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DUALITY AND BICRYSTALS ON INFINITE BINARY MATRICES

THOMAS GERBER AND CÉDRIC LECOUVEY

ABSTRACT. The set of finite binary matrices of a given size is known to carry a finite type A bicrystal structure. We first
review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and
one-dimensional sums together with a natural generalisation of the 2M − X Pitman transform. Next, we show that,
once the relevant formalism on families of infinite binary matrices is introduced, this is a particular case of a much more
general phenomenon. Each such family of matrices is proved to be endowed with Kac-Moody bicrystal and tricrystal
structures defined from the classical root systems. Moreover, we give an explicit decomposition of these multicrystals,
reminiscent of the decomposition of characters yielding the Cauchy identities.
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2 DUALITY AND BICRYSTALS ON INFINITE BINARY MATRICES

1. INTRODUCTION

Crystals are oriented graphs which can be interpreted as the combinatorial skeletons of certain modules for
complex Lie algebras and their infinite-dimensional analogues: the Kac-Moody algebras. Crystal bases were
introduced by Lusztig (for any finite root system) and Kashiwara (for classical root systems) in 1990. The graph
structure arises from the action of the so-called Kashiwara operators, a certain renormalisation of the Chevalley
operators. In Kashiwara’s approach, crystals are obtained via “crystallisation” at q = 0 of representations of the
corresponding quantum group, a q-deformation of the Kac-Moody algebra introduced by Jimbo. Later, it was
proved that crystals coincide with Littelmann’s graphs defined by using his path model. Since its introduction,
crystal theory has revealed numerous fruitful interactions with modern particle physics theory and integrable
systems. We refer the reader to [3] and the references therein for a recent exposition.

The present paper is concerned with generalisations of crystals where multimodule structures are considered
rather than just ordinary module structures. This means that we consider analogues of crystals for complex
vector spaces endowed with commuting actions of several Lie algebras (or Kac-Moody algebras). It turns out
that most of the combinatorial structures (crystals, Fock spaces, one-dimensional sums, Pitman transforms) that
we shall consider in the sequel were defined to solve problems connected to theoritical physics. We expect similar
interactions with the results we establish here.

The prototypical example of an interesting bicrystal is obtained by starting from the gln × glℓ-module Cn ⊗ Cℓ

and considering the associated symmetric and antisymmetric (gln × glℓ)-modules S(Cn ⊗ Cℓ) and Λ(Cn ⊗ Cℓ).
Using two sets of indeterminates {x1, . . . , xn} and {y1, . . . , yℓ}, one can check that their characters are given by
the formulas

char S(Cn ⊗ C
ℓ) = ∏

1≤i≤n
1≤j≤ℓ

1

1− xiyj
and char Λ(Cn ⊗ C

ℓ) = ∏
1≤i≤n
1≤j≤ℓ

(1 + xiyj).

The classical Cauchy identities then gives the decomposition of each character in terms of the Schur functions.
More precisely, recall that the irreducible finite-dimensional gln-modules are parametrised by partitions of length
n (that is, nonincreasing sequences λ = (λ1, . . . , λn) of nonnegative integers) and the character of the irreducible
module parametrised by λ is the Schur symmetric polynomial sλ(x) in the variables x1, . . . , xn. We then have

char S(Cn ⊗C
ℓ) = ∏

1≤i≤n
1≤j≤ℓ

1

1− xiyj
= ∑

λ partition of
length min(n,ℓ)

sλ(x)sλ(y) and

char Λ(Cn ⊗C
ℓ) = ∏

1≤i≤n
1≤j≤ℓ

(1 + xiyj) = ∑
λ contained in the

rectangle n×ℓ

sλ(x)sλtr(y)

where λtr is the transpose of the partition λ. Both identities, which can be seen as a combinatorial version of Howe
duality, admit an elegant combinatorial proof based on the Robinson-Schensted-Knuth (RSK) correspondence,
see [6]. The idea is first to observe that

∏
1≤i≤n
1≤j≤ℓ

1

1− xiyj
= ∑

(mi,j)∈N

∏
1≤i≤n
1≤j≤ℓ

(xiyj)
mi,j

where N is the set of n× ℓ matrices with nonnegative integer entries. Next, the RSK correspondence yields a
bijection between N and the set of pairs of semistandard tableaux with the same partition shape. The identity
then follows from the fact that sλ is the generating function of the set of semistandard tableaux with shape λ for
the evaluation map on tableaux. Similarly, one has

∏
1≤i≤n
1≤j≤ℓ

(1 + xiyj) = ∑
(mi,j)∈M

∏
1≤i≤n
1≤j≤ℓ

(xiyj)
mi,j

where M is the set of binary n× ℓ matrices, and the second Cauchy identity comes from an adapted version of
the RSK correspondence. This construction admits numerous extensions, notably based on generalisations of the
previous Cauchy identities due to Littlewood, and involving the characters of simple modules corresponding to
the orthogonal or symplectic Lie algebras. We refer the reader to [7] and the references therein for a more detailed
presentation, and for a generalisation to the Demazure characters.
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We now turn out to the main topic of this article. One can define two commuting families of crystal operators (one
for gln and another for glℓ) directly on the set of matrices N and M yielding the structure of a (gln × glℓ)-crystal,
or type (An−1 × Aℓ−1)-crystal. This approach, explained in detail in [47], see also [15, Chapter 11], permits to
overcome the RSK construction. One gets the decomposition

N =
⊕

λ partition of
length min(n,ℓ)

B(λ)⊗ Ḃ(λ) and M =
⊕

λ contained in the
rectangle n×ℓ

B(λ)⊗ Ḃ(λtr)

where B(λ) (respectively Ḃ(λ)) is the crystal of the gln-module (respectively glℓ-module) parametrised by λ. This
immediately implies the Cauchy identities. In the following sections, we shall present different extensions of this
construction of multicrystal structures on sets of binary matrices (possibly infinite). They arise naturally from
the notion of combinatorial Fock spaces F(s), where s is a integer. The An−1 and Aℓ−1 crystal structures of F(s)
correspond to the gln and glℓ modules

⊕

s1+...sℓ=s

Λs1(Cn)⊗ · · · ⊗Λsℓ(Cn), and
⊕

ṡ1+···ṡn=s

Λṡ1(Cℓ)⊗ · · · ⊗Λṡn(Cℓ).

A similar phenomenon has been studied in the case where gln is replaced by a Lie superalgebra of type A [26].
Note also that the notion of Fock space arises in different mathematical physics contexts. For instance, the cor-
ner transfer matrix method, used in the study of the Yang-Baxter equations, gives rise to the combinatorics of

weighted paths. These, in turn, provide a realisation of the crystal base of the quantum group of ŝln. This ap-
proach has been extensively studied by the Kyoto group in the late 1980’s and early 1990’s, see in particular [21].
More recently, the study of weighted paths has yielded (generalisations of) the Rogers-Ramanujan identities in
enumerative combinatorics [5]. In another direction, in affine type A, there is a similar construction due to Uglov
[46] where the ordinary wedge products are replaced by their thermodynamical limits. It plays a central role in
the representation theory of Cherednik algebras, see [43], and in the construction of some representations of the

Virasoro algebra [21]. We get the structure of an (ŝln ×H× ŝlℓ)-module where H is a Heisenberg algebra, and
therefore a tricrystal structure on the affine Fock space. This structure has been made completely explicit in [13].

A key tool in our approach is to exploit a combinatorial duality which permits to easily switch between the dif-
ferent combinatorial actions defined on F(s). In finite type A, this coincides with the transposition of binary
matrices, and enables us to bypass the RSK correspondence. This is particularly convenient because the insertion
algorithm (on which the RSK correspondence is based) in other types is more complicated and less well under-
stood. This point of view enables us to unify and extend the existing constructions in affine type, by considering
a block transposition on appropriate infinite matrices. Through the previous duality, each combinatorial object
or Dynkin diagram automorphism for one structure admits a natural counterpart for the other one. For example,
the cyclage operation introduced by Lascoux and Schützenberger on the semistandard tableaux of type An−1 will
correspond to the promotion operator on the Aℓ−1-highest weight vertex in F(s). This permits us to give a short
proof of the equality between Kostka polynomials and one-dimensional sums established by Nakayashiki and
Yamada in [40]. Note that one-dimensional sums appear in mathematical physics in the context of solvable lattice
models and the corner transfer matrix method. Using the combinatorics of crystal bases and rigged configura-
tions, one can show that they coincide with the fermionic formula via the Bethe Ansatz, thereby giving a proof of
the X = M conjecture in some cases, see [42].
This observation also provides an algebraic interpretation of the Pitman transform M− 2X introduced in [41] to
obtain the law of a Brownian motion conditioned to stay positive. Historically, Brownian motions have strong
connections with thermodynamics and molecular motions. This is achieved in the spirit of [1], where the dual
version of the Pitman transform is shown to map each Littelmann path on its associated highest path. It is
also worth mentioning that the previous combinatorial constructions have interesting applications in problems
related to percolation models [2]. Further, by considering subsets of the combinatorial Fock spaces F(s) invariant
under Dynkin diagram automorphisms of type A (affine or not), we get various bicrystal (or tricrystal) structures
of classical types on sets of binary matrices. In a connected direction, based on the results of [33], we also establish
that it is also possible to define a combinatorial Fock space with an (X∞ × Aℓ−1)-structure (with X of type B, C
or D) on some infinite binary matrices similar to the finite type A construction. We expect that this bicrystal to
be related to the charge statistics defined for type C in [30], once the appropriate duality relating both crystal
structures is discovered. Note that Howe-type dualities and a bicrystal structure involving type C constructions
have been recently studied in [16] and [36] respectively. It would be interesting to link these results with that of
the present paper.
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Finally, as already mentioned, the combinatorial Fock spaces that we shall study can be defined in terms of
(infinite) binary matrices (this corresponds to the second Cauchy identity). This is indeed the natural context cor-
responding to the existing mathematical material (such as Kashiwara-Nakashima columns tableaux and Uglov’s
Fock space), but it would be interesting to get analogous results for infinite matrices with nonnegative integer
coefficients.

In the present paper, we have chosen to illustrate our results by numerous examples. Quite often, they can
be established by adapting proofs existing in the literature to the unified formalism that we propose. We then
give precise references rather than complete proofs. The next sections are organised as follows. Section 2 is
devoted to a re-exposition of the type (An−1 × Aℓ−1)-crystal structure on M . This serves as a basis for the
various generalisations of the subsequent sections. In particular, we quickly reach a simple proof that the two
crystals commute in Theorem 2.21, recovering the results of [47] and [15]. Also, thanks to the connection between
the cyclage and the promotion operator, we are able to give a short proof of the relation between the charge and
the energy function originally proved in [40]. In Section 3, the classical (An−1× Aℓ−1)-crystal structure on M is
made compatible with an affine similar construction given in [10]. The highest weight vertices for the different
possible (simple, double an triple) actions are described. Also, a new combinatorial interpretation of the (e, s)-
cores introduced in [20] for describing the blocks of cyclotomic Hecke algebras is proposed. Section 4 describes
a type X∞ × Aℓ−1 analogue to the previous bicrystal. This means that we define a type Aℓ−1-crystal structure on
products of X∞-columns. This is done directly in terms of sliding (Jeu de Taquin) operations. Nevertheless, due
to the lack of a straightforward duality, the results of Section 2 are needed to prove that this indeed yields the
desired Aℓ−1-crystal structure. The results of Section 5 focus on the vertices of the combinatorial type A (of both
finite and affine type) Fock spaces fixed under the action of Dynkin diagram automorphisms. By using results of
Naito and Sagaki [39], they are proved to have various bicrystal (or tricrystal) structures of classical types. Finally
in Section 6, we relate Pitman’s 2M− X transform on the line to its dual version (the X − 2M transform) and the

promotion operator on tensor products of type A
(1)
1 Kirillov-Reshetikhin crystals. This permits notably to show

that iterations of this transform on any trajectory will eventually tend to the trivial one (that is, with all steps

equal to 1). Using this time A
(1)
ℓ -crystals, a highest dimensional generalisation of the 2M − X transform which

shares the same convergence behavior is defined. Its probabilistic properties will be studied elsewhere.

2. FINITE TYPE A DUALITY

In the rest of the paper, fix n, ℓ ∈ Z≥2.

2.1. Products of type A columns. Let P be the weight lattice for the Lie algebra sln, with basis {ω1, . . . , ωn−1},
where ω1, . . . , ωn−1 are the fundamental weights for sln. Each partition λ = (λ1, . . . , λn) ∈ Zn

≥0 shall be identified

with the An−1-dominant weight λ = ∑
n−1
i=1 aiωi where for any i = 1, . . . , n − 1 the integer ai is the number

of columns of height i in the Young diagram of the partition λ. Observe that the contribution of the columns
of height n is thus equal to zero and we have a one-to-one correspondence between the type An−1-dominant
weights and the partitions with at most n− 1 parts. In what follows, it thus makes sense to use the symbol λ as
a partition with at most n parts or a dominant weight of type An−1.

Example 2.1. Let n = 3 and λ = 3ω1 + ω2. Then the corresponding partition is (4, 1, 0) = .

