this is not helpful for what we are here concerned.

In addition, and this time it is required to our purpose, the eliminations positions (as the other non-zero congruencies) are shifted from the first table to the second one between two corresponding lines (lines of 13 and 11, lines of 19 and 17, lines of 31 and 29) as gap 2 is prime with p i . Hence, we get elimination of exactly 2p i solutions for the p i examined situations.

We get a depletion of the number of "survivors" at step i which is expressed not heuristically, but by an arithmetic law. At every step i, we have p i columns of which 2 are eliminated. The depletion of the signatures is thus given by the ratio :

(p i -2)/p i ( 61 
)
We find easily the relationship (59) since #(B i )/#(B i-1 ) is equal to this ratio multiplied by p i :

#(B i ) = ( p i -2 ).p i = p i -2 #(B i-1 ) p i
This non-zero ratio shows that there is never exhaustion of some potential candidates to the prime numbers twin in the cycles. But this would not suffice to get infinite twins. Twin prime numbers remain at infinity because the eliminations due to the Eratosthenes crossed sieve, when the steps are incremented, are regulated by a proportion that is quite enough close to 1. For an assessment of the lower bound of the twin prime numbers population, the key is indeed in the ratio (p i -2)/p i .

The goal underneath is only some numerical clarifications. We give quantities at the start of the routine showing the 'evidence' of the result. What means this table? At step i, we remove all the multiples of p i . As p i+1 is prime, at the next step, the first withdrawal is necessarily beyond p i+1 2 . But the first pair is already present well below this abscissa. The abscissas ratio increases progressively (it may decrease a bit from time to time) and this phenomenon is irreversible.

The number of signatures is ∏ (p k -2), k = 1 à i, p 0 = 2, in a cycle of size 2.3.5…p i , hence statistically a distance between signatures of 2.∏ p k /(p k -2). In the [p i +4, p i+1 ²] interval, whose approximate size tends towards p i+1 ², we therefore have (p i+1 ²/2).∏ (p k -2)/p k → (p i+1 ²/2).(c/ln²(p i )) = (p i+1 ²/p i ²).(c/2).p i ²/ln²(p i ) ≈ (c/2).i² signatures. The graphs below illustrate that : Graphs 4 and 5

The growth of the number of pairs actually twin primes is parabolic versus to the current step (i.e. index i):

#( number of twin prime pairs at step i) ≈ 0,34.i 2 (62)

Another way to find this result is to observe that, according to the relationship 60, the number of signatures in the cycle 1 at step i is given by #(B i ) = Π 3 ≤ pk ≤ pi (p k -2). The size of the cycle 1 being Π 3 ≤ pk ≤ pi p k , on average, the distance between the remaining signatures is so Π 3 ≤ pk ≤ pi p k /(p k -2), expression that tends, according to the generalization of the Mertens theorem, towards c.ln²(p i ) when i tends towards infinity with c some constant (of the order of 1,2). This means that within the cycle 1 between p i +4 and p i ², there are on average (1/c).(p i ²-p i -4)/ln²(p i ) pairs of numbers. However, these can be in this interval only (twin) prime numbers, since all the multiples of 3 up to p i were removed. When p i increases, p i becomes negligible in front of p i ² and the order of magnitude of the expression is then (1/c).p i ²/ln²(p i ). As p i /ln(p i ) tends towards i, when i tends to infinity the order of magnitude of quantities is c'i², c' tending towards a non-null constant.

Case of relative prime numbers.

We examined previously the case of the gap 2 for twin prime numbers. Let us look at the 2n gaps (relatives like cousins, etc.). We have compiled a table of a few cases to illustrate generality. Cycle 1 begins at 2n+p i +2. The number of remaining elements in one cycle is given recursively by :

#B i /#B i-1 = if (p i \2 n, p i -1, p i -2) (63) 

Proof

Let us go back to the proof of the theorem 4 page 8 showing the existence of a single element 0 modulo p i with theorem 1.

In the mechanism of withdrawal by the Eratosthenes crossed sieve, the two 0 modulo p i , that match, can only be either shifted or aligned. They are aligned if and only if p-q = 0 mod p i , so if 2n = 0 mod p i , or finally p i divides 2n.

If there is a shifting, there are two eliminations (as shown above), otherwise if there is only one (as shown below).

Illustration p-q = 10 and p i = 5 At step 1 (removal of multiples of 3), there are remaining all the integers 5 modulo 6, the first cycle starting at 15 (that is 3 +2 +10). At next step (removal of multiples of 5), the survivors that interest us are between 17 and 46 (that is 5 +2 +10 +2.3.5-1) and are built from {17} modulo 6. We have the tables :

For p (in p-q = 10) For q (in p-q = 10) : Let us rewrite the two features modulo 5. We get :

For p (in p-q = 10)

17 => 2 3 4 0 1 35 = 0 mod 5
For q (in p-q = 10) :

7 => 2 3 4 0 1 25 = 0 mod 5
The said alignment of values 0 modulo p i is verified.

Theorem 13

The rarefaction of the number of elements in the cycles is the strongest when p-q = 2 m .

Proof

According to the previous lemma 4, the survivors ratio #(B i )/#(B i-1 ) is minimal (and equal to p i -2) at each step since p i never divides n as n is only multiple of 2 (and p i ≥ 3). Hence, we get minimum number of signatures and the result.

Thus, if there is an infinite number of twin prime numbers, there are an infinite number of relative prime numbers.

Lemma 5

The number of removals (or disappearances) is given by :

#A i = #B i-1 .if (p i \2 n, 1 , 2) (64) 

Proof

It is a paraphrase of the topic concerning eliminations.

Lemma 6

The number of removals of in a cycle at step i+1 is given by the number of removals in a cycle at step i by:

#A i+1 = #A i .if (p i \ 2n, p i -1, p i -2).if (p i+1 \ 2n, 1, 2)/if (p i \ 2n, 1, 2) (65) Proof We have #A i = #B i-1 .if (p i \ 2n, 1, 2) and thus #A i+1 = #B i .if (p i+1 \ 2n, 1, 2). As #B i /#B i-1 = if (p i \ 2n, p i -1, p i -2
), the result follows by simple application of proportions. Besides, we take #A 0 = 1 (p 0 = 2) to initiate in a coherent way the recursive sequence.

Lemma 7

For twin prime numbers, the number of removals in a cycle at step i+1 is given by:

#AR i+1 = Π (p k -2) (66) 3 ≤ p k ≤ p i

Proof

We have n = 1 and then apply recursion #A i+1 = #A i .(p i -2) since p i does not divide n and we have besides have #AR1 = 1.

Lemma 8

For relative prime numbers, the number of removals in a cycle at step i+1 is given by:

#A i = if (p i \2n, 1/2, 1). Π(p k -1)/(p k -2) .#AR i (67) p k \2n 3 ≤ p k < p i
where #AR i is the number of removals in a cycle for twin prime numbers (2n = 2), cardinal used as a reference.

Proof P 49/142

This is mere application of lemma 6.

We can also write p k \n and p i \n instead of p k \2n and p i \2n since the formula is used for i ≥ 1.

#A i = if (p i \n, 1/2, 1). Π(p k -1)/(p k -2) .#AR i (68) p k \n 3 ≤ p k < p i
The reader can observe that the determinant terms of the Euler product of Hardy and Littlewood formula that are Π(p k -1)/(p k -2) for p k \n show up here. Then let us write :

#HL i = Π(p k -1)/(p k -2) (69) p k \n 3 ≤ p k < p i and #HL = Π(p k -1)/(p k -2) (70) p k \n
We get immediately :

#A i = if (p i \n, 1/2, 1). #HL i .#AR i (71)

Evaluation of relative prime numbers cardinals.

Theorem 14

The Eratosthenes crossed sieve gives the set of relative prime numbers by iteration to infinity.

Proof

The Eratosthenes crossed sieve gives at step i the whole set of relative prime numbers (i.e. distant of 2n fixed in advance) up to the abscissa p i 2

. When i growths to infinity, p i tends to infinity as well as p i 2 . Hence the result. Thus, we can estimate the number of pairs from 0 to infinity by counting the of the signatures line' items from 0 to infinity.

Case of twin prime numbers.

The solutions are obtained by iterated subtractions of odd integers by the of Eratosthenes crossed sieve which is the only agent at work here.

We can evaluate this using lemma 7 or with tables 25 features : At step 1, p i = 3, the proportion of signatures (of odd integers, which is undertone starting now) disappearing after 3+4 is #A 1 /p 1 = 2/3. At step 2, p i = 5, the additional proportion of signatures disappearing after 5+4 is 2. Thus at step i, the additional proportion of signatures disappearing after p i +4 is 2.(3-2).(5-2).(7-2)(11-2)(p i+1 -2)/(3.5.7. 11.13…p i ), so that :

p i p i-1 #RC i = #AR i /( Π p) = (2/p i ). Π (p-2)/p (72) p = 3 p = 3
This is the first of the depletion coefficients #RCi expressions of Eratosthenes crossed sieve (ECS).

P 50/142 Gaps of 8 :

Tables 32

Step 0 : Initial list At step i, the number remaining in the cycle j is the same regardless of m in 2 m (here 1 at step 0, 1 at step 1 and 3 at step 2).

In the general case, we thus have :

At step 1, p i = 3, the proportion of signatures disappearing after 3++2+2 m is 2/3. At step 2, p i = 5, the additional proportion of signatures disappearing after 5+2+2 m is 2. On the previous model at step i, the additional proportion of signatures disappearing after p i +2+2n is :

p i p i-1 #RC i = if (p i
\n, 1/2, 1).#HL i .#AR i /( Π p) = if (p i \n, 1/2, 1). #HL i .(2/p i ). Π (p-2)/p (74) p = 3 p = 3

Formula of cardinals.

Let us repeat again that the disappearing proportions are imposed arithmetically. There is no margin incertitude over their total number when the whole set of N up to the point at infinity is taken into account.

Starting there, we can estimate the number of solutions for twin prime numbers and similarly for primes of gaps 2 m up to infinity by writing an infinite series that is built from the previous sieve.

Theorem 15

π(p-q = 2 m ) = lim M-(2/3).M 1 -(2/(3.5)).M 2 -(2.3/(3.5.7)).M 2 -(2.3.5/(3.5.7.11)).M 3 -...-RC i .MC i -… (75) N → +∞ where M = (N-1-2 m )/2 M i = (N-p i -2-2 m )/2 MC i = if((N-p i -2-2 m )/2 < 0, 0, (N-p i -2-2 m )/2) (76) (77) (78) 
and #RC i is defined above.

Proof.

We start from the odd numbers 3+2 m up to N, the infinite value being attributed to N in a second time. We have M = (N-3-2 m )/2+1 integers.

Then the numbers are removed following the proportions given in paragraph 6.3.1 starting at abscissa p i +2 m , M i = (N-p i -2 m )/2+1. The proportions bearing on the odd numbers, it is necessary to take a ratio 1/2 in the abscissa differences N-(p i +2+2 m ). We define M i = (N-p i -2-2 m )/2. We then get the infinite sum giving the sought cardinal (p 1 = 3).

When such a numerical application is carried out, the series as in the case of the Eratosthenes sieve is not infinite. Specifically, the M i coefficients must be taken equal to 0 when (N-p i -2-2 m )/2 becomes negative and so for calculations we must retain the expression :

MC i = if((N-p i -2-2 m )/2 < 0, 0, (N-p i -2-2 m )/2)
For our numerical applications, we then rewrite the relationship (75) as : 

π(c) = lim M-(1/c
N → +∞ When c = 1, then π(c) = π(p-q = 2 m ).
We then follow the evolution of the values of c that matches π(c) to the actual number of relative prime numbers.

If c ≤ 1, then the actual number of solutions is less than π(1). If c ≥ 1, then the actual number of solutions is greater than π(1). The reader will understand that we use 1/c in the expression (79) not because we seek complication, but to match to the "≤" sign a reduction and to "≥" sign an increase.

Twin prime numbers example shows that the c number turns out to be greater than 1 (with rare exceptions) which means that the cardinal of twin prime numbers near the origin is greater than π(1). We can do a second evaluation by choosing a different category for reference by pretending that the first pair of twins can appear only starting from p i 2 , namely by choosing :

MC i = if((N-(2+2n+p i 2 ))/2 < 0, 0, (N-(2+2n+p i 2 ))/2) ( 80 
)
This method should then give an underestimate of π(1) reducing the cardinal of twin prime numbers near the origin as 'statistical' area of the first pair of twins range below 2+2n+p i 2 . The numerical application confirms it. It should be understood that these choices have a very relative importance, because the only point that interests us is the point to infinity for which c = 1 stands as the limit value every time. The choice of the x-axis has only effect than to stick P 52/142 a little better to the real cardinals near origin.

For a gap 2n, the formula generalizes as :

Theorem 16 +∞ π(p-q = 2n) = lim M-Σ #RC i .MC i (81) N → +∞ i = 1 where M = (N-1-2n)/2 M i = (N-p i -2-2n)/2 (82) (83) MC i = if((N-p i -2-2n)/2 < 0, 0, (N-p i -2-2n)/2) (84) and i #RC i = #A i .∏(1/p k ) (85) k = 1 Proof
We just use theorems 15 and 6 and the result follows immediately.

Numerical applications

For numeric applications, it suffices to use in the same way again,

MC i = if((N-p i -2-2n)/2 < 0, 0, (N-p i -2-2n)/2)
As well as the alternative choice :

MC i = if((N-p i 2 -2-2n)/2 < 0, 0, (N-p i 2 -2-2n)/2) ( 86 
)
This gives for the coefficients c for 2n = 2 :

Graph 6

The first choice reduces the number of solutions, because generally the first number related after p i +2+2n will appear only after a certain interval (it as the minimum x-coordinate of the first such number), while on the other hand, several cases could have occurred before abscissa p i ²+2+2n, thus raising the number of solutions.

Theorems 15 and 16 formulas then give without much work interesting results by difference or division.

Common asymptotic branches.

Using difference, we get :

Theorem 17

The number of solutions of π(p-q = 2 i ) is either finite for all i, or infinite for all i. Thus N disappears in right-hand side by the subtraction operation and we can factor out the term 2 m -2.

In addition, as we cannot remove to a set more items that it contains, the sum Hence, after numerical verification that this sum is close to 1 (and in fact exactly equal to 1): We infer that the difference of the number of solutions of π(p-q = 2 i ) and π(p-q = 2 j ) is finite. Hence the result.

π(p-q = 2 m ) -π(p-q = 2) = (2 m -2).( 2 
This can then be generalized.

Theorem 18

Let us have 2n and 2m with same dividers without exception. The numbers of solutions π(p-q = 2n) and π(p-q = 2m) are then either both finite or infinite.

Proof Indeed, the infinite sum Σ # RC i is less or equal to 1 as was point out in the previous paragraph.

We then resume the exercise with gaps of type 2n and 2m.

We have then π(p-q = 2n) -π(p-q = 2m) = (2n-2m).(Σ #RC i ) ≤ (2n-2 m).

The difference being finite, we infer the previous theorem.

Thus, if the number of solutions tends to infinity, the numbers of solutions are found on the same asymptote when dividers are all common. This gives, for examples, the two following graphs:

Graphs 7 and 8

Implementation of a bijection between relative prime numbers with common asymptotic branches.

The whole chapter is carried over in appendix 4 to clarity to the mainstream article.

Hardy-Littlewood formula.

Theorem 19

The cardinal of relative prime numbers are in the ratio #HL of Hardy-Littlewood formula.

Proof

As Σ i #RC i = 1-ε, ε ≥ 0, we get :

P 54/142 +∞ π(p-q = 2n) = lim ε.M+ Σ #RC i .(M-M i ) (87) N → +∞ i = 1
Using M-M i = (p i +1)/2, we write

+∞ p i-1 π(p-q = 2n) = lim ε.M+ Σ if(p i \n, 1/2, 1).#HL i .(p i +1)/p i . Π (p k -2)/p k (88) N → +∞ i = 2 p k = 3
Then for i the maximum index m of all divisors of n :

+∞ p i-1 π(p-q = 2n) = lim ε.M-cte1+#HL. Σ (p i +1)/p i . Π (p k -2)/p k (89) N → +∞ i = m+1 p k = 3
where cte1 is a constant.

So that also :

+∞ p i-1 +∞ p i-1 π(p-q = 2n) = lim ε.M-cte1+#HL. Σ Π (p k -2)/p k +#HL. Σ (1/p i ). Π (p k -2)/p k (90) N → +∞ i = m+1 p k = 3 i = m+1 p k = 3
Yet according to Mertens theorem corollary

П (1-2/p) ≡ c 2 .e -2γ /ln 2 (x), c 2 > 0 (91) 2 < p ≤ x, x → +∞ We get straightforward : +∞ +∞ π(p-q = 2n) = lim ε.M-cte1+#HL. Σ cte2/ln 2 (p i )+#HL. Σ (1/p i ).cte2/ln 2 (p i ) (92) N → +∞ i = m+1 i = m+1
What we rewrite :

+∞ +∞ π(p-q = 2n) = lim ε.M-cte1-cte3+#HL. (Σ cte2/ln 2 (p i )+ Σ (1/p i ).cte2/ln 2 (p i ) ) (93) N → +∞ i = 1 i = 1
Neither the first sum, nor the second sum to the right of equality do contain a linear component that could compensate for the linear component ε.M. Being the only component of this type and knowing that the relative prime numbers are less dense than the prime numbers in N, we have necessarily ε = 0. Moreover, the infinite sum Σ 1/ln 2 (p i ) diverges, so cte1+cte3 is a non-significant term.

The remaining terms are thus :

+∞ +∞ π(p-q = 2n) = cte2.#HL.( Σ 1/ln 2 (p i )+ Σ (1/p i )/ln 2 (p i ) ) (94) i = 1 i = 1
We find there the same asymptotic proportions as those of Hardy-Littlewood formula.

Hence the theorem quoted above.

Theorem 20

There are an infinite number of relative prime numbers with given gap 2n.

Proof

The infinite sum Σ 1/ln 2 (p i ) diverges as ln 2 (p i ) < i from a certain rank on. Let us have u i = 1/ln 2 (p i ) and v i = (1/p i )/ln 2 (p i ). Then v i /u i = 1/p i → 0. The result is that Σv i /Σu i → 0. Thus the infinite sum Σ (1/p i )/ln 2 (p i ) is negligible towards the infinite sum Σ 1/ln 2 (p i ). So :

P 55/142 +∞ π(p-q = 2n) = cte''.#HL. Σ 1/ln 2 (p i ) (95) i = 1 Using relation (17), the previous expression will write as (cte' ≠ 0) : π(p-q = 2n) = cte'.#HL. lim y/ln 3 (y) (96) y → +∞ Hence the result, this expression tending towards infinity.

Argument

We can deduce again backwards as to the chapter on prime numbers, based on an analogy of table 4, what it would be when the index is i, and not p i , which guide the initial calculation, thus redefining the abscissa axis support of the said calculation.

To do this, we design the following table : The logarithm is a unit higher :

Table 33 M i (i ≥ 1) M i = N-p i 2 -1 M i = N-p i -1 M i = N-i-1 (i ≈ p i /
π(p-q = 2n) = cte.#HL. lim x/ln 2 (x) (97) x → +∞ The usual Hardy-Littlewood formula is obtained by taking cte = 1.

Important note:

We repeat here the remark made for Eratosthenes sieve case. The end result for π(2n) comes in the form of a sum of fractions less than 1 in relationship 95. This comes from the fact that we manipulate M-M i in the intermediate calculation.

It is essential to note here that, we handle not fractions of units because otherwise our estimate would be false. We would have to take all these fractions equal to 0, which would amount to a global reduction of 0. Instead, when the actual calculations are done, we handle M on one hand and #RC i .M i on the other hand in relationship 74. The first and the seconds are integers greater than 1 up to a certain rank. Rounding to integers or not, the results of the calculations again vary little here (meaning c is actually close to 1 when M is large). Appendix 1 presents a calculation with rounding to integers and obtained coefficient c is very close to 1.

Theorem 21

There are an infinite number of relative prime integers with gap 2n.

Proof

This is an immediate result of the relationship 88. Asymptotic progressions are in the Hardy-Littlewood #HL i (2n) ratio, and thus if one of them is infinite, all of them are infinite.

To conclude, we have linked asymptotically equations arising from the Eratosthenes sieve to the PNT. This sieve with a slight modification (p i -2 instead of p i -1) gives a result similar to the PNT here with simply a factor in ln²() instead of ln(). For the same process, there is the same result : infinity in one case, infinity in the other. The remainder is calculation, useful however. Note: We have not demonstrated the Hardy-Littlewood formula but simply retrieved the asymptotic proportions that are in it.

P 56/142 6.3.8. Comparative evolution of depletion coefficients.

The coefficients of depletion are at the heart of our study. Having the common property Σ i #RC i = 1, regardless of the choice of the gap p-q = 2n, in the same way as for Eratosthenes sieve (i.e. Σ i #RE i = 1), it is useful to take the time to compare their evolutions. To recognize different choices, we will use the notation #RC i (2n) for terms referring to the 2n gap.

There are two limit cases : The Σ i #RE i case of course and the Σ i #RC i (2) case. The representative curves of all the others Σ i #RC i (2n) cases are placed between these two limit cases from a certain rank i on (rank that can be as big as we want). Thus, we have the following curves: Graphs 9, 10, 11 and 12

The last curve is not an exception to limit cases that we have identified. Simply, the number of divisors is such that the red curve is still here below the blue curve at the stage i = 100000. It is necessary to extend the data very far to see these curves intersect and then the red curve going closer to the purple curve. As contributions near the origin are finite, regardless of the chosen 2n value, these contributions are negligible before infinity and from a certain rank on the red curve will be much closer to the purple curve than from the blue curve, imposing then the result (i.e. a progression in x/ln²(x)).

