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ABSTRACT

Context. Planets are formed amidst young circumstellar disks of gas and dust. The latter is traced by thermal radiation, where strong
asymmetric clumps have been observed in a handful of cases. These dust traps could be key to understanding the early stages of planet
formation, when solids grow from micron-size to planetesimals.
Aims. Vortices are among the few known asymmetric dust trapping scenarios. The present work aims to predict their characteristics in
a complementary observable. Namely, line-of-sight velocities are well suited to trace the presence of a vortex. Moreover, the dynamics
of disks is subject to recent developments.
Methods. Two-dimensional hydro simulations were performed in which a vortex forms at the edge of a gas-depleted region. We
derived idealized line-of-sight velocity maps, varying disk temperature and orientation relative to the observer. The signal of interest,
as a small perturbation to the dominant axisymmetric component in velocity, may be isolated in observational data using a proxy for
the dominant quasi-Keplerian velocity. We propose that the velocity curve on the observational major axis be such a proxy.
Results. Applying our method to the disk around HD 142527 as a study case, we predict that line-of-sight velocities are barely
detectable by currently available facilities, depending on disk temperature. We show that corresponding spirals patterns can also
be detected with similar spectral resolutions, which will help to test against alternative explanations.

Key words. hydrodynamics – instabilities – planets and satellites: formation – protoplanetary disks

1. Introduction

Planets are formed in circumstellar disks composed of mainly
gas and some solid dust components. Many aspects of the pro-
cesses implied in their formation remain challenging to explain.
More specifically, the transition from small dust grains to large
planetesimals face two major obstacles: the drift barrier corre-
sponding to fast inward drifting due to gas headwind, and the
collision barrier due to destructive collisions (Chiang & Youdin
2010). Pressure bumps provide a solution to the drift barrier,
as they act as a barrier stopping the drifting solids and form-
ing dust rings. Concentric dusty rings are a common feature in
resolved infrared images of protoplanetary disks (Andrews et al.
2018). Pressure bumps are also known to promote the formation
of large-scale vortices, through to the Rossby wave instability
(RWI), which are proposed as a solution to the barriers in plan-
etesimal formation. Large vortices both stop the dust drift and
harness efficient growth by lowering relative speeds between
grains. This is why vortices were proposed as a planet-promoting
scenario (Barge & Sommeria 1995; Adams & Watkins 1995;
Tanga et al. 1996; Bracco et al. 1999). Moreover, it is well known
that massive planets build up pressure bumps in their vicin-
ity, exciting vortex formation (de Val-Borro et al. 2006, 2007;
Fu et al. 2014; Hammer et al. 2017; Andrews et al. 2018; Baruteau
et al. 2019), which in turn affects planetary migration (Regály
et al. 2013; Ataiee et al. 2014; McNally et al. 2018). The study of
large vortices is thus key to understanding planetary formation.

The RWI (Lovelace et al. 1999; Li et al. 2000, 2001) is a
promising vortex-forming scenario, and is expected where sharp
density gradients are found. So-called transitional disks provide

such conditions at the outer edge of large (∼5–100 AU) gas cavi-
ties they host. Extensive computational effort has been dedicated
to studying the long-term evolution of RWI vortices (Fu et al.
2014; Méheut et al. 2012a; Regály & Vorobyov 2017a; Andrews
et al. 2018). Overall, eddies tend to form in a few tenths of orbital
periods and survive for 103 to 104 orbital periods.

Concurrently, asymmetric dust crescents are being observed
in thermal radiation of a growing number of targets (Cazzoletti
et al. 2018; Dong et al. 2018; Isella et al. 2018; Casassus et al.
2019; Pineda et al. 2019) as well as in scattered emission (Benisty
et al. 2018). Those clumps are candidates for large vortices, and
there have been attempts to explain their formation as vortex-
driven (Regály et al. 2012; Birnstiel et al. 2013). Alternatively,
disk eccentricity (Ataiee et al. 2013) and excitation by an eccen-
tric companion (Astropy Collaboration 2018) were proposed to
explain this azimuthal dust excess, however not reproducing the
observed dust-to-gas ratio.

Complementary measurements of the gas dynamics would
be of great help in constraining and rejecting concurrent expla-
nations. Continuum emission traces the spatial distribution of
dust grains dynamically coupled with the gas, so it provides
indirect information concerning the underlying gas dynamics.
However, direct measurements of the gas radial velocity can
now be achieved through Doppler-shifting of molecular lines, as
a result of increasingly sophisticated data reduction techniques
(Yen et al. 2016; Teague et al. 2016; Teague & Foreman-
Mackey 2018) and ever-enhanced spatial resolution (Andrews
et al. 2018). It is becoming possible to use these data to
build connections to continuum asymmetries (Casassus et al.
2015a; Casassus & Pérez 2019) or to search for planet-induced
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deviations (Pinte et al. 2018, 2019; Teague et al. 2018a; Pérez
et al. 2020).

Hence, observations in molecular line emission are essen-
tial to confirm or reject current and future vortex candidates.
The present paper aims to characterize the dynamical signatures
expected for a single large Rossby eddy forming in the inner rim
of a cavity, by the means of hydro simulations.