A column of type An−1 is a subset c of {1, . . . , n} such that |c| ≤ n, which we identify with the semistandard
Young tableau of shape ω|c| = (1, . . . , 1) containing the elements of c.

Example 2.2. The set {1, 3, 4} =
1

3

4

is a column of type A3.

Definition 2.3. Let c1, . . . , cℓ be columns of type An−1. The symbol b = cℓ ⊗ · · · ⊗ c1 is called

(1) a tableau if the top-aligned juxtaposition c1 · · · cℓ yields a semistandard Young tableau.
(2) an antitableau if the bottom-aligned juxtaposition c1 · · · cℓ yields a semistandard skew Young tableau.

The shape of a tableau (respectively of an antitableau) is the partition (|c1|, . . . , |cℓ|)
tr (respectively (|cℓ|, . . . , |c1|)

tr).

Example 2.4. Let ℓ = 3 and n = 2

(1) The product 2 ⊗ 1 ⊗ 1

3
is a tableau which we identify with

1 1 2

3
.
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(2) The product
1

3
⊗ 1

2
⊗ 2 is an antitableau which we identify with

1 1

2 2 3
.

(3) The product
1

3
⊗

1

2
is both a tableau and an antitableau, which we identify in with

1 1

2 3
.

(4) The products
1

2
⊗ 1 ⊗ 2 and

1

2
⊗ 1 ⊗

1

2
are neither tableaux nor antitableaux.

For the next definition, define first the word w(b) of a product b = cℓ ⊗ · · · ⊗ c1 to be the concatenation of the
elements of cℓ (in increasing order), then cℓ−1, and so on.

Definition 2.5. The element b is called Yamanouchi1 if every prefix of w(b) contains at least as many letters i as i + 1, for
all i = 1, . . . , n− 1.

Example 2.6. Let ℓ = 4 and n = 3, and take b = 1 ⊗ 2 ⊗ 1

3
⊗ 2 . Then w(b) = 12132, and the different prefixes

are 1, 12, 121, 1213, 12132 and we see that b is Yamanouchi.

Clearly, for all λ ∈ P+, there is a unique Yamanouchi tableau (respectively antitableau) of shape λ.

Example 2.7. The Yamanouchi tableau and antitableau of shape (4, 3, 1) are respectively given by

1 1 1 1

2 2 2

3

and
1

1 1 2

1 2 2 3

.

2.2. Crystal structures. From now on, fix s ∈ Z≥0. Further, for s = (s1, . . . , sℓ) ∈ R(n, ℓ) = {0, . . . , n}ℓ and

ṡ = (ṡℓ, . . . , ṡ1) ∈ R(ℓ, n) = {0, . . . , ℓ}n, denote |s| = ∑
ℓ
j=1 sj and |ṡ| = ∑

n
i=1 ṡi. For p = n, ℓ and for all A ⊆ Zp,

write Finally, we denote
S (s) = {λ = (λ1, . . . , λn) ⊢ s | λ1 ≤ ℓ} .

The elements introduced in the previous section appear as vertices of certain tensor products of crystal graphs,
which we start by recalling. For all j = 1, . . . , ℓ, the crystal of the irreducible highest weight sln-module of highest
weight ωs j

(with the convention ω0 = ωn = 0) can be realised using columns of height sj [17, Chapter 7]. More

precisely, B(ωs j
) is the An−1-crystal with vertices the columns of height sj and arrows i from c to c′ when c′ is

obtained from c by changing i into i + 1. Observe that the trivial crystal of highest weight 0 can so be realised as
the graph with a unique vertex: the empty column or the column containing all the integers 1, . . . , n.

Definition 2.8. Let s = (s1, . . . , sℓ) ∈ R(n, ℓ). The combinatorial Fock space associated to s is the An−1-crystal

F(s) = B(ωsℓ)⊗ · · · ⊗ B(ωs1
)

By classical crystal theory, the elements of F(s) can be realised as tensor products of ℓ columns with entries in
{1, . . . , n}. Let us recall the rule for computing F(s), following [17, Section 4.4]. Fix i ∈ {1, . . . , n − 1} and let
b = cℓ ⊗ · · · ⊗ c1 ∈ F(s). consider the subword wi(b) of w(b) obtained by keeping only letters i and i + 1, and
encode each i by a symbol + and each i + 1 by a symbol −. Deleting all factors +− recursively yields a word
called the i-signature of b.

Theorem 2.9. The action of the An−1-crystal operators on F(s) is given by the following rule

(1) The raising crystal operator ei acts on b ∈ F(s) by changing the entry i + 1 corresponding to the rightmost − in
the i-signature of b into i if it exists; and by 0 otherwise.

(2) The lowering crystal operator fi acts on b ∈ F(s) by changing the entry i corresponding to the leftmost + in the
i-signature into i + 1 if it exists; and by 0 otherwise.

We define similarly the combinatorial Fock space Ḟ(ṡ) = B(ωṡ1
)⊗ · · · ⊗ B(ωṡn) for ṡ = (ṡ1, . . . , ṡn) ∈ Zn, and the

rule for computing Ḟ(ṡ) is the same as for F(s), expect that the role of n and ℓ have been swapped2.

Example 2.10. Let ℓ = 4, n = 3, s = (2, 2, 1, 2), b = 1

2
⊗ 1

3
⊗ 1 ⊗ 1

2
= c4 ⊗ c3 ⊗ c2 ⊗ c1 and choose i = 1. Then

w(b) = 1213112, so that w1(b) = 121112, which gives the encoded word + − + + +−. Thus, the i-signature

1Note that the usual convention is to use suffixes instead of prefixes. In fact, our definition coincides with the notion of lattice word in
the literature.

2Note that the order in which the components of s and ṡ are enumerated is reversed. Though this seems artificial at this point, this will
be crucial in Section 2.3
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of b is ++, whose leftmost + corresponds to the entry 1 of c3. Therefore, we have f1b = 1

2
⊗ 2

3
⊗ 1 ⊗ 1

2
=

c4 ⊗ c3 ⊗ c2 ⊗ c1. In other terms, in the crystal F(s), we have an arrow

1

2
⊗ 1

3
⊗ 1 ⊗ 1

2

1

2
⊗ 2

3
⊗ 1 ⊗ 1

2
.

1

Let us now explain how the tableaux and Yamanouchi elements naturally appear in the context of crystals. In the
following, we set

F(s) =
⊕

s∈R(n,ℓ)(s)

F(s) and Ḟ(s) =
⊕

ṡ∈R(ℓ,n)(s)

Ḟ(ṡ).

The following results are well-known, see for instance [37].

Theorem 2.11.

(1) The set of tableaux in F(s) is closed under the crystal operators, and tableaux of a given shape λ ∈ S (s) form a
connected component of F(s) denoted B(λ). Moreover, for any b ∈ F(s), there is a unique tableau P(b) ∈ F(s)
such that the induced map b 7→ P(b) is an An−1-crystal isomorphism.

(2) An element b ∈ F(s) is a highest weight vertex in the crystal if and only if b is Yamanouchi.

Remark 2.12. In fact, for all λ ∈ S (s), B(λ) is the crystal of the irreducible highest weight module with highest
weight λ.

Theorem 2.11 also holds for Ḟ(s), replacing tableaux by antitableaux. We denote similarly Ḟ(µ) the connected
component of Ḟ(s) consisting of all antitableaux of shape µ ∈ Ṡ (s) = {µ ⊢ s | µtr ∈ S (s)}.

Example 2.13. Take n = 3, ℓ = 3 and s = (s3, s2, s1) = (2, 1, 2). Then one checks that b =
1

2
⊗ 3 ⊗

1

2
∈ F(s) is

Yamanouchi. We compute the connected component of F(s) containing b:

1

2
⊗ 3 ⊗

1

2

1

2
⊗ 3 ⊗

1

3

1

2
⊗ 3 ⊗

2

3
.

2 1

This is isomorphic to the crystal B(ω2), which we can compute:

1 1

2 2

3

1 1

2 3

3

1 2

2 3

3

.
2 1

This means that P(b) =
1 1

2 2

3

, and so on. Alternatively, we can use an isomorphic realisation of this crystal by

antitableaux:

1

1 2

2 3

1

1 2

3 3

1

2 2

3 3

.
2 1

In general, P(b) can be computed by carrying out one of the following procedures:

– performing Schensted’s insertion on the word w(b) [6, Section 1.1],
– performing the Jeu de Taquin on the skew Young tableau corresponding to b [6, Section 1.2],
– applying a sequence of plactic relation to w(b) [6, Section 2.1].

Example 2.14. Let ℓ = 2, n = 3 and let b =
1

2

3

⊗ 2 . Let us compute P(b) by using the first two methods. The

word associated to b is w(b) = 12413, and Schensted’s insertion yields the following sequence of tableaux

1 ,
1

2
,

1

2

3

,
1 2

2

3

= P(b).
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Now, the minimal skew Young tableau3 associated to b is

1

2

2 3

and the Jeu de Taquin corresponds to the following two sliding operations

1

• 2

2 3

→
1

2 2

• 3

→
1

2 2

3 •

,
• 1

2 2

3

→
1 •

2 2

3

→
1 2

2 •

3

= P(b).

2.3. The duality. There is a duality
F(s) ←→ Ḟ(s)

b ←→ b∗

defined as follows. If b = cℓ ⊗ · · · ⊗ c1 is a tensor product of columns, then for each i = 1, . . . , n, let d(i) be the
column with letters in the set

{j ∈ {1, . . . , ℓ} | i ∈ cj}.

Then we set b∗ = d(1)⊗ · · · ⊗ d(n) ∈ Ḟ(s).

Example 2.15. Let ℓ = 5 and n = 4. Take

b = 1

2

3

⊗ 4 ⊗ 1

4

⊗ 1

2

4

⊗ 1

3

.

Then
d(1) = {1, 2, 3, 5}, d(2) = {2, 5}, d(3) = {1, 5}, d(4) = {2, 3, 4},

so that
b∗ = 1

2

3

5

⊗ 2

5

⊗ 1

5

⊗ 2

3

4

.

Remark 2.16. As mentioned in the introduction, we can use binary matrices to represent elements in F(s) and
Ḟ(s), which yields an easy description of the duality ∗. More precisely, encode b = cℓ ⊗ · · · ⊗ c1 by the n × ℓ
matrix M defined by

Mi,j =

{
1 if i ∈ cj

0 otherwise

Then b∗ is the element of Ḟ(s) encoded by Mtr, the transpose of M. For instance, take b as in Example 2.15. Then
b and b∗ are respectively encoded by the following matrices (remember that we read the columns of b starting
from the right)

M =




1 1 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 0


 and Mtr =




1 0 1 0
1 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0




.

Therefore, we recover the crystal skew Howe duality of [15, Section 11.2], also studied in [47].

The duality ∗ intertwines several classical notions. We already observe some occurences of this phenomenon
now, and will give more results in the upcoming sections. For all map ϕ : Ḟ(s)→ Ḟ(s) ⊔ {0}, denote ϕ∗ : F(s)→
F(s) ⊔ {0} the map determined by the formula

(ϕ∗(b))∗ =

{
ϕ(b∗) if ϕ(b∗) ∈ Ḟ(s)

0 if ϕ(b∗) = 0.

that is, ϕ∗ is the conjugation of ϕ by the duality ∗. Similarly, for all map ψ : F(s) → F(s) ⊔ {0}, denote ∗ψ :
Ḟ(s)→ Ḟ(s) ⊔ {0} the map determined by the formula

∗ψ(b∗) =

{
(ψ(b))∗ if ψ(b) ∈ F(s)

0 if ψ(b) = 0.

3This skew tableau is minimal in the sense that its skew shape is minimal (for the inclusion of skew shapes) among all the possible
shapes of the skew tableaux associated to b.
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Note that we have ψ = ϕ∗ if and only if ∗ψ = ϕ.

Proposition 2.17. The element b is a tableau (respectively Yamanouchi) if and only if b∗ is Yamanouchi (respectively an
antitableau).

Proof. Let b ∈ F(s) be a tableau. Then sj ≥ sj+1 for all j = 1, . . . , ℓ − 1, which means that the number of j’s in
b∗ is greater than or equal to the number of j + 1’s, which is a necessary condition to be Yamanouchi. In fact,
the k first components of b correspond by duality to the subtableau of b with letters less or equal to k. Since all
such subtableau is semistandard, the vertex b∗ has the Yamanouchi property. The converse holds by the same
observation, and the analogue statement with antitableaux holds similarly. �

Example 2.18.

(1) Let ℓ = 2, n = 4, and b =
1

3

4

⊗
1

2

4

, so that b is a tableau. Then b∗ = 1

2
⊗ 1 ⊗ 2 ⊗ 1

2
, which is

Yamanouchi.

(2) Let ℓ = 5, n = 3, and b = 1 ⊗ 1 ⊗ 1

2
⊗ 2 ⊗

1

2

3

, so that b is Yamanouchi. Then b∗ =

1

3

4

5

⊗
1

2

3

⊗ 1 , which

is an antitableau.