The green curve below, where 2n systematically contains all prime numbers up to a certain rank, is therefore a reference only up to a certain abscissa, any choice of n being necessarily finite. The red curve, corresponding to a gap where 2n systematically divides the prime numbers up to a certain rank p i (here up to p i ≤ 31), goes along that same green curve up to the abscissa p i (here p i = 31) then going away above it. P 57/142 Graph 13 Is a particularly interesting case where 3 is omitted in the list of the divisors of 2n, because it is no longer the previous limit curve (crossed Eratosthenes sieve green curve) that tangent partly the red curve but the curve blue (simple case of Eratosthenes sieve), and this starting when the chosen number of divisors becomes sufficient, tangential accompaniment being lost as soon as systematic dividers stop (here after p 550 = 4001).

Graphs 14, 15 and 16

Of course, again, it is not because we can match Σ i #RC i (2n) depletion curve, by a suitable choice, with Σ i #RE i upon as large range as we wish, that this changes anything on the overall behaviour of relative prime numbers at infinity. Infinity is immeasurable, and regardless of the choice of n, the red curve will detach from the blue one to approach then the violet one. In other words, all the curves for p-q = 2n (and thus the depletion coefficients) are almost identical to those of p-q = 2 starting from a sufficiently large rank. As the asymptotic contribution is the one that ensures the infinity of solutions, the conclusion is that p-q = 2n has either a finite number of solutions for any positive n or an infinite number of solutions for any positive n.

Landscaping of twin numbers spacings.

Generalities.

In this paragraph, we will establish the infinitely many twin primes in a relatively simple way. However this simplicity leads a strong underestimation of the asymptotic cardinal.
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This paragraph follows paragraph 5.2 in which the spacings between primes in cycle 1 at step i of the Eratosthenes algorithm were analysed. It follows the said paragraph but is not its direct consequence. Thus we will see that the quasisymmetry of the table 23's example for the sole prime numbers, if it possibly still exists for pairs of primes, is now no longer visible here.

The term landscaping is maintained here, but we use also architecture. We also note that previously there was no condition on primes and that so only one case was to be considered. On the contrary here, constraints are added to the integers which are objects of the study i.e. they are either twins, cousins, sexy, etc. This results in a special study for each of these cases, which cannot be done here exhaustively.

We will limit therefore often to the case of the architecture of the spacings between twin prime numbers (2n = 2). Specifically, we will study the architecture of the spacings between twin integers lacking small divisors, i.e. the twin integers of the Eratosthenes Eras(i) sets, hence the missing word "prime" in the paragraph's title. We list the spacings of an element to the previous and this one only. When we talk about element, we mean a pair of remaining numbers. The spacing is given by the distance between values in correspondence. For example, the spacing between the pair (3,5) and the pair (7,9) is equal to 9-5 = 7-3 = 4.

The study is done on an interval of size #p i . But the goal is to draw an interesting property that can be used over the interval [p i , p i 2 ].

Basic idea.

The maximum spacing between integers in Eras(i) list is 2p i-1 (except for i = 8). Considering now pairs, assuming the best possible placement (positions values as relative primes), the occurrence of a maximum contingency appears a priori only once in doublet by forming an interval sum of the previous spaces, that is ∑ i 2p k-1 . We will check thereafter that the reality is somewhat different, especially that the maximum, although the order of magnitude is respected, can be larger and/or may be more numerous.

Panoramas od enumeration.

We start by enumerating spacings between twin numbers at steps 1 up to 7. Other numerical data for cousins, sexy, etc. numbers are included in Appendix 5.

By construction, adding the spacings between integers, we find the overall magnitude of the cycle 1. So, using the values in the previous table, 1.6 = 6, 1.2+2.12 = 30, 3.6+8.12+2.18+2.30 = 210, etc.

The 6-spacings are in odd amounts, while others are in even-numbered quantities for the same reason as that given to the chapter of the spacings between prime numbers (lemma 2 page 15).

The number of spacings is equal to the number of signatures (here of value 2n = 2) and this one has already been evaluated in our study in table 26. It is equal to ∏(p k -2). The average spacing is thus equal to 2.∏p k /(p k -2) → c.ln²(p i ), the product bearing on i terms and c tending towards a constant, as i increases, according to the generalization of the Mertens theorem (c assessment is close to 2,4 around p i = 10007). Assuming a uniform random distribution, this average would be of the same order of magnitude in the interval p i +2 to p i ²-1 (as in the rest of the cycle 1), interval in which remain only prime numbers (twins of addition by construction). There is thus, when p i becomes negligible in front of p i ², approximately p i ²/(c.ln²(p i )) = (2/c).p i ²/ln²(p i ²)) twin prime numbers in this interval, thus a growth proportional to x/ln²(x).

Let us see then how quantities do increase when steps are incremented. We have (when #R(j,i) exists) : #R(j,i) ≥ p i -4 and #R(j,i) → p i -4 i → +∞ (98)

Proof

For the second relationship, this ensues from Eratosthenes algorithm generating in the cycle 1 (and the followings) spacings E(j) growing necessarily at the level of a same x-coordinate. This creates a gradual saturation of small void spaces (starting with the smaller including 6 who is in this situation from the start), set of void spaces coming P 60/142 progressively in "standard" proportion, i.e. base proportion allocated by the depletion when two integers are taken into account simultaneously (and not one only), which is p i -4. Indeed, recalling the lemma 1 (and theorem 12), we had 2 disappearances at each stage. But here these disappearances are matched (to a second element) and we have therefore 4 removals at each stage.

So we have in summary the three relationships:

i #S(j,i) = ∏ p k -2 i Δ(j).#S(j,i) = ∏ p k #R(j,i) ≥ p i -4
The maximum value of Δ(j) = Δ(j,i) for which #S(j,i) is non-zero is highly conditioned for the condition #R(j,i) ≥ p i -4 that acts as a counter-reaction : If at rank i we have a high value of Δ(j,i) max, then that is repeatedly carried over to the following ranks and especially at the expense of a new strong value of Δ(j+1,i) max. At page 127, appendix 11, we come up with simulations that show how difficult it is to "go through the roof."

Before resuming the study on columns, let us focus with lines. As we shall see, it would be relatively easy to deduce #S(j,i+1) from #S(j,i) data starting some rank i on provided one would have enough numerical values available beyond this rank i on a given j-line. Unfortunately, this is never the case. Indeed, the time required to get #S(j,i) populations is reasonable up to i = 9 (p i = 29). It would take a month for i = 10 and probably several years for i = 11, etc. However, we will give the general principle of this assessment below from examples : Conjecture 3

The #R(j,i) coefficients are expressed by a system of iterative relationships in j from a certain rank i on.

For the 2n = 2 case, the recurrence relationships are of similar structure (only coefficients changing) for j = 1 mod 2 and j+1 from a certain rank i on (for given j). This is a complete reminder of the iterative relationships obtained in paragraph 5.2.2. We give a number of examples as we did in the said paragraph : The writing of the iterative formulas for j = 3 and j = 4 was done in a concise form previously. It is equivalent to the following equation systems, namely 2 initial conditions and 2 linear equations (ax+b type):

P 61/142 The proposed formulas are therefore questionable, but what follows, reinforced by the similar formulas given earlier in Table 7, seems to prove us right for the choice we have made.

Beyond j = 4, a system of iterative relationships is much more practical of use than a unique concise relationship that is besides difficult to come forth with. For j = 5, the coincidence of the results up to the rank i -9 (p 9 = 29) can be expressed as follows : 

,i) = (p i -4).#S(5,i-1)+x2(i)
The ultimate case of the results we have been able to investigate, namely that of #S(7,i), appears easier to treat than that of #S(6,i) : The system of iterative relations (for the 2n = 2 case) involves int((j+1)/2) linear relations for int((j+1)/2) initial conditions at the j-line. The expression (p i-k -c i-k ) within the linear relations follow reverse wise an incremental sequence {k = 0, k = 1, k = 2, …, k = m = int((j-1)/2)} with {c i = 4, c i-1 = 6, c i-2 = 8, …, c i-k = 2k+4, …, c i-m = 2.int((j+3)/2)} for the evaluation of #S(2m+1,i) and #S(2m+2,i). This wholly recalls the series {c i = 2, c i-1 = 3, c i-2 = 4, …, c i-k = k+2, …, c i-n = n+2} that we met for isolate numbers spacings' populations calculation in paragraph 3.2.2.

We retrieve then effectively the couple of conditions given in relation (98). Indeed, if we attribute to the iterations x1(i), x2(i), x3(i), …, x k (i), …, x n (i), #S(2n+1,i) the multiplying factors p i-k -(2k+4), then, whatever the initial values of x k (i) (in the previous example 768 for x1 [START_REF] Hubert | [END_REF], 288 for x2(6), etc.), the ratio x k-1 (i)/((p i-k -(2k+4)).x k (i-1)) becomes negligible when i tends towards infinity because these multiplicative factors form a strictly increasing series {p i-n -(2n+4), …, p i-2 -8, p i-1 -6, p i -4}, the distance between these latter values being at least 4. This decrease of the contributions of x k-1 (i) in x k (i) = (p i-k -(2k+4)).x k (i-1)+x k-1 (i) is shown underneath for the table 39's example : P 62/142 0,34783 0,10390 0,06202 0,03587 0,02173 0,01763 0,01261 0,01021 0,00896 x2(i)/x3(i) 0,46154 0,24339 0,15827 0,09844 0,06243 0,05088 0,03700 0,03012 0,02642 0,02225 x3(i)/#S(7,i) 0,57143 0,36364 0,26060 0,17480 0,11649 0,09571 0,07097 0,05816 0,05106 0,04318 0,03564 Therefore, we get then systematically (x k (i)-x k-1 (i))/x k (i-1) → p i-k -(2k+4).

We show below, still for the table 39's example, the evolution of the values of x k (i)/x k (i-1)-(p i-k -(2k+4)) versus i (p 100 = 557, p 10000 = 104743).

Graphics 17 and 18

As we did for #SP(j,i)/#SP(1,i) ratios at page 21, we can also have a look on the #S(j,i)/#S(1,i) ratios here. As before, we observe again, despite low (or not) initial values, an asymptotic catch-up of the said ratios with an order of magnitude of a unit.

On the basis of such a hypothesis, when i tends towards infinity, there is a constant c such as '∏ i→+∞ (p i -2) = ∑ j #S(j,i→+∞) > c.j.#S(1, i→+∞) = c.j.∏ i→+∞ (p i -4). Hence j < (1/c).∏ i→+∞ (p i -2)/(p i -4) and, using the generalization of the Mertens theorem, we conclude that there is a constant c' such as :

j < c'ln²(p i ) ( 99 
)
The order of magnitude of the number of lines j at sequence i is thus asymptotically in ln²(p i ).

It should be noted, however, that in the absence of a proper proof, the specified general form is only a matter of assumption and coincidence. Beyond this lack, the difficult part of this construction game is also the anticipation of the whole "random" part of the first values on a given j-line. As such, we give below the initial values that we have been able to determine. The reader will be able to compare this table to table 12. In particular, the first initial value is not systematically the first non-zero value of the j-line. In Appendix 6, we present a number of cases beyond the 2n = 2 example. The same remarks of caution must be taken into account there as well.

Generative process.

The existence of recursive relationships is linked to the same process observed in the case of pseudo-primes. It revolves around groupings modulo #p i /p k where p k is the decreasing list of the primary dividers of the first #p i . The implementation of the sorting, in any way analogous to the said case, is described below.

Method of sorting.

Starting from the pseudo-twin-primes covering an interval [x 0 , x 0 +p 0 p 1 p 2 …p i [, (x 0 > p i ), we have (p 1 -2)(p 2 -2)…(p i -2) integers remaining. These are arranged according to the increasing values of the spacings (to the previous ones).

The integers x with 6-spacing are sorted according to the increasing values of x modulo p 0 p 1 p 2 …p i /p i . They appear in families of p i -4 identical modulo values. The total amount of elements responds to a system to one recursive equation. For spacing 12, the routine is similar.

The integers with 18-spacing are sorted according to the increasing value of x modulo p 0 p 1 p 2 …p i /p i . Those who appear in families with p i -4+pos identical modulo values, where pos is a positive or null cardinal, are gathered apart. The others appearing modulo p 0 p 1 p 2 …p i /p i-1 in families with p i-1 -6+pos identical modulo values, where pos is a positive or null cardinal, are ranked on their side. The set responds to a system with two recursive equations.

…

The integers x with 6j-spacing are sorted according to the increasing value of x modulo p 0 p 1 p 2 …p i /p i . Families with p i -4+pos identical modulo values, where pos is a positive or null cardinal, are gathered apart when they exist. We then proceed in the same way modulo p 0 p 1 p 2 …p i /p i-k , k being gradually incremented, making groups of integers giving p i-k -4-2k+pos identical modulo values, where pos is a positive or null cardinal, at sequence k+1.

We do this until the stock runs out. The number of sorting, at a given spacing, cannot exceed i. The resulting recursive system cannot have more than i equations.

Particular feature versus the pseudo-primes case.

The remarkable point is the existence of corrective factors for the cardinals of modulo-families. We noted this factor by "pos". This correction is always positive or null, in other words families are supernumerary. At least they are so initially. Indeed, the said factor will gradually evolve, possibly erratically, towards zero when step i increases. This is illustrated below by a few examples. Several values of coefficients pos (and therefore of the cardinal of families) are possible simultaneously for a given situation and these variability when occurring is transcribed below in the same box of our tables.

The first term of a line is not derived from a modulo grouping. It does not give rise to a multiplier factor. The arbitrary simulation of the "pos" factor (given in parentheses below) can therefore give a negative value. However, this negative value usually appears only on the first line of the lower diagonal.

Δ(1) = 6 Let us now observe the maximum spacing by providing an array of values for steps 1 up to 10 to start with. 0,00% -25,00% 0,00% -19,23% -15,38% -3,57% 0,00% 4,08% 1,57% 10,13%

Let us recall that the maximum spacing between prime numbers at the i-stage is, according to hypothesis 2 (page 39) and theorem 11, equal to something like 2p i . Everything now goes, for the twin numbers without small divisors (Eras(i) effective divisors greater than p i ) remaining in step i, as if one has to take into account, for the order of magnitude of the maximum of the spacings Em(i), the sum of the 2p k , k = 1 to i.

We give, to visualize things, two tables corresponding to maximum spacings. We see the pairs of numbers up to their joint disappearances when one of them (of the pair) displays the guide divisor of the column. We see no obvious correlation to pass from one to the other. The difficulty lies in the fact that the maximum at step i does not inherit from the maximum at rank i-1. In addition, unlike the graphic evidence of the construction scheme of the maximum spacing in the case of the prime numbers (and its quasi-symmetry according to the table 23 example), there is no such thing here :

Tables 43 and44 The maximum at step i depends on the best arrangement and is questioned at every new step. In contrast, even though there may be several solutions, the maximum comes around a relatively fixed pattern. Constraints are limiting the possible variations of the maximum.

Let us look at a concrete example with case p i = 17, which gives 20 solutions of maximum spacings 108 :

In fact, we see large getaways compared to the expected ideal values in one way or another, but also very close values.

We present this continuation of table 42 to show that large deviations with priori expected values may exist. Here, when the value is greater to the awaited ∑ i 2p k , the relative difference is minimal (this may be actually more than what is displayed), especially for p i = 37. Conversely, this relative difference may dwindle when the value is lower (for example, p i = 61). But in fact no matter the exact value at a given stage as we will soon see, only matter the general trend.

Algorithmic background.

Research methods of the maximum spacing.

We used two methods.

The first is a systematic method by recording all of the spacings of amplitude Δ(j) throughout the cycle 1. As knowledge of intermediate maximums is got, one can make larger jumps in the search for the pair of numbers in Eras(i) in order to limit the number of verifications. It is possible to operate this way up to p i = 31 (on Pari GP several weeks of calculations are however necessary). This method ensures that the said maximum is actually the good one.

The second is a random method allied with a "Newton lift". It is modelled in table 48 below (for the case p i = 19). By the arrows ↑↓, we mean that the set of numbers below some column can be shifted by a same pace upwards or downwards. Of course, doing this, the results on the left side will be changed. The method is then to look for increasingly large values of the spacings by shifting values. These offsets are made systematically on a given column: for example in column p i = 11 by shifting 1, then 2, then 3,... up to 10. Shift of 11 (and then more shifting) however would serve no purpose since giving an analogous feature to the original (then 12 to 21, etc.). The solution of larger spacing is retained then another column is chosen at random and the process is repeated. When the process reaches saturation, i.e. if the obtained maximum increases no more after many tests, the result is saved and a reset is made leading to a new maximum and the greatest of this and the previous is selected, etc. The method, employed here from p i = 37 on, has the disadvantage that it does not ensure that the maximum found after many tests is actually the largest existing.

Note 1 : However, we have a relatively good confidence in the results presented in table 47. Indeed, for p i = 31, for example, the first method requires several weeks to be exhaustive, of which several days to reach the first maximum value (on the Pari GP online tool), when the second method gives the right configuration of the maximum often (as random and therefore subject to large variation) in less than a minute (on standard Excel spreadsheet).

Note 2 :

The interest and the effectiveness of the second method also reside in the fact that it is close to the real phenomenon of production of the maximum spacing, as discussed below, drawing the reason for the limitation of the maximum reached. 

0 -22 0 2 1 1 -20 0 1 1 -18 1 0 -16 0 1 1 -14 0 1 1 -12 0 1 1 -10 0 2 1 1 -8 0 1 1 -6 1 0 -4 0 1 1 -2 0 1 1 0 0 3 1 1 1 2 0 1 1 4 1 0 6 6 2 0 Etc. 0 1 1
The search can also be done in a systematic way with this second method. If undertaken in this way all of the spacings are obtained with the following occurrences : The number of occurrences for p i = 3 here is 1, because it is impossible to change positions in the first column.

If we then compare the cardinal of the spacing Δ in cycle 1 and cardinal of the occurrences of the spacing Δ by the last systematic method used here, we find a ratio with regular increment 1 when the spacing is incremented (of 6), namely the cardinal is identical for spacing 6, then doubled for spacing 12, then tripled for spacing 18, etc.

We have not tried to find here the profound nature of this result. But it promotes (a little) the research of large spacings with the random method. While in principle we get 20/22275 spacings of amplitude 108 (0.090%) for p i = 11, we have 360/85085 (0,423%) chances of randomly finding (which is not surprising since bigger than others).

Note:

The same rule for ratios occurs for any other values of 2n.

Classes.

Of course, a vital result would be to have the number of incidences of each Δ spacing. Systematic method, although basic, finds its limit in computation time. Another way to approach the subject of this count is considering enumeration results by classes, namely 2.3…p i , and therefore to proceed modulo 6, then modulo 30, then modulo 210, etc.

Modulo 6, count is trivial. There is a single class to 0 modulo 6. Modulo 30, there are 5 classes with underneath tables of results : The modulo 210 study offers nothing remarkable statistically at the stage where we could carry it, the question being the asymptotic proportions are they integers' ratios of n k /210 type ?

Configurations.

For the understanding of the presentation, let us take an example to clarify the notion of configuration with the table below :

Tableau 52

Configuration abscissa

Detection of pairs (when result = 2)

Divisors identification 3 5 7 11 / ↑↓ ↑↓ ↑↓ ↑↓ / 1 0 / 2 0 0 0 2 1 1 1 0 1 1 2 1 0 3 0 1 1 4 0 1 1 5 1 0 6 0 2 1 1 7 1 0 8 2 0 Etc. … … … … … … Configuration value (here) 0 1 4 0
A configuration is identified by positions' abscissas. The position the 3-guide dividers are settled on either side of a pair of paired numbers (a pair of Eras(i) without small dividers up to the chosen stage). The abscissa just after the said pair is taken equal to 0, and then incremented, which then defines the other positions. They necessarily take, in the p i column, values between 0 and p i -1.

Here the previous example gives the following configuration :

0 1 4 0
For this configuration, which is limited here to p i = 11, the spacing between pairs is 9*2 = 18.
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Lemma 10

The maximum spacing between pairs potentially generated by the second research method (random way or not) is less than or equal to ∑ i 2p k .

Proof

Starting the configuration (0 0 0 ... 0) to which corresponds a spacing of 6, we do vary it to reach one of the configurations having maximum spacing. Let us suppose that we are omniscient. We know the final configuration and to achieve it, it is necessary not more than ∑ i (p k -1) offsets (roughly ∑ i p k offsets) of the initial elements, as a 0 modulo p i offset of the column of divider guide p i leads to an identical configuration (and unchanged spacing). A 1*2-shift (manipulating here only odd integers) has a mechanical effect, except of random noise, which means supplementary spacing of 2. On average, each of the efficient offsets pushing sometimes higher, sometimes lower boundaries by 2, we then consider the worst case to our argumentation (which produced the biggest spacing and therefore the maximum rarefaction of pairs of twins), namely the necessity to exhaust all of the modulo p i paths where each of these induces a systematic (of 2) increase on the resulting spacing. Hence the result.

Note :

In the previous lemma, we are not saying that the spacing between pairs cannot be greater than ∑ i 2p k , but only what generates this spacing cannot act beyond ∑ i 2p k .

Theorem 22

The maximum spacing between Eras(i) pairs is of the order of magnitude of ∑ i 2p k .

Proof / Addenda to the proof It is a simple repetition of the previous lemma to which we add a set of reframing remarks :

The attentive reader already knows that spacings Δ are all multiples of 6 and therefore evolve at least by leaps of 6. To reproduce the algorithm for our example, we do so by 3 shifts, each worth 2. Offsets can be either all positive or all negative, but must have the same sign to reproduce the algorithm leading to the maximum. They can be spread over one or more columns (up to 3 columns). To finish the total displacement in a given column i must be less than p i , value, value called guide divisor of the said column.