The paper is organized as follows. First, we describe the
numerical setup of our hydro simulations in Sect. 2. We then
provide insight into the observability of resulting vortices and
propose a method to extract their signature from observational
data in Sect. 3. Finally, we discuss the limits of our approach in
Sect. 4 and conclude in Sect. 5.

2. Hydro simulations setup

We perform 2D hydro simulations via MPI-AMRVAC 2.2 (Porth
et al. 2014; Xia et al. 2018). Namely, we solved Euler equations
for an inviscid gas as follows:

∂tΣ + ∇ · (Σu) = 0, (1)
(∂t + u · ∇) Σu = −Σ∇φ − ∇p, (2)

where Σ and u stand for surface density and velocity, respectively,
φ ∝ −1/r is a central gravitational potential, and p is the verti-
cally integrated pressure. The latter is prescribed by a barotropic
equation of state p = S Σγ, where S = 86.4 (code units1) charac-
terizes the entropy and γ = 5/3 is the adiabatic index. Sound
speed is given as c2

s = γp/Σ. Equations are solved on a lin-
early spaced polar grid (r, ϕ) with a fixed resolution (512, 512),
ranging from rmin = 75 AU to rmax = 450 AU and ϕ ∈ [0, 2π].
Numerical convergence was checked against runs with double
resolution in each direction. The MPI-AMRVAC 2.2 simulations
use finite-volumes Reimann solvers. A two-step hllc integration
scheme (Harten et al. 1983) and a Koren slope limiter (Koren
1993) are used in our simulations.

The model is physically inviscid. The numerical viscosity,
expressed in terms of the widely used “α” paradigm (Shakura &
Sunyaev 1973), was estimated to lie between 2 × 10−8 ≤ and ≤
3×10−4 in the vortex-forming region. Details on this estimations
are given in Appendix B.

The disk is truly “massless” in that both self-gravity and
indirect terms due to the motion of barycenter are neglected in
the computation of the gravitational potential. Zhu & Baruteau
(2016) show that including either or both of these contributions
affects the evolution of the vortex. In particular, the inclusion
of indirect terms promotes a radial displacement of the struc-
ture and overall increases the density contrast with respect to
its background. This latter result was also confirmed by Regály
& Vorobyov (2017b) for vortices formed in a viscosity tran-
sition region. Because of these combined effects, the velocity
of the structure is also modified, while a direct comparison is
nontrivial.

2.1. Initial conditions

The initial gas surface density features a smooth radial density
jump, modeling a disk cavity as

Σ(r, t = 0) = Σ0 (r/r∗)−1 × 1
2

[
1 + tanh

r − rj

σj

]
, (3)

1 Our code unit system is completely described by mass, length and
time normalisation constants respectively m∗ = 1 solar mass, r∗ =
100 AU and t∗ = 1 orbital period of a test particle at r = r j.
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Fig. 1. Initial gradient in specific angular momentum ` for our 5 sim-
ulations (thick lines, ranked from coldest to hottest) compared to the
Keplerian case. The width of the density “jump” region σj is adjusted in
two steps. First, the critical value σcrit

j for which the global minimum in
∂r` is exactly 0 (thin solid lines) is derived. Any value σj < σ

crit
j would

give rise to a rotationally unstable region, characterized by ∂r` < 0. An
arbitrary 5% margin was applied σj = 1.05 × σcrit

j in our runs (thick
dashed lines).

where rj and σj are the radial location and the width of the
jump respectively, and r∗ = 100 AU is a normalization factor.
The initial equilibrium azimuthal velocity is defined as

v2
ϕ

r
=

GM
r2 +

∂r p
Σ

, (4)

where G is the universal gravity constant and M is the mass of
the central star.

Observational constraints for HD 142527 are used to tune
numerical values, wherever applicable, as we now detail. We
assume M = 2.2 M�, compatible with existing estimations
(Verhoeff et al. 2011; Casassus et al. 2015b). We choose a stan-
dard radial density slope in r−1, which is also compatible with
estimate from Verhoeff et al. (2011) in the optically thin approx-
imation at 1 mm. Distance to star is now known with good
precision 157 ±7

6 pc thanks to Gaia Collaboration (2016), which
implies the cavity lies at rj = 157 AU for an angular size of 1.′′0
(Casassus et al. 2012). The reference setup has an aspect ratio, or
“temperature”2 h ≡ H(rj)/rj ' 0.09, where H(r) is the disk scale
height.

Other simulations with h ∈ [0.09; 0.16] were performed, and
labeled run 1 to run 5 by increasing value in h. These are dis-
cussed in Sect. 3.3. The derivation of this parameter is detailed
in Appendix A.1. As this temperature is varied, we adjust the
density jump’s width σj within 5% of its critical value, where
the disk becomes rotationally unstable under Rayleigh’s criterion
(Rayleigh 1879). Doing so, we approach the physical upper limit
in vortex velocity after the RWI saturates. The corresponding
signature in the specific angular momentum ` = rvϕ is illustrated
in Fig. 1. The computed values for σj, and for runs from 1 to 5,
are [11.6, 14.7, 16.9, 18.7, 20.2] AU. Even in the hottest case, the
simulation box extends at least 4σj away from the density jump
center rj. Unless explicitly stated, all figures show the results for
the reference model.