We have already recalled the Jeu de Taquin procedure for computing the tableau in Theorem 2.11. Let us denote
by Jj the map F(s) → F(s) ⊔ {0} where Jj(b) is obtained from b by an elementary horizontal Jeu de Taquin slide
from column j + 1 to column j if possible, and Jj(b) = 0 otherwise. Let us moreover recall that there is a unique

isomorphism of An−1-crystals B(ωi) ⊗ B(ωi′)
∼
−→ B(ωi′) ⊗ B(ωi) called the combinatorial R-matrix, which we

can compute by a simple combinatorial procedure, see [44, Section 4.8] and the references therein. It induces an
isomorphism

Rj,j′ : F(s) −→ F(s)

permuting the components B(ωs j
) and B(ωs j′

), which is the composition of R-matrices of the form Rj,j+1, which

we denote Rj for simplicity. Finally, recall that the Weyl group (here the symmetric groups on n letters) acts on
the crystal F(s) by letting the Coxeter generators σi, i = 1 . . . , n − 1 act by reversing each i-string [3, Definition
2.35], see also [44, Section 2.1].
All of the above maps have counterparts defined on Ḟ(s) (defined using antitableaux instead of tableaux when
needed). We now prove that the duality ∗ intertwines crystal operators with elementary Jeu de Taquin slides, as
well as the Weyl group action with the R-matrix.

Theorem 2.19. For all j = 1, . . . , ℓ− 1, we have

(1) ė∗j = Jj and (2) σ̇j
∗ = Rj.

Proof.

(1) Assume first that b∗ is a highest weight vertex. Then ėjb
∗ = 0, so we have by definition ė∗j b = 0 = Jj(b).

Note that this simply means that the Jeu de Taquin is not authorised for b, which makes sense because b
is a tableau by Theorem 2.11 and Proposition 2.17. Now, assume that b∗ = d1 ⊗ · · · ⊗ dn is not a highest
weight vertex, so that ėjb

∗ ∈ Ḟ(s). Let i denote the index of the column containing the entry of b∗ affected
by ėj, see Theorem 2.9. Then by definition of the duality ∗, ė∗j acts on b = cℓ ⊗ · · · ⊗ c1 by sliding entry i

from cj+1 to cj. Now, consider the Jeu de Taquin between columns j and j + 1 of b. The procedure used to
determine i ensures us that all entries of cj that are smaller than or equal to i are matched to an element
of cj+1. Therefore, the first entry that slides from cj+1 to cj is i. In other terms, Jj(b) is obtained from b by
sliding i from cj+1 to cj. Thus ė∗j b = Jj(b).

(2) Set N = |cj+1| − |cj|, where b = cℓ ⊗ · · · ⊗ c1. If N ≥ 0, then the element Rj(b) is obtained by using N

Jeu de Taquin slides between columns j and j + 1 of b. Therefore, by Part (1), (Rj(b))
∗ = ėN

j b∗. Now, by

definition of the duality ∗, we have N = ε j(b
∗)− ϕj(b

∗), therefore ėN
j b∗ = σ̇j(b

∗) and the claim is proved.

The case N < 0 is proved similarly by using the lowering operators ḟ j instead.

�
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Example 2.20. (1) Take n = 6 and ℓ = 4, and let

b∗ =
1

2

4

⊗
2

3
⊗

2

3

4

⊗ 1 ⊗
1

3
⊗ 2 , so that b =

1

3
⊗

2

3

5

⊗

1

2

3

6

⊗
1

4

5

.

Then one can check that

ė1b∗ =
1

2

4

⊗ 2

3
⊗

1

3

4

⊗ 1 ⊗ 1

3
⊗ 2 , whose dual is b′ = 1

3
⊗

2

3

5

⊗
1

2

6

⊗

1

3

4

5

.

On the other hand, the horizontal slide from column 2 to column 1 of b is achieved as

1

• 2

1 3

4 6

5

→

1

1 2

• 3

4 6

5

→

1

1 2

3 •

4 6

5

→

1

1 2

3 6

4 •

5

=
1

2

6

⊗

1

3

4

5

,

and we see that we recover b′.
(2) Take n = 5, ℓ = 4, and

b∗ =
1

3
⊗

3

4
⊗

1

2

3

⊗ 3 ⊗
1

2
so that b = 2 ⊗

1

2

3

4

⊗
3

5
⊗

1

3

5

.

Let us look at j = 2. One checks that ε j(b
∗) = 3 and ϕj(b

∗) = 1, (i.e. there are 3 incoming and 1 outgoing

arrows with color 2 at vertex b∗ ∈ Ḟ(s)), so that

s2b∗ = 1

3
⊗ 2

4
⊗

1

2

3

⊗ 2 ⊗ 1

2
, whose dual is b′ = 2 ⊗ 1

3
⊗

2

3

4

5

⊗
1

3

5

.

Now, we can compute R2(b), by doing the following two Jeu de Taquin slides between columns 2 and 3

1

2

• 3

3 4

5

→

1

2

3 3

• 4

5

→

1

2

3 3

4 •

5

,

1

• 2

3 3

4

5

→

1

2 •

3 3

4

5

→

1

2 3

3 •

4

5

=
1

3
⊗

2

3

4

5

,

from which we recover b′.

Of course, Theorem 2.19 also holds when switching F(s) and Ḟ(s) and taking the dual versions of the different
maps.

2.4. Bicrystal structure. We are ready to prove that the An−1 and Aℓ−1 crystal structures commute (modulo the
duality ∗). This is best stated as follows.

Theorem 2.21. For all j = 1, . . . , ℓ− 1, the restriction of ḟ ∗j to any connected component of F(s) is either 0 or an An−1-

crystal isomorphism. Similarly, for all i = 1, . . . , n− 1, the restriction of ∗ fi to any connected component of Ḟ(s) is either
0 or an Aℓ−1-crystal isomorphism.

Proof. Note that by symmetry, both statements are equivalent, and it is enough to prove that for all j = 1, . . . , ℓ− 1,

the map ḟ ∗j , is an An−1-crystal isomorphism. Fix j ∈ {1, . . . , ℓ− 1}. First of all, if b ∈ F(s) is a highest weight

vertex, then b is Yamanouchi by Theorem 2.11(2), and b∗ is an antitableau by Proposition 2.17. By Theorem 2.11(1),

ḟ jb
∗ is again an antitableau, so ḟ ∗j b is Yamanouchi, i.e. a highest weight vertex. This shows that ḟ ∗j maps highest

weight vertices to highest weight vertices with the same weight. It remains to show that it commutes with the
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lowering crystal operators fi. We have, for all i = 1, . . . , n− 1,

ḟ ∗j fi = J−1
j fi by Theorem 2.19(1)

= fi J
−1
j by Theorem 2.11(1)

= fi ḟ ∗j .

�

This yields an (An−1 × Aℓ−1)-crystal structure on F(s). For i = (i1, . . . , ir) ∈ {1, . . . , n}r (respectively j =

(j1, . . . , jt) ∈ {1, . . . , ℓ}t), denote fi = fir
· · · fi1 (respectively ḟ j = ḟ jt · · · ḟ j1 ). The following corollary is imme-

diate from Proposition 2.17 and Theorem 2.21. For a given λ ∈ P+, denote bλ the Yamanouchi tableau of shape
λ.

Corollary 2.22. Each connected component of the (An−1× Aℓ−1)-crystal F(s) has a unique source vertex. The sources are
exactly the Yamanouchi tableaux. In other terms, we have

F(s) =
⊕

λ=ωs1
+···+ωsℓ

s1+···+sℓ=s

ḟ ∗j fibλ,

where the sum runs over all possible i and j.

Remark 2.23. Accordingly, the (An−1× Aℓ−1)-crystal structure can be considered on Ḟ(s). In this case, the sources
are the Yamanouchi antitableaux.

Example 2.24. Take ℓ = 4, n = 3. The element

1 ⊗ 1

2

⊗ 1

2

⊗ 1

2

3

is a Yamanouchi tableau, i.e. a source in the (An−1 × Aℓ−1)-crystal. Its dual is the following Yamanouchi an-
titableau

1

2

3

4

⊗ 1

2

3

⊗ 1 .

By Corollary 2.22, for all b ∈ F(s), there is a unique Yamanouchi tableau b such that b = ḟ ∗j fib for some i and j.

Set
P(b) = fib and Q(b) = ḟ jb

∗
.

Theorem 2.25. For all b ∈ F(s), P(b) is a tableau and Q(b) is an antitableau of transpose shape. Moreover, the assignment

Φ : b 7−→ (P(b), Q(b))

yields a bijection F(s)→ Φ(F(s)) called the crystal RSK correspondence. In particular, we have the decomposition

F(s) ≃
⊕

λ∈S (s)

B(λ)⊗ Ḃ(λtr).

Proof. By Theorem 2.21, the two crystals commute, so since b is a highest weight vertex for the Aℓ−1-crystal,

P(b) = fib is also a highest weight vertex for the Aℓ−1-crystal, i.e. P(b)∗ is Yamanouchi. By Proposition 2.17, P(b)
is a tableau. Similarly, we get that Q(b) is an antitableau. Moreover, Φ is clearly injective, so that Φ : F(s) →
Φ(F(s)) is a bijection. �

Accordingly, for b∗ ∈ Ḟ(s), we will write P(b∗) = Q(b) and Q(b∗) = P(b).
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2.5. Crystal structure on self-dual elements. An element b = cℓ ⊗ · · · ⊗ c1 ∈ F(s) is called self-dual if b∗ =
c1 ⊗ · · · ⊗ cℓ. In particular, self-dual elements exist only if n = ℓ. Alternatively, if M denotes the binary matrix
associated to b, then b is self-dual if and only if Mtr = M. We denote F(s)∗ the set of self-dual elements of F(s).
Now, for all i = 1, . . . , n− 1, set

f ∗i = ḟ ∗i fi.

The operators f ∗i , i = 1, . . . , n− 1, induce an An−1-crystal structure on F(s)∗. More precisely, we get the decom-
position

F(s)∗ ≃
⊕

λ∈S (s)
λtr=λ

B(λ).

2.6. Keys and bikeys. Keys are certain tableaux introduced by Lascoux and Schützenberger [28] that are used to
compute Demazure crystals [3]. In this section, we generalise the notion of keys using the bicrystal structure of
Section 2.4.

Definition 2.26. An element b = cℓ⊗ · · · ⊗ c1 ∈ F(s) is called a key (respectively an antikey) if b is a tableau (respectively
an antitableau) and if cℓ ⊆ · · · ⊆ c1 (respectively c1 ⊆ · · · ⊆ cℓ).

For b ∈ F(s), letOSn
(b) be the orbit of b under the action of the Weyl group Sn. The following proposition is easy

to establish by induction on the length of the elements of Sn.

Proposition 2.27. The set of all keys of given shape λ ∈ S (s) is equal to OSn(bλ).

Therefore, we have the following characterisation of keys (which could also be proved directly by using the
definition of ∗).

Proposition 2.28. Let b ∈ F(s). Then b is a key if and only if b∗ is a product of Yamanouchi columns.

Proof. We know that b∗λ is the Yamanouchi antitableau of shape λtr. In particular, b∗λ is an antikey. Now by
Theorem 2.19(2) and Proposition 2.27, b is a key if and only if b∗ is obtained from b∗λ by applying a sequence of
Rj’s, which simply permute the columns since each column of b∗λ is included in the next. �

Example 2.29. Take n = 3, ℓ = 2. Then the crystal of highest weight λ = ω1 +ω2 is realised by tableaux as follows

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

1 2

2 1

2 1

12

The keys of shape λ are obtained by keeping all vertices at the extremity of each i-string (for i = 1, 2), namely

1 1

2
,

1 2

2
,

1 1

3
,

1 3

3
,

2 2

3
,

2 3

3
,

whose respective dual are the following products of Yamanouchi columns

1

2
⊗ 2 ⊗∅ , 2 ⊗

1

2
⊗ ∅ ,

1

2
⊗ ∅⊗ 2 , 2 ⊗ ∅⊗

1

2
, ∅⊗

1

2
⊗ 2 , ∅⊗ 2 ⊗

1

2
.

We are ready to introduce the generalised notion of key.

Definition 2.30. An element b = c1⊗ · · · ⊗ cℓ ∈ F(s) is called a bikey if there exists ẇ ∈ Sℓ such that cẇ(1) ⊆ · · · ⊆ cẇ(ℓ).
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Write K for the set of bikeys in F(s). Observe that for bikeys, the distinction between tableaux and antitableaux
disappears. More precisely, when b is a bikey, for any j = 1, . . . , ℓ− 1 we have the inclusion cj ⊆ cj+1 or cj+1 ⊆ cj.
It thus follows from Theorem 2.19(2) that ẇ∗(b) = cẇ(1) ⊗ · · · ⊗ cẇ(ℓ). Moreover, ẇ∗(b) is a tableau (and an

antitableau), thus for a bikey b we must have P(b) = ẇ∗(b). For all λ ∈ S (s), write

K(λ) = {b ∈ K | P(b) has shape λ}.

The next result justifies the terminology of the previous definition.

Proposition 2.31. For all λ ∈ S (s), we have K(λ) = OSn×Sℓ
(bλ).