The evolution of the previous configuration for a gain (or loss) of 6 can be, among others, one of the following solutions :

Example 1 (positive shift on a unique column): The set of possibilities increases exponentially with p i .

Having arbitrarily chosen p i a maximum step, we try next to visualize the possibilities of gradual transition of a configuration which is associated with the minimum spacing 6 to a final configuration giving the maximum spacing. We then ask ourselves the following two questions:

-Is there a series of configurations leading from the smallest spacing to the largest one, configurations whose respective shifts correspond to the so-called spacings? -If such series exist, is it possible to find one among them without exceeding a total p k shift (ideally strictly inferior to p k ) P 73/142 within each of the p k columns from 3 to p i ?

For p i = 5, there are 5 possible configurations for which spacings are given in the last column below : "Logical" passages from the 6-spacing configuration to the 12-spacing configuration are the following (one case in positive progress and its symmetrical in negative growth) : Here the two previous questions find an affirmative answer.

For p i = 7, the list of configurations is somewhat longer : Negative "smooth" progressions configurations are the symmetric modulo p i . For all of these progressions, none satisfies the second condition, the thrusts within the column of guide divisor 5 being greater than the value of the guide. This may be due to the fact that there are no intermediate configurations corresponding to a spacing equal to 24, the change from 6 to 18 being barely achieved : The reader can refer to appendix 8 for reading the contents of boxes.

However, the table of progressions that cross the entire table for the minimum spacing (always 6) up to the maximum spacing (here 42) continuously are less but still abundant. However, if we seek as previously the only cases where all offsets are same signs, we are reduced to 12 positive configurations (a priori if our research is indeed exhaustive). These are provided in appendix 9. There are also 12 corresponding negative configurations symmetrical modulo p i .

Among the first, 2 sets of positive configurations are closest to ideal, namely configurations set evolving in a column of the divider guide strictly less than the value of the guide (here the guide 5 is reached again what is not completely satisfactory). 

0 + 0 1 1 1 + 0 1 1 12 0 1 1 6 12 0 1 1 + 0 0 3 0 + 0 0 3 18 0 1 4 6 18 0 1 4 + 0 2 1 0 + 0 2 1 24 0 3 5 6 24 0 3 5 + 0 1 1 1 + 0 2 1 30 0 4 6 7 30 0 0 6 + 0 1 0 2 + 0 0 0 36 0 0 6 9 36 0 0 6 + 0 0 0 3 + 0 0 0 42 0 0 6 1 42 0 0 6 +0 +5 +6 +7 +0 +5 +6 +7
The number of configurations explodes to the next rank p i = 13 and the presence of an ideal set of configurations, answering the question becomes plausible. For the consistently positive progressions, we meet 3341 cases (and as many cases in negative progressions). Among these, however, no set of positive configurations has all thrusts in a column of the divider guide strictly less than the value of the said guide. The best choices, with 33 cases, see their 5-guide reached again (being nevertheless the only one). We give one of them below and the reader will find the remainder in appendix 10: There are also 12 additional cases where, at the same time, the column guides 5 and 7 are reached, but without exceeding (while other guides 11 and 13 are not met).

P 76/142
Beyond that (p i > 13), consider exhaustively all of configurations to detect the systematically positive (and negative by symmetry) progressions becomes an extravagant task.

The difficulty to find a quite satisfactory set of configurations, replicating the process near the final stage (maximum spacing), is due, it must be stressed, to the "tension" as the maximum point is reached. This may limit the full ideal achievement.

The ideal is there initially, namely for p i = 5, perhaps as a simple accident. Beyond that, progress towards the ideal seems gradually. Out of scope for p i = 7, it is better for p i = 11, then almost reached in p i = 13 by noticing that what is lacking to the ideal lies at the lower border (and not in the middle of the progression) :

+ 0 2 1 0 0
If it had been in place + 0 (1) 1 (1) 0 there it was our ideal.

To get rid of "background noise" does not seem to be a fad. Configurations that allow you to move step by step from the minimum spacing to the maximum spacing probably exist from a certain i-row.

Of course, a shift comes often, especially when it occurs on the last columns (and that p i is large), by a non-event.

Conversely, a spacing can multiply after a simple priori innocuous shift. Any change leads to random spacing evolution in a way or another (up or down). But even if the noise here is indeed stronger than the signal sent, the path progress is done at the underlying rhythm.

A shift of 1*2 (since we manipulate only odd integers) means not a shift within the boundaries of 2. It can be almost anything when the course is not followed according to a "smooth trail". The set of the configurations is chaotic. But underlying force is one and only one and the result for the maximum spacing goes straight with it. If nothing happens after a number of shifts, then the constraint will apply with a sudden readjustment. On the contrary, if the border moves more then 2 (at least 6) and effect has been sent in advance than loosening prevails and nothing may often happen on the next stage.

Spacings of numbers near a maximum spacing (like by any other spacing) are expected to be of average amplitude (that is in ln²(p i ) negligible in front of p i ). This maximum spacing of some ∑ i 2p k amplitude is going to increase (after step i) by negligible terms. The random hero of a given step will revert to anonymity later on. A given maximum spacing is doomed after a few rounds to become one among others and enter the rank of the second, third, etc. chap. This is normal fate since cycle 1 grows by a multiplicative factor p i at each step, giving many new situations, and the expected scarcity of twin primes imposes increasing spacings. This is why we say that there is no inheritance notion. The mere accidental victory of the strongest cannot last and does not.

The lack of inheritance notion (on a continuum of steps) may seem a handicap because almost nothing is predictable at P 77/142 step i+1 from the results at step i. But in fact, it is a very positive point for our argumentation. Whatever happens at step i, for example, the maximum value of the spacings is much higher (or much lesser) than the expected value, never mind, at step i+1 almost everything is questioned again, the previous result has no lasting influence. Stage i, the work force is 2∑ i p k and produces a given result.

Step i+1, the thing to consider is 2∑ i+1 p k but very little the previous result. The latter will pass into oblivion a few steps past.

-The result is lower as the expected one : this means adverse positioning at the observed point but imposing no perennial effect.

-The result is greater to the expected one : this is coming from a merger between the spacing in question and one (or more) neighbours. The most characteristic case we found is p i = 37. Substantially larger at a stage i = 11, we see however that this spacing is not sustainable as a maximum. Three steps further, this maximum enters anonymity (another maximum arose elsewhere).

Lower and upper bounds.

Let us give now some additional details:

Lower bound

Assuming necessity of a complete shift of 3*2 units each time in order to get maximum spacing, assuming also that each shift must take place entirely on the same column (same p i ), then the minimum to the maximum we are looking for would be 2∑ i (p k -mod(p k ,3)) (for p i ≠ 3). Let us observe the first surveys compared to the possibility of this lower bound (for the maximum spacing):

Table 58 Step We note that the maximum spacing's minimum is not far from being again achieved at steps 16 up to 18 after the first cases reached in steps 1, 2, 4 and 5. It might even not reached at step 19, which is not however detrimental to our argumentation. Nothing forbids low values (set of configurations which cannot express completely).

Below this bound, we get however generally spacings for almost all the a priori allowed values, namely the multiples of 6.

Of course, exceptions may exist as mentioned, for example for the p i = 7 case, the spacing values are 6, 12, 18 and 30, the spacing 24 never occurs and for the case p i = 13, the observed values are 6, 12, 18, 24, 30, 36, 42 48, 60 and 66, the spacing 54 not appearing.

Upper bound

The upper bound can be superior to 2∑ i p k as shown in the numerical results. Excess compared to the expected value is the result of the collision with the environment as mentioned previously. However, this unexpected value is easily identifiable as an exception by its isolation from the other values of standard spacings. Case p i = 37 is the most typical among the values discussed here, the spacing of amplitude 510 is followed by the spacing 432, then 426, etc. Thus, it is rather the spacing 432 (instead of 510) which is to be compared with 2∑ i p k = 390. Even though spacing (432) is still significantly above 2∑ i p k (390), the same remark about the possibility of collision with the environment is still at this point as we observe other holes between 420 and 408 and 390 and 378. Similar remarks can be made to a lesser extent for p i = 31 (348 isolated from 330, isolated itself from 318, 318 to retain and compare to 316), p i = 41 (540 isolated from 528 and several holes are recognized down to 480, 480 to retain and compare to 472), p i = 43 (582 isolated from 570, isolated itself from 558 to retain and compare to 558), p i = 53 (810 isolated from 768 to retain and compare to 758), etc.

To do an inventory of all values obtained when searching randomly enables to have more or less insurance on the proximity (or the actual achievement) of the maximum, the appearance of holes after systematic series of 6-distant spacings announcing some way such proximity to the maximum, or at least the approximate logical value.

P 78/142 This table reads more easily using the following graph :

Graph 23

We have represented (without proof nevertheless) the asymptotic trend of the percentage of spacings having significant value compared to the maximum spacing. This percentage (a priori) drops to zero by observing the trend of the first steps i (resulting in the orange curve). In other words, it is less and less likely that the maximum spacing be significantly greater than 2∑ i p k when p i diverges. It should be noted that even if this was not the case, the result developed in paragraph 6.5.3 would not be called into question.

The reader will refer to appendix 11 for other developments related to the 2n = 2 gap.

Futher horizons for spacings. Entities viewed with a telescope.

The aim here is to expose the similarity of the spacings between pairs of numbers on one hand and isolated numbers on the other hand and to show the continuous path that can be followed from one to the other.

We first studied the evolution of the quantities of spacings of amplitude Δ between sieved numbers. We got table 5.

We then looked at the evolution of the amounts #S(j,i) of spacings Δ(j) between pairs of numbers. We got table 16.

These latter quantities arise from the application of the Eratosthenes sieve and are determined simply by using the algorithm given in Appendix 14 (Direct evaluation method) where fac, expo, qtpr are adjustable parameters. The first two parameters fac and expo define the type of pairs studied using 2n = fac.2 expo , fac being odd and qtpr being the current step, that is qtpr = 2, p = 3, qtpr = 3, p = 5, qtpr = 4, p = 7, qtpr = 5, p = 11, etc.

We find the quantities of tables 34 and 5 at heads and ends in the following two tables in which we adjust the value of the "fac" parameter in two different ways. What's going on here?

For the first table, we determine the quantities of spacings of amplitude Δ for pairs that are at a distance of 2.1 = 2 (the almost twins) and then for the pairs at distance 2.3 = 6 (the almost sexy), then for the pairs at a distance 2.3.5 = 30, and then for the pairs at distance 2.3.5.7 = 210, then for pairs at a distance 2.3.5.7.11 = 2310. At this last step, as the cycles are of size 2.3.5.7.11, there is trivially, for a number in position x, another one in position x-2.3.5.7.11 and therefore a pair (x, x+2.3.5.7.11) finds as many counterparts as desired (y, y+2.3.5.7.11). The table therefore reproduces, not the counting of constrained pairs, but rather that of isolated integers, hence the return to the populations of table 5.

For the second table, the result is the same, starting with the biggest multiplier factors, namely 11, then 11.7, then 11.7.5, then 11.7.5.3. The interest in this case is to see that Δ's that are non-dividers of 6 are only reached when factor 3 occurs at the last step (in the fac parameter).

The title of the paragraph comes from the fact that when the algorithm is implemented, the observed paired pairs are at exponentially growing distances.

Taking in account the last step, which meets a range of values Δ(j) equal to some 2p i (see paragraph 3.2.2), going backwards, additional amplitudes should be 2p k , k = 1 to i, thus a total of ∑ 2p k .

Therefore another way to see the approximate amplitude ∑ 2p k of the largest spacing Δ is that it results thanks to some peculiar telescope from the maximum spacing observed at each of the previous steps.

Appendix 13 gives the tables for i = 1 up to 7. Some populations are equal (or in a 2-ratio) systematically between elements of certain columns and lines (colour fonts in the previous table) from one table to another. However, these identifications do not lead to the possibility of a comprehensive study.

Iterative formulas, as those proposed previously for the first and last columns of these tables, are also at work here giving the populations of the intermediate columns. We give a few more examples, in addition to the study below, in appendix 13 already mentioned, some of which are sometimes weird.

In the previous right-hand tables, the last column concerns the pseudo-primes. Let us move on to the penultimate column to the left of each of them. We then get : Here the factor fac is simply divided by 3 compared to its populations' evaluation for pseudo-primes. At this stage, recursive formulas remain "classic":

P 81/142 Table 63 j Formulas 1 #SPD3(1,1) = 1 #SPD3(1,i) = (p i -2).#SPD3(1,i-1) 2 x1(4) = 8 x1(i) = (p i-1 -3).x1(i-1) #SPD3(2,3) = 7 #SPD3(2,i) = (p i -2).#SPD3(2,i-1)+x1(i) 3 x1(5) = 6 x1(i) = (p i-2 -4).x1(i-1) x2(4) = 10 x2(i) = (p i-1 -3).x2(i-1)+x1(i) #SPD3(3,3) = 2 #SPD3(3,i) = (p i -2).#SPD3(3,i-1)+x2(i) 4 x1(6) = 126 x1(i) = (p i-2 -4).x1(i-1) x2(5) = 66 x2(i) = (p i-1 -3).x2(i-1)+x1(i) #SPD3(4,4) = 6 #SPD3(4,i) = (p i -2).#SPD3(4,i-1)+x2(i) 5 x1(7) = 288 x1(i) = (p i-3 -5).x1(i-1) x2(6) = 216 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(5) = 24 x3(i) = (p i-1 -3).x3(i-1)+x2(i) #SPD3(5,4) = 0 #SPD3(5,i) = (p i -2).#SPD3 (5,i-1)+x3(i) 6 ? … ... 
However, going a stage ahead, an interesting evolution manifests itself. The factor fac is now divided by 3*5 compared to the population's evaluation for pseudo-primes.

The populations' table is as follows : Formulas Columns i = or(0,1) mod 3

1 #SPD15(1,2) = 1 #SPD15(1,i) = (p i -2).#SPD15(1,i-1) #SPD15(1,2) = 2 #SPD15(1,i) = (p i -2).#SPD15(1,i-1) 2 x1(4) = 0 x1(i) = 0 #SPD15(2,3) = 10 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) x1(4) = 4 x1(i) = 0 x1(i) = (p i-1 -3).x1(i-1) #SPD15(2,3) = 1 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) 3 x1(4) = 0 x1(i) = 0 #SPD15(2,3) = 5 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) x1(4) = 8 x1(i) = (p i-1 -3).x1(i-1) #SPD15(2,3) = 2 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) 4 x1(4) = 4 x1(i) = (p i-1 -3).x1(i-1) #SPD15(2,3) = 1 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) x1(4) = 8 x1(i) = (p i-1 -3).x1(i-1) #SPD15(2,3) = 2 #SPD15(2,i) = (p i -2).#SPD15(2,i-1)+x1(i) 5 x1(6) = 126 x1(i) = (p i-2 -4).x1(i-1) x2(5) = 66 x2(i) = (p i-1 -3).x2(i-1)+x1(i) #SPD15(5,4) = 6 #SPD15(5,i) = (p i -2).#SPD15(5,i-1)+x2(i) Same formula 6 x1(7) = 72 x1(i) = (p i-3 -5).x1(i-1) x2(6) = 54 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(5) = 6 x3(i) = (p i-1 -3).x3(i-1)+x2(i) #SPD15(5,4) = 0 #SPD15(5,i) = (p i -2).#SPD3(5,i-1)+x3(i) x1(7) = 144 x1(i) = (p i-3 -5).x1(i-1) x2(6) = 108 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(5) = 12 x3(i) = (p i-1 -3).x3(i-1)+x2(i) #SPD15(5,4) = 0 #SPD15(5,i) = (p i -2).#SPD3(5,i-1)+x3(i) … ... ...
The previous table is still very simple to put together. It is likely that as the parameter fac evolves more (modulo) cases will occur. It should be noted, however, the economy on need of new initial values (e.g. ratios of 2 or reuse of values in different lines).

Landscaping of spacings between relative integers.

Let us focus now on to a comprehensive study of all gaps.

Theorem 23

At the given step i, the populations are identical for any gap 2n modulo p i #.

Proof

This is trivial, the cycles generated by the Eratosthenes sieve being of period p i .

It is therefore sufficient to consider, at stage i, the even gaps 2n between 0 and p i #-2 to be exhaustive. We give the example of all the populations at step i = 2 below : 

P 83/142
#R(2n,Δ) Pseudo isolated 0 3 3 2 0 0 0 0 0 0 Pseudo twins 2 0 0 1 0 0 2 0 0 0 Pseudo cousins 4 0 0 2 0 0 0 0 0 1 Pseudo sexys 6 1 2 2 1 0 0 0 0 0 etc. 8 0 0 1 0 0 2 0 0 0 10 0 0 3 0 0 1 0 0 0 12 2 1 2 0 1 0 0 0 0 14 0 0 2 0 0 0 0 0 1 16 0 0 2 0 0 0 0 0 1 18 2 1 2 0 1 0 0 0 0 20 0 0 3 0 0 1 0 0 0 22 0 0 1 0 0 2 0 0 0 24 1 2 2 1 0 0 0 0 0 26 0 0 2 0 0 0 0 0 1 28 0 0 1 0 0 2 0 0 0
The table's exploitation is improved by sorting according to the increasing modulo p i # values of the square of the 2n-gap : At the given step i and for 4n² modulo p i # set in advance, the populations are the same. Conversely, identical populations lead to constant 4n² modulo p i #.

Δ #R(2n,Δ) #R(2n,Δ) 0 0 8 3 3 2 0 0 0 0 0 0 2 4 3 0 0 1 0 0 2 0 0 0 8 4 3 0 0 1 0 0 2 0 0 0 22 4 3 0 0 1 0 0 2 0 0 0 28 4 3 0 0 1 0 0 2 0 0 0 6 6 6 1 2 2 1 0 0 0 0 0 24 6 
Let us rewrite the table in an ultimate form : This last result is demonstrated by admitting that the expression (2n)² mod p i # is actually at work here. So we are going to study the latter and establish that result in that context. What we call families below is also understood in this context.

Theorem 24

At the given step i, the number of families nbf(m,i) of 2 m multiplicands is given by : nbf(0,i) = 1, i ≥ 0 et nbf(m,i) = nbf(m,i-1)+((p i -1)/2).nbf(m-1,i-1) (100) Numerical application These examples show in the first place that if a family 2n k has an invariant (2n k )² mod p i # = c mod p i #,(2n k )² mod p i # = c mod p i #, then the family 4n k has the invariant (4n k )² mod p i # = 4c mod p i #, which is trivial. The number of families 2n k of a given dividers characteristic is therefore equal to the period t of 2 t .n ki = 2n kj mod p i #, 2n ki and 2n kj being one or the other of their representatives. For example, in the last Consider 2n and 2n+k.p i # mod p i+1 # where k varies from 0 to p i+1 -1. If 2n is not divisible by some prime number p k < p i+1 then there is effectively some k, according to the Chinese theorem, such that 2n+k.p i # mod p i+1 # is not divisible by the same p k . This proves the existence.

An existing element creates two new elements systematically in a column because if 2n is present at the i-step then P 86/142 2n+k.p i # is generated at the same time as p i+1 # -(2n+k.p i #) in the same family. Indeed, they both admit the same prime dividers lower or equal to p i and one of them is necessarily larger than p i # and therefore absent in the same family at the previous rank. This proves the doubling of lines.

Tables' increasing is active evenly in all parts of themselves, i.e. systematically by multiplication by 2 from one column to another. By moving from step i to step i+1, the total number of items increases by a p i+1 factor, while the number of lines doubles. Thus, the number of columns of the parts of tables in correspondence necessarily increases by a factor close to p i+1 /2, knowing however that new elements appear with divider p i+1 . These are exactly at the number of p i+1 #/p i+1 , or also exactly (p i+1 -1).p i # elements without the said p i+1 divider. The number of columns in each part of tables is hence multiplied by (p i+1 -1)/2.

Then let us focus on the new elements that appear, the divider of which is p i+1 . They correspond to the multiplication by p i+1 from the n+1 st table of the previous step since this factor is introduced at stage i+1: The two generation processes described above either leave the size of a family unchanged or double its size. Starting from the unit, the size of the families (the multiplicand) is therefore necessarily a power of 2. This completes the proof.

Note 1

Trivially, the sum of the products of multiplicands by the number of families is equal to the sum of the even numbers in a cycle, i.e. p i #/2 in step I :

p i #/2 = ∑ 2 m .nbf(m,i) (101) Note 2 
A witty property of the previous triangular The study is conducted here on 2n mod p i # and the square (2n)² mod p i #. The same exercise with n mod p i # and the square n² mod p i # ( n = 0 to p i -1) would give a table where nbf(m,i) would simply be replaced by 2.nbf(m,i), which is to keep the same formula nbf(m,i) = nbf(m,i)+((p i -1)/2).nbf(m-1,i-1) but adjusting the initial values nbf(0,i) = 2, i ≥ 0. Similarly, with n mod p i # and n 4 mod p i # (n = 0 to p i -1), the formula is still unchanged, but requires the initial values nbf(0,i) = 2, i ≥ 1, nbf(1,1) = 2, nbf(1,2) = 2 nbf(2,2) = 2 and nbf(3,2) = 2. It is likely that the reuse of the same formula is appropriate for the transition to power n 2^r with appropriate initial values. More general problems will eventually lead to adjustments to the recursive formula.

Having given a general view of the situation, let us now split our analysis. At paragraph 6.4.11, we have changed the "fac" parameter. We will proceed now on the "expo" parameter, i.e. we consider pairs whose gap 2n gradually doubles : 2n = 2, 4, 8, 16, etc. (fac = 1, expo = 1, 2, 3,4, etc.).

The populations' tables #S (j,i) of spacings of amplitude Δ as follows:

Step 1, qtpr = 2, p i = As there is no divider of 3 in 2n, the set of Δ's contains multiples of 6.