2 The vertical spreading of the disk is physically caused by heating and
usually characterized by a scale height.
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Fig. 2. Initial radial profiles in surface density (top) and the L (r) func-
tion (defined in Eq. (5)) for our 5 simulations. In each model, L (r)
features a clear local maximum, which is a necessary condition to RWI
growth.

2.2. Boundary conditions

Boundary conditions are imposed through ghost cells outside of
the domain and wave-killing region in the active domain. In the
radial direction, ghost cells are fixed to the initial equilibrium
values for density and azimuthal momentum. The radial momen-
tum is copied from the first cells to the ghost cells at the inner
boundary, and extrapolated linearly with no-inflow condition at
the outer edge. However, these boundary conditions have low
impact as standard damping zones (de Val-Borro et al. 2006) are
also used to avoid reflections at domain edges. The domain is
periodic in the azimuthal direction.

2.3. Rossby wave instability and vortex formation

Rossby wave instability is similar to the Kelvin-Helmholtz insta-
bility in a differentially rotating Keplerian disk. The instability
tends to convert excess shear into vorticity. Lovelace et al. (1999)
showed that a local extremum in the background potential vor-
ticity is a necessary condition to RWI. More recent works have
clarified that a minimum is required (Lai & Tsang 2009; Ono
et al. 2016). The key function is defined as

L (r) =
1
2

Σ

(∇ × u) · ez
S 2/γ. (5)

We exhibit this key function within our initial setup in Fig. 2,
showing the existence of a local maximum in L (r), correspond-
ing to a minimum in vorticity.

We find that, in order to excite the RWI unstable modes, it
is useful to add random perturbations. We chose to perturb the
radial velocity, which is zero otherwise, as

vr(r, ϕ, t = 0) = csψ(r, ϕ) exp
−

(
r − rj

)2

2σ2
j

, (6)

where ψ(r, ϕ) ∈ [−10−2, 10−2] is a uniformly distributed random
variable drawn for each grid cell. After the instability has sat-
urated, we obtain a single vortex shown in Fig. 3. In a frame
that is co-rotating with the vortex, its global structure is quasi-
stationary as shown in Fig. 4. The radial density profile at the
azimuth of the density maximum is plotted at different times.
The orange dotted curve at t = 10 features the most noticeable
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Fig. 3. Gas surface density plotted in Cartesian coordinates (x, y) after
t = 200 orbital periods (t∗). The global density maximum is indicated
by a black cross. The position of the central star is denoted as a “F”
symbol. The simulation box radial limits are drawn as solid black cir-
cles, while the dashed-line circles indicate the limits of wave damping
zones.
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Fig. 4. Time evolution of the radial density profile, plotted as slices at
the azimuth of the density maximum where the vortex eye lies (top)
and its radial opposite (bottom). The slices correspond to the y = 0 axis
in Fig. 3, with x > 0 (top) and x < 0 (bottom), respectively. After ∼40
orbital periods, the disk has practically reached a stationary state. The
cavity profile itself has become uneven, showing a non-zero eccentricity.

fluctuations, as smaller eddies are still undergoing a merger and
strong spiral waves are launched outward. After 40 orbital peri-
ods, the surface density of the vortex is stabilized and does not
rapidly evolve any more. Thus we consider this state as quasi-
stationary; we take a look at the dynamics of the structure in the
next section.

3. Vortex signatures in dynamics

In this section, we provide observational signatures obtained
from the dynamics of the vortex. The observable studied in this
work is the velocity projected along the line of sight vLOS. We
first discuss an adequate decomposition of the velocity field to
characterize the signatures. We then study their observability
against disk orientation and provide insight into how disk aspect
ratio affects observed velocities.
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Fig. 5. Polar components of a the velocity field of a vortex. Top: radial
velocity. Bottom: azimuthal velocity, where the axisymmetric part 〈vϕ〉
is carried out. The pressure maximum is indicated by a black cross.
The snapshot is taken at t = 200 orbital periods. The dotted line in the
bottom panel indicates fluid in exact Keplerian rotation.

3.1. Extracting dynamical signatures

The dynamics of a disk is dominated by rotation around the cen-
tral star. In an axisymmetric stationary state, the net radial force
is zero, as in Eq. (4). Owing to pressure gradients, the radial
equilibrium slightly departs from Keplerian motion. This is the
sub-Keplerian rotation in a disk with negative radial pressure
gradient. As a dynamical structure, a vortex exposes little dif-
ference to global rotation. Thus, it is useful to decompose the
angular velocity vϕ as

vϕ = 〈vϕ〉 +
(
vϕ − 〈vϕ〉

)
≡ 〈vϕ〉 + v′ϕ , (7)

where 〈·〉 is the azimuthal average operator, and we denote the
non-axisymmetric part as v′ϕ. Hence the total velocity field u can
be decomposed in the polar basis (er, eϕ) as

u = vrer +
(
〈vϕ〉 + v′ϕ

)
eϕ ≡ 〈vϕ〉eϕ + u′. (8)