Proof. We have already observed that ẇ∗(b) is a tableau. Since cẇ(1) ⊆ · · · ⊆ cẇ(ℓ), it is a key of shape λ. Thus,

there exists w ∈ Sn such that wẇ∗(b) = bλ which proves that K(λ) ⊆ OSn×Sℓ
(bλ). Now for any w ∈ Sn and

ẇ ∈ Sn, the vertex b = wẇ∗(bλ) = ẇ∗w(bλ) is a bikey since w(bλ) is a key on which the action of ẇ∗ (which is a
combination of R-matrices) reduces to a permutation of the columns. Hence we get K(λ) = OSn×Sℓ

(bλ). �

Finally, we prove that the duality ∗ maps bikeys to bikeys. For this, consider the set K̇ of bikeys in Ḟ(s), and for
µ ⊢ s let

K̇(µ) = {ḃ ∈ K̇ | P(ḃ) has shape µ}.

Proposition 2.32. We have b ∈ K(λ) if and only if b∗ ∈ K̇(λtr).

Proof. It suffices to observe that for any b ∈ K, there exists a partition λ and (w, ẇ) ∈ Sn × Sℓ such that b =
wẇ∗(bλ). Then b∗ = ∗wẇ(b∗λ) =

∗wẇ(bλtr) belongs to K̇. �

Let K be the set of binary matrices corresponding to the bikeys in K. For any λ ∈ S (s), recall that the binary
matrix Mλ corresponding to bλ is the n× ℓ matrix whose entries equal to 1 form a pattern corresponding to the
Young diagram of λ. Also, we have a right Sℓ-action (respectively a left Sn-action) on the set of n × ℓ matrices
where the action of ẇ ∈ Sℓ (respectively of w ∈ Sn) is given by the right (respectively left) multiplication by
the permutation matrix Pẇ (respectively Pw) associated to ẇ (respectively w). Since permuting the columns of b
(respectively of b∗) is equivalent to permuting the columns (respectively the rows) of the corresponding binary
matrix, we get the following corollary.

Corollary 2.33. We have
K =

⊔
(w,ẇ)∈Sn×Sℓ

Pw MλPẇ

and

∑
(mi,j)∈K

∏
1≤i≤n
1≤j≤ℓ

(xiyj)
mi,j = ∑

λ∈S (s)

mλ(x)mλtr(y).

2.7. Cyclage and promotion. In this section, we show that the duality ∗ intertwines two important maps, namely
the cyclage and the promotion operators. This will be used in Section 2.8 to study the relationship between charge
and energy.

Definition 2.34.

(1) Let b = cℓ ⊗ · · · ⊗ c1 ∈ F(s). The cyclage of b is the element of F(s) defined by

ξ(b) = cℓ−1⊗ · · · ⊗ c1 ⊗ cℓ.

(2) Let b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s). The promotion of b∗ is the element of Ḟ(s) defined by pr(b∗) = pr(d1)⊗ · · · ⊗
pr(dn) where, for all i = 1, . . . , n,

pr(di) = {k + 1 mod ℓ ; k ∈ di}

Remark 2.35. The promotion operator permits to endow Ḟ(s) with the structure of an affine type A
(1)
ℓ−1-crystal that

we shall denote by Ḟ(s)aff. This structure is obtained by considering the additional crystal operators ḟ0 = pr−1 ḟ1 ◦
pr and ė0 = pr−1 ė1 ◦ pr. The crystal Ḟ(s)aff splits into affine connected components. Each such component is
isomorphic to a tensor product of n column Kirillov-Reshetikhin crystals. Observe that these components are not
highest weight crystals.

The following proposition is immediate from the definitions.

Proposition 2.36.
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(1) For all b ∈ F(s), we have ξ(b)∗ = pr(b∗).
(2) For all b∗ ∈ Ḟ(s), we have pr ◦R(b∗) = R ◦ pr(b∗)

Example 2.37. Take the same values as in Example 2.15. Then we have

1

2

3

⊗ 4 ⊗ 1

4

⊗ 1

2

4

⊗ 1

3

1

2

3

5

⊗ 2

5

⊗ 1

5

⊗ 2

3

4

4 ⊗ 1

4

⊗ 1

2

4

⊗ 1

3

⊗ 1

2

3

1

2

3

4

⊗ 1

3

⊗ 1

2

⊗ 3

4

5

∗

ξ

∗

pr

In order for the cyclage to be relevant for the description of the Kostka polynomials, we need to restrict to some
cases, which we call authorised.

Definition 2.38. Let b = cℓ ⊗ · · · ⊗ c1 ∈ F(s).

(1) We say that the cyclage is authorised for b if either
(a) b is of dominant evaluation, i.e. b has no more k + 1 than k for all k = 1, . . . , n− 1, and 1 /∈ cℓ.
(b) b is a tableau and there is no k ∈ {1, . . . , n} appearing in every column cj.

(2) Suppose that there exists k ∈ {1, . . . , n} such that k ∈ cj for all j = 1 . . . , ℓ. In particular, b is not authorised. Let
k0 be minimal with this property. The reduction of b is the element red(b) obtained by deleting all occurences of k0

in b, and replacing each k > k0 by k− 1.

Remark 2.39. In particular, if b verifies (2), there exists m such that the cyclage is authorised for the tableau redm(b).
We denote ξ : b 7→ ξ(redm(b)).

Example 2.40. Take ℓ = 2, n = 3 and b = 1

2

3

⊗ 2

3

. We have k0 = 2 and red(b) = 1

2

⊗ 2 .

It can be read off the dual if the cyclage is authorised, and how reduction acts.

Proposition 2.41.

(1) Let b ∈ F(s) and write b∗ = d1 ⊗ · · · ⊗ dn. The cyclage is authorised for b if and only if either
(a) |d1| ≥ · · · ≥ |dn| and ℓ /∈ d1, or
(b) b∗ is Yamanouchi and for all i = 1, . . . , n, di 6= {1, . . . , ℓ}.

(2) red(b)∗ is obtained from red(b) be deleting the leftmost column {1, . . . , ℓ} in b∗

Proof. For (1), one checks from the definition that an element b is of dominant evaluation if and only if its dual b∗

has columns of non-increasing size, and (a) follows. Point (b) is a direct consequence of Proposition 2.17. Point
(2) is clear from the definition of ∗. �

2.8. Charge and energy. Charge and energy are two classic statistics defined on F(s) and Ḟ(s). The goal of this
section is to establish that the duality ∗ intertwines these two notions.

Lemma 2.42. For all tableau b ∈ F(s), there exists m > 1 such that P(ξ
m
(b)) is a column.

Definition 2.43. The charge is defined as follows. Let b = cℓ ⊗ · · · ⊗ c1 ∈ F(s).

(1) If b is a column, set ch(b) = 0.
(2) If b is a tableau, define ch(b) by induction by setting

ch(b) = ch(ξ(b)) + |cℓ| and ch(red(b)) = ch(b)

and using Lemma 2.42.
(3) In general, set ch(b) = ch(P(b)).
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We have seen in 2.2 how one can associate to any product b∗ = d1 ⊗ d2 ∈ Ḟ(s) of two columns a unique skew
tableau T of minimal shape. Write leg(b∗) for the number of boxes in the left column of T having no box to their
right. The following definition of the local energy H is slightly different but equivalent to the original one (see [40]
and also [44] for an equivalent definition in the case of rows and affine crystals).

Definition 2.44. Let ℓ = 2 and b∗ = d1 ⊗ d2 ∈ Ḟ(s).

H(b∗) =

{
leg(b∗) if |d1| ≥ |d2|

H(R1(b
∗)) if |d1| < |d2|.

Example 2.45. The minimal skew tableau corresponding to

b∗ =

1

3

4

6

⊗
1

7

8

is

1

3

4

1 6

7

8

, therefore we get H(b∗) = 2.

Let b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s). For all 1 ≤ i < j ≤ n, denote

d1 ⊗ · · · ⊗ di ⊗ d
(j)
i+1 ⊗ · · · ⊗ dn

the element obtained from b∗ by applying sucessively the R-matrices Rj−1, . . . , Ri+1.

Definition 2.46. The energy D is defined as follows. For b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s), we set

D(b∗) = ∑
1≤i<j≤n

H(di ⊗ d
(j)
i+1).

Remark 2.47. If ṡ1 = · · · = ṡn, then the R-matrices act as the identity, thus

D(b∗) = ∑
1≤i≤n−1

(n− i)H(di ⊗ di+1).

Lemma 2.48. Let b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s) be Yamanouchi such that di = {1, . . . , ℓ} for some i = 1, . . . , n. Then
D(b∗) = D(b×), where b× is the element obtained from b∗ by deleting its leftmost column {1, . . . , ℓ}.

Proof. Since D is invariant under the action of the combinatorial R-matrices, we can assume that d1 = {1, . . . , ℓ}.
Then

D(b∗) = D(b×) +
n−1

∑
i=1

(n− i)H(d1 ⊗ di+1).

But by definition of H, we have H(d1 ⊗ di+1) = 0 for any i = 1, . . . , n− 1. �

We are now going to prove the following proposition.

Proposition 2.49. Let b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s) be Yamanouchi such that di 6= {1, . . . , ℓ} for all i = 1, . . . , n. Then
D(pr(b∗)) = D(b∗)− N, where N is the number of ℓ in b∗.

To do this, let us set for any b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s)

∆n(b
∗) = D(b∗)− D(pr(b∗)).

When n = 2, one can use Definition 2.44 to compute ∆2. This immediately gives:

Lemma 2.50. Assume b∗ = d1 ⊗ d2 with h(d1) ≥ h(d2). Then

∆2(d1 ⊗ d2) =




−1 if ℓ ∈ d1 and ℓ /∈ d2,
1 if ℓ /∈ d1 and ℓ ∈ d2,
0 otherwise.

Proof of Proposition 2.49. Since the combinatorial R-matrices preserve the energy, we can and shall assume that
h(d1) ≥ · · · ≥ h(dn). For any Yamanouchi vertex b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s), we have

∆n(b
∗) = ∆n(d1 ⊗ · · · ⊗ dn) = ∆n−1(d1 ⊗ · · · ⊗ dn−1) +

n−1

∑
i=1

∆2(di ⊗ d
(n)
i+1).
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because the promotion operator commutes with the R-matrices. Since b∗ is Yamanouchi, the vertex d1⊗ · · · ⊗ dn−1

is also Yamanouchi. By induction on n, we can assume that ∆n−1(d1⊗ · · · ⊗ dn−1) is equal to the number of letters
ℓ in d1 ⊗ · · · ⊗ dn−1. This shows that the proposition is in fact equivalent to the assertion

Sn(b
∗) :=

n−1

∑
i=1

∆2(di ⊗ d
(n)
i+1) =

{
1 if ℓ ∈ dn,
0 otherwise.

for any Yamanouchi vertex b∗ = d1 ⊗ · · · ⊗ dn ∈ Ḟ(s). Here again, we proceed by induction on n. When n = 2,
this follows from Lemma 2.50. Note that we cannot have ℓ ∈ d1 in this case because we have assumed that
d1 6= {1, . . . , ℓ}. When n ≥ 3, set

b∗(n− 1) = d1 ⊗ · · · ⊗ dn−2 ⊗ d
(n)
n−1.

Then b∗(n− 1) is Yamanouchi and

Sn(b
∗) = Sn−1(b

∗(n− 1)) + ∆2(dn−1 ⊗ dn).

Assume first ℓ /∈ dn and ℓ /∈ dn−1. Then, we have ℓ /∈ d
(n)
n−1 and by the induction hypothesis Sn−1(b

∗(n− 1)) = 0.

Also, ∆2(dn−1⊗ dn) = 0 and we thus get Sn(b∗) = 0 as desired. The arguments are similar for the three remaining
cases : ℓ ∈ dn and ℓ /∈ dn−1, ℓ /∈ dn and ℓ ∈ dn−1, ℓ ∈ dn and ℓ ∈ dn−1. �

Combining Definition 2.43, the combinatorial description of the duality ∗, Lemma 2.48 and Proposition 2.49, we
get the expected following theorem.

Theorem 2.51. For all b ∈ F(s), we have ch(b) = D(b∗).

3. AFFINE TYPE A DUALITY

The study of the combinatorics of highest weight representations for the quantum groups of affine type A has
been initiated in [21] in the context of solvable lattice models. There, the affine Fock space plays a crucial role.
It has been subsequently considered in various settings, ranging from mathematical physics to symmetric func-
tions or finite group representation theory, see [29] for a good review. In this section, we examine the crystal
combinatorics of the affine Fock space, and show that the results of Section 2 generalise to this setting.

3.1. Infinite columns. In this affine setting, columns are semi-infinite, i.e. of the form

c = {x1, . . . , xk} ⊔ {x ∈ Z | x < x1} and represented as c =
x1

xk

,

for some k ∈ Z≥1 and some x1 < · · · < xk ∈ Z. Note that this expression is not unique. For instance, the values
k = 2, x1 = 1, x2 = 3 and k = 3, x1 = 0, x2 = 1, x3 = 3 both yield the semi-infinite column {. . . ,−2,−1, 0, 1, 3}. If
we impose that x1 is minimal in Z with the condition that x1 + 1 /∈ c, then this expression becomes unique: we
call it the standard form of c. Finally, we set

s(c) = x1 + k− 1.