We observe that, when the "expo" parameter is incremented, at some stage, the same populations show up.

The evolution of periodicity extends as follows for the parameter examined:

Theorem 25

The periodicity of the population of pairs of gaps 2n, power of 2, is half-value of the order of the monogenic group of generator 2 modulo the primorial p i # at step i.

#ord2 i = min(r/2) \ 2 r = 1 mod p i # , i > 0, r > 0 (102)

Proof

This is an immediate and trivial consequence of the periodicity of p i #-sized cycles produced the Eratosthenes algorithm. It gives an order equal to that of 2, modulo p i #, for the family 2n. As it is the squared values (2n)² mod p i # that must be taken into account for families, this order is therefore divided by 2.

Note :

The p i # factor increases exponentially with i. It would be interesting to be able to evaluate the order #ord2 i from the modulo p i study instead. Let us note the order of 2 modulo p i as follows :

#ordel2 i = min(r) \ 2 r = 1 mod p i , i > 0, r > 0 (103)

The order of a subgroup is an integer divider of a group. The order 2.#ord2 i is therefore a divider of the product of orders #ordel2 i , the multiplicative factor #fm2 i (see table below) being a divider of this order, itself a divider of (p i -1). As only the even numbers are involved here, it is (p i -1)/2 that is to be taken into account. The evolution of periodicity shows as follows : In this case, for steps 5 to 9, we find the periodicities already mentioned and we hypothesize that the behaviour is the same afterwards. The search is then extremely fast and could be extended well beyond the values given in Table 38. A second limit then occurs however, which are the sizes of the pairs considered (x, x+2 expo ) as the expo setting increases (on our version of Pari GP we are limited to expo = 120 180 060 by the memory stack).

Conjecture 7

The multiplicative factor is equal to the product of new factors in (p i -1)/2 compared to all factors previously contained in the (p j -1)/2, j = 1 to i, at their maximum powers. Note: By new factor, we mean if p k n1 is present in (p i -1)/2 and if p k n2 appears in one of the terms (p j -1)/2, j = 1 to i, then the multiplicative factor is equal to ∏ p k si(n1-n2 ≥ 1, 1, 0) , where the product deals with all the prime factors of (p i -1)/2. In particular, if pd i is a prime number, then #fm2 i = (p i -1)/2.

Examples: Factors 2 and 3 already present in stages 2 and 3 will be ignored in step 5. The integer pd i has factor 2 3 at step 7, with exponent larger than its power in the column cumulating maximum exponents at step 6 (difference for exponent equal to 3-1 = 2) and we have a multiplicative factor #fm2 i = 2 1 (and not 2 2 ).

Periodicity focusing on odd components.

We were interested in the evolution of the populations #S(j,i) when 2n is replaced by 2n.2 expo . What happens with the change from 2 to 2q expo , with odd q? Conjecture 8 Case q prime number. The multiplicative factor #fm2 i at step i is a divider of (p i -1)/2. The populations' tables form classes function of modulo(q,p j ), j = 1 to i. The populations #S(j,i) have amplitude Δ multiple of 6.

Example : Step 3. q qd = (q-1)/ Population tables #S(j,i) are as follows :

Class 1 : q = 17, 53, 67, 73,... Periodicity 6.

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = or(1,5) Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = or(1,5) Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = or(0,6) Condition : q = 1 3 8 2 0 2

8
When q is not a prime number, the process is the same but new families are possible and have to be taken into account.
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Class 9 : q = 25, 95, 115, 185,... Periodicity 3.

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(1,5)

12 9 9 3 7 8 3 4 2 2 0 1
Class 10: q = 55,... Periodicity 1.

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(0,6) 9 8 2 1

Class 11: q = 49, 91, 119, 161,... Periodicity 1.

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(0,4) and mod(qd,7) = 3 5 10 2 1

Class 12: q = 35, 175,... Periodicity 1.

Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = 3 15 7 2

We have only included here cases where q is not divisible by 3. Other classifications are then added on the same modulo pattern. The populations #S (j,i) have then Δ's multiple of 2.

What happens passing from 2p to 2p.q expo , p and q whatever integers? The same thing considering then the different families modulo qd.

The number of cases increases exponentially with step i which quickly makes any comprehensive study extremely long and tedious.

Sums of products.

Let us go back to the 2n = 2 m case even though if what follows applies in a more general way.

Let us have i a given depletion step. If k = 0 or k = 1, then we have seen that the expression (Δ(j)) k .#S(j,i) is constant whatever choice of m, the different solutions for #S(j,i) forming a set of values that return periodically. The question here is whether the elements of #S(j,i) can be obtained in a unique way from the value of (Δ(j)) 2 .#S(j,i), if not by adding (Δ(j)) 3 .#S(j,i), and so on, in other words, if certain distributions #S(j,i) would not be some kind of Carmichael series where the initial data (Δ(j)) k .#S(j,i), k = 2, k = 3, k = 4, ... would not allow to distinguish them by a backward evaluation.

Here we give only a few examples to set ideas down on this subject.
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Step 2 :

p i = 5 m k 0 1 0 3 3 1 30 30 2 324 396
That is, a distinction that appears as early as k = 2.

Step 3 : p i = 7 Step 5 : p i = 13

With a periodicity of 30 here, the equality of values can be found in :

k m 2 (8,14) 3 /
Step 6 : p i = 17

With a periodicity of 30 here, the equality of values can be found in :

k m 2
(41,47) 3 /

Step 7 : p i = 19

Although of periodicity 180, no equality is found :
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Thus equality, although surprising, is not uncommon. However, more possibilities do not lead to more redundancies (see step 7). A priori, it must be very rare to have to lay down more than 2 sets of additional products' sums (i.e. more than those for k = 2 and k = 3) to get all the different solutions within an eligible set (when m varies).

Divergence of solutions.

Theorem 26

There are infinitely many twin prime numbers.

Proof

The sum 2∑ i p k can be estimated elementarily with the PNT. We have ∑ i p k ≈ ∑ k.ln(p k ) < ln(p i ).∑ k = ln(p i ).i.(i+1)/2 ≈ (1/2).ln(p i ).i². As the logarithm varies very slowly asymptotically, we have actually ∑ 2p k → ln(p i ).i² ≈ p i ²/ln(p i ) when i diverges.

The maximum spacing between pairs of numbers in Eras(i) is that of full cycle 1, i.e. pairs between p i +2 and p i +2+2.3…p i and thus of course also pairs between p i +2 and p i+1 ², a space with magnitude size p i ² asymptotically, where only prime numbers can exist. Thus, even if all the spacings between integers happen to be within this range to their maximum (which is far from being the case here), there would be at least the integer part of ln(p i ) twin prime numbers actually present in the said interval. So, when i diverges neglecting p i in front of p i ² (what is legitimate asymptotically), cardinal of the twin prime numbers below p i ² diverges (in ln(p i ) at least).

Nota 1

We might consider that a maximum spacing can hit another under the abscissa p i ², giving a spacing of double size. This would still give room for ln(p i )/2 twin primes at the condition that the same type of unusual encounter realize repeatedly under p i ². This would still not change the result of the divergence as, in addition, this type of accidents should then repeat continuously so to apply asymptotically (which is quite more unlikely than the existence of an infinite number of twin prime numbers).

Nota 2

The information on the order of magnitude of the cardinal of twin prime numbers is of course very pessimistic here. Only 2 to 3 twin primes would show up at the increase of a decade of i. As we have seen earlier, this divergence is much faster in the real world.

Comparison of families.

The generalization of the case of twin numbers makes it possible to find interesting additional properties. Let us go back to Table 34. We have two relationships for 2n = 2:

jmax i ∑ #S(j,i) = ∏ (p k -2) (104) j = jmin k = 1 jmax i ∑ Δ(j).#S(j,i) = ∏ p k (105) j = jmin k = 1
These two become in the general case:

jmax i ∑ #S(j,i) = ∏ (p k -1)/(p k -2) ∏ (p k -2) (106) j = jmin p k \ n p k > 2 k = 1 jmax i ∑ Δ(j).#S(j,i) = ∏ p k (107) j = jmin k = 0
When the dividers of two numbers are the same, the members are on the left are identical. So how many solutions to such equations?

We can look for solutions in two different ways, either systematically or as solutions of the cases 2n = r.2 m , m -1, 2, 3, P 95/142 etc. In the first case, a large number of solutions are found, far more than in the second way of proceeding where the following conjecture, with i fixed, is observed:

The number of distinct solutions is i-2 nbs = 2 ∏ p k (108) k = 1 and the quantities #S(j,i) show up with period nbs, that is identical for all 2n = r.2 m+nbs.x , where x is any natural integer, r and m are given and nbs deducted by the previous formula.

Let us take the case r =1 and therefore 2n = 2 m . For i = 4, p 0 .p 1 .p 2 .p 3 .p 4 = 2.3.5.7.11 = 2310, (p 1 -2).(p 2 -2).(p 3 -2).(p 4 -2) = 1.3.5.9 = 135, p 0 .p 1 .p 2 = 2.3.5 = 30. The table of 30 distinct results is here (column i = 4 of Table 34 The quantities for 2n = 2 31 are the same for 2n = 2 1 , those of 2n = 2 32 are the same for 2n = 2 2 , etc. In addition, each column is indeed distinct here. Again, each column is distinct. We also note, by comparing the three examples, that the maximum spacings Δ(j) are reduced at least approximately in the inverse ratio to the characteristic ratio of related prime numbers:

∏ (p k -2)/(p k -1) p k \ n p k > 2 
Note: In the case of systematic research, the extent of the spacings is much larger, with the largest of the spacing values being given by (i.e. asymptotically ∏p k ) :

i i 6 + ∏ p k -6 ∏ (p k -1)/(p k -2) ∏ (p k -2) (109) k = 0 p k \ n p k > 2 k = 1
The quantities that appear are therefore very specific values and limited to a small domain.

Theorem of density of prime numbers.

Here we outline a process that can be applied to many Diophantine equations with asymptotic branches. It leads systematically for all the mathematical literature's standards to their known Euler products (also called singular series). It enables also to find many more of these products as we have proposed in other articles.

Equivalent of a prime number variable.

We want to restore somehow the Euler product of Hardy-Littlewood formula.

To do this, we seek to solve the problem by creating local equivalents (i.e. modulo p i ) of global variables p and q (hence of the set of primes P) in the equation p-q = 2n. These equivalents then enable the Euler product evaluation.

Theorem 27

The Chebotariov density theorem extends the Dirichlet theorem on the infinite number of prime numbers in arithmetic progression by trivial application to a cyclotomic extension of Q. Thus, if c, a ≥ 1 are two relative prime integers, the natural density of the set of prime numbers p = c mod a is 1/φ(a), a some constant.

Corollary on the variables of prime numbers

Let us have p a prime number. We project the prime numbers set P on the classes of congruencies modulo p. We start with a formula such as #(p-q = 2n) = c n .x/ln²(x), for n an even integer. Here, c n is an infinite product (so called also Euler product).

To evaluate the solutions of a Diophantine equation q 1 -q 2 = n, n a given integer (even or odd at this stage), q 1 and q 2 variables representative of prime numbers, we transform the initial global problem in a series of local problems q 1 -q 2 = n mod p, the generation of the infinite product being related to equality #(q 1 -q 2 = n mod Π p i ) = Π #(q 1 -q 2 = n mod p i ) issued from Chinese theorem.

Heuristically, the independent variables of a Diophantine equation with asymptotic branches induce class instances in crossed charts based on {0 n , 1 n , 2 n , …, (p-1) n } for variables x n of natural integers and based on {1 n , 2 n , …, (p-1) n } for variables of prime numbers. Let us note that the "mechanics" of these crossed tables allows changing the problem of enumeration essentially into a product of matrices problem that we will not develop here. The interested reader can refer to our articles on asymptotic enumerations in hyperplanes on free access [START_REF] Hubert | [END_REF].

Here q 1 -q 2 = n, n being a given integer (even or odd at this stage), q 1 and q 2 the representative of the prime numbers variables, we look at the classes of congruence modulo p such as cq 1 -cq 2 = n. For each variable, representative classes are locally :

cq 2 mod p cq 1 -cq 2 mod p 1 2 … p-1 cq 1 mod p 1 0 p-1 2 2 1 0 3 … … … … p-2 p-3 p-4 p-1 p-1 p-2 p-3 0 
Thus we have for the classes collected inside the table :   #{n = 0 mod p) = p-1 (principal diagonal) #{n ≠ 0 mod p) = p-2 (other diagonals)

This gives the density, to a given factor, of the numbers n at the sequence p (including for p = 2). The overall proportion is then rendered by the product of these values for p = 2 to ∞.

To obtain the Euler factor, one simply adjusts the average of the frequencies to 1. In the classes [0, 1, 2, p-1], one has the target 0 with cardinal #(0) and p-2 other targets with equal cardinal #{c≠0}. The adjustment factor f is then given using f.(1.#(0)+(p-1).#{c ≠ 0)) = p the number of elements, that is f.((p-1)+(p-1).(p-2)) = p, so that f = p/(p-1)². Hence : # adjusted (n = 0 mod p) = f.(p-1) = p/(p-1) = 1+1/(p-1) # adjusted (n ≠ 0 mod p) = f.(p-2) = p.(p-2)/(p-1)² = 1-1/(p-1) 2 The cardinals of the twin and distant relative prime numbers are then :

π(p-q = 2n) = П (1- 1 ) П (1+ 1 ) x (111) (p-1) 2 (p-1) ln²(x) p ∤ n p ∖ n
This process is reproducible to many Diophantine equations with asymptotic branches (infinite number of solutions), as for example Iwaniec/Friedlander equation generalized to x 2 +x 4 = p+c, c a given constant, but also an more complicated equation as for example p = x 3 +x 2 y+xy 2 +y 3 +5t 2 +9u 4 +c, giving their Euler products, parametrized in c, which seems impossible to achieve by any other means (indispensable complement in reference [START_REF] Hubert | [END_REF]).

APPENDIX 1

Numeric example

This example uses as reference axis p i and rounding to an integer for withdrawals. It shows that the coefficient c is close to 1. The value of c is less than 1 indicates a reduction in the number of solutions (when c is taken as equal to 1). The probability of return to the 0 distance being proportional to 1/(π.k) 1/2 (cf. [START_REF]Marches aléatoires, loi de l'arcsinus et mouvement brownien[END_REF] p18) and so becomes increasingly smaller as the random walk progresses. Of course, we are unable to verify this far beyond what is presented here despite our already performing computing resources (Pari GP). Neither are we able to verify that (p4 k -p2 k ) will vary by an order of magnitude of k ≈ p2 k /ln²(p2 k ) up to infinity.

Note: We could also choose to compare the positions of the remaining numbers (either twins or cousins) from their positions if they were all equidistant. Here, we would still have distances in arcsine distribution prompting again to favour simple heuristic calculations.

P 107/142 APPENDIX 5 In addition to respecting the total number of spacings, the size of cycle 1, the three relationships (two ties and one inequality), the table is also consistent for these first two lines in As a final note, however, we note that the iterative formulas at work here are not in the mould observed for the effective tables of populations. They have the property of being all based on multiplication p i -4 and not p i -4, p i -6, p i -8, p i -10, p i -12, and so on. The initial data are those which follows. The only non-zero lines j(n) are such that j(n) = j(n-1)+2 ent((k-3)/2) for n ≥ 3, k being incremented starting from k = 3 and n = 3.

P 

  Let us consider the integers' set 1 up to N. Let us state :+∞ πs(c,N) = M -(1/c) Σ #RE k .MC k (N-(p k +2)+1 = N-p k -1 k ≥ 1 (26) MC k = if(M k < 0, 0, M k )

  cardinal of the prime numbers, inferior to x, diverges.ProofLet us go back to relation 34 and do our calculations ignoring the unit amount and write instead :+∞ Σ #RE i . = 1-ε (35) i = 0As we cannot subtract to a set only elements it contains, we have necessarily in the previous relationship ε ≥ 0. Then we get using the relationship 33 :+∞ +∞ πs(1, +∞) = lim (ε + Σ#RE i ).M -Σ#RE i .M i (36) N → +∞ i = 0 i = 0 So that : +∞ πs(1, +∞) = lim ε.M + Σ #RE i .(M-M i ) +∞) = ε.M+1/2+(2-1)/2+(2-1).(3-1)/(2.3)+(2-1).(3-1).(5-1)/(2.3.5)+ (2-1).(3-1).(5-1).(7-1)/(2.3.5.7)+ (2-1).(3-1).(5-1).(7-1).(11-1)/(2.3.5.7.11)+… (40) According to theorem 3 (Mertens theorem), the previous generic term #RE i .p i tends towards e -γ /ln(p i ) when i tends towards infinity. cte1 and cte2 being strictly positive constants : +∞ πs(1, +∞) = ε.M+cte1+cte2. Σe -γ /ln(p i ) (41) i = 1 Using relation (17), we have then : πs(1, +∞) = lim ε.M+cte1+ cte2.e -γ .x/ln²(x).

  Example : i = 8, p i = 23, y = 513 p k \ 2c 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Here the solutions, we are looking for, are c = 4, c = 5, c = 14, c = 17, c = 22 (2c = 8, 2c = 10, 2c = 28, 2c = 34, 2c = 44).

  (3-2)/(3.5). At step 3, p i = 7, the additional proportion of signatures disappearing after 7+4 is 2.(3-2).(5-2)/(3.5.7). At step 4, p i = 11, the additional proportion of signatures disappearing after 11+4 is 2.(3-2).(5-2).(7-2)/(3.5. 7.11). At step 5, p i = 13, the additional proportion of signatures disappearing after 13+4 is 2.(3-2).(5-2).(7-2)(11-2)/(3.5.7. 11.13).
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 3633 (3-2)/(3.5). At step 3, p i = 7, the additional proportion of signatures disappearing after 7+2+2 m is 2.(3-2).(5-2)/(3.5.7). At step 4, p i = 11, the additional proportion of signatures disappearing after 11+2+2 m is 2.(3-2).(5-2).(7-2)/(3.5. 7.11). At step 5, p i = 13, the additional proportion of signatures disappearing after 13+2+2 m is 2.(3-2).(5-2).(7-2)(11-2)/(3.5.7. 11.13). … Thus at step i, the additional proportion of signatures disappearing after p i +2+2 m is 2.(3-2).(5-2).(7-2)(11-2)(p i-1 -2)/(3.5.7. 11.13…p i ), thus already : p i p i-1 #RC i = #AR i / Π p = (2/p i ). Π (p-2)/p (73) p = 3 p = Case of relative prime numbers.

  Proof π(p-q = 2 m ) -π(p-q = 2) = lim (2/3).(2 m -2)+(2/(3.5)).(2 m -2)+(2.3/(3.5.7)).(2 m -2)+(2.3.5/(3.5.7.11)).(2 m -2)+... N → +∞ P 53/142

2 /

 2 3+2/(3.5)+2.3/(3.5.7)+2.3.5/(3.5.7.11)+… is necessarily inferior or equal to 1.

  /3+2/(3.5)+2.3/(3.5.7)+2.3.5/(3.5.7.11)+2.3.5.9/(3.5.7.11.13)+...) ≈ 2 m -2

  (5-4) = 1 1*(7-4) = 3 3*(11-4)= 21 21*(13-4) = 189 189*(17-4) = 2457 2457*(19-4) = 36855 36855*(23-4(5-3)= 2 2*(7-3)= 8 0*(7-4)= 0 8*(11-4) = 56 56*(13-4) = 504 504*(17-4) = 6552 6552*(19-4) = 98280 98280*(23-4) 4) = 0 2*(11-4) = 14 22*(13-4) = 198 238*(17-4) = 3094 3374*(19-4) = 50610 53690*(23-411-4) = 0 0*(13-4) = 0 96*(17-4) = 1248 1536*(19-4) = 23040 26208*(23-4

  At next step p i = 11, all the links mixing positive and negative configurations progressions of a 6n-spacing to a 6n+6spacing are given below in table 54 and the first of such courses is to the right : P 75/142

5 . 7 .

 57 Periodicity 3. (unique as prime number) Condition : mod(qd,3) = or(0,2) and mod(qd,5) = 2 and mod(qd,7) = or(2Periodicity 2. (unique as prime number) Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7q = 13, 43, 83, 97,... Periodicity 2.Condition : mod(qd,3) = or(0,2) and mod(qd,5) = or(1,3) and mod(qd,7) = or(0q = 1, 29, 41, 71,... Periodicity 1.

  ) = (p i-2 -6).x1(i-1) x2(3) = 2 x2(i) = (p i-1 -5).x2(i-1)+x1(i) #S(5,2) = 0 #S(5,i) = (p i -4).#S(5,i-1)+x2(i) i) = (p i -4).#S(7,i-1)+x1(i) i ≥The values below have been checked up to rank i = 8. Beyond that, the values are speculative.