In the absence of a global accretion flow, there is no relevant
axisymmetric part in vr. Hence we consider that dynamical sig-
natures of non-axisymmetric features reside in u′ = vrer + v′ϕeϕ.
Both components of this residual radial and azimuthal veloc-
ity are quantified in Fig. 5 and are of similar amplitudes. For
comparison, the typical Keplerian speed at the vortex position
(r ∼ 180 AU) is vK = 3.3 km s−1, that is, one to two orders of
magnitudes larger than the deviation due to the vortex, and one
order of magnitude larger than the local sound-speed cs. The
amplitude in the azimuthal velocity is as high as 300 m s−1 for
this reference (coldest) model. This sets a first upper limit to
the spectral resolution required for a direct detection to about
100 m s−1. This is achievable for bright lines with the Atacama
Large Millimeter/submillimeter Array (ALMA), for example,
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Fig. 6. Comparison between Keplerian velocity vK and average
azimuthal velocity 〈vϕ〉 as 1D masks. (a) Pressure profile in arbitrary
units. (b and c) Azimuthal velocity cross-sections, with offsets (masks)
vK and 〈vϕ〉, respectively. The average 〈V−mask〉 is indicated by a thick
black line, while shadows show the amplitude and standard deviations
in blue (V = vϕ), and orange (V = 1

2 (vϕ,left + vϕ,right)). Data are taken
at t = 200 orbital periods (inspiration for this figure was drawn from
Teague et al. 2018a).

for the CO (2-1) or the CO (3-2) transitions, using channel
widths of 70 or 120 kHz (or narrower), respectively. For example,
van der Marel et al. (2016) successfully detected the 13CO (3-2)
and C18O (3-2) lines of SR21, HD 135344B, DoAr44, and IRS
48 with good signal-to-noise ratio (S/N) (peak S/N in the inte-
grated intensity map up to 30 for the 13CO line) with spectral
resolution of 0.1 km s−1 and angular resolution of 0.′′25. Boehler
et al. (2017) obtained data with similar angular and spectral res-
olutions for HD 142527 but with much higher S/N. All sources
are well detected in the lines; increasing the spectral resolution
by another factor of 2, as well as the S/N, is possible within a rea-
sonable amount of time (<12 h). We note that there is a non-zero
azimuthal velocity deviation at the maximum density/pressure
(i.e. v′ϕ , 0), as seen in Fig. 5. Because the vortex is an asymmet-
ric structure, the radial position of the pressure extremum varies
with the azimuth. Consequently, the line of exact Keplerian
rotation is not circular as shown in Fig. 5.

However, the decomposition proposed in Eq. (8) is vain
unless the proposed dominant term 〈vϕ〉 can be subtracted from
observations. While a Keplerian fit is usually a suiting approxi-
mation of the dominant velocity term, it proves insufficient near
sharp density jumps. As shown in Figs. 6a and b, subtracting a
Keplerian power law leaves systematic velocities caused by pres-
sure gradients. In the density transition region, those systematics
dominate over the variability in the remaining signal.

However, we further show (Figs. 6b and c) that averaging two
facing cross sections in azimuthal velocities consistently yields a
much better approximation for the global azimuthal average 〈vϕ〉,
with a standard deviation ≤20 m s−1. This is a direct sign that the
non-axisymmetric parts of the azimuthal velocities v′ϕ in oppos-
ing disk halves are anticorrelated, although not strictly equal in
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amplitudes. Given that detection is only sensitive to azimuthal
velocities on the observational major axis x of the disk, we
naturally obtain a satisfying method to subtract 〈vϕ〉 from the
whole signal. Consequently, we now confidently assume that the
axisymmetric part 〈vϕ〉 of the azimuthal velocity can indeed be
removed with good precision from observations, and we only
consider the remaining components of u′ exhibited in Fig. 5.

3.2. Vortex detection in line-of-sight velocities

Gas velocity is usually detected through Doppler-shifting in
molecular lines. It is therefore the velocity component parallel
to the line of sight that is probed. Within optically thick lines,
the resulting velocity profile can be blurred by vertical integra-
tion over disk height. It is beyond the scope of the present work
to investigate this second-order effect, so we neglect both optical
and geometrical thickness effects. This approach is reasonable
within the assumption that emissive molecular regions are geo-
metrically thin and well resolved (as remarked by Teague et al.
2018b). Furthermore, full 3D simulations showed that, in a sta-
tionary state, a vortex tends to be tubular and that its vertical
velocity is negligible (Lin 2012; Zhu & Stone 2014; Richard et al.
2013). This comforts us in the idea that, for long-lived vortices,
it is reasonable to ignore this component. This also means we
ignore the vertical extension in the conical shape of the emissive
layer. However, it can easily be shown that for inclinations low-
ers than 45◦, even a very high emissive layer z ' 5H and a large
aspect ratio H/r = 0.2, can in principle be deprojected as long as
it remains spatially thin.