3.2. Affine combinatorial Fock space. Following [8, Chapter 6], highest weight crystals of type A
(1)
n−1 and level ℓ

can be realised by using the combinatorics of symbols (or equivalently of abaci). By analogy with type A, we iden-
tify symbols with tensor products of columns (and abaci with semi-infinite binary matrices as in Remark 2.16).

Definition 3.1. Let s = (s1, . . . , sℓ) ∈ Zℓ. The affine combinatorial Fock space of type A
(1)
n−1 and level ℓ associated to s is

F̂(s) = {b = cℓ ⊗ · · · ⊗ c1 | s(cj) = sj for all j = 1, . . . , ℓ}.

For all b ∈ F̂(s), the tuple s is called the shape of b4.

We say that b ∈ F̂(s) is in standard form if all columns have the same smallest entry and (at least) one of them is
in standard form. For convenience, we represent negative entries −x by x.

4The element s is usually called the (multi)charge in the literature, see [21]. We choose this alternative terminology for two reasons : by
analogy with the finite case (Section 2.1), since s plays a similar role to the partition λ (in fact, s can itself be represented by a partition as
in the original approach [21, Definition 3.1]); and because “charge” has already been introduced with a different meaning in Section 2.8.
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Example 3.2. The representation
1

0

1

⊗ 1

2

⊗ 1

0

3

is the standard form of the element b = c3 ⊗ c2 ⊗ c1 where c3 = {. . . ,−2,−1, 0, 1}, c2 = {. . . ,−2,−1, 2}, c1 =
{. . . ,−2,−1, 0, 3}.

We now define affine analogues of tableaux in a natural way, by requesting semistandardness on a cylinder. We

use the following notation: if c =
x1

xk

is a column, set c+ =

x1

x1 + n− 1

x1 + n

xk + n

.

Definition 3.3. An element b = cℓ ⊗ · · · ⊗ c1 ∈ F̂(s) is called

(1) cylindric if the top-aligned juxtaposition c+ℓ c1 · · · cℓ is a semistandard Young tableau (with entries in Z).

(2) anticylindric if the bottom-aligned juxtaposition c1 · · · cℓc
+
1 is a semistandard skew Young tableau (with entries in

Z).

Example 3.4. Take ℓ = 3, n = 2.

(1) The element

1

1
⊗

1

1

4

⊗
1

0

2

is cylindric because
1 1 1 1

0 0 1 1

1 2 4

3

is a semistandard Young tableau.
(2) The element

2

1

0

1

3

⊗

2

0

1

3

⊗

2

1

0

2

is anticylindric because
2

2 1

2 2 1 0

1 0 0 1

0 1 1 2

2 3 3 4

is a semistandard skew Young tableau.

Remark 3.5. Note that the elements of F̂(s) can alternatively be described as charged multipartitions: they form the
standard basis of the (algebraic) Fock space, see [8, Chapter 6], [46]. More precisely, tensor products of columns
are the representation of charged multipartitions by their β-sets, also known as Lusztig’s symbols [8, Chapter 5].
In turn, tensor products that are cylindric correspond to cylindric multipartitions, which are important objects in
algebraic combinatorics. They were first introduced by Gessel and Krattenthaler [14], and have since then been
used in combinatorics, representation theory, and mathematical physics, see [5] and [12] for more details.

Further, we give an affine analogue of the Yamanouchi property. For this, given an element b = cℓ ⊗ · · · ⊗ c1 ∈

F̂(s), we define the first n-period of b to be the sequence P1 = (x, x− 1, . . . , x− n + 1) of entries of b such that x
is maximal in b and such that for all i = 0, . . . , n− 1, x− i ∈ cki

where k0 ≤ · · · ≤ kn−1 with ki maximal. One then

defines the r-th n-period of b by induction, by setting Pr to be the first period of the element b(r−1) obtained from
b by removing P1, . . . , Pr−1 if they all exist.
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Definition 3.6. An element b ∈ F̂(s) is called totally n-periodic if the r-th n-period of b exists for all r ∈ Z≥1.

Example 3.7. Take n = 3 and ℓ = 4. Then the following element is totally periodic

0

1

2

3

⊗ 0

1

⊗ 0

2

4

⊗ 0

2

3

4

,

where we have highlighted the first period in blue, the second in purple and the third in yellow (and the periods
Pr for r > 3 then obviously exist).

3.3. Affine crystal structures. In the following, for s = (sℓ, . . . , s1) ∈ Zℓ and ṡ = (ṡ1, . . . , ṡn) ∈ Zn, denote

bs = sℓ ⊗ · · · ⊗ s1 and ḃṡ = ṡ1 ⊗ · · · ⊗ ṡn .

Moreover, define analogues of the sets S (s) and Ṡ (s) of Section 2 by considering

D(s) =
{
(sℓ, . . . , s1) ∈ Z

ℓ(s) | sℓ ≤ · · · ≤ s1 ≤ sℓ + n
}

and Ḋ(s) =
{
(ṡ1, . . . , ṡn) ∈ Z

ℓ(s) | ṡ1 ≤ · · · ≤ ṡn ≤ ṡ1 + ℓ
}

,

and set
D =

⊔

s∈Z

D(s) and Ḋ =
⊔

s∈Z

Ḋ(s).

As in Section 2.2, the combinatorial Fock space F̂(s) can be endowed with the structure of an A
(1)
n−1-crystal, where

the action of the lowering crystal operators fi is given by changing a certain entry x such that x mod n = i to
x + 1, see for instance [8, Chapter 6]. Also, the connected component containing bs is isomorphic to the crystal

B̂(s) of the irreducible highest weight module of highest weight ωs = ωsℓ + · · ·+ ωs1
where ω0, . . . , ωn−1 are the

fundamental weights of type A
(1)
n−1. Let us recall the crystal structure on F̂(s), due to [21], [4], [46]. We construct

the word wi(b) as in Section 2.2, by the following procedure:

(1) For all k ∈ Z, let w
(k)
i (b) be the word obtained by reading the entries i + kn and i + kn + 1 in b from left to

right (i.e., going through the columns cℓ, . . . , c1).

(2) Set wi(b) to be the concatenation of the words w
(k)
i ordered by decreasing values of k.

Remark 3.8. Because of the semi-infinite form of each column, it is enough to consider only the integers k such

that i + kn appears in the standard form of b. That way, we construct wi(b) from finitely many subwords w
(k)
i .

Example 3.9. For n = 4, i = 3, ℓ = 3 and b = 1

3

⊗ 1

3

4

7

⊗ 1

2

4

6

7

= c3 ⊗ c2 ⊗ c1, where we highlighted the entries with

relevant residues with boldface, we have w
(1)
3 (b) = 77 and w

(0)
3 (b) = 3344, therefore w3(b) = 773344.

As in type A, this induces a word in the symbols + and − by encoding each i + kn by + if and each i + kn + 1
by −. Deleting all factors +− recursively yields a word called the i-signature of b. With these conventions, one
checks that the following result is equivalent to [8, Theorem 6.2.12].

Theorem 3.10. The set F̂(s) is endowed with an A
(1)
n−1-crystal structure, where

(1) The lowering crystal operators fi act on b ∈ F̂(s) by changing the entry x corresponding to the leftmost + in the
i-signature of b into x + 1 if it exists; and by 0 otherwise.

(2) The raising crystal operators fi act on b ∈ F̂(s) by changing the entry x + 1 corresponding to the rightmost − in
the i-signature of b into x if it exists; and by 0 otherwise.

Example 3.11. In the previous example, we first get the sequence + + + + −−, and the signature is ++. The
leftmost + corresponds to the 7 in c2, and therefore f3 acts on b by changing that 7 into an 8, i.e.

f3b = 1

3

⊗ 3

4

5

8

⊗ 1

4

6

7

.
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Example 3.12. Take ℓ = 3, n = 2, s = (s3, s2, s1) = (7, 4, 6) and b = c3 ⊗ c2 ⊗ c1 = 2

3

4

5

6

8

⊗ 2

4

5

⊗ 2

3

5

6

7

. One checks that

e0b = e1b = e2b = 0, i.e. b is a highest weight vertex, and that the beginning of the connected component of the

A
(1)
n−1-crystal containing b is equal to

2

3

4

5

6

8

⊗ 2

4

5

⊗ 2

3

5

6

7

2

3

4

5

6

9

⊗ 2

4

5

⊗ 2

3

5

6

7

2

3

4

5

6

8

⊗ 2

4

6

⊗ 2

3

5

6

7

1

2

3

4

5

6

9

⊗ 1

3

4

5

⊗ 1

2

3

5

6

7

1

2

3

4

5

6

10

⊗ 1

2

4

5

⊗ 1

2

3

5

6

7

1

2

3

4

5

6

9

⊗ 1

2

4

6

⊗ 1

2

3

5

6

7

...
...

...
...

...

0 1

0 1 0

1 0 1 0 1

Remark 3.13. If n is sufficiently large, any column (in standard form) has at most one entry with residue i or i + 1,
and therefore one recovers the finite type A crystal rule (forgetting the arrows indexed by 0).

In fact, we have
F̂(s) ≃ F̂((sℓ))⊗ · · · ⊗ F̂((s1)).

Remark 3.14. Note that the rule used to compute the affine crystal above is not the tensor product rule, which
means that the above isomorphism is not an equality in general. However, we recover the tensor product rule
(and hence the equality) if the differences sj+1 − sj are sufficiently large.

Similarly, for any n-tuple of integers ṡ = (ṡ1, . . . , ṡn), there is a level n A
(1)
ℓ−1-crystal structure on the set of tensor

products of n columns
˙̂F(ṡ) = {a = d1 ⊗ · · · ⊗ dn | s(di) = ṡi for all i}.

In order for these crystals structures to commute (see Section 3.6), we need to use a slightly different rule for

computing the A
(1)
ℓ−1-crystal. More precisely, we construct a word ẇj(a) by the following procedure:

(1) For all k ∈ Z, let ẇ
(k)
j (a) be the word obtained by reading the entries j + kℓ and j + kℓ+ 1 in a from left to

right (i.e., going through the columns d1, . . . , dn).

(2) Set ẇj(a) to be the concatenation of the words ẇ
(k)
j ordered by increasing values of k.
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Now, we compute the j-signature by the exact same procedure as for the A
(1)
n−1-crystal, and the action of the crystal

operators ḟ j and ėj is given by the same rule as in Theorem 3.10. We obtain again

˙̂F(s) ≃ ˙̂F((ṡ1))⊗ · · · ⊗
˙̂F((ṡn)).

Example 3.15. For ℓ = 3, j = 0, n = 4 and a = 1

0

1

2

3

⊗ 1

0

1

4

⊗ 1

0

2

3

4

5

⊗ 1

0

1

2

= d1 ⊗ d2 ⊗ d3 ⊗ d4, where we highlighted

the entries with relevant residues with boldface, we have ẇ
(0)
0 (a) = 0101001 and ẇ

(1)
0 (a) = 3434, therefore

ẇ0(a) = 01010013434. This yields the sequence +−+−++−+−+−, so the 0-signature is +, in which the

leftmost + corresponds to the 0 in d3. Therefore, ḟ0 acts on a by changing that 0 into a 1, i.e.

ḟ0a = 1

0

1

2

3

⊗ 1

0

1

4

⊗ 1

1

2

3

4

5

⊗ 1

0

1

2

.

In other terms, in the crystal F̂(s), we have an arrow

1

0

1

2

3

⊗ 1

0

1

4

⊗ 1

0

2

3

4

5

⊗ 1

0

1

2

1

0

1

2

3

⊗ 1

0

1

4

⊗ 1

1

2

3

4

5

⊗ 1

0

1

2

.

0

Let us set F̂(s) =
⊕

s∈Zℓ(s) F̂(s) and ˙̂F(s) =
⊕

ṡ∈Zn(s)
˙̂F(ṡ). We can now state an analogue of Theorem 2.11.

Theorem 3.16.

(1) The set of cylindric elements of F̂(s) is stable under the crystal operators fi, ei, i = 0, . . . , n − 1. Moreover, for

any b ∈ F̂(s), there is a cylindric element P(b) ∈ F̂(s) such that P(b) and b appear at the same place in two

isomorphic connected components of F̂(s).

(2) An element b ∈ F̂(s) is a highest weight vertex in the A
(1)
n−1-crystal if and only if b is totally periodic.

Proof. One checks that Definition 3.3 is equivalent to the definition of cylindricity used in [45] and [9]. Therefore,
the first statement of (1) translates to [45, Section 3], see also [9, Proposition 4.10]. A constructive proof of the
second statement of (1) can be derived from [9, Section 4.3]. Part (2) was obtained in [19, Theorem 5.9]. �

Remark 3.17. Note that P(b) is not unique, unlike the tableau P(b) of Theorem 2.11. There is uniqueness by
putting some extra constraints on P(b), see [9] for more details.

3.4. Uglov’s duality. There is a duality

F̂(s) ←→ ˙̂F(s)
b ←→ b⋆

defined in [46, Remark 4.2], see also [48, Section 1.1.5]. It is best explained in terms of binary matrices. We first

encode b = cℓ ⊗ · · · ⊗ c1 ∈ F̂(s) by the ∞× ℓ matrix M defined by

Mi,j =

{
1 if i ∈ cj

0 otherwise

Now, for all k ∈ Z, consider the submatrices M(k) of size n× ℓ of M defined by, for all 1 ≤ i ≤ n,

M
(k)
i,j = M(k−1)n+i,j.