  1,1) = 1 #Sn(1,i) = (p i -4).#Sn(1,i-1) = (p i-1 -4).x1(i-1) #Sn(4,4) = 38 #Sn(4,i) = (p i -4).#Sn(4,i-1)+x1(i)5 x1(6) = 168 x1(i) = (p i-2 -4).x1(i-1) x2(5) = 24 x2(i) = (p i-1 -4).x2(i-1)+x1(i) #Sn(5,4) = 0 #Sn(5,i) = (p i -4).#Sn(5,i-1)+x2(i) 6 x1(6) = 140 x1(i) = (p i-2 -4).x1(i-1) x2(5) = 76 x2(i) = (p i-1 -4).x2(i-1)+x1(i) #Sn(6,4) = 8 #Sn(6,i) = (p i -4).#Sn(6,i-1)+x2() = (p i-1 -4).x3(i-1)+x2(i) #Sn(7,4) = 0 #Sn(7,i) = (p i -4).#Sn(7,i-1)+x3(i) 8 x1(7) = 280 x1(i) = (p i-3 -4).x1(i-1) x2(6) = 152 x2(i) = (p i-2 -4).x2(i-1)+x1(i) x3(5) = 16 x3(i) = (p i-1 -4).x3(i-1)+x2(i) #Sn(8,4) = 0 #Sn(8,i) = (p i -4).#Sn(8,i-1)+x3(i) x1(8) = 672 x1(i) = (p i-4 -4).x1(i-1) x2(7) = 96 x2(i) = (p i-3 -4).x2(i-1) +x1(i) x3(6) = 0 x3(i) = (p i-2 -4).x3(i-1) +x2(i) x4(5) = 0 x4(i) = (p i-1 -4).x4(i-1) +x3(i) #Sn(9,4) = 0 #Sn(9,i) = (p i -4).#Sn(9,i-1)+x4(i) 10 x1(8) = 560 x1(i) = (p i-4 -4).x1(i-1) x2(7) = 304 x2(i) = (p i-3 -4).x2(i-1) +x1(i) x3(6) = 32 x3(i) = (p i-2 -4).x3(i-1) +x2(i) x4(5) = 0 x4(i) = (p i-1 -4).x4(i-1) +x3(i) #Sn(10,4) = 0 #Sn(10,i) = (p i -4).#Sn(10,i-1)+x4(i) …...

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 

	p i	r = 2…p i	s = p i+1	2…p i	Sequences
				mod p i+1	
	2	2	3	2	(0, 2, 1)
	3	6	5	1	(0, 1, 2, 3, 4)
	5	30	7	2	(0, 2, 4, 6, 1, 3, 5)
	7	210	11	1	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
	11	2310	13	9	(0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4)
	Theorem 2 (Prime Number Theorem)		

Table 3

 3 

	7		37	67	97 127 157 187 217	217 = 7.31
	11		41	71 101 131 161 191 221	49 = 7.7
	13		43	73 103 133 163 193 223	133 = 7.19
	17	=>	47	77 107 137 167 197 227	77 = 7.11
	19		49	79 109 139 169 199 229	49 = 7.7
	23		53	83 113 143 173 203 233	203 = 7.29
	31		61	91 121 151 181 211 241	91 = 7.13

Table 5

 5 

	Steps i	1	2	3	4	5	6	7	8	9
	p i	3	5	7	11	13	17	19	23	29
	Cycle 1 size	6	30	210	2310	30030	510510	9699690 223092870 6469693230
	Spacings ΔP				Number of ΔP spacings = #SP(j,i)			
	2	1	3	15	135	1485	22275	378675		214708725
	4	1	3	15	135	1485	22275	378675		214708725
	6		2	14	142	1690	26630	470630 10169950 280323050
	8			2	28	394	6812	128810		83120450
	10			2	30	438	7734	148530		97648950
	12				8	188	4096	90124		68713708
	14				2	58	1406	33206	871318	27403082
	16					12	432	12372	362376	12199404
	18					8	376	12424	396872	14123368
	20					0	24	1440	61560	2594160
	22					2	78	2622	88614	3324402
	24						20	1136	48868	2100872
	26						2	142	7682	386554
	28							72	5664	324792
	30							20	2164	154220
	32							0	72	10128
	34							2	198	15942
	36								56	7228
	38								2	570
	40								12	1464
	42									272
	44									12
	46									2
	Numbers of									
	spacings	2	8	48	480	5760	92160	1658880 36495360 1021870080
	∑ j #SP(j,i)									

Table 6

 6 

	Steps i	1	2	3	4	5	6
	Supplementary prime numbers	3	5	7	11	13	17
	Cycle 1 size	6	30	210	2310	30030	510510
	Spacings ΔP		Ratios #RP(j,i) = number of spacings at rank i/number of spacings at rank i-1	
	2		3	5	9	11	15
	4		3	5	9	11	15
	6			7	10,14	11,90	15,76
	8				14	14,07	17,29
	10				15	14,60	17,66
	12					23,50	21,79
	14					29	24,24
	16						36
	18						47
	20						+∞
	22						39
	Lemma 1						
	We have (when #RP(j,i) exists) :						
			#RP(j,i) ≥ p i -2	(52)		
	and						

Table 18

 18 

	) is found in the upper lines of the property column and generates a batch of 7-2 = 5 numbers. The multiplier
	factor is equal to p i -2 as expected. For example, in the series 13, 43, 73, 103, 133, 163 and 193 (numbers between 11 and
	2.3.5.7+10), all of which are integers valued 13 mod 210/7, one and only one integer has as a divider a divisor of 210,
	namely 133 (divisible by 7) and in the series 13-2, 43-2, 73-2, 103-2, 133-2, 193-2, only one has as a divider a divisor of
	210, i.e. 161 (divisible by 7), thus two exclusions. These two are reassigned to the lines below. Note that the generator in
	the property column does not necessarily re-enter itself the final list.
	The regularity of the spacings is besides well respected (identical configurations).
	This is not surprising, since considering the number x1 having as a divider d (= p i ) in the first sample (here 133 divisible
	by 7) and the corresponding number x2 in the second sample with divider d (here 49 still divisible by 7), we are searching
	then the number y1 such that y1-Δ has a divider d (here Δ = 2). Then (y1+(x2-x1)-Δ) is trivially a divider of t. This gives
	the relative positions of the two associated pairs and the corresponding regular spacings.

  remains 6 solutions of line 3 governed by a relationship modulo p 0 p 1 p 2 …p i /p i-2 (hence here modulo 30030/7 = 4290):

	m	409	4699	8989	13279	17569	21859	26149
	m-8	401	4691	8981	13271	17561	21851	26141
	Elimination if divider of 30030			yes (bottom) (pi-2=7)	yes (top) (pi-2=7)			
	Elimination if		yes			yes		
	previously		(4699 = 1969			(17569 = 1399		
	listed		mod 2730)			mod 2310)		
	m	8179	12469	16759	21049	25339	29629	3889
	m-8	8171	12461	16751	21041	25331	29621	3881
	Elimination if divider of 30030			yes (bottom) (pi-2=7)	yes (top) (pi-2=7)			
	Elimination if		yes			yes		
	previously		(12469 = 919			(25339 = 769 mod		
	listed		mod 2310)			2730)		

table below

 below 

	p i	3	5	7	11	13
	Line 1	0	0	0	2	58
	Line 2		0	0	2	36
	Line 3			0	2	20
	Line 4				2	14
	Line 5					14
						:
	P 35/142					

  Table 21) to step 6 is implemented modulo p 0 p 1 p 2 …p i /p i /p i-3 = If we then go back to Table 22, we find, in line 3 at this step, 276-24 = 252 integers that correspond to the 24+12 integers in the previous step. The transition of 12-spacing solutions from step 5 (see Table 21) to step 6 is made modulo p 0 p p 2 …p i /p i /p i-2 = (510510/17)/11 = 2730 : In fact, this ranking is done by taking into account the spacings between integers and answers the pattern of the following table (d = 46410 = 510510/11) :

	Values at step 5		mod 4290		Values at step 6	mod 4290	Configurations d = 510510/7
		1399		1399	→	14269, 160129	1399
		8989		409 Configurations	→	90499, 236359 Spacings	409
		12889 16759		19 1 3889 S1	→ →	218809, 364669 2d, d, d, d, d, 4d, d 158329, 304189 4d, d, d, d, d, 2d, d	19 3889	2d, 5d
		24019		2569 2	→	440149, 75499 d, 2d, d, d, d, 4d, d	2569
		28069		2329 S2	→	371269, 6619 4d, d, d, d, 2d, d, d	2329
				3		d, d, 3d, d, 2d, 2d, d	
		1973		1973 S3	→	503903, 139253 2d, 2d, d, 3d, d, d, d	1973
		6023		1733	→	435023, 70373	1733
	Next steps :	17153 13283		4283 413	→ →	145853, 291713 206333, 352193	4283 413	2d, 5d
		21053		3893	→	274163, 420023	3893
		28643		2903	→	350393, 496253	2903
	Values at step 5	Mod 2730			Values at step 6	Mod 2730 Configurations
		251	→ 412481, 505301, 41201, 87611, 134021, 180431, 366071	251	1
		491	→ 475511, 57821, 104231, 150641, 197051, 243461, 429101	491	1
		881	→ 183791, 276611, 323021, 369431, 415841, 462251, 137381	881	1
	3761	1031 → 339551, 432371, 478781, 14681, 61091, 107501, 293141	1031	1
	7121	1661 → 110861, 203681, 250091, 296501, 342911, 389321, 64451	1661	1
	8051	2591 → 193691, 286511, 332921, 379331, 425741, 472151, 147281	2591	1
		151	→ 363241, 38371, 84781, 131191, 177601, 224011, 316831	151	S1
		1081 → 446071, 121201, 167611, 214021, 260431, 306841, 399661	1081	S1
		1711 → 217381, 403021, 449431, 495841, 31741, 78151, 170971	1711	S1
		1861 → 373141, 48271, 94681, 141091, 187501, 233911, 326731	1861	S1
		2251 → 81421, 267061, 313471, 359881, 406291, 452701, 35011	2251	S1
		2491 →	144451, 330091, 376501, 422911, 469321, 5221, 98041	2491	S1
	2983	253	→ 456163, 502573, 84883, 131293, 177703, 224113, 409753	253	2
		613	→ 25183, 71593, 164413, 210823, 257233, 303643, 489283	613	2
		1033 → 383233, 429643, 11953, 58363, 104773, 151183, 336823	1033	2
	2173	2173 → 389833, 436243, 18553, 64963, 111373, 157783, 343423	2173	2
		2563 → 98113, 144523, 237343, 283753, 330163, 376573, 51703	2563	2
		2593 → 237373, 283783, 376603, 423013, 469423, 5323, 190963	2593	2
	5609	149	→ 319559, 505199, 41099, 87509, 133919, 226739, 273149	149	S2
		179	→ 458819, 133949, 180359, 226769, 273179, 365999, 412409	179	S2
		569	→ 167099, 352739, 399149, 445559, 491969, 74279, 120689	569	S2
	9899	1709 → 173699, 359339, 405749, 452159, 498569, 80879, 127289	1709	S2
	2129	2129 → 21239, 206879, 253289, 299699, 346109, 438929, 485339	2129	S2
		2489 →	100769, 286409, 332819, 379229, 425639, 7949, 54359	2489	S2
		1343 →	4073, 96893, 143303, 189713, 236123, 282533, 468173	1343	1
	1973	1973 →	285893, 378713, 425123, 471533, 7433, 53843, 239483	1973	1
		769	→ 271039, 456679, 503089, 38989, 85399, 131809, 224629	769	S1
	1399	1399 → 42349, 227989, 274399, 320809, 367219, 413629, 506449	1399	S1
		379	→ 404419, 450829, 33139, 79549, 125959, 172369, 358009	379	2
	8989	799	→ 251959, 298369, 391189, 437599, 484009, 19909, 205549	799	2
		1943 → 304973, 490613, 26513, 72923, 119333, 212153, 258563	1943	S2
		2363 → 152513, 338153, 384563, 430973, 477383, 59693, 106103	2363	S2
	6023	563	→ 38783, 85193, 131603, 270833, 317243, 410063, 502883	563	3
		773	→	473063, 8963, 55373, 194603, 241013, 333833, 426653	773	3
	1969 → 83869, 176689, 269509, 315919, 455149, 501559, 37459 (510510/17)/7 = 4290 : 2179 → 7639, 100459, 193279, 239689, 378919, 425329, 471739	1969 2179	S3 S3
	P 38/142						

We can notice that the last 12 solutions "work" in exactly the same way as the other 24 integers viewed modulo p 0 p p 2 …p i /p i /p i-2 . Regarding configurations, the classification according to the unit digits of each integer is accidental and quite anecdotal. Moreover, the attentive reader will have already noticed that the latter changes between the groupings of the first 24 and P 39/142 the 12 subsequent.

table ) :

 ) 

														Tables 25			
	Step 0 : Initial list																
	Entrée	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8	Cycle 9	Cycle 10	Cycle 11	Cycle 12	Cycle 13	Cycle 14	Cycle 15	Cycle 16	Cycle 1	Cycle 2	Cycle 3
	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
		2 2 2 2 2	2	2 2 2 2 2 2 2 2 2 2 2 2 2
	Step 1 : 3-Multiples withdrawal (except 3)										
	Entry		Cycle1		Cycle2	Cycle3	Cycle4	Cycle5		Etc.	
	1 3 5 7	11 13	17 19		23 25		29 31		35 37		41	
		2 2			2		2			2			2			2			
	Step 2 : 5-Multiples withdrawal (except 5)										
	Entry								Cycle1										Cycle2	Etc.
	1 3 5 7	11 13	17 19		23		29 31		37	41 43	47 49	53	59 61
		2 2			2		2						2						2	2	2
	Step 3 : 7-Multiples withdrawal (except 7)										
	Entry														Cycle 1 (not entirely represented)
	1 3 5 7	11 13	17 19		23		29 31		37	41 43	47	53	59 61
		2 2			2		2						2						2	2
	Step 4 : 11-Multiples withdrawal (except 11)									
		Entry														Cycle 1 (not entirely represented)
	1 3 5 7	11 13	17 19		23		29 31		37	41 43	47	53	59 61
		2 2			2		2						2						2	2
	Step 5 : 13-Multiples withdrawal (except 13)									
			Entry													Cycle 1 (not entirely represented)
	1 3 5 7	11 13	17 19		23		29 31		37	41 43	47	53	59 61
		2 2			2		2						2						2	2
	Step 6 : 17-Multiples withdrawal (except 17)									
				Entry													Cycle 1 (not entirely represented)
	1 3 5 7	11 13	17 19		23		29 31		37	41 43	47	53	59 61
		2 2			2		2						2						2	2

  Table29gives the number of eliminations in cycle 1 (and in the following cycles) as the sequence increases, table30gives the number of survivors in the cycles.

		Tableau 29					
		Sequence = p i	3	5	7	11	13
	Gaps = 2n,						
	with divisors of n	Examples		#(removals in cycle1) = #A i
	only among						
	2	2, 4, 8, 16…	2	2	6	30	270
	2 and 3	6, 12, 18, 24, 36, 48, 54…	1	4	12	60	540
	2 and 5	10, 20, 40, 50…	2	1	8	40	360
	2 and 7	14, 28, 56…	2	2	3	36	324
	2 and 11	22, 44…	2	2	6	15	300
	2 and 13	26, 52…	2	2	6	30	135
	2, 3 and 5	30, 60…	1	2	16	80	720
	2, 3 and 7	42…	1	4	6	72	648
	2, 5 and 7	70…	2	1	4	48	432
	2, 3, 5 and 7	210…	1	2	8	96	864
	2, 3, 5, 7 and 11	2310…	1	2	8	48	960
		Tableau 30					
		Sequence = p i	3	5	7	11	13
	Gaps = 2n,						
	with divisors of n	Examples		#(remainder in cycle1) = #B i
	only among						
	2	2, 4, 8, 16…	1	3	15	135 1485
	2 and 3	6, 12, 18, 24, 36, 48, 54…	2	6	30	270 2970
	2 and 5	10, 20, 40, 50…	1	4	20	180 1980
	2 and 7	14, 28, 56…	1	3	18	162 1782
	2 and 11	22, 44…	1	3	15	150 1650
	2 and 13	26, 52…	1	3	15	135 1620
	2, 3 and 5	30, 60…	2	8	40	360 3960
	2, 3 and 7	42…	2	6	36	324 3564
	2, 5 and 7	70…	1	4	24	216 2376
	2, 3, 5 and 7	210…	2	8	48	432 4752
	2, 3, 5, 7 and 11	2310…	2	8	48	480 5280
	Lemma 4						

6.3.2. Case of pairs of prime numbers distant of 2 m .

  The process is the same as before and we give first two examples :

	Gaps of 4 :										
					Tables 31					
	Step 0 : Initial list									
	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35					
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
	Step 1 : 3-Multiples withdrawal (except 3)							
	Entrée	Cycle1	Cycle2	Cycle3	Cycle4	Cycle5	Etc.				
	1 3 5 7	11 13	17 19	23 25	29 31	35 37	41 43				
	4 4	4	4	4	4	4	4 4				
	Step 2 : 5-Multiples withdrawal (except 5)							
	Entrée			Cycle1					Cycle2		Etc.
	1 3 5 7	11 13	17 19	23	29 31	37	41 43	47 49	53	59 61	67
	4 4	4	4	4			4	4	4		

Table 50

 50 In these tables, we find the exact percentages of modulo 30 spacings up to p i = 19. Beyond that, it is a statistical assessment. The asymptotic proportions seem to be around :

	/ Table 51

Table 54 Table 55 pi

 5455 

		3	7	11
	6	0	0	0
	+	0	0	2
	12	0	0	2
	-	0	3	0
	18	0	4	2
	-	0	0	1
	24	0	4	1
	+	0	3	0
	30	0	0	1
	+	0	1	1
	36	0	1	2
	-	0	0	2
	42	0	1	0
		0	7	6

  Missing numbers (like 54, 114, 144, 244, 354, 444, 534, 624, 774, 894, 1044) below the minimum for the maximum (or slightly above) are often valued 24 modulo 30. In a general way, configurations giving a 24 mod 30 spacing are rarer than those that surround them (see table 49 and the paragraph 6.4.7 page 70).An asymptotic evaluation of the upper bound is easy as part of statistical considerations. To do this, we start from table 34 to build the following table:

							Table 59						
	p i		Max spacings found	Followers (etc. meaning that all admissible spacings exist under the previous value)	∑ 2p k	« Min » of max = 2∑ i (p k -mod(p k ,3))
	3		6	/							6		6
	5		12	etc.						16		12
	7		30	18, etc.						30		24
			42	etc.						52		42
			66	60, 48, etc.						78		66
			108	96, etc.						112		96
			150	138, etc. except 114					150		132
			204	etc. except 144					196		174
			258	240, etc.						254		228
			348	330, 318, etc.					316		288
			510	432, 426, 420, 408, 390, 378, etc. except 354			390		360
			540	528, 516, 510, 498, 492, 480, 474, 468, 462, 450, 438, etc.		472		438
			582	570, 558, etc. except 534					558		522
			690	678, 672, 660, 648, 642, 636, 630, 618, etc.				652		612
			810	798, 768, 762, 750, 720, 714, 708, 702, 690, etc.			758		714
			852	846, 834, 822, 816, 810, 798, 780, 768, etc.				876		828
			972	942, 924, 912, 906, 900, 882, etc.				998		948
			1098	1050, 1038, 1026, 1020, 1008, 996, etc. except 966		1132		1080
			1176	1146, 1128, 1122, 1098, 1092, 1080, 1068, etc. except 1044	1274		1218
	Note:												
							Table 60						
	Steps i	1	2	3	4	5	6	1	2	3	4	5	6
	p i	3	5	7	11	13	17	3	5	7	11	13	17
	Spacings				Cum(i)					Rt(i)		
	Δ		Total cases with spacings >= given value (in abscissa)	Relative sizes of spacings to maximum spacing
	6	1/1 3/3 15/15 135/135 1485/1485 22275/22275 6/6 6/12	6/30	6/42	6/66	6/108
	12		2/3 12/15 114/135 1296/1485 19818/22275		12/12 12/30 12/42 12/66 12/108
	18		4/15	58/135	792/1485	13266/22275		18/30 18/42 18/66 18/108
	24		2/15	36/135	554/1485	9892/22275		24/30 24/42 24/66 24/108
	30		2/15	30/135	458/1485	8356/22275		30/30 30/42 30/66 30/108
	36				8/135	188/1485	4126/22275				36/42 36/66 36/108
	42				4/135	128/1485	3104/22275				42/42 42/66 42/108
	48					44/1485	1388/22275					48/66 48/108
	54					24/1485	914/22275					54/66 54/108
	60					24/1485	874/22275					60/66 60/108
	66					12/1485	494/22275					66/66 66/108
	72						208/22275						72/108
	78						144/22275						78/108
	84						78/22275						84/108
	90						66/22275						90/108
	96						42/22275						96/108
	102						20/22275						102/108
	108						20/22275						108/108
	P 79/142												

  We call « multiplicand » the number of solutions 2n with the same distribution of populations #R(2n,Δ). This word is chosen so because, as we will see below, its values can be anticipated (thus intervening in some way first in the multiplication). Several families can have multiplicands of equal value.

	Conjecture 6												
	A multiplicand is a power of 2.											
					Table 68								
	Families 2n mod 30	Multiplicands (2n)² mod 30	Δ	2	4	6	8	10	12	14	16	18
				∑ Δ #R(2n,Δ)					#R(2n,Δ)				
	(0)	1	0	8	3	3	2	0	0	0	0	0	0
	(6,24)	2	6	6	1	2	2	1	0	0	0	0	0
	(12,18)	2	24	6	2	1	2	0	1	0	0	0	0
	(10,20)	2	10	4	0	0	3	0	0	1	0	0	0
	(2,8,22,28)	4	4	3	0	0	1	0	0	2	0	0	0
	(4,16,14,26)	4	16	3	0	0	2	0	0	0	0	0	1
	P 84/142												

  table, the integers 2, 4, 8, 16, 32, 64 do not meet in two columns at once, but 128 ends up in the first column with integer 2 completing the cycle and the period t is equal to 6 for all table elements (such as 58, 116, 22, 44, 88, 176, 142, etc.).Let us see how to move from elements at step i to those at step i+1. The first table at each new step is 0 since the only even number between 0 to p i #-2 divisible by all prime numbers between 2 and p i . The n+1-table at the i+1 step is deduced, in part, from the n th table at the i-step. Let us take, for example, the following two tables in correspondence:

				6	12	10			
				24	18	20			
				6	24	10			
	6 = 6+0.30 12 = 12+0.30	24	48	96	192 10 = 10+0.30	20	40	14	28
	36 = 6+1.30 72 = 12+2.30 144	78	156	102 80 = 20+2.30 160	110	56	112
	174 = 24+5.30 138 = 18+4.30 66	132	54	108 130 = 10+4.30 50	100	154	98
	204= 24+6.30 198 = 18+6.30 186	162	114	18 200 = 20+6.30 190	170	196	182
	36	144	156 204 186 114	100	190 130 196 154

  table is worth noting: The values on the lower edge grow multiplicatively at the same pace that the values of the m-1 line grow additively.