To study vortex dynamical signatures, we use here cylindri-
cal coordinates centered on the star. The radial axis (ϕ = 0) is the
observational major axis, and the upper part of the disk (z > 0) is
defined to be the one seen by the observer Fig. 7. Thus, the line-
of-sight direction eLOS(i, ϕ), defined as pointing away from the
observer, can be written in the disk cylindrical basis (er, eϕ, ez)
as

eLOS(i, ϕ) = −
(
sin(i) cos(ϕ)er + sin(i) sin(ϕ)eϕ + cos(i)ez

)
, (9)

and it follows that the line-of-sight velocity corresponding to u′
is written as

v′LOS ≡ u′ · eLOS = − sin(i)
(
sin(ϕ)vr + cos(ϕ)v′ϕ

)
. (10)

Hence, the effective observable v′LOS mixes vr and vϕ. For a 2D
vortex disk inclination equally affects all projected velocities
and only acts as a scaling factor sin(i). An inclination i = 27◦,
corresponding to the estimated value for HD 142527 (Fukagawa
et al. 2013), is used in the following applications. This choice
is arbitrary and used as a textbook case. We note that this incli-
nation is moderate. Deprojection would still be feasible at up to
i = 45◦, where projected velocities would be 1.5 times larger,
making detection easier. Figure 8 shows the morphology of the
observable v′LOS (large panels), along with corresponding com-
ponents vr and v′ϕ (small panels), for four different values of PA.
This result constitutes an idealized case, built on the assumption
that the axisymmetric component 〈vϕ〉 can be exactly subtracted
from observational data. We note that we are set in the particu-
lar case where the PA rotates in the same direction as the disk.
When not so, sign in v′LOS must simply be inverted. At all position
angles (PAs), the anticyclonic motion of the vortex around the
density maximum is apparent in v′LOS. This point roughly coin-
cides with the maximum luminosity at most wavelengths, and
can be located within continuum observations, if not directly in
molecular lines used to infer projected velocities.

We note that the eye of the vortex and the region imme-
diately facing it have similar Doppler shifts (e.g., both blue
at PA = 0◦). This is an expected outcome of subtracting the
azimuthally averaged velocity, since the both regions are local
extrema along the azimuthal direction. Another signature of the
vortex is the azimuthal proximity between the maximum den-
sity (black cross) and the projected velocity extrema. The latter
two points are determined by the physical on-site velocity as
well as the inclination of the system, and hence are virtual posi-
tions. Their physical separation is maximized for PA = 90◦ and
minimized for PA = 0◦. A direct implication is that detecting a
vortex lying on the major axis requires greater angular resolu-
tion. However, little dependence of the velocity range on the PA
is found. The topography of the signal changes with the PA but
the anticyclonic region stands out regardless the orientation. The
signature is also typical with a sign reversal in the vicinity of the
pressure maximum, along the major axis direction. This char-
acteristic behavior, sign change, is easier to measure in relative
than the absolute small velocities and would be observed even
with a beam covering the vortex almost entirely (about 100 AU,
or 0.′′6 in the case of HD 142527).

3.3. Detectability against disk temperature

Although our setup is constrained by observations, its tempera-
ture (or equivalently h) is not. Indeed the temperature gives the
sound speed, which is fundamental to estimate the vortex veloc-
ity. To study this dependence, four additional simulations with
higher temperatures (h ∈ [0.094, 0.119, 0.136, 0.150, 0.161])
were performed. In Fig. 9, we show contours of projected veloc-
ity v′LOS, sampled at an interval corresponding to a tenth of
the obtained dynamical range, namely 10 m s−1. The reference,
“coldest” setup produces the lowest velocities ranging from −20
to +20 m s−1, where most of the “detected” structure is within the
vortex region. The direct observation of a peak-to-valley veloc-
ity shift of about 40 m s−1 is challenging but is within reach of
ALMA. Boehler et al. (2017) observed HD 142527 for a total of
four hours during Cycle 1, targeting the continuum and 13CO (3–
2) and C18O (3–2) lines with a spectral resolution of 110 m s−1

(after Hanning smoothing). The disk is detected in both lines at
high S/N. The angular resolution of the observations was 45 AU
(beam 0.′′27 × 0.′′31). The presence of a velocity signature is cur-
rently being investigated in that data set (Boehler et al., in prep.).
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Fig. 8. Line-of-sight velocities (bottom large panels) as defined in Eq. (10), applied to HD 142527 with i = 27◦, and varying PA. Top panels: exhibit
the corresponding polar components. Color reflects implied Doppler-shifts in molecular lines. Blue/orange dots indicate extreme values in v′LOS.
Leftmost panel: vortex’s spatial extension is shown as a solid contour which corresponds to Σ = 0.5Σ0, where Σ0 is the scaling factor used in Eq. (3).
The inner cavity, where fast spiral waves are launched but surface density is low, is not shown here : regions with Σ/Σ0 < 0.1 are masked. As a
proxy for the vortex’s eye, a black cross indicates the density maximum.
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Fig. 9. Comparative view of v′LOS with varying disk temperature h. Disk orientation is taken consistent with values found in the literature on
HD 142527 (i = 27◦ Fukagawa et al. 2013, PA = 71◦ Kataoka et al. 2016). A mock-up of a spectral resolution of 12.5 m s−1 is shown. The reference
setup occupies the leftmost panel. Velocities in the cavity are masked as in Fig. 8. In dashed lines, the best fit spirals following (Huang et al. 2019;
Eq. (2) therein) are overplotted, based on linear perturbation theory (Goldreich & Tremaine 1979; Rafikov 2002; Muto et al. 2012). Those fits were
computed using vr = 0 contours as input data. As a visual indicator, surface density is underplotted in grayscale. Additionally, gray circles indicate
the 3σj region around the vortex eye, which is used later in Fig. 10. As in other figures, the black cross indicates the density maximum.