Set N(k) = M(k)tr
. Then the ∞× n matrix N defined by, for all j ∈ Z, say (k− 1)ℓ+ 1 ≤ j ≤ kℓ,

Nj,i = N
(k)
j−(k−1)ℓ,i
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decodes to an element b⋆ of ˙̂F(s).

Example 3.18. Take ℓ = 2, n = 3, and b = 2

0

1

3

⊗ 2

1

2

. Then we have

M =

...
...

−5

−4

−3




1 1
1 1
1 1


 M(−1)

−2

−1

0




1 1
1 0
0 1


 M(0)

1

2

3




0 1
1 0
0 1


 M(1)

4

5

6




0 0
0 0
0 0


 M(2)

...
...

1 2

and we get N =

...
...

−3

−2

[
1 1 1
1 1 1

]
M(−1)tr

= N(−1)

−1

0

[
1 1 0
1 0 1

]
M(0)tr

= N(0)

1

2

[
0 1 0
1 0 1

]
M(1)tr

= N(1)

3

4

[
0 0 0
0 0 0

]
M(2)tr

= N(2)

...
...

1 2 3

,

where we indicated the rows and column indices. This gives b⋆ = 2

1

0

2

⊗ 2

1

1

⊗ 2

0

2

.

Remark 3.19. Assume that each column c = {x1, . . . , xk} of b written in standard form verifies 0 ≤ x1 < · · · <
xk ≤ n.

(1) Then b is determined by M(1), and the duality ⋆ is just transposing this single matrix. We recover precisely
the duality ∗, see Remark 2.16. For instance, for ℓ = 4, n = 3 and b = 0

2

3

⊗ 0

3

⊗ 0

1

⊗ 0

1

3

. The corresponding

matrix is 


1 1 0 0
0 0 0 1
1 0 1 1


 , whose transpose is




1 0 1
1 0 0
0 0 1
0 1 1


 ,

so we get b⋆ = 0

1

2

⊗ 0

4

⊗ 0

1

3

4

.

(2) Moreover, the orders≺ and≺· used to compute the crystals coincide, in analogy with the finite case again.

The first result concerning the duality ⋆ is an analogue of Proposition 2.17. The following result can be checked
purely combinatorially. We omit its proof because it is essentially equivalent to [12, Theorem 3.3] in the conven-
tion of the present paper.

Proposition 3.20. Let b ∈ F̂(s). Then b is totally periodic if and only if b⋆ is anticylindric.

Remark 3.21. Similarly, there is a notion of antiperiods that yield a characterisation of highest weight vertices in
˙̂F(ṡ). We get that b is cylindric if and only if b⋆ is totally antiperiodic, completing the previous proposition

Now, we would like to establish an analogue of Theorem 2.19. Let Ŝn be the affine symmetric group on n elements,

which is the Weyl group of type A
(1)
n−1. We denote by σi, i = 0, . . . , n− 1 the involutions generating Ŝn, subject

to the usual braid relations modulo n. The group Ŝn acts on the crystal F̂(s) as in finite type. Similarly, we

denote σ̇j, j = 0, . . . , ℓ− 1 the generators of Ŝℓ. First of all, we focus on the maps ėj and σ̇j but only in the case
j = 1, . . . , ℓ − 1. The case j = 0 will be treated in upcoming Section 3.5 using the promotion operator. As in
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Section 2.3, for j = 1, . . . , ℓ− 1, we denote by Jj the elementary Jeu de Taquin map on F̂(s) between columns j

and j + 1, and by Rj the combinatorial R-matrix on F̂(s) realising the isomorphism of crystals

F((s1, . . . , sj, sj+1, . . . , sℓ))
∼
−→ F((s1, . . . , sj+1, sj, . . . , sℓ)).

Theorem 3.22. For all j = 1, . . . , ℓ− 1, we have

(1) ė⋆j = Jj and (2) σ̇j
⋆ = Rj.

Proof. The proof is analogous to that ot Theorem 2.19. In particular, (1) is immediate. For (2), an explicit formula
for Rj was given in [18, Proposition 5.2.2]. This formula coincides with the formula for the R-matrix in finite type
which can be found in [44, Example 4.10]. Therefore, we conclude using Theorem 2.19. �

3.5. Affine cyclage and promotion. We now show that the results of Section 2.7 generalise to the affine case.
Consider the affine cyclage map

ξ̂ : F̂(s) −→ F(s + n)
cℓ ⊗ · · · ⊗ c1 7−→ cℓ−1⊗ · · · ⊗ c1 ⊗ c+ℓ

where c+ℓ at the beginning of 3.2. By [18, Proposition 5.2.1], ξ̂ is an isomorphism of A
(1)
n−1-crystals. Now, consider

the promotion map

pr : ˙̂F(s) −→ ˙̂F(s + n)
d1 ⊗ · · · ⊗ dn 7−→ pr(d1)⊗ · · · ⊗ pr(dn)

where pr(di) = {k + 1 ; k ∈ di} for all i = 1, . . . , n. Exactly as in Proposition 2.36, we have the following result,
which is immediate by definition of ⋆.

Proposition 3.23. For all b ∈ F̂(s),

ξ̂(b)⋆ = pr(b⋆).

As a direct consequence, we get a description of the action of the maps ė0 and σ̇0 directly on F̂(s). This completes
the statement of Theorem 3.22.

Corollary 3.24.

(1) ė⋆0 = ξ̂−1 ◦ J1 ◦ ξ̂ and (2) σ̇0
⋆ = ξ̂−1 ◦ R1 ◦ ξ̂.

By analogy with Theorem 3.22, we denote R0 = σ̇⋆
0 . If cj is a column, denote by c−j the column such that (c−j )

+ =

cj. Since ξ̂−1(cℓ ⊗ · · · ⊗ c1) = c−1
1 ⊗ cℓ ⊗ · · · ⊗ c2, we have

R0(cℓ ⊗ · · · ⊗ c1) = c−1 ⊗ cℓ−1⊗ · · · ⊗ c2 ⊗ c+ℓ .

3.6. Triple crystal structure. The affine duality ⋆ is more complex than its finite type counterpart ∗, and this

is related to the existence of a third crystal structure on F̂(s) [10]. This arises from the action of a Heisenberg

algebra H, and the resulting crystal is of type A∞. More precisely, each b ∈ F̂(s) writes uniquely on the form

b = aκ(b) for some partition κ and some highest weight vertex b for the H-structure. Here aκ is the so-called
Heisenberg crystal operator corresponding to the partition κ. The explicit action of aκ is described in [11] in terms
of translating (generalised) n-periods. By writing κ(b) = κ, the map b 7→ κ(b) yields a bijection between the
connected component containing b and the Young lattice Y . Now, the Young lattice carries a crystal structure

corresponding to the the basic representation of type A∞. More precisely, there is an arrow λ
k
−→ µ in Y with

k ∈ Z if and only if µ/λ has only one box of content k. This endows F̂(s) with the structure of an A∞-crystal. The
following result is [10, Theorem 6.17].

Theorem 3.25. The three crystals commute5, i.e. for all i = 1, . . . , n− 1, for all j = 1, . . . , ℓ− 1 and for all partition κ, we
have

fi ḟ ⋆j = ḟ ⋆j fi, aκ fi = fiaκ , and ḟ ⋆j aκ = aκ ḟ ⋆j .

Recall that we have introduced the sets D(s), Ḋ(s) and the notation bs, ḃṡ for a ∈ D(s), ṡ ∈ Ḋ(s) in Section 3.3.

Write respectively ω̇0, . . . , ω̇ℓ−1 and δ̇ the fundamental weights and the null root for the root system of type A
(1)
ℓ−1.

The definition of ⋆ implies the following important property.

5Note that in [10], the commutation was proved for a twisted version of this duality. This is accounted for here by enumerating

columns in the reverse order in ˙̂F(s), and using the different ordering.
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Lemma 3.26. Let b ∈ F̂(s). We have b = bs for some s ∈ D(s) if and only if b⋆ = ḃs⋆ for some s⋆ ∈ Ḋ(s). Moreover, the

A
(1)
ℓ−1-dominant weight corresponding to ḃs⋆ has the form

(n− s1 + sℓ)ω̇0 +
ℓ−1

∑
j=1

(sj − sj+1)ω̇j + kδ̇

where k is an integer.

Example 3.27. Take ℓ = 4, n = 3 and s = (−2,−1,−1, 1) ∈ D(−3). Then

bs = 2 ⊗ 1 ⊗ 2 ⊗ 1 , i.e. bs = 2 ⊗ 2

1

⊗ 2

1

⊗ 2

1

0

1

.

The corresponding matrix is

M =

...


1 1 1 1
1 1 1 0
1 0 0 0


 M(0)




1 0 0 0
0 0 0 0
0 0 0 0


 M(1)

...

which gives M⋆ =

...


1 1 1
1 1 0
1 1 0
1 0 0


 M(0)tr




1 0 0
0 0 0
0 0 0
0 0 0


 M(1)tr

...

,

therefore
b⋆s = 3

2

1

0

1

⊗ 3

2

1

⊗ 3 = ḃs⋆ with s⋆ = (1,−1,−3) ∈ Ḋ(−3).

Remark 3.28. We see that the map s 7→ s⋆ is an analogue of the transposition of partitions used in Section 2.

The commutation of the three crystals in Theorem 3.25 induces an (A
(1)
n−1× A∞× A

(1)
ℓ−1)-crystal structure on F̂(s),

and as in the finite case (see Corollary 2.22), each connected component of the tricrystal of F̂(s) has a unique
source vertex. The following corollary is the translation of [10, Theorem 6.19] in our terminology.

Corollary 3.29. Let b ∈ F̂(s). Then b is a highest weight vertex in the (A
(1)
n−1× A∞ × A

(1)
ℓ−1)-crystal if and only if b = bs

for some s ∈ D(s).

To be complete, we give a characterisation of the highest weight vertices in the different bicrystals. In order to do

this, we consider the vertices of B̂(s), the connected component of the A
(1)
n−1-crystal containing bs, where s ∈ D(s).

These are called n-FLOTW elements, and the have an explicit combinatorial description, see [8, Definition 5.7.8]6.
In particular, FLOTW elements are cylindric, which is immediate from Theorem 3.16 because bs is.

Theorem 3.30.

(1) b is a highest weight vertex in the (A
(1)
n−1× A

(1)
ℓ−1)-crystal if and only if b is cylindric and totally periodic.

(2) b is a highest weight vertex in the (A
(1)
n−1× A∞)-crystal if and only if b⋆ is ℓ-FLOTW.

Proof. Assertion (1) follows from the characterisation of the highest weight vertices in the A
(1)
n−1-crystal and the

A
(1)
ℓ−1-crystal given in Theorem 3.16(2) and Proposition 3.20. Assertion (2) is proved in [10]. �

6Note that FLOTW elements are originally defined for a more constrained condition on s, but it is easy to see that our condition induces
the same combinatorial characterisation
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Remark 3.31. Note that it is more challenging to give a simple description of the (A
(1)
n−1 × A∞)-highest weight

vertices. Nevertheless, a characterisation of the A∞-highest weight vertices has been given in [13, Theorem 5.1],
but this does not yield to an analogue of the previous theorem.

By Theorem 3.25 and Corollary 3.29, for each b ∈ F̂(s), there is a unique s ∈ D(s) such that b = ḟ ⋆j aκ fibs for some

i, j and some partition κ. Set

P(b) = fibs, κ(b) = κ, and Q(b) = ḟ jb
⋆
s .

Note that the elements P(b) and Q(b) are FLOTW by definition. Therefore, we get an analogue of Theorem 2.25,
yielding an affine crystal version of the RSK correspondence.

Theorem 3.32. The assignment

Φ̂ : b 7−→ (P(b), κ(b),Q(b))

yields a bijection F̂(s)→ Φ̂(F̂(s)). In particular, we have the decomposition

F̂(s) ≃
⊕

s∈D(s)

B̂(s)⊗Y ⊗ ˙̂B(s⋆).

Remark 3.33. Another way to express the affine crystal RSK correspondence is to consider the bijection

b←→ (P(b),Q(b))

whereQ(b) is defined as before, and P(b) = aκ fibs (in particular P(b) is cylindric). In a symmetric fashion, one
can establish a bijection

b←→ (P(b), Q(b))

where Q(b) is anticylindric. It would be interesting to compare this with the results of [27].

3.7. Bicrystal structure on self-dual elements. As in Section 2.5, let us consider the set of self-dual elements

F̂(s)⋆, that is, the set of all b = c1 ⊗ · · · ⊗ cℓ ∈ F(s) such that b⋆ = cℓ ⊗ · · · ⊗ c1. Again, self-dual elements exist

only if n = ℓ. Moreover, by [10, Proposition 5.2], for all b ∈ F̂(s), we have κ(b⋆) = κ(b)tr, therefore if b ∈ F̂(s)⋆,
we have

κ(b) = κ(b)tr.

Now, by [23], self-transpose partitions realise the crystal graph Ỹ of the basic representation of type B∞, by setting

κ
k
−→ κ′ in Ỹ if and only if κ

k
−→ κ′′

−k
−→ κ′ in Y .