	Line m = 1	LS(i)	1 3 6 11 17 25	34	45	59	74	92	…
	Lower edge	LI(i)	1 2 6 30 180 1440 12960 142560 1995840 29937600 538876800	…
	Difference LS(i)-LS(i-1) 1 2 3 5 6	8	9	11	14	15	18	(p i -1)/2
	Quotient	LI(i)/LI(i-1) 1 2 3 5 6	8	9	11	14	15	18	(p i -1)/2
	Note 3								

  The time required to calculate each column is in the order of one day. Beyond that the step, we have adopted another verification strategy, namely in the algorithm given in Appendix 14, we continue to increment qtpr, but the program sequences

	Step	p i	Periodicity #ord2 i	#fm2 i = multiplicative factor if(Mod(ac, 3) <> 0, (p i -1)/2 if(Mod(a, 3) <> 0, if(Mod(ac, 5) <> 0,	Factors accumulation	Verification
	15	53	4144140		13 if(Mod(a, 5) <> 0, 2.13	2 3 .3 2 .5.7.11.13.23	by incomplete way
	16	59	120180060		29	…,	29	2 3 .3 2 .5.7.11.13.23.29 by incomplete way
	17	61	120180060		1	…,	2.3.5	2 3 .3 2 .5.7.11.13.23.29 by incomplete way
	18	67	120180060		1 if(Mod(ac, p i ) <> 0, 3.11	2 3 .3 2 .5.7.11.13.23.29 by incomplete way
	19 is limited to …	71	120180060		1 if(Mod(a, p i ) <> 0, 5.7 if(Mod(ac, 3) <> 0,	2 3 .3 2 .5.7.11.13.23.29 by incomplete way
	if(Mod(a, 3) <> 0, Due to the exponential growth of the calculations, a full verification of the results (on Pari GP) could only be carried out if(Mod(ac, 5) <> 0, until stage 9 with populations as follows (verifying also that the periodicity is not 2.1980 = 3960): if(Mod(a, 5) <> 0,
		Δ	6 12	2n	2 1 17506125 f(Mod(ac, 7) <> 0, 2 1+1.1980 if(Mod(a, 7) <> 0, 17506125 if(Mod(ac, 11) <> 0, 46683000 48550320 if(Mod(a, 11) <> 0,	2 1+7.1980 17506125 46683000
			18		27184430	26844090	27184430
			24		14178528	13478400	14178528
			30		39735054	39088254	39735054
			36		10497320	10534680	10497320
			42		22680468	21998100	22680468
			48		8256720	8178960	8256720
			54		2479200	2422518	2479200
			60		7815766	7686076	7815766
			66		5067262	5228158	5067262
	Step 1	p i 3	Table 77 multiplicative #fm2 i = factor (p i -1)/2 1 1 3197558 216 Periodicity #ord2 i 1 72 38 38	Factors accumulation 1 38	Verification fully done
	2	5	222	2	84	2		2 126	2 84	fully done
	3	7	228	6	22	3		3 50	3 22	fully done
	4	11	30 234	12	5		5 24	2.3.5 12	fully done
	5	13	30 240	8	1		2.3 30	2.3.5 8	fully done
	6	17	60 246	0	2		2 3 0	2 3 .3.5 0	fully done
	7	19	180 252	0	3		3 2 4	2 3 .3 2 .5 0	fully done
	8	23	1980 258	2	11		11 4	2 3 .3 2 .5.11 2	fully done
	9	29	13860 264		7		2.7 0	2 3 .3 2 .5.7.11	fully done
	10	31	13860 270		1		3.5 4	2 3 .3 2 .5.7.11	by incomplete way
	11	37	13860		1		2.3 2	2 3 .3 2 .5.7.11	by incomplete way
	12	41	13860		1		2 2 .5	2 3 .3 2 .5.7.11	by incomplete way
	13	43	13860		1		3.7	2 3 .3 2 .5.7.11	by incomplete way
	14	47	318780		23		23	2 3 .3 2 .5.7.11.23	by incomplete way
	P 88/142 P 89/142								

  and quantities in tables in correspondence):

	2n Spacings	2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 …
	Δ(j)								
	6	21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 …
	12	56 16 42 14 48 6 56 16 42 20 42 6 56 14 48 18 42 6 56 18 42 18 42 0 64 16 42 18 42 6 56 …
	18	22 32 22 21 32 21 24 28 18 21 36 24 22 28 18 21 40 21 18 28 22 24 36 21 18 28 24 21 32 21 22 …
	24	6 20 16 30 14 24 6 26 16 32 20 18 6 20 14 36 18 22 6 26 18 30 18 18 0 28 16 32 18 22 6 …
	30	22 15 24 16 10 18 18 16 19 16 10 23 24 15 19 14 8 24 24 13 19 16 12 20 22 13 19 20 11 22 22 …
	36	4 10 0 2 4 6 4 6 0 0 2 4 2 6 2 2 0 2 2 6 2 2 2 4 4 6 0 0 2 4 4 …
	42	4	2 0 6 0 6 1 8 0 2 0 2 0 4 0 4 0 4 0 4 1 4 2 4 2 6 0 6 0 4 …
	48		0 2	4	4 2 2 2 2 2 0 0 2 0 0	2	6 0	2	4	…
	54		1 2		2	2	2 0 2 0 2		0	…
	60						2	0		2	…
	66							1		…

  2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 …

	2n/15											
	Spacings Δ(j) 2 1 2 2 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 …
	4	63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 84 63 63 96 63 63 84 63 72 84 63 63 84 72 63 …
	6	86 96 128 78 78 128 96 86 120 78 86 144 86 78 120 86 96 128 78 78 128 96 86 120 78 86 144 86 78 120 86 …
	8	28 39 30 20 43 32 20 43 22 27 48 22 26 39 32 28 39 30 20 43 32 20 43 22 27 48 22 26 39 32 28 …
	10	54 24 32 54 24 30 48 36 32 48 34 22 60 38 22 54 24 32 54 24 30 48 36 32 48 34 22 60 38 22 54 …
	12	26 34 32 20 30 28 28 28 32 30 26 20 18 26 30 26 34 32 20 30 28 28 28 32 30 26 20 18 26 30 26 …
	14	10 10 6 13 18 6 11 16 9 13 10 10 15 15 10 10 10 6 13 18 6 11 16 9 13 10 10 15 15 10 10 …
	16	4 4 2 10 4 4 4 2 4 4 5 6 2 4 7 4 4 2 10 4 4 4 2 4 4 5 6 2 4 7 4 …
	18	4 6 0 4 4 2 4 2 2 2 2 6 6 2 0 4 6 0 4 4 2 4 2 2 2 2 6 6 2 0 4 …
	20	0	0 0		0 0	0 0 2 0	0 0 0	0 0	0 0	0 0 2 0	0 0 0 …
	22	1	2 2		4 0	4 0	4	0 4 1	2 2	4 0	4 0	4	0 4 1 …
	24		0		2	2		2	0	2	2		2	…
	26		0						0				…
	28		0						0				…
	30		2						2				…
	Two other examples are:									
	Case 2n = 3.2 m .										
	The sum per column is equal to 270.							
	2n/3 Spacings	2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 …
	Δ(j)											
	2	21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 21 …
	4	42 21 56 24 42 28 42 21 64 21 42 28 42 24 56 21 42 28 48 21 56 21 42 32 42 21 56 21 48 28 42 …
	6	104 42 60 56 64 48 92 42 60 56 72 42 88 42 64 64 64 42 88 42 72 56 60 42 92 48 64 56 60 42 104 …
	8	28 22 21 26 24 30 28 18 21 28 21 32 28 22 24 20 21 30 28 24 21 26 21 32 32 18 21 20 21 36 28 …
	10	20 60 32 39 43 48 28 53 22 43 39 60 27 51 30 39 48 54 20 53 22 48 43 48 26 51 32 43 39 54 20 …
	12	0 30 16 48 12 32 8 28 20 48 8 26 8 36 18 52 8 24 10 36 18 54 8 28 8 40 18 48 14 28 0 …
	14	22 5 40 8 38 11 30 2 40 8 34 11 30 4 38 8 40 9 30 4 34 5 40 11 24 4 40 4 40 12 22 …
	16	4 4 4 5 4 8 2 8 4 4 4 7 4 8 4 2 2 7 6 8 4 2 8 9 4 4 2 4 4 7 4 …
	18	8 20 4 14 4 16 4 20 2 10 10 12 4 20 2 10 8 20 2 18 10 6 8 22 2 18 4 14 4 14 8 …
	20	4 2 4 0 3 3 0 2 6 0 2 8 0 1 5 2 0 4 2 0 2 2 0 4 4 0 4 4 2 2 4 …
	22	2 4 1 8 0 2 0 8 2 10 0 0 0 2 0 10 1 0 0 4 0 4 0	0 4 0 8 0 2 2 …
	24	4 0 4	4 2 2 0 4	10 0 4 0 2	4 2 4 0 6 0 8	2 0 2	10 0 4 …
	26	0 4 4	0	0 4 4	2 0 2 2	4 0 0 2 4 0	0 4 4	1 0 …
	28	8		4	7			7 0 2	2 7 0	0	9 2 0	2 8 …
	30	2			6			2 0 0	4 2	2	4 0 2	2 …
	32	1						0 0 2		0			1 …
	34							2 0		0			…
	36							2		2			…
	Here, there are not only multiple deviations of 6, but also intermediate even integers.		
	Each column is still district following the conjecture.					
	Case 2n = 15.2 m										
	The sum per column is equal to 360.							
	P 96/142											

Reconstruction of De Polignac formula.

  

	Congruencies		0	1	2	…	p-1
	Normalized probability densities (∑ = 1)	→ 0	→ p/(p-1)	→ p/(p-1)		→ p/(p-1)
	7.2.					
		modulo				
	P	→	{0, 1, 2, …, p-1}	(110)	
	p i		p following
	correspondence :					
	P 97/142					

i mod p This application projects a unique number to 0. That is p. The other classes are images in same density of all the other prime numbers. By assigning a probability density to the quantities of numbers projected on each of the congruencies 0, 1, 2, ..., p-1 and arbitrarily adding all densities up to p (i.e. an average density of 1 for each class), we obtain the

  This example uses as reference axis p i ² (squared) and rounding to an integer for withdrawals. It shows that the coefficient c is close to 1. The value of c, less than 1, indicates a mark-up of the number of solutions (when c is taken equal to 1).

	i=100, pi=547, M1=8041201683943410828109550634828854777505537263494423149748904095519141328685633724080930325791856058467753055190892349 APPENDIX 2
	56734453622440768828003276810450872878667303664912803073215811791086832515085642402645880727981673189250, k1=92325 Numeric example i=150, pi=877,	
	M1=3075986181577799752875942769983071641666950609474230206853013920976122981515566899303884734659392028470682697772371102
	540, k1=410114											
	M = 1260799, 10000 th twin prime number (with M-2). i = 1408, p i = 11731. i=200, pi=1229, M = 1260799, 10000 th twin prime number (with M-2). i = 183, p i = 1093. M1=5247111092270099479860215068871654127200413939904659193381294991942234709536976298410697812700332039354992824584474691
	c = 0,994575. c = 1,00406412.											
	Initial number of odd integers: 630398. Total number of withdrawals : 620398. Initial number of odd integers: 630398. Total number of withdrawals : 620398.				
	049958339935177090932805184440, k1=12972								
	List of withdrawals: i=250, pi=1597, List of withdrawals: M1=1243316637742614657145737749273977499062750798039219171788207720512419392051948363568818972628860729132651005941651769
	pi pi		nb removals nb removals	pi pi	nb removals nb removals	pi pi	nb removals nb removals	pi pi	nb removals nb removals
	2 2		-417984 -421972	157 149	-242 -266	367 347		-78 -78	683 à 691 563	-34 -34	
	3 3		-83596 -84393	163 151	-233 -252	373 349		-77 -77	701 à 709 569	-33 -33	
	5 5 0816676421106155724678491059366186364291037610910485852183731401380, k1=156866 -35827 167 -222 379 -36168 157 -239 353	-76 -75	719 à 733 571	-32 -33	
	7 7 i=300, pi=1993,		-16285 -16439	173 163	-212 -230	383 359		-74 -73	739 à 751 577	-31 -32	
	11 11 M1=4736309836941162469839381709724705334939858575123475895266393516927073656235409732436839394651743287975858617079178428 -11274 179 -208 389 -72 757 à 769 -30 -11380 167 -220 367 -71 587 -31 6287398243799238011180625992422804415184010334246947520602554357744445427931046843172196174230080387372690, k1=7367823
	13 17 13 i=1500, pi=12569, 17 M1=1427977103941219771545682558941678035565126267991322785640136161083903626589792829515924131607357421079038916820695575 -7295 181 -195 397 -71 773 à 787 -29 -5759 191 -191 401 -69 797 à 811 -28 -7363 173 -209 373 -69 593 à 599 -30 -5812 179 -204 379 -68 601 à 607 -29
	19 19		-4256 -4296	193 181	-185 -191	409 à 419 383		-67 -66	821 à 829 613 à 619	-27 -28	
	23 23		-3082 -3110	197 191	-181 -187	421 389		-65 -64	839 à 859 631 à 641	-26 -26	
	29 31 37 41 29 31 363482029550290996733985324924044349872634006463918985909844347222074962243672124521331491765441365057078880, k1=2587472 -2684 199 -169 431 -64 863à 883 -25 -2104 211 -158 433 -63 887 à 911 -24 -1796 223 -154 439 -62 919 à947 -23 -1629 227 -151 443 -61 953 à 977 -22 -2708 193 -181 397 -63 643 à 647 -25 -2122 197 -177 401 -61 653 à 659 -24 37 -1811 199 -165 409 -59 661 à 673 i=350, pi=2371, -23 41 -1642 211 -154 419 -58 677 à 683 -22 M1=3639153206754216293159858779234324793239910864276473132609059037199263233146833971405678790951542119441411922391175608
	43 43		-1421 -1432	229 223	-148 -149	449 421		-60 -56	983 à 1019 691	-21 -21	
	47 47		-1206 -1216	233 227	-143 -147	457 431		-59 -55	1021 à 1061 701 à 709	-20 -20	
	53 53		-1043 -1050	239 229	-140 -143	461 à 463 433		-58 -54	1063 à 1097 719 à 727	-19 -19	
	59 59		-974 -981	241 233	-133 -138	467 439		-56 -53	1103 à 1151 733 à 739	-18 -18	
	61 61		-858 -863	251 239	-129 -135	479 443		-55 -52	1153 à 1193 743 à 751	-17 -17	
	67 67		-785 -790	257 241	-125 -129	487 449		-54 -51	1201 à 1249 757 à 769	-16 -16	
	71 71 0143744182855521095602865958040, k1=3615004 -742 263 -746 251	-122 -124	491 457		-53 -50	1259 à 1321 773	-15 -15	
	73 73 i=400, pi=2749,		-667 -671	269 257	-120 -120	499 à 503 461		-52 -49	1327 à 1399 787 à 797	-14 -14	
	79 79 M1=2370062918561334691017203553498679311795303535434727082143133209075296262553986437839036253467462727613462540102393696 -619 271 -116 509 à 521 -50 1409 à 1487 -13 -622 263 -116 463 -48 809 à 821 -13
	83 83		-563 -565	277 269	-114 -114	523 467		-48 -47	1489 à 1579 823 à 829	-12 -12	
	89 89		-505 -507	281 271	-112 -111	541 479		-47 -45	1583 à 1697 839 à 857	-11 -11	
	97 97		-475 -476	283 277	-108 -108	547 487		-46 -44	1699 à 1823 859 à 877	-10 -10	
	101 101		-456 -457	293 281	-102 -106	557 à 569 491		-45 -43	1831 à 1993 881 à 887	-9 -9	
	103 103		-431 -431	307 283	-100 -102	571 499		-44 -42	1997 à 2161 907 à 911	-8 -8	
	107 107		-415 -415	311 293	-99 -96		577 503		-43 -41	2179 à 2417 919 à 941	-7 -7	
	109 109		-393 -393	313 307	-97 -93		587 à 599 509		-42 -40	2423 à 2741 947 à 953	-6 -6	
	113 127 131 137 113 127 598238118897075694980283383243599250396291208654661034934703577898526143507420, k1=105238 -343 317 -92 601 -41 -328 331 -90 607 à 617 -40 -308 337 -87 619 -39 -300 347 -86 631 à 643 -38 -343 311 -92 521 -39 -327 313 -90 523 -38 131 -307 317 -86 541 -36 i=450, pi=3187, 137 -298 331 -83 547 à -35 M1=2662203239007689844030721002449525055606122906526672490350296450134523274714685951068133605450495622081622648845758471 2749 à 3181 -5 3187 à 3797 -4 3803 à 4799 -3 4801 à 6661 -2 967 à 983 -5 991 à 1009 -4 1013 à 1033 -3 1039 à 1063 -2
	139 139		-275 -274	349 337	-84 -80		647 à 653 557		-37 -35	6673 à 11731 1069 à 1093	-1 -1	
	149		-268	353	-82		659 à 661		-36			
	151		-254	359	-80		673 à 677		-35			
	189296890, k1=4295639										
	i=500, pi=3581,											
	M1=3367154080684928676634699313141468074972535691694779144134807293880357055296304689516700435968515314007975424059990464
	950171358396996661303942412709583250, k1=27427725							
	The last number M1 contains 5400 digits that are distributed relatively evenly between the different values from 0 to 9 :
	Values	0	1	2	3	4	5	6	7	8	9	All
	Quantities	557	544	515	528	546	533	556	523	550	548	5400
	772369308068735560405150126614850232588419329008655773233580170, k1=2156443 Percent 10,3% 10,1% 9,5% 9,8% 10,1% 9,9%	10,3%	9,7%	10,2% 10,1%	
	i=1000, pi=7927,											
	M1=6313957365066382545080839999997371465322099698667541376694382425796795614672479962294904873335583685140543004930106905
	P 100/142 P 103/142											

  Table of the quantity of spacings Δ in cycle 1 for given 2n. The values below have been checked up to rank i = 8. Beyond that, the values are speculative.