This angular resolution is sufficient to resolve the vortex in
HD 142527 and the spectral resolution can be improved by a fac-
tor of 2 on the brighter 12CO line (Perez et al. 2015), or on the
13CO and C18O lines by increasing the time spent on-source.

At higher temperatures, more structure is revealed as the spi-
ral arm unravels. Figure 10 shows the v′LOS variation amplitude,
against temperature (left panel) and time (right panel). Although
the upper bound of this range consistently increases with tem-
perature, we note that the mean value is almost unchanged from
run 4 to run 5. Indeed, in runs 3 to 5, the amplitude of time vari-
ations are significantly higher than for the reference run. These
large variations are related to the life cycle of a secondary spiral
arm that appears in hot cases, as illustrated in Fig. 11. How-
ever, because this secondary spiral is most prominent when the
disk itself becomes visibly eccentric, it is likely that this struc-
ture would be affected if the indirect gravitational terms were
included in the model. A conservative conclusion is that only
the lower boundary of the variation interval should be taken into
account. Additionally, we observe that between runs 4 and 5,
the dynamical range stagnates at 94 m s−1. Indeed, this is the

range shown in Fig. 9, where the simulations are shown at a
time (t/t∗ = 200) that minimizes its amplitude. This saturation
is likely caused by the instability in the eccentricity of the cavity,
thus we infer that validity of massless disk models is disputable
in the hottest case (run 5). We note that a previous study of
the gas dynamics in HD 142527 (Casassus et al. 2015b) did not
provide evidence of any strong asymmetric structure. This may
indeed be due to a lack of spectral resolution (∼1 km s−1).

3.4. RWI spirals

Spirals structures are detected in HD 142527 (Fukagawa et al.
2006; Casassus et al. 2012; Rameau et al. 2012; Avenhaus
et al. 2014; Christiaens et al. 2014). Several scenarios have been
proposed to understand their origin, such as self-gravitational
instability (SGI), excitation by the stellar companion (Biller et al.
2012; Astropy Collaboration 2018), connection to a shadow cast
by a misaligned inner disk (Montesinos et al. 2016), or a combi-
nation of several effects (Christiaens et al. 2014). Spirals are also
a natural outcome of RWI, as Rossby waves are coupled to spiral
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Fig. 10. Amplitude in v′LOS across the annular region shown in Fig. 9, throughout the simulation time, represented as a boxplot (left). The whole time
series is unraveled in the right panel. It is sampled every 2 orbital periods (the output rate of our simulations). Although the first run is remarkably
constant, runs 3 to 5 exhibit significant dispersion within this metric, while the mean value (green crosses) itself is stabilized. The period of these
oscillations corresponds to the life cycle of a secondary spiral arm, illustrated in Fig. 11.

t/t * = 106 t/t * = 110 t/t * = 114 t/t * = 118 t/t * = 122

Fig. 11. Formation/dissipation cycle of a secondary spiral arm connected with disk eccentricity, illustrated for the most prominent case, run 5.
Color maps density (same scale as Fig. 3). This secondary spiral is a transient and periodic phenomenon, which is responsible for large oscillations
in maximum projected velocity as measured in Fig. 10

Fig. 12. Radial Mach number vs. temperature (h), seen in polar coordinates. The color maping is such that sub-(super)sonic regions appear in blue
(red). The vortex center is always located at ϕ = 0. The dashed black lines indicate vϕ = vK. The global structure is not self-similar when h varies, as
one can see the Keplerian line undergoes a reconnection as temperature increases, and spirals in the outer disk are shocking (Mach 1, white) closer
to the vortex. Small supersonic (red) regions are found in the inner region of the disk (r ' 120 AU), as is highlighted in an inset in the rightmost
panel. The flow remains subsonic everywhere else.

density waves in a Keplerian disk. Such spiral waves would have
the same frequency as the Rossby wave creating the vortex.

As opposed to companion-excited spirals, those are not
caused by gravitational interaction and are observed in massless
disks simulations such as ours (Huang et al. 2019). For Rossby
vortices, the launching point is radially close to the vorticity
extremum and the spiral corotates with the vortex. As a conse-
quence, for spiral arms with different launching points, the RWI
explanation may be safely rejected.

However, it must be noted that the apparent launching point
of the spiral, that is, the origin of its detectable part, graphically
indicated as a blue hatched mark, departs from its physical ori-
gin, namely the eye of the vortex. For instance, Fig. 9 shows
a ∼90◦ discrepancy between the actual launching point and
the apparent origin of the main spiral arm. The figure also
shows that, considering only spectral resolution as an experimen-
tal limitation, plane-RWI spirals are detectable as soon as the

sensitivity is sufficient to resolve the bulk signature of the vor-
tex. In short, spirals produce projected velocities just marginally
smaller than the vortex’s bulk. We further note that plane-RWI
spirals are a pure tracer of radial velocities vr, which are observa-
tionally characterized by a change of sign in projected velocities
across the major axis.