If one prefers, one can also consider the vertices of Ỹ as shifted Young diagrams since self-conjugate partitions
are in bijection with strict partitions. Further, for all i = 1, . . . , n− 1, set again

f ⋆i = ḟ ⋆i fi.

Therefore, the operators f ⋆i for i = 1, . . . , n − 1 and aκ for κ = κtr induce an (A
(1)
n−1 × B∞)-crystal structure on

F̂(s)⋆. More precisely, we get the decomposition

F̂(s)⋆ ≃
⊕

s∈D(s)
s⋆=s

B̂(s)⊗ Ỹ .

Other multicrystal structures on fixed points sets will be studied in Section 5.

3.8. Affine keys and bikeys. We now construct affine analogues of keys and bikeys as defined in Section 2.6.

Definition 3.34. An element b = cℓ ⊗ · · · ⊗ c1 ∈ F̂(s) is called an affine key if b is cylindric and cℓ ⊆ · · · ⊆ c1 ⊆ c+ℓ .

Remark 3.35. Note that [20] uses the terminology (n, s)-cores instead of affine bikeys. Indeed, it is observed that if
b = cℓ ⊗ · · · ⊗ c1 is an affine key, then each cj is in particular the beta-set of a partition which is an n-core.

In particular, if b ∈ F̂(s) is an affine key, b is cylindric and therefore s(b) ∈ D(s). Now, for an element b ∈ F̂(s),

denoteO
Ŝn
(b) the orbit of b under the action of Ŝn. The following result is an analogue of Proposition 2.27 and is

a reformulation of [20, Proposition 5.14].

Proposition 3.36. Let s ∈ D(s). The set of all affine keys in F̂(s) is equal to O
Ŝn
(bs).
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Example 3.37. Take ℓ = n = 2 and s = (r1, r2) = (1, 0), so that bs = 0 ⊗ 0

1

. Let us compute the beginning of the

connected component of F̂(s) containing bs.

1

0

⊗ 1

0

1

1

1

⊗ 1

0

1

1

0

⊗ 1

0

2

1

2

⊗ 1

0

1

1

0

⊗ 1

0

3

1

3

⊗ 1

0

1

1

2

⊗ 1

0

2

1

1

⊗ 1

0

3

1

0

⊗ 1

0

4

...
...

...
...

...
...

0 1

1 0

0 1 0 1

1 0 1 0 1 0

Note that bs is cylindric, and therefore all vertices appearing are cylindric. In the picture, only

bs = 1

0

⊗ 1

0

1

, 1

1

⊗ 1

0

1

and 1

0

⊗ 1

0

2

are in O
Ŝn
(bs). One checks that these are affine keys in the sense of Definition 3.34, and that the others are not,

which illustrates Proposition 3.36.

We can now give a characterisation of the dual of an affine key, in the spirit of Proposition 2.28. It will be

convenient to consider the action of Ŝn on Zn determined by the formulas

w(z1, . . . , zn) = (zw(1), . . . , zw(n)) for w ∈ Sn and σ0(z1, . . . , zn) = (z1 − ℓ, z2, . . . , zn−1, zn + ℓ).

Observe that the set ˙D(s) is a fundamental domain for this action.

Proposition 3.38. Let b ∈ F̂(s). Then b is an affine key if and only if b⋆ = ḃṡ for some ṡ ∈ Zn(s).

Proof. It suffices to observe that b⋆s = ḃṡ for some ṡ ∈ D(s). The rest of the proof is analogous to that of

Proposition 2.28. The maps Ri, i = 1, . . . , n − 1 simply permute the columns of ḃṡ, and by Corollary 3.24
⋆σ0( ṙ1 ⊗ · · · ⊗ ṙn ) = ṙ1 − ℓ ⊗ ṙ2 ⊗ · · · ⊗ ṙn−1 ⊗ ṙn + ℓ , i.e. ⋆σ0(ḃṡ) = ḃσ0(ṡ). Thus, for all w ∈ Ŝn, we have
⋆w(ḃṡ) = ḃw(ṡ). Now, we have

b is an affine key⇔ b ∈ O
Ŝn
(bs) for some s ∈ D(s)

⇔ b⋆ ∈ O
Ŝn
(ḃṡ) for some ṡ ∈ Ḋ(s)

⇔ there exists w ∈ Ŝn such that b⋆ = ⋆w(ḃṡ)

⇔ there exists w ∈ Ŝn such that b⋆ = ḃw(ṡ)

�

Let s ∈ D(s). By analogy with Proposition 2.31, we say that b ∈ F̂(s) is an affine bikey of shape s if b in is the

orbit of bs under the action of Ŝn × Ŝℓ. We denote K̂(s) the set of bikeys of shape s. Similarly, given ṡ ∈ ˙D(s),

let ˙̂K(ṡ) ⊆ ˙̂F(ṡ) be the set of bikeys of shape ṡ. By Lemma 3.26, for all s ∈ D(s), there exists ṡ ∈ ˙D(s) such that

b⋆s = ḃṡ. Therefore, b ∈ K̂(s) if and only if b⋆ ∈ K̂(ṡ), which gives an analogue to Proposition 2.32.
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Finally, we can describe affine bikeys directly, in a slightly less explicit way than in finite type. First, as in Sec-
tion 2.6 the maps Rj for j = 1, . . . , ℓ act on affine keys by permuting their columns. Therefore, the elements of

K̂(s) are obtained from affine keys by combining permutations of their columns and applications of R0.

Example 3.39. Take ℓ = n = 2 and s = (r1, r2) = (1, 0) as in Example 3.37. The orbit of bs under the action of Ŝℓ

consists of the following elements

bs = 0 ⊗ 0

1

, 0

1

⊗ 0 , 1 ⊗ 1

0

1

2

, 1

0

1

2

⊗ 1 , 2 ⊗ 2

1

0

1

2

3

, 2

1

0

1

2

3

⊗ 2 , · · ·

The same procedure applied to each affine key in F̂(s) yields K̂(s).

4. BICRYSTAL STRUCTURES INVOLVING INFINITE RANK CLASSICAL ROOT SYSTEMS

In this section, we denote by X∞ any infinite Dynkin diagram of type A+∞, B∞, C∞ or D∞. We refer to [33] and
the references therein for the notations and definition used in this section. In particular, the nodes of the Dynkin
diagrams of types B∞, C∞ or D∞ are parametrised by the integers of Z≥0 so that one gets a Dynkin diagram of
type A+∞ by removing the 0-node. Our aim in this section is to explain how the An−1× Aℓ−1 bicrystal structure
described in Section 2.4 can be generalised to obtain X∞ × Aℓ−1 bicrystal structures.

4.1. Recollection on extremal crystals of type X∞. By [33], one can associate to each partition λ an extremal

weight crystal7 B∞(λ) of type X∞ which can be regarded as the direct limit of the finite type Xn-crystal Bn(λ) as-
sociated to the dominant weight λ when n tends to infinity. To be more precise let introduce the infinite alphabets

AX∞
=





{1 < · · · < n < · · · } for X = A,
{· · · < n < · · · < 1 < 0 < 1 < · · · < n < · · · } for X = B,
{· · · < n < · · · < 1 < 1 < · · · < n < · · · } for X = C,
{· · · < n < · · · < 2 < 1, 1 < 2 < · · · < n < · · · } for X = D.

The crystal B∞(λ) admits a convenient realisation in terms of Kashiwara-Nakashima tableaux of type X∞ defined
exactly as their finite rank counterpart by relaxing the admissibility condition of the columns. The general picture
is identical to the finite type A. First, the crystals B∞(1) for each type A+∞, B∞, C∞ and D∞ are respectively

1 2 · · · n− 1 n · · ·
1 2 n-2 n-1 n

· · · n n− 1 · · · 2 1 0 1 2 · · · n− 1 n · · ·
n n-1 n-2 2 1 0 0 1 2 n-2 n-1 n

· · · n n− 1 · · · 2 1 1 2 · · · n− 1 n · · ·
n n-1 n-2 2 1 0 1 2 n-2 n-1 n

· · · n n− 1 · · · 2

1

1

2 · · · n− 1 n · · ·
n n-1 n-2 2

0

1

1

0

2 n-2 n-1 n

Next, one introduces for any k ≥ 1, column tableaux c of height k as the vertices of the crystal B∞(1)⊗k with
extremal vertex the column c(k) = 1⊗ · · · ⊗ k. Finally, for any partition λ with ℓ-columns of heights k1 ≥ · · · ≥ kℓ
the tableaux of shape λ are identified with the vertices b = cℓ⊗ · · · ⊗ c1 in the connected component of the crystal

B∞(1kℓ)⊗ · · · ⊗ B∞(1k1) with extremal vertex c(kℓ)⊗ · · · ⊗ c(k1).
In type C∞, one can show that a tableau T = c1 · · · cl of shape λ is a filling of the Young diagram λ by letters of
AC∞

so that the filling of each column ci of λ is strictly increasing from top to bottom and the split form of T is
semistandard. The split form of T is obtained by splitting each column ci according to the following procedure.
Given a column c, its split form is the pair (lc, rc) of columns containing no pair of letters (z, z) with z unbarred
defined as follows. Let I = {z1 < · · · < zr} the set of unbarred letters z such that the pair (z, z) occurs in c. Define
the set J = {t1 < · · · < tr} of unbarred letters such that:

7The crystal B∞(λ) is not a highest weight crystal in types C∞, B∞, D∞.
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– t1 is the lowest unbarred letter satisfying: t1 > z1, t1 /∈ c and t1 /∈ c,
– for i = 2, ..., r, ti is the lowest unbarred letter satisfying: ti > min(ti−1,zi), ti /∈ c and ti /∈ c.

Then write:
rc for the column obtained by changing in c, zi into ti for each letter zi ∈ I and by reordering if necessary,
lc for the column obtained by changing in c, zi into ti for each letter zi ∈ I and by reordering if necessary.
Now T is a tableau of type C∞ when its split form spl(T) = lc1rc1 · · · lclrcl is semistandard. Observe this implies
that T itself is semistandard but a semistandard tableau on AC∞

is not always of type C∞. Also, the tableaux of
type A+∞ which are the semistandard tableaux on the alphabet AA+∞

coincide with the tableaux of type C∞ with
no barred letter.

Example 4.1. For

T =
2 1 2

1 2

2 3

one gets spl(T) =
3 2 1 1 2 2

1 1 2 2

2 3 3 3

therefore T is a tableau of type C∞, but

T′ =
2 2 2

1 2

2 3

with spl(T′) =
3 2 4 2 2 2

1 1 2 2

2 3 3 4

is not, although it is semistandard on AC∞
.

The tableaux of types B∞ and D∞ can be described in a similar way, through a splitting operation on their

columns. Nevertheless, in type B∞ (respectively D∞), blocks of the form 0 (respectively
1

1
) can appear in

the same column. This slightly modifies the procedure for computing the splitting form of the tableaux. A jux-
taposition T = c1 · · · cl of columns with decreasing heights will be a tableau of type B∞ (respectively D∞) if its
split form spl(T) = lc1rc1 · · · lclrcl is semistandard (respectively is semistandard and each two columns tableau
rcilci+1 avoids a particular pattern πD). We refer the reader to [32] for a complete description.
There exists a convenient notion of weight on the crystals B∞(1)⊗m, m ≥ 0 (and thus also on any tensor product

B∞(1kℓ)⊗ · · · ⊗ B∞(1k1)). For any b = x1⊗ · · · ⊗ xm in B(1)⊗m, the weight wt(b) is the sequence (γi)0≤ where for

any 0 ≤ i the integer γi is equal to the number of letters i in b minus its number of letters i.

Given λ and µ two partitions, it was proved in [33] that the crystal B∞(λ) ⊗ B∞(µ) decomposes as the disjoint
union of extremal weight crystals and this decomposition is independent of the type considered.

Theorem 4.2. For the type X∞ extremal crystals B∞(λ) and B∞(µ) we have

B∞(λ)⊗ B∞(µ) ≃
⊕
ν

B∞(ν)
cν

λ,µ

where cν
λ,µ is the usual Littlewood-Richardson coefficients associated to λ, µ and ν.

Remark 4.3.

(1) The theorem extends to the tensor products B∞(λ1)⊗ B∞(λ2)⊗ · · · ⊗ B∞(λℓ) associated to any sequence

(λ1, . . . , λℓ) of partitions. This tensor product contains a unique component isomorphic to B∞(λ1 + · · ·+
λℓ) that we will refer as the principal component (here λ1 + · · ·+ λℓ is the partition whose k-th part is the
sum of the k-th part of each λa, a = 1, . . . , ℓ).

(2) For any m ≥ 0, any connected component B of B(1)⊗m contains a unique distinguished extremal vertex,
namely a vertex bext = x1⊗ · · · ⊗ xm such that x1, . . . , xm are unbarred letters and x1 · · · xm is a Yamanouchi
word. When bext = bλ is the tableau of shape λ whose i-th row contains only letters i, B(bλ) coincides
with the set of tableaux of shape λ. In the general case, we get that wt(b) = λ is a partition and there is a
unique crystal isomorphism from B(bext) = B to B(bλ) sending bext on bλ.