	Steps i Steps i Steps i	i	p i	1 1 1	#S(1,i)	2 2 2	3 3 3 #S(2,i)		4 4 4	#S(3,i)	5 5 5	6 6 6 #S(4,i)	7 7
	p i p i Steps i p i	8	23	3 3 1 3	933660	5 5 2 5	7 7 3 7 1400490		11 11 4 11 1167140	13 13 5 13	17 17 6 17 615160	19 19 7 19
	Cycle 1 sizes Cycle 1 sizes p i Cycle sizes 9	29	6 6 3 6	23341500	30 30 5 30	210 210 7 210 35012250	2310 2310 11 2310 29956420	30030 30030 13 30030	510510 510510 17 510510 15549170	9699690 9699690 19 9699690
	Case 2n = 4. Spacings Δ Spacings Δ Cycle sizes Spacings Δ 10	31	6	30 630220500	Quantity of spacings Δ in cycle 1 Quantity of spacings Δ in cycle 1 210 2310 30030 Quantity of spacings Δ in cycle 1 945330750 826715500	510510 423741500	9699690
	162 Spacings Δ 11	37		20797276500	Quantity of spacings Δ in cycle 1 0 31195914750 27728915500	2 86 14081317250	210 2612
	Steps i 168 6	12	41	1 1	2 2 769499230500	3 8 1154248845750	4 56 1039836297500 504 5 4	6 6552 132 524042018500	7 200 98280 3686
		p i 174	13	43	3 30010469989500 5 0	7 0 45015704984250	11 6 41038940442500 13 90 0	17 1410 16 20543803530250	19 12 25200 906
	Cycle sizes 180		6		30 1	210 3	2310 21	30030 189 0	510510 2457 62	9699690 42 36855 2706
	Spacings Δ 186 Example 2n = 6 :					Quantity of spacings Δ in cycle 1 2 24 264 0	3768 44	12 60216 1524
		6 192			1		2	6 2 Table 81		42 18	378 224 0	4914 3676 11	73710 2 61724 401
		198						2		16 6	154 92 0	2072 1504 4	31850 10 27992 568
	Number of spacings 1 j		1 Δ 2	1 3 Formulas #S(1,i) = (p i -4).#S(1,i-1) 4 2 15	32 20 135 0 4	288 252 1485 16 2 64	3744 3780 22275 422 30 Conditions 1018 2 i ≥	56160 62244 10 14 9194 820 378675 18786 364
	Ratio to the previous 2		4	1 5 #S(2,i) = (p i -4).#S(2,i-1) 3		15 10 9	214 126 11 4 32	3636 1934 15 362 0 786 32 i ≥	62988 34010 2 0 10646 40 17 16894 1096
												27 2	601 96 0	13572 0 3896 226
	Case 2n = 32.											8 0	224 6 2	6160 0 376 152
												22 4	528 132 2	12624 0 4316 96
	Steps i			1		2	3		4		12 5	544 6 60 2	14308 2 2588 184
	Number of spacings p i Cycle 1 sizes		1 3 6		3 5 30	15 7 210	135 11 2310	2 0 1485 13 30030	160 4 22275 17 26 0 510510 0	5146 248 19 1382 16 378675 9699690 48 28
	Ratio to the previous Spacings Δ 102 6 108		1		3 1	0 2 11 Quantity of spacings Δ in cycle 1 5 9 3 21 210	32 72 15 0 2730 2	1489 2384 28 16 17 43680 52 84
		12 114					2	6		48	432	12 5616	572 84240 64 14
	Case 2n = 16.	18 120						4		32	312	18 4440	644 68712 84 8
		102 24 126						2		14	154	2198	158 35126 16 44
	108 Steps i 30 132			1		2	3		4 10	5 161	6 2725	94 7 47597 0 4
		114 p i 36 138			3		5	7		11 4	13 52	17 906	148 19 15630 16 6
	120 Cycle 1 sizes 42 144		6		30	210	2310 6	30030 110	510510 2006	120 9699690 38666 4 10
	126 Spacings Δ 48 150					Quantity of spacings Δ in cycle 1 22	578	42 12270 12 2
		132 6 54 156			1		2	6		48	432 4	5616 128	0 84240 3636 0 0
		138 12 60 162					0	2		14	154 28	2198 708	0 35126 18024 0 2
		144 18 66 168					1	3		21	189	2646 68	2 39690 2596 6 2
	150 Number of spacings 24 30 72 78 Number of spacings 100 102 Ratio to the previous 36 42 84 90 Ratio to the previous 104 106 48 96 108		1 1		3 3 3 3	15 4 15 5 5	135 30 16 135 9 2 0 9 2	1485 294 260 1485 11 44 14 11 44	22275 3906 4112 50 36 22275 15 1036 418 68 10 15 722 2	2 60606 72112 2312 2424 0 378675 0 378675 21268 9782 2178 786 2 17 0 17 13640 120 0
	Case 2n = 6.	54 102 110								2		44	988 6	21960 418 0
	Case 2n = 8. Cycle sizes Steps i p i Spacings Δ 60 66 72 78 84 90 108 114 120 126 132 138 Steps i p i Cycle sizes Spacings Δ 2 112 114 Number of spacings Ratio to the previous j 1 15 Example 2n = 8 : 1 2 3 4 5 6 3 5 7 11 13 17 6 30 210 2310 30030 510510 6 320 0 92 0 8 4 165 34 12 1 2 3 4 5 6 3 5 7 11 13 17 6 30 210 2310 30030 510510 Quantity of spacings Δ in cycle 1 1 1 3 21 189 2457 2 6 30 270 2970 44550 3 5 9 11 Table 80 Δ Formulas Conditions 6 #S(1,i) = (p i -4).#S(1,i-1) i ≥ 4 2 12 #S(2,i) = (p i -4).#S(2,i-1) i ≥ 3 Quantity of spacings Δ in cycle 1 6 1 1 4 28 252 3276 96 2 144 4 1 2 6 42 378 4914 x1(6) = 320 2 6 42 378 4914 2 22 260 3700 Number of spacings 1 3 15 135 1485 22275 6 2 12 104 1088 15616 8 1 4 28 252 3276 3 18 x1(i) = (p i-1 -6).x1(i-1) i ≥ 6 #S(3,5) = 260 2 16 154 2072 Ratio to the previous 3 5 9 11 15 2 20 218 3148 #S(3,i) = (p i -4).#S(3,i-1)+x1(i) 0 0 0 0 x1(3) = 2	7 19 9699690 9168 2974 484 3793 2264 730 98 86 12 52 7 19 9699690 36855 0 2 757350 330 73710 49140 73710 18 190 378675 254464 49140 59020 31850 196 42 51058 17 0
	Case 2n = 64.		4		24	1 2 0 x1(i) = (p i-1 -6).x1(i-1) #S(4,2) = 0		24 0 22 4	288 16 246 68	4464 492 3582 1164 i ≥ 3	79344 10020 18 8 58338 20988
						0 #S(4,i) = (p i -4).#S(4,i-1)+x1(i)	2 8		90 124	1932 2024	35268 0 35180
								0		0 4		16 88	494 1672	11836 4 32088
								0		1 2		19 38	337 682	7263 18 12682
								0		4		4 80	276 1540	9440 6 30092
			i	p i		#S(1,i)		0 #S(2,i)		0	#S(3,i)	2 8	46 248 #S(4,i)	1594 6072
			1	3				1		8		4 92	126 1548	3538 27128
			2	5		(1)		(2)		2		2 56	60 1138 (0)	2172 25122
			3	7		(4)		6		1	(2)	14	2	44 310	1782 6440
			4	11		28		42			(22)	4	16	40 182	1618 5422
			5	13		252		378			(260)	8	0 278 154	194 7446
		102	6	17		3276		4914			3700	4	0 130 2072	284 3726
		108	7	19		49140		73710			59020	9	0 214 31850	86 5778
	P 108/142 P 109/142 P 110/142 P 111/142 P 113/142											

  It becomes difficult to predict lines with n formulas, n given, even if we find the systems here for a larger number of lines than in the case of 2n = 2.The values below have been checked up to rank i = 8. Beyond that, the values are speculative. Table of positive progressions configurations at step p i = 13. All of 3341 configurations are not represented here but only that, almost ideal, where the column guides is not reached except for guide 5.

	pi	3	5	j 7 11 13	Δ	pi pi	Formulas 3 5 7 11 13 APPENDIX 10 pi 3 5 7 11 13 pi	3 3	5 5	7 11 13 7 11 13	Conditions pi 3 pi 3	5 5	11 13 11 13
	6 + 12 0 0 0 + 0 18 0 pi 3 + 0 6 0 24 0 + 0 + 0 12 0 30 0 + 0 + 0 18 0 36 0 + 0 + 0 24 0 42 0 + 0 + 0 30 0 48 0 + 0 + 0 36 0 60 0 + 0 + 0 42 0 66 0 + 0 ∑ 0	0 2 2 0 2 5 0 0 2 2 1 2 3 0 0 2 3 0 1 2 4 2 1 4 0 0 0 4 0 0 0 4 0 1 5	5 6 1 7 3 6 0 10 3 0 3 0 0 0 3 0 0 7 8 ... 12 7 11 13 0 2 1 0 7 3 0 1 4 1 0 0 1 0 1 1 7 3 1 1 5 0 3 0 2 0 1 1 10 3 3 1 6 0 2 1 1 0 1 1 1 4 4 1 7 1 0 0 1 1 0 2 1 4 5 2 7 0 0 3 0 1 5 2 1 7 5 3 12 2 1 0 1 2 0 4 2 7 6 5 12 1 0 1 6 10 9	10 12 14 16 ... 24	6 6 + + 12 0 0 0 x1(5) = 24 0 0 0 0 0 1 1 0 2 0 x1(i) = (p i-1 -6).x1(i-1) 7 3 6 3 1 0 1 0 1 1 8 3 12 0 2 0 7 3 #S(5,4) = 60 + 0 1 0 2 0 + 0 0 0 3 0 #S(5,i) = (p i -4).#S(5,i-1)+x1(i) 6 0 6 0 + 0 + 0 12 0 12 0 + 0 + 0 18 0 2 1 10 3 18 0 18 0 2 0 10 3 18 0 ? x1(7) = 288 x1(i) = (p i-2 -6).x1(i-1) x2(6) = 144 x2(i) = (p i-1 -5).x2(i-1)+x1(i) #S(7,5) = 62 #S(7,i) = (p i -4).#S(7,i-1)+x2(i) x1(5) = 48 x1(i) = (p i-1 -6).x1(i-1) #S(8,4) = 4 #S(8,i) = (p i -4).#S(8,i-1)+x1(i) … #S(12,i) = 0 pi 3 5 7 11 13 pi 3 + 0 0 0 2 1 + 0 + 0 0 0 2 1 + 0 6 0 0 0 7 3 6 0 24 0 2 1 1 4 24 0 24 0 2 0 1 4 24 0 + 0 2 1 0 0 + 0 + 0 1 0 1 1 + 0 + 0 1 1 0 1 + 0 12 0 2 1 7 3 12 0 30 0 3 1 2 5 30 0 30 0 3 1 1 5 30 0 + 0 0 0 3 0 + 0 + 0 0 2 0 1 + 0 + 0 0 2 0 1 + 0 18 0 2 1 10 3 18 0 36 0 3 3 2 6 36 0 36 0 3 3 1 6 36 0 + 0 0 0 2 1 + 0 + 0 1 1 0 1 + 0 + 0 0 1 1 1 + 0 24 0 2 1 1 4 24 0 42 0 4 4 2 7 42 0 42 0 3 4 2 7 42 0 + 0 2 0 0 1 + 0 + 0 1 1 0 1 + 0 + 0 2 1 0 0 + 0 30 0 4 1 1 5 30 0 48 0 0 5 2 8 48 0 48 0 0 5 2 7 48 0 + 0 0 1 0 2 + 0 + 0 0 0 1 5 + 0 + 0 0 0 1 5 + 0 36 0 4 2 1 7 36 0 60 0 0 5 3 0 60 0 60 0 0 5 3 12 60 0 + 0 0 2 1 0 + 0 + 0 0 1 2 0 + 0 + 0 0 1 2 0 + 0 42 0 4 4 2 7 42 0 66 0 0 6 5 0 66 0 66 0 0 6 5 12 66 0 + 0 1 1 0 1 + 0 ∑ 0 5 6 9 10 ∑ 0 ∑ 0 5 6 10 9 ∑ 0	0 0 1 2 1 2 1 0 2 2 5 0 0 0 2 2 2 0 1 2 2 3 0 1 0 2 3 3 0 1 1 2 4 4 2 1 1 4 0 0 0 0 0 4 0 0 0 0 0 4 0 0 1 5 5	0 0 1 0 1 0 0 0 1 10 3 7 3 6 3 1 0 1 0 8 3 7 3 2 0 3 0 0 10 3 7 11 13 0 2 1 0 2 1 0 7 3 1 1 4 0 1 4 1 0 0 2 0 1 1 0 1 1 7 3 3 1 5 1 1 5 0 3 0 0 1 1 1 0 2 1 10 3 3 2 6 2 1 7 0 2 1 1 0 1 2 0 0 1 1 4 4 2 7 4 1 7 0 0 1 1 0 1 1 1 0 1 1 5 5 2 8 5 2 7 0 0 3 0 1 5 0 1 5 1 1 8 5 3 0 5 3 12 0 1 2 1 2 0 1 2 0 1 2 10 6 5 0 6 5 12 0 0 2 6 9 10 6 10 9	6 6 + + i ≥ 5 12 0 0 0 0 0 12 0 + 0 + 0 18 0 18 0 i ≥ 6 i ≥ 5 pi 3 + 0 + 0 6 0 24 0 24 0 + 0 + 0 + 0 12 0 30 0 30 0 + 0 + 0 + 0 18 0 36 0 36 0 + 0 + 0 + 0 24 0 42 0 42 0 + 0 + 0 + 0 30 0 48 0 48 0 + 0 + 0 + 0 36 0 60 0 60 0 + 0 + 0 + 0 42 0 66 0 66 0 + 0 ∑ 0 ∑ 0	0 0 1 2 1 2 1 0 2 2 5 0 0 0 2 2 2 0 1 2 2 3 0 1 0 2 3 3 0 1 0 2 4 3 2 1 2 4 0 0 0 0 0 4 0 0 0 0 0 4 0 0 1 5 5	7 6 1 1 8 7 2 3 10 3 3 3 0 0 3 3 0 0 10 3 2 1 2 1 11 13 7 1 4 1 4 3 0 0 1 0 1 0 7 1 5 1 5 3 3 0 2 0 2 0 1 7 1 7 10 3 2 1 0 1 0 1 1 2 7 2 7 4 0 0 1 0 0 1 1 2 8 2 7 5 0 1 5 1 5 3 1 3 0 3 12 8 0 2 0 2 0 3 5 0 5 12 1 11 1 1 9 10 10 9
	1 2 3 4 5 6 7 8 9 10 11 12 13 Example 2n = 12 : 3 5 7 11 13 17 19 23 29 31 37 15597957375 (1) 1 3 21 189 2457 36855 700245 17506125 472665375 41 577124422875 43 22507852492125 45015704984250 199885542391808 30010469989500 37767570069866 (1) (2) (2) (1) (0) 6 12 (4) 2 42 104 28 20 378 1088 252 218 4914 15616 3276 3148 73710 254464 49140 51058 1400490 5153792 933660 1024604 35012250 135159808 23341500 26606146 945330750 3812343808 630220500 742321216 31195914750 130344288256 20797276500 25123351162 1154248845750 4976270114816 769499230500 949717873832 Table 82 j Δ Formulas Conditions 1 2 #S(1,i) = (p i -4).#S(1,i-1) i ≥ 2 4 #S(2,i) = (p i -4).#S(2,i-1) i ≥ 3 6 #S(3,i) = (p i -4).#S(3,i-1) i ≥ 4 8 x1(3) = 8 x1(i) = (p i-1 -6).x1(i-1) #S(4,3) = 2 i ≥ P 114/142 i pi #S(1,i) #S(2,i) #S(3,i) #S(4,i) #S(5,i) #S(6,i) #S(7,i) 1 3 (1) (1) 2 5 (2) 1 (2) (1) 3 7 (8) 3 6 (2) (7) (2) 4 56 21 42 22 (60) (30) (5) 5 504 189 378 238 564 (476) (62) 6 6552 2457 4914 3374 7500 (8152) 950 7 98280 36855 73710 53690 114348 (148768) 16266 8 1867320 700245 1400490 1060150 2196636 (3236864) 340446 9 46683000 17506125 35012250 27184430 55324308 ? 9117390 10 1260441000 472665375 945330750 749635250 1503149700 ? 261419418 1089010277082 (2) 22 246 3582 58338 1172934 30484566 850952466 28806030162 43306138605366 #S(8,i) (4) 84 1428 25116 525252 13948116 395385900 11 41594553000 15597957375 31195914750 25129354250 49838774700 ? 9039440826 13517403900 12 1538998461000 577124422875 1154248845750 941919228250 1851314536500 ? 348065085186 514703689500 13 60020939979000 22507852492125 45015704984250 37159509136750 72456062464500 ? 14076825990318 20583034972500 48 0 0 5 2 8 48 0 0 5 2 8 48 0 0 1 2 12 48 0 0 2 12 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 4 1 1 + 0 0 1 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 11 13 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 11 13 1 60 0 0 5 3 0 60 0 0 5 3 0 60 0 0 5 3 0 60 0 0 3 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 2 0 66 0 0 6 5 0 66 0 0 6 5 0 66 0 0 6 5 0 66 0 0 5 0 ∑ 0 5 6 9 10 ∑ 0 5 6 9 10 ∑ 0 5 6 9 10 ∑ 0 5 9 10 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 11 13 6 0 0 0 7 3 6 0 0 0 7 3 6 0 0 7 3 + 0 2 1 0 0 + 0 2 1 0 0 + 0 2 0 0 12 0 2 1 7 3 12 0 2 1 7 3 12 0 2 7 3 + 0 0 0 3 0 + 0 0 0 3 0 + 0 0 3 0 18 0 2 1 10 3 18 0 2 1 10 3 18 0 2 10 3 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 2 1 24 0 2 1 1 4 24 0 2 1 1 4 24 0 2 1 4 + 0 1 0 1 1 + 0 0 2 0 1 + 0 0 0 1 30 0 3 1 2 5 30 0 2 3 1 5 30 0 2 1 5 + 0 0 2 0 1 + 0 1 0 1 1 + 0 1 0 2 36 0 3 3 2 6 36 0 3 3 2 6 36 0 3 1 7 + 0 1 1 0 1 + 0 1 1 0 1 + 0 1 1 0 42 0 4 4 2 7 42 0 4 4 2 7 42 0 4 2 7 + 0 1 1 0 1 + 0 1 1 0 1 + 0 1 0 1 48 0 0 5 2 8 48 0 0 5 2 8 48 0 0 2 8 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 1 5 60 0 0 5 3 0 60 0 0 5 3 0 60 0 0 3 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 2 0 66 0 0 6 5 0 66 0 0 6 5 0 66 0 0 5 0 ∑ 0 5 6 9 10 ∑ 0 5 6 9 10 ∑ 0 5 9 10 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 11 13 6 0 0 0 7 3 6 0 0 0 7 3 6 0 0 0 7 3 6 0 0 7 3 + 0 1 1 1 0 + 0 1 1 1 0 + 0 1 1 1 0 + 0 1 1 0 12 0 1 1 8 3 12 0 1 1 8 3 12 0 1 1 8 3 12 0 1 8 3 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 2 0 18 0 2 1 10 3 18 0 2 1 10 3 18 0 2 1 10 3 18 0 2 10 3 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 2 1 24 0 2 1 1 4 24 0 2 1 1 4 24 0 2 1 1 4 24 0 2 1 4 + 0 2 1 0 0 + 0 2 0 0 1 + 0 2 0 0 1 + 0 2 0 1 30 0 4 2 1 4 30 0 4 1 1 5 30 0 4 1 1 5 30 0 4 1 5 + 0 0 0 0 3 + 0 0 1 0 2 + 0 0 0 0 3 + 0 0 0 3 36 0 4 2 1 7 36 0 4 2 1 7 36 0 4 1 1 8 36 0 4 1 8 + 0 0 2 1 0 + 0 0 2 1 0 + 0 0 0 1 2 + 0 0 0 3 42 0 4 4 2 7 42 0 4 4 2 7 42 0 4 1 2 10 42 0 4 1 11 + 0 1 1 0 1 + 0 1 1 0 1 + 0 1 0 0 2 + 0 1 1 1 48 0 0 5 2 8 48 0 0 5 2 8 48 0 0 1 2 12 48 0 0 2 12 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 4 1 1 + 0 0 1 1 60 0 0 5 3 0 60 0 0 5 3 0 60 0 0 5 3 0 60 0 0 3 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 2 0 66 0 0 6 5 0 66 0 0 6 5 0 66 0 0 6 5 0 66 0 0 5 0 ∑ 0 5 6 9 10 ∑ 0 5 6 9 10 ∑ 0 5 6 9 10 ∑ 0 5 9 10 P 125/142 6 0 0 6 0 0 0 6 3 6 0 0 0 6 3 6 0 0 0 6 3 6 0 0 6 3 + 0 2 0 1 0 + 0 2 0 1 0 + 0 1 0 2 0 + 0 1 2 0 12 0 2 0 7 3 12 0 2 0 7 3 12 0 1 0 8 3 12 0 1 8 3 + 0 0 0 3 0 + 0 0 0 3 0 + 0 1 0 2 0 + 0 1 2 0 18 0 2 0 10 3 18 0 2 0 10 3 18 0 2 0 10 3 18 0 2 10 3 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 2 1 24 0 2 0 1 4 24 0 2 0 1 4 24 0 2 0 1 4 24 0 2 1 4 + 0 0 3 0 0 + 0 0 3 0 0 + 0 0 3 0 0 + 0 0 0 0 30 0 2 3 1 4 30 0 2 3 1 4 30 0 2 3 1 4 30 0 2 1 4 + 0 1 0 0 2 + 0 1 0 0 2 + 0 1 0 0 2 + 0 1 0 2 36 0 3 3 1 6 36 0 3 3 1 6 36 0 3 3 1 6 36 0 3 1 6 + 0 1 1 0 1 + 0 0 1 1 1 + 0 1 1 0 1 + 0 0 1 1 42 0 4 4 1 7 42 0 3 4 2 7 42 0 4 4 1 7 42 0 3 2 7 + 0 1 1 1 0 + 0 2 1 0 0 + 0 1 1 1 0 + 0 2 0 0 48 0 0 5 2 7 48 0 0 5 2 7 48 0 0 5 2 7 48 0 0 2 7 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 1 5 60 0 0 5 3 12 60 0 0 5 3 12 60 0 0 5 3 12 60 0 0 3 12 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 2 0 66 0 0 6 5 12 66 0 0 6 5 12 66 0 0 6 5 12 66 0 0 5 12 ∑ 0 5 6 10 9 ∑ 0 5 6 10 9 ∑ 0 5 6 10 9 ∑ 0 5 10 9 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 7 11 13 pi 3 5 11 13 6 0 0 0 6 3 6 0 0 0 6 3 6 0 0 0 6 3 6 0 0 6 3 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 2 0 12 0 1 0 8 3 12 0 1 0 8 3 12 0 1 0 8 3 12 0 1 8 3 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 0 2 0 + 0 1 2 0 18 0 2 0 10 3 18 0 2 0 10 3 18 0 2 0 10 3 18 0 2 10 3 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 0 2 1 + 0 0 2 1 24 0 2 0 1 4 24 0 2 0 1 4 24 0 2 0 1 4 24 0 2 1 4 + 0 1 1 0 1 + 0 1 1 0 1 + 0 1 1 0 1 + 0 1 0 1 30 0 3 1 1 5 30 0 3 1 1 5 30 0 3 1 1 5 30 0 3 1 5 + 0 0 2 0 1 + 0 0 2 0 1 + 0 0 1 0 2 + 0 0 0 2 36 0 3 3 1 6 36 0 3 3 1 6 36 0 3 2 1 7 36 0 3 1 7 + 0 1 1 0 1 + 0 0 1 1 1 + 0 1 2 0 0 + 0 0 1 0 42 0 4 4 1 7 42 0 3 4 2 7 42 0 4 4 1 7 42 0 3 2 7 + 0 1 1 1 0 + 0 2 1 0 0 + 0 1 1 1 0 + 0 2 0 0 48 0 0 5 2 7 48 0 0 5 2 7 48 0 0 5 2 7 48 0 0 2 7 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 0 1 5 + 0 0 1 5 60 0 0 5 3 12 60 0 0 5 3 12 60 0 0 5 3 12 60 0 0 3 12 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 1 2 0 + 0 0 2 0 66 0 0 6 5 12 66 0 0 6 5 12 66 0 0 6 5 12 66 0 0 5 12 0 P 126/142 ∑ 0 5 6 10 9 ∑ 0 5 6 10 9 ∑ 0 5 6 10 9 ∑ 0 5 10 9

#S(4,i) = (p i -4).#S(4,i-1)+x1(i)

  Table34(i.e. Δ(1) = 6 and Δ(2) = 12). /2∑ i p k 1,00 0,75 0,80 0,92 1,23 1,71 2,56 3,92 6,05 9,72 → 3.2 i /(ln(p i ).i 2 ) → +∞ If this discrepancy were effective, it would not be able to respond to the desired theorem.