We note that the pitch angle of the spiral increases with h, as
a consequence of a higher sound speed. Hence, radial velocities
are not self-similar across our models, as hotter disks produce
higher Mach numbers, as illustrated in Fig. 12.

4. Discussion

4.1. Numerical versus practical differences

In Sect. 3.1, we showed that a promising data reduction strat-
egy for vortex dynamic extraction in sharp density jumps was to
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Fig. 13. Practical application of our data reduction method. The figure is similar to Fig. 8 except that vmaj
proj is subtracted instead of 〈vϕ〉.

Fig. 14. Difference between numerical (Fig. 8) and practical (Fig. 13) cases. By construction, v′LOS − ṽ′LOS is a separable function err(r, ϕ) =
f (r) cos(ϕ) where the density mask is axisymmetric.

subtract 〈vϕ〉, and that the projected velocity seen on the major
axis (vmaj

proj for shorts) gives a reasonable proxy for it. In order
to test the error implied by this approximation, this strategy is
applied in Fig. 13. Consistently with our previous estimation, this
more realistic view shows very little difference to the first, ideal-
ized estimation (Fig. 8). Figure 14 quantifies that 2D discrepancy
as a difference between the numerical and practical cases. We
find the discrepancy to reach at most ∼7 m s−1.

4.2. Spiral detection

As shown in Sect. 3.4, the projected velocities seen in spiral
arms are comparable in amplitude to those attained by the core
of the vortex core. However, angular resolution might constitute
an additional limitation to identify those secondary structures.
In Fig. 15 we simulate a limited angular resolution via Gaus-
sian kernel convolution to the simulated velocity map, where
the mean component of azimuthal velocity 〈vϕ〉 is subtracted
prior to projection. We observe that the contrast sharpness of the
main spiral pattern is altered but not destroyed by limited spatial

resolution alone. We note that the spiral arm appears marginally
broader in Fig. 13 as compared with the numerical case Fig. 8.
The velocity flip pattern however remains visible and is unaltered
by the limited spatial resolution.

4.3. Origin of the cavity in HD 142527

The most up-to-date simulations for the thermal emission of
HD 142527 were performed in smooth-particle hydro (SPH) by
Astropy Collaboration (2018) and do not feature vortex forma-
tion. This study was focused on explaining as many features
as possible with the excitation provided by the eccentric stellar
companion. However, it must be noted than SPH solvers gener-
ate numerical viscosities ∼10−2 (Arena & Gonzalez 2013), which
are much greater than typical values used in RWI vortex studies3

(Lyra et al. 2009; Hammer et al. 2017, 2019; Ono et al. 2016),
so this possibility was inherently not included in their study. In

3 The model used in this paper is inviscid. Insights into our evaluation
of numerical viscosity are given in Appendix B.
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Fig. 15. Qualitative comparison between a simulation-precision veloc-
ity map (left), and against artificially lowered spatial resolution, sim-
ulation with a Gaussian kernel convolution. Kernels with angular size
(in proportions of the target) 7% (center), and a 3 times larger one 21%
(right) are shown. With the distance of HD 142527, the center panel cor-
responds to the recent high resolution obtained by Keppler et al. (2019).
No noise is added. Projected velocities are shown in linear gray-scale,
where v′LOS < 0 is shown in light gray and v′LOS > 0 shown in is dark
gray. Secondary spiral patterns are lost at low resolution but the pri-
mary remains visible. Beam size is shown as a black dot. The velocity
map corresponds to the rightmost panel in Fig. 9.

the present work, we remained agnostic regarding how the ini-
tial unstable density jump was formed. The stellar companion,
while not included in our model, provides a plausible cause to
the cavity. However, gravitational perturber-induced Rossby vor-
tices have been studied in the context of circular orbital motion
(Li et al. 2005). How eccentricity and inclination in the orbit
of the companion affects the formation of vortices, within an
appropriately inviscid medium, remains to be studied.

4.4. Limits of this approach

An important limitation of the model is the lack of a vertical
dimension. In a more realistic context, plane velocities (vr, vϕ)
are only detectable if the disk is inclined, which in turn affects
measurements by line-of-sight integration. This effect would
however be mitigated by choosing optically thick molecular
lines. Moreover, Méheut et al. (2012b) showed that 3D vortices
have a non-negligible vertical velocity component while they
form (typically 10% of the characteristic azimuthal velocity sig-
nature). As the RWI growth time is typically shorter than the
vortex lifetime by one or two orders of magnitude, it seems
reasonable to neglect vertical circulation.

It has been shown that the contribution of the disk to the
gravitational potential, promotes disk eccentricity (Regály &
Vorobyov 2017b), which in turn amplifies the proper velocity
of the vortex. Because this effect is neglected in our model, we
expect the resulting velocities to be slightly underestimated in
this work.

5. Conclusions

We showed that in cavity-hosting circumstellar disks, large
eddies produce dynamical signatures on the verge of detectabil-
ity for current facilities.

As the dynamical imprint of a vortex resides in the non-
axisymmetric part of the velocity field, it is crucial to the detec-
tion to be able to subtract the axisymmetric component from
observations. In the case of a vortex formed at the inner edge
of a cavity-hosting disk, a Keplerian power law is not a correct
proxy for the mean azimuthal velocity. This is because pressure
gradients prone to vortex formation imply large deviations from
Keplerian velocities. Nevertheless, as projected velocities of the
observational major axis directly map the azimuthal motion, a

better mask can be obtained by averaging both sides of the veloc-
ity profile on this axis. This approach proved to produce small
errors when compared with the actual azimuthal mean com-
ponent of velocity 〈vϕ〉. We also observed a saturation in the
amplitude of projected velocities as the temperature is increased.
This result is to be taken with a grain of salt and may point
to a limitation of the model we used. Using this amplitude as
an estimator for spectral resolution requirement, we conclude
that detection of a single large eddy is achievable under a 50–
150 m s−1 resolution, while the current maximal resolution with
ALMA is ∼30 m s−1 We stress that those minimal requirements
were obtained within the particular case of the HD 142527 target,
with a relatively low inclination (27◦). Minimal resolution would
be amplified by a factor 150% for a more likely, mean inclina-
tion of 45◦, ceteris paribus. This demanding requirement may
explain the current difficulty elucidate in elucidating the nature
of known dust clumps in cavity-hosting disks, yet this is achiev-
able with existing facilities. Vortex-free mechanisms could also
explain their formation, although observational constraints for
fine gas dynamics are needed to properly discriminate between
concurrent scenarios. Full 3D modeling would naturally extend
the present work, and allow the study of second order effects in
line-of-sight integration.
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Appendix A: Evaluations of aspect ratios
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Fig. A.1. Correspondence between locally isothermal aspect ratio and
“disk mass” in our simulations. The leftmost model is the reference.

A.1. Equivalence to locally isothermal

Our model differs from the widely used locally isothermal
prescription in that it is not defined in terms of scale height

H = hr(r/r∗)β, (A.1)

where h is the disk aspect ratio and β is the flaring. We can
nonetheless draw an equivalence with those parameters for the
power-law density distribution at the core of Eq. (3), such that
Σ(r) = Σ0(r/r∗)−1. In the locally isothermal prescription, the
scale height is usually defined such that H2 = c2

s/Ω
2
K , so we can

equate this with Eq. (A.1) to get

h2r2(r/r∗)2β =
γp/Σ

GM/r3

=
γS

GM
r3Σγ−1

=
γS Σ

γ−1
0

GM
r3(r/rj)1−γ, (A.2)

at which point we deduce an effective aspect ratio and disk
flaring, in terms of the actual simulation parameters


h2 =
γS Σ

γ−1
0 r∗

GM ,

β = 1 − γ/2 = 1/6.
(A.3)

We note that our fixed resolution corresponds to ∆r/H(rj) '
0.04 for the reference model. Figure A.1 shows the resulting
variation in h as we scale up Σ0, following Eq. (A.3).

A.2. Spiral fitting

In Fig. 9, we fitted the linear-regime spiral wave shape
(Goldreich & Tremaine 1979; Rafikov 2002; Muto et al. 2012)
given by

ϕ(r) = ϕo − sgn(r − ro)
Ho

×
(
(r/ro)1+β

[
1

1 + β
− 1

1 − α + β
(r/ro)−α

]
−

[
1

1 + β
− 1

1 − α + β

])
,

(A.4)

where α, β are power-law exponents defined as Ω ∝ r−α and
cs ∝ r−β, respectively. The quantities (ro, ϕo) are the coordinates
of the spiral origin, while Ho is a scale height at this position.
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Fig. A.2. Aspect ratios as defined in Appendix A.1 vs. empirical values
obtained from fitting Eq. (A.4). The latter is roughly 40% of the former.

The fit was performed with Ho as a free parameter, so we the
corresponding aspect ratio, differs from the locally isothermal
equivalent h value used throughout the paper and described in
the previous section. Figure A.2 shows values against each other.

Appendix B: Numerical viscosity evaluation
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Fig. B.1. Density (top) and numerical viscosity equivalent α value
(bottom) time-averaged over 10 orbital periods (t/t∗ ∈ [90, 100]) with
a sampling rate of 0.1 orbital periods. The solid blue shadows indicate
the variation interval over the sample time series, showing that the pro-
file is very stable in the region of interest. The hatched regions highlight
the wave-killing zones, while the orange region loosely indicates the
vortex-forming region, spanning one scale height away from the local
density maximum.

In order to estimate numerical viscosity νnum(r), performed a 1D
in a 1D run, with identical parameterization as our reference 2D
run (run1). The analytical initial conditions constitute a stable
equilibrium since RWI cannot grow in 1D. Since our boundary
conditions do not impose mass flux, any radial mass transport Ṁ
through the simulation domain is caused by numerical viscosity
such that νnumΣ = |Ṁ|/3π. In terms of the Shakura & Sunyaev
(1973) alpha viscosity model νnum = αnumHcs, thus finally

αnum =
2
3

∣∣∣∣∣
vr

hcs

∣∣∣∣∣ . (B.1)

The obtained profile, time-averaged, is plotted in Fig. B.1. The
highest numerical viscosities (αnum ∼ 2 × 10−3) are reached in
the cavity, while αnum stays bounded <10−4 in the vortex-forming
region, roughly represented in orange.
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