	Nevertheless, we have:											
	Steps i	1	2	3	4	5	6	7	8	9	10	…	i
	p i	3	5	7	11	13	17	19	23	29	31	…	p i
	3.2 i	6	12	24	48	96	192	384	768 1536 3072 …	3.2 i
	2∑ i p k	6	16	30	52	78	112	150	196	254	316 …	2∑ i p k
	3.2												

i 

  Starting from j(n) ≥ 3, the number of initial values, excluding the initial values at 0, alternates between 2 and 3 values, values which double by pairs of k (8 = 2.4, 76 = 2.38 = 140 = 2.70, 48 = 2.24, 336 = 2.168, etc.), while the number of recursive equations increases by one equation after each pair. The following table, which gives the first samples, is to be read with the k index instead of j in #Sn(k,i).

				i	1	2	3	4	5	6	7	8	9	10	…
				p i	3	5	7	11	13	17	19	23	29	31	…
	k	j(n) Δ(j) Dif Δ(j)											
	1	1	6		1										…
	2	2	12	3.2		(2)	8								…
	3	3	18	3.2			0	12							…
	4	4	24	3.2			(4)	38	70						…
	5	6	36	3.2					24	168					…
	6	8	48	3.2				8	76	140					…
	7	12	72	3.2						48	336				…
	8	16	96	3.2					16	152	280				…
	9	24	144	3.2							96	672			…
	10	32	192	3.2						32	304	560			…
	11	48	288	3.2								192	1344		…
	12	64	384	3.2							64	608	1120		…
	13	96	576	3.2									384	2688 …
	14	128 768	3.2								128	1216 2240 …
	…	…	…	…	…	…	…	…	…	…	…	…	…	…	…
	131/142													

i=2, pi=5, M1=4, k=2 i=3, pi=7, M1=6, k=1 i=4, pi=11, M1=120, k=4 i=5, pi=13, M1=9450, k=45 i=6, pi=17, M1=217140, k=94 i=7, pi=19, M1=9639630, k=321 i=8, pi=23, M1=193483290, k=379 i=9, pi=29, M1=417086670, k=43 i=10, pi=31, M1=125601285810, k=563 i=11, pi=37, M1=2723740849830, k=421 i=12, pi=41, M1=79622514581610, k=397 i=13, pi=43, M1=6136950437487870, k=827 i=14, pi=47, M1=223928193956026560, k=736 i=15, pi=53, M1=9171015693500691030, k=701 i=16, pi=59, M1=522656315200217698500, k=850 i=17, pi=61, M1=102036655192082030049630, k=3131 i=18, pi=67, M1=6235511815550111588504010, k=3243 i=19, pi=71, M1=334506463637028681244286040, k=2852 i=20, pi=73, M1=28478557301114887810505822160, k=3624 i=21, pi=79, M1=2843824411155784604050916242830, k=5097 i=22, pi=83, M1=113432160468908532259480385863950, k=2785 i=23, pi=89, M1=5778890002143848542586755859217480, k=1796 i=24, pi=97, M1=1846751125991342512124140084420142850, k=6915 i=25, pi=101, M1=72708581460921039807419994522555070290, k=3059 i=26, pi=103, M1=19286076018404261623059699462430139525550, k=8365 i=27, pi=107, M1=1273757133040980564123346343336375275992900, k=5470 i=28, pi=109, M1=249658028112582700049702183737147717646149890, k=10409 i=29, pi=113, M1=27763056840142703665840289166348895092331376460, k=10818 i=30, pi=127, M1=2574121440717901122712497241546767984629324510460, k=9202 i=31, pi=131, M1=521439461348328858073243322985304256489059236587040, k=16496 i=32, pi=137, M1=252912047177981279912949795538640843608690770606990, k=63 i=33, pi=139, M1=6093562502782797632317885012678036834779379279873623810, k=11587 i=34, pi=149, M1=1453924959777637809800980752494214319119803117277588055800, k=20180 i=35, pi=151, M1=185841797895169170082768839224027937644547072159440436851130, k=18557 i=36, pi=157, M1=28828963020146876463537479231418049444339320239475022727521200, k=19320 i=37, pi=163, M1=53400729793063989026946985986271104320112383716878500949782670, k=237 i=38, pi=167, M1=113837287385782898397165898489028712874401262344909947345379321660, k=3218 i=39, pi=173, M1=10898027695754548635554660766785293839408575789495465344527970050900, k=1890 i=40, pi=179, M1=10465312568558673319254891474413528976506683111428323703620691223122360, k=10868 i=41, pi=181, M1=2369241611663339270034472811280446556401444807458310288031889069701655620, k=14222 i=42, pi=191, M1=417146283370479756411453451561200103436398976421364095686315512522437521010, k=13989 i=43, pi=193, M1=185997950596372051062321297330712955492060609613885887937790229233216471047690, k=34461 i=44, pi=197, M1=154633971288879001274934133325351155649793577244938646278915007328041899408500, k=150 i=45, pi=199, M1=1124535351365837428231627001733951688162654844183732621015376872891279422554470040, k=5652 i=46, pi=211, M1=1397753868987306142966933112215213530937540972486183569110364980333095426588790932590, k=35661 i=47, pi=223, M1=327237929336787946005016899306961011382568217323613576350433084450633532988253857782740, k=41954 i=48, pi=227, M1=74323585153911701110138838476431277275629516291761360103564684125228077985344754490295600, k=45160 i=49, pi=229, M1=5059963172703425132303431555239735128768826914715159286974528895210315566740930757864665910, k=13787 i=50, pi=233, M1=1289740828461096065526510424806938353011005842383558531168140913517984567385117229070004837910, k=15481

To obtain all the "pos" coefficients equal to 0 for Δ(6) = 36 and Δ(7) = 42, one would have to consider at least extending the calculations up to p i = 29 which implies computing out of reach (one month of calculation for each of the objects + memory space problem on Pari GP).

APPENDIX 3 Research of the centres M 1 and M 2 of the maximal spacings in cycle 1. Code https ://pari.math.u-bordeaux.fr/ {infini = 49; pd = 1; for(c = 1, infini, q = primes(c)[c]; pd = pd*q; p1 = primes(c+1)[c+1] ; p2 = primes(c+2)[c+2] ; for(k1 = 1, p1*p2, M1 = pd*k1; if(Mod(M1-1, p1) == 0, if(Mod(M1+1, p2) == 0, print("i="c+1", pi="p2", M1="M1", k1="k1)))))} {nb = 49; pd = 1; for(c = 1, nb, q = primes(c)[c]; pd = pd*q; p1 = primes(c+1)[c+1] ; p2 = primes(c+2)[c+2] ; for(k2 = 1, p1*p2, M2 = pd*k2; if(Mod(M2+1, p1) == 0, if(Mod(M2-1, p2) == 0, print("i="c+1", pi="p2", M2="M2", k2="k2)))))} Note 1 : The code makes no distinction between p j and its multiples. For c = 1 and c = 2, it gives a result for M 1 , which is not to be taken literally. One has to take M 1 +2.3.5 and M 1 +2.3.5.7 respectively.

Note 2 : M 1 +M 2 = 2.3.5…p i and k 1 (i)+k 2 (i) = p i-1 .p i .

List of values APPENDIX 4

Bijection between related pairs. Beyond the problem of the bijection, we show here the random behaviour of the depletion which accredits heuristic calculations. We checked that when two gaps 2n and 2m have same divisors systematically, implementing the Eratosthenes sieve, at the same step i, the same number of elements exist between [p i +2+2n, p i +2+2n+2.3… p i ] and [p i +2+2m, p i +2+2m+2.3… p i ]. So, there is a bijection at every stage between these elements by matching the numbers in their appearing order. However, at each step's increment, integers in correspondence do not stay the same. The bijection is not sustainable. It has to be redone at each stage.

Let us observe cases 2n = 2 and 2m = 4 and clarify explicitly step i = 2, p i = 5. We consider here only the entry and the cycle 1, bijection continuing next elementary up to infinity. In the entry, we do not care to have a strict bijection from beginning (5 has no match). Our focus is mainly on the evolution in the cycle 1. Of course, as more numbers are observed and stage i increases, it will match not only primes among these lists. On the contrary, these will become extreme minority. Nevertheless, even if we attest of this minority, we increment i up to infinity and analyse distances among construction.

We are matched to start with the two cycles 1:

This gives us an advance or a delay from one to the other, here:

-4 -4 -10

Classifying the differences in ascending order, we get for steps 1 through 3, the following results : A new abscissa is chosen using x = -1+2.x'/∏(p i -2) in order to get x in the interval [-1,1]. Thus for ∏(p i -2) = 135 : Abscissa x -0,99 -0,97 -0,96 -0,94 -0,93 -0,91 -0,9 … 0,91 0,93 0,94 0,96 0,97 0,99 The coincidence of both these curves occurs within two "random" walk, namely that of the integers related by a distance of 2 on the one hand and the integers related by a margin of 4 on the other hand, and illustrates their independence, hence the square of the expression (2/π).Arcsine(|x| 1/2 ), expression found on the occasion of one random walk only. The β factor here has only a minor role. It becomes negligible as i increases. Knowledge of the adjustment factor α would on the contrary be valuable, even if the assessment does not give a good approximation of the maximum and minimum values of ordinate (that is, distances at the extreme left and right of the curve), the ratio |max(ordinate)/α| showing here on the rise when we try to match the curves "at best". Indeed, red curves do not follow correctly the blue when the slope increases quickly at the extremes, the maximum distances being superior to expected values for random walks.

What is the meaning of this type of curves? That the cardinal of small and medium distances is of the same order of magnitude (curve close to a straight line) and that large distances are few (slope towards a vertical). Of course, this is expected! But now, let us go back to another feature of random walks : If actually, both sets follow such a walk, it is not surprising that one will exceed the other most of the time. Let us check that numerically by recovering the two lists of the twin prime numbers on one side and the cousin prime numbers of the other hand. When we then compare their differences, we find that after many differences' returns to 0 the twin primes seem to prevail starting at j = 7790 (p4 k -p2 k > 0 until at least k = 120000) as the theory of games so provides (cf. [START_REF]Marches aléatoires, loi de l'arcsinus et mouvement brownien[END_REF] p21) : "between two players to equal fortune, one of the two players will stay ahead much longer than the other; in fact, there will be one winning most of the time". The cousin prime integers are slightly rarer (0.27%) than twin primes in this interval, the p4 k -p2 k differences, k th primes cousin and twin respectively, being of the order of magnitude of k between the origin and the last evaluation here.

APPENDIX 6 Evaluation of #S(j,i). Examples of iterative relationships' systems.

Let us remind that the iterative relationships' systems given below are questionable. We recall that these recursive relationship systems are given for information and have yet to be demonstrated.

Example 2n = 4 :

Table

The values below have been checked up to rank i = 8. Beyond that, the values are speculative.

In the table below and thereafter, the values of #S(j,i) in parentheses do not deduce from the iterative formulas.
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Additional argument in favour of a proof

Let us come back to table 34. We got three relations :

The first two relationships confine #S(j,i) statistically in a tunnel of values all the more limited since these values must be integers and consistent with the third relationship. Examples of compatible results are easily obtained by taking 2n = 4, 2n = 8, 2n = 16, etc. instead of the twin prime numbers case 2n = 2. What we are concerned about here is to demonstrate that #S(j,i) becomes zero around an approximate value Δ(j) greater than ∑ i 2p k .

We propose to evaluate the expression #S(j,i) assuming that the values of that expression roughly espouse the form of certain functions when j (and i) vary. Examples of functions examined are constant function, monomial function (the previous of which is a sub-case) and exponential function. Beyond a certain value j, which we note jmax(i), #S(j,i) becomes zero. For values regularly spaced out by a j value, #S(j,i) is supposed to follow the function taken as an example.

The rest of the argument is in no way affected by assuming the 1 spaced j for our modelling.

Case

We deduce from the relationship 4 for the first equation below :

Thus asymptotically using ln(p i+1 )-ln(p i ) = ln(p i+1 /p i ) → ln(1) = 0 : jmax(i+1)-jmax(i) → 2.(1/c 2 ).e 2γ .(ln 2 (p i+1 )-ln 2 (p i )) ≈ 2.(1/c 2 ).e 2γ .(ln(p i+1 )-ln(p i )).2.ln(p i ) << 2.ln(p i ) << 2.p i This shows that with such a model the increase of jmax(i) with i is much slower than that observed in the facts remaining thus consistent with the needs of the previous demonstration (only a growth faster than 2p i is detrimental). It remains to be noted in simple remark that asymptotically c(i+1)/c(i) → (p i+1 -2)²/p i+1 → p i+1 -4 which is the order of magnitude in relation 114.

Case 2 : #S(j,i) = a.j -b where a = a(i) and b = b(i) constant versus j (and one supposes b ≠ 1, b ≠ 2). Then ∑#S(j,i) = ∏(p k -2) = ∑ a.j -b ≈ ∫ a.j -b ≈ a/(-b+1).jmax (-b+1) and ∑Δ(j).#S(j,i) = ∏ p k = = ∑ a.j -b+1 ≈ ∫ a.j -b+1 ≈ a/(-b+2).jmax (-b+2) We deduce (according to relation 4) : The first two cases are very far from the actual case and the condition << 2.p i is easily met. Here we are much better configured. At the origin (j = 1 or rather j = 0), the value of #S(j,i

With this type of profile, #S(j,i) takes a priori zero values after reaching #S(j,i) = 1 (and therefore j = jmax here). This is the case when a.e -bjmax = 1, that is jmax = (1/b).ln(a). Moving from i to i-1, we get:

Here the last sum is on k = 1 to k = i. Now, according to the fundamental theorem of prime numbers, on average the distance between prime numbers is ln(p k ). . An asymptotic approximate value of p i is therefore ∑ k ln(p k ), k describing 1 to i, and besides asymptotically ln(p k -4) ≈ ln(p k ). Therefore :

This corresponds effectively to the increase of jmax(i) that matters to us. In fact, in the b i = b i+1 case, the result (1/b i+1 ).ln(p i+1 ) << 2.p i is trivial asymptotically (b i+1 can be considered a constant), otherwise the values of b i and b i+1 being close, we still have (1/b i+1 -1/b i ).p i < 2.p i .

Case 4 : #S(j,i) = a.e -b.(j^r) where a = a(i) = a i and b = b(i) = b i , r = r(i) = r i , positive constants versus j. This is the case that is closest to the real case. Asymptotically, the r value varies little between i and i+1 and we repeat the previous calculations assuming r(i+1) ≈ r(i) ≈ r when i increases and besides r > 1. At the origin (for j = 0), the value of #S(j,i) is ∏(p k -4), then a.e -b.(jmax^r) = 1 gives jmax r = (1/b).ln(a). Moving from i to i+1, we get:

This corresponds effectively to the increase of jmax(i) that matters to us. Indeed, in the b i = b i+1 case, the result (1/b i+1 ) 1/r .ln 1/r (p i+1 ) << 2.p i is trivial asymptotically, otherwise the values of b i and b i+1 being close and r > 1, one still has ((1/b i+1 ) 1/r -(1/b i ) 1/r ).p i 1/r < 2.p i asymptotically.

Note: It is the condition #R(j,i) ≥ p i -4 that is certainly the source of the value r > 1 that neighbours the said coefficient on graphic trend curves.

Here a(i) ≈ 1,57.∏ k (p k -4), b(i) ≈ 0,001 and r(i) according to the following All cases show that it is very difficult (if not impossible) to find a non-discrete simulation leading to a range of values as large as that really observed. Which goes again in favour of the theorem.

Argument against the proof

To remain impartial, we propose a counter-example in the form of a discrete simulation. The construction is relatively trivial and Δmax/2∑ i p k →+∞ while responding to the known constraints for the problem.

Let us give this counter-example first.

Steps The algorithm from step i-1 to step i is as follows (from i = 4 on): 

Step 5 : p i = 13. Periodicity = 30. 

Step 6 : p i = 17. Periodicity = 60. 2n Δ 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 

).x2(i-1)+x1(i) #SP3(10,4) = 2 #SP3(10,i) = (p i -4).#SP3(10,i-1)+x2(i) … ?

We note above the unique case j = 3 where the multiplier factor of #SP3(j,i) is no more p i -4. However, the p i -3 and p i -5 multiplier factors of the two indistinguishable iterative formula systems (always constructible according to our commentary below Table 10) produce an average of p i -4. Just a coincidence ? Of course, numerically, we find that the ratios #SP3(3,i)/#SP3(3,i-1) are tending towards p i -3. We know that the most left column of the tables sees the ratios #SP(j,i)/#SP(j,i-1) tending towards p i -4 (pseudo-twins) and the most right of them tending towards p i -2 (pseudo-primes). Is the strategy for reconciling the two trends to move gradually from p i -4 to p i -3 and then to p i -2 ? We could not verify this for lack of sufficient numerical data from which we would be able to deduce routines by successive Euclidian divisions. This failure may also be due to the fact that this assumption may be totally false.

As a result of the p i -3 leading ratio (instead of p i -4), the populations of the j = 3 line are growing faster than they do on the other lines (with logarithmic gain). In the first graph below, we show the ratio of the populations in this line (j = 3) compared to that of the first line populations (j = 1). In addition, the proportion of the populations of this line to the overall populations (which grows as p i -2) remains significant for a relatively long time (although ultimately tending as all the other lines to 0) as shown in the second graph where the curve in blue is the one relating to j = 3 and the curve in red the one relating to j = 1.

Graphics 29 and 30 P 141/142 APPENDIX 14 Programming of #S(i,j) evaluations. print("/"); nb = vecmax(nbb); print(nb); print("/"); nz = vector(nb/6,i,0); for(i = 1, sizm, nz[nbb[i]/6] = nz[nbb[i]/6]+1); for(i = 1, nb/6, print(nz[i])); print("/"); for(rg = 4, 11, \\ choose 6 or more prodt = 1; pp1 = primes(100)[rg]; kk1 = kk0; for(i = 2, rg-1, prodt = prodt*(primes(100)[i]-2)); sizm = (pp1-2)*prodt; siz = pp1*prodt; nba = vector(siz+1,i,0); nbg = vector(siz+1,i,0); for(i = 0, pp1-1, for(j = 1, prodt, nba[i*prodt+j] = nbb[j])); for(i = 1, siz, kk1 = kk1+nba[i]; kk2 = kk1+2; if(Mod(kk1, pp1) == 0, nbg[i] = 1); if(Mod(kk2, pp1) == 0, nbg[i] = 1)); for(i = 1, siz, if(nbg[i] == 1, nba[i+1] = nba[i] + nba[i+1]; nba[i] =0)); k = 0; for(i = 1, siz, if(nba[i] <> 0, k = k+1; nba[k] = nba[i])); \\ for(i = 1, sizm, print(nba[i])); nbb = vector(sizm,i,0); for(i = 1, sizm, nbb[i]= nba[i]); print("/"); nb = vecmax(nbb); print(nb); print("/"); nz = vector(nb/6,i,0); for(i = 1, sizm, nz[nbb[i]/6] = nz[nbb[i]/6]+1); for(i = 1, nb/6, print(nz[i])); print("/"););} P 142/142 Direct evaluation method (step i) Low memory space needed {siz = 33; \\ to be ajusted fac = 1; \\ to choose expo = 1; \\ to choose qtpr = 6; \\ to choose ec = fac*(2^expo); ec2 = ec/2; nb = vector(siz,i,0); prodt = 1; for(i = 2, qtpr, prodt = prodt * primes(qtpr)[i]); for(c = 2001+ec2, 2001+ec2+prodt, a = 2*c+1 ; ac = a-ec; if(Mod(ac, 3) <> 0, if(Mod(a, 3) <> 0, if(Mod(ac, 5) <> 0, if(Mod(a, 5) <> 0, if(Mod(ac, 7) <> 0, if(Mod(a, 7) <> 0, if(Mod(ac, 11) <> 0, if(Mod(a, 11) <> 0, if(Mod(ac, 13) <> 0, if(Mod(a, 13) <> 0, anc = a; canc = (anc-1)/2; ))))) ))))) ); for(c = canc+1, canc+1+prodt, a = 2*c+1 ; ac = a-ec; if(Mod(ac, 3) <> 0, if(Mod(a, 3) <> 0, if(Mod(ac, 5) <> 0, if(Mod(a, 5) <> 0, if(Mod(ac, 7) <> 0, if(Mod(a, 7) <> 0, if(Mod(ac, 11) <> 0, if(Mod(a, 11) <> 0, if(Mod(ac, 13) <> 0, if(Mod(a, 13) <> 0, nouv = a; dif = nouv-anc; dif2 = dif/2; nb[dif2] = nb[dif2]+1; anc = nouv ))))) ))))) ); for(i = 1, siz, print(nb[i]))} Direct evaluation method (step i) Large memory space needed (fast saturation in memory space, may miss also an item in the final count) {reserve = 1005; siz = 50; \\ to be adjusted nb = vector(siz,i,0); qtpr = 7; \\ to choose prodt = 1; for(i = 1, qtpr, prodt = prodt * primes(qtpr)[i]); base = vector(prodt+reserve,i,i+100); for(j = 1,qtpr, prem = primes(qtpr)[j]-100%primes(qtpr)[j]; \\ print(prem); for(i = 1, prodt/primes(qtpr)