4.2. Jeu de Taquin on two columns and A1-crystal structure. For any integer u ≥ 0, write B∞(ωu) for the type
X∞-crystal extremal associated to the partition 1u. It contains exactly the column tableaux of type X∞ and shape
1u. More generally, we identify the partition λ with au columns of height u with the formal weight λ = ∑u auωu.
By Theorem 4.2, we get for any integers u, v ≥ 1

B∞(ωu)⊗ B∞(ωv) ≃
min(u,v)⊕

t=0
B∞(ωt +ωu+v−t) = B∞(ωu+v)⊕ B∞(ω1 +ωu+v−1)⊕ · · ·⊕ B∞(ωmin(u,v)+ωmax(u,v)).
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When u ≤ v, the principal component B∞(ωu + ωv) of B∞(ωu)⊗ B∞(ωv) contains exactly the tableaux of type
X∞ and shape ωu + ωv. When u > v, the vertices of the principal component B∞(ωv + ωu) of B∞(ωu)⊗ B∞(ωv)
are called antitableaux of type X∞. As in Section 2.4, they can be easily described by using the splitting operation
given in Section 4.1.
Consider a vertex c2 ⊗ c1 in B∞(ωu)⊗ B∞(ωv) which is not a tableau. This means we have either u > v, or u ≤ v
and the connected component B∞(c2 ⊗ c1) containing c2 ⊗ c1 is isomorphic to a crystal B∞(ωt + ωu+v−t) with
t ≤ u− 1. In both cases the above crystal decomposition implies that the crystal B∞(ωu−1)⊗ B∞(ωv+1) contains
a unique component isomorphic to B∞(c2⊗ c1). Write ė(c2⊗ c1) for the vertex in B∞(ωu−1)⊗ B∞(ωv+1) matched
with c2 ⊗ c1 by this isomorphism. When c2 ⊗ c1 is a tableau, we set ė(c2 ⊗ c1) = 0.
Similarly, for any vertex c2 ⊗ c1 in B∞(ωu) ⊗ B∞(ωv) which is not an antitableau, there exists a unique vertex

ḟ (c2 ⊗ c1) in B∞(ωu+1) ⊗ B∞(ωv−1) such that the components B∞(c2 ⊗ c1) and B∞( ḟ (c2 ⊗ c1)) are isomorphic

and ḟ (c2⊗ c1) is matched with c2⊗ c1 by this isomorphism. When c2⊗ c1 is an antitableau, we set ḟ (c2⊗ c1) = 0.

For any c2 ⊗ c1 in B∞(ωu) ⊗ B∞(ωv), write Ḃ∞(c2 ⊗ c1) for the set obtained by applying operators ė and ḟ to
c2 ⊗ c1. We get immediately the following proposition.

Proposition 4.4. The set Ḃ∞(c2 ⊗ c1) has the structure of a highest weight A1-crystal .

The previous proposition can be regarded as an analogue of the Jeu de Taquin procedure on skew tableaux
of type A with two columns. In fact, such a notion of skew tableaux also exists in type B∞, C∞ and D∞. A
skew tableau of type X∞ is defined as the filling of a skew Young diagram by letters of AX∞

whose duplicated
form is semistandard (and avoid the pattern πD in type D∞). To any skew tableau c1 · · · cℓ, one associates the
tensor product of columns cℓ ⊗ · · · ⊗ c1. Conversely, any tensor product c2 ⊗ c1 of two columns can be regarded

as a minimal skew tableau as in Example 2.14. The operators ė and ḟ can then be interpreted as horizontal
sliding operations on this skew tableau. In type A+∞, one so recovers the usual Jeu de Taquin procedure, see
Example 2.14, in types B∞ and C∞ this corresponds to the sliding operations described in [32].

Example 4.5. In type C∞, for

c1 ⊗ c2 =

2

1

2

5

⊗

4

2

3

5

, the corresponding minimal skew tableau is

2

4 1

2 2

3 5

5

.

By using the sliding procedure in type C∞ or the previous crystal isomorphisms, one gets

ė




2

4 1

2 2

3 5

5


 =

4 2

1 1

1 5

3

5

and ḟ




2

4 1

2 2

3 5

5


 =

2

1

4 2

2 3

5 5

.

4.3. Bicrystal structure on product of columns of type X∞. Consider n, ℓ ∈ Z≥2, s = (s1, . . . , sℓ) ∈ Zℓ
≥0 and

s ∈ Z≥0. With the notation of the previous paragraph, write B∞(s) = B∞(ωs1
)⊗ · · · ⊗ B∞(ωsl

) and set B∞(s) =
⊕|s|=sB∞(s). By definition B∞(s) is a type X∞-crystal. We are going to show that it admits in fact the structure of

a type X∞ × Aℓ−1-crystal. First, for any j = 1, . . . , ℓ− 1 define the operators ėj and ḟ j on each B∞(s) as the action

of ė and ḟ on its j and j + 1-th components, that is for any c1 ⊗ · · · ⊗ cℓ ∈ B∞(s)

ėj = c1 ⊗ · · · ⊗ ė(cj ⊗ cj+1)⊗ · · · cℓ and ḟ j = c1 ⊗ · · · ⊗ ḟ (cj ⊗ cj+1)⊗ · · · cℓ.

By definition, the operators ė and ḟ commute with the action of the X∞-crystal operators, therefore ėj and ḟ j also
commute with the operators ei and fi with i ∈ X∞.

Proposition 4.6. For any b = c1 ⊗ · · · ⊗ cℓ ∈ B∞(s), the colored and oriented graph Ḃ(b) defined by applying the

operators ėj and ḟ j to b has the structure of a type Aℓ−1 crystal.

Proof. Assume first that b only contains unbarred letters. Then the result follows from Theorem 2.21. In the
general case, there exists a path in B∞(s) from b to the distinguished extremal vertex bext defined in Remark 4.3.
This path corresponds to a composition of operators ei and fi, i ∈ X∞ which commute with the operators ėj and

ḟ j, j ∈ {1, . . . , ℓ}. Therefore the graph Ḃ(b) and Ḃ(bext) are isomorphic and we are done because bext only contains
unbarred letters. �
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Denote by ḟ j any finite composition of operators ḟ j with j ∈ {1, . . . , ℓ} and by ki any finite composition of opera-

tors ei, fi with i ≥ 0.

Theorem 4.7.

(1) The crystal B∞(s) has the structure of an (X∞ × Aℓ−1)-crystal. This bicrystal is extremal for the X∞-structure and
of highest weight for the Aℓ−1-structure.

(2) The tableaux bλ associated to the partitions of rank s are the unique vertices in B∞(s) both distinguished extremal
for X∞ and of highest weight for Aℓ−1.

(3) We have the decomposition

B∞(s) =
⊕
|λ|=s

ḟ jkjbλ

where the sum runs over all the possible i and j. In particular

B∞(s) ≃
⊕
|λ|=s

B∞(λ)⊗ B(λtr)

Proof. Assertion (1) is just a reformulation of the previous proposition. To prove Assertion (2), observe first that
the vertices bλ are clearly both distinguished extremal for X∞ and of highest weight for Aℓ−1. Consider now
b = cℓ ⊗ · · · ⊗ c1 with this property. Since b only contains unbarred letters, we can apply Corollary 2.22 and
conclude that b = bλ for λ ⊢ s. Assertion (3) easily follows from 1 et 2. �

Corollary 4.8. The Aℓ−1-weight highest vertices in B∞(s) are exactly the tableaux of type X∞.

Proof. Consider b a Aℓ−1-weight vertices in B∞(s). Then, by Assertion (3) of the previous theorem, there should
exist a partition λ of rank s and sequence ki such that b = kibλ. This means that b is a tableau of type X∞.
Conversely, any tableau b can be written b = kibλ and for j = 1, . . . , ℓ− 1, we have ėj(b) = ėj(kibλ) = ki ėj(bλ) = 0
since both crystal structures commute. �

We conclude this section with some important remarks.

Remark 4.9.

(1) In another direction, Kwon established and studied in [25] a bicrystal structure arising from a duality
between extremal A+∞-crytals and generalised Verma A∞-crystals.

(2) Contrary to Section 2.4, we dit not introduce a duality b → b∗ from which the Aℓ−1-crystal structure on
B∞(s) can easily be made explicit. Although the Aℓ−1-highest vertices of B∞(s) correspond to Kashiwara-
Nakashima tableaux of type X∞, we cannot use the same duality as in type Aℓ−1. Indeed, in types B∞

and D∞, these tableaux are not semistandard on AX∞
in general. Moreover, even in type C∞, the action

of a crystal operator ėj and ḟ j does not coincide with a horizontal sliding of the ordinary Jeu de Taquin of
type A. This problem, also related to the cyclage operation on tableaux defined in [30] and [31] will be
considered elsewhere.

(3) The previous corollary can also be obtained without referring to Section 2.4. For b = c1 ⊗ · · · ⊗ cℓ a Aℓ−1-
highest weight in B∞(s), the equality ėj(b) = 0 for any j = 1, . . . , ℓ− 1 means that cj ⊗ cj+1 is a tableau of
two columns for any j = 1, . . . , ℓ− 1. This implies that b is a tableau of type X∞ because the tableaux are
characterised locally by conditions on their pairs of consecutive columns.

(4) The results of this section can also be regarded as bicrystal structures on particular matrix sets. In type
A+∞ or C∞, each vertices b = c1⊗ · · · ⊗ cℓ of B∞(s) can indeed be encoded in an infinite matrix M = (mi,j)
with rows indexed by Z \ {0} and columns indexed by {1, . . . , ℓ}, where mi,j = 1 if cj contains the letter
i ∈ Z \ {0} and mi,j = 0 otherwise. In type B∞ we proceed similarly, except that the integers in the rows

m0,j may be greater than 1. Finally in type D∞, the coefficient m0,j counts the number of blocks
1

1
in cj.

5. FIXED POINTS IN BICRYSTALS

In this section, we show that bicrystals structures of classical types can be obtained by considering fixed points
sets under involutions defined on our combinatorial Fock spaces. We shall detail mainly the classical case, the
methods and arguments being similar in the affine situation.
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5.1. Dynkin diagram involutions in finite type A. In type An−1, let θ be the Dynkin diagram automorphism
mapping the vertex i to n− i, for all i = 1, . . . , n− 1. Then θ induces a map on the set of dominant weights of
type An−1 that we denote by the same symbol

θ : P+ → P+,
n−1

∑
i=1

aiωi 7→
n−1

∑
i=1

aiωn−i.

We can also define the map θ on the partitions of length at most n: θ replaces each column of height 0 < i < n by
a column of height n− i and fixes the columns of height 0 or n.
For any partition λ, recall that B(λ) is the crystal of highest weight vertex bλ. It can be realised by using semis-
tandard tableaux of shape λ, and in this case bλ is the tableau of shape λ with only k’s in row k [17, Section 7.3].
The map θ induces a map on B(λ) that we denote by the same symbol

θ : B(λ) −→ B(θ(λ)),

which maps bλ to bθ(λ) and which is a θ-isomorphism of crystals, i.e. for all b ∈ B(λ), and for all i = 1, . . . , n− 1,

θ( fib) = fθ(i)(θ(b)) = fn−i(θ(b)).

Example 5.1. Take n = 3 and let λ = ω1 = , so that θ(λ) = ω2 = . We get the following crystals.

B(λ) = 1
1
−→ 2

2
−→ 3 and B(θ(λ)) = 1

2

2
−→ 1

3

1
−→ 2

3
.

5.2. Crystal structure on fixed points sets. Denote

Pθ
+ = {λ ∈ P+ | θ(λ) = λ}

the set of dominant weights fixed under θ, so that

λ ∈ Pθ
+ ⇔ ∃ a1, . . . , a⌊n/2⌋ ∈ Z s.t. λ =





n/2−1

∑
i=1

ai(ωi + ωn−i) + an/2ωn/2 if n− 1 is odd,

(n−1)/2

∑
i=1

ai(ωi + ωn−i) if n− 1 is even.

Definition 5.2. For any weight λ in Pθ, set λ′ = ∑
⌊n/2⌋
i=1 aiω

′
i where ω′i is the i-th fundamental weight of type X⌊n/2⌋, with

X = B if n− 1 is odd and X = C if n− 1 is even

For any partition λ with at most n parts and such that θ(λ) = λ, there exists a unique crystal involution on B(λ)
such that

θ( f̃i1 · · · f̃ir
(bλ)) = f̃θ(i1) · · · f̃θ(ir)(bλ)

for any sequence i1, . . . , ir in {1, . . . , n− 1} of arbitrary length. This permits to consider the set

B(λ)θ = {b ∈ B(λ) | θ(b) = b} .

In [38, 39] Naito and Sagaki established the following theorem. Consider a partition λ with at most n parts and
such that θ(λ) = λ.

Theorem 5.3. For i = 1, . . . , ⌊n/2⌋, define the modified crystal operators

(1) if n− 1 is odd,

f θ
i =

{
fi fn−i if i = 1, . . . , n/2− 1

fi if i = n/2.

(2) if n− 1 is even,

f θ
i =

{
fi fn−i if i = 1, . . . , (n− 1)/2− 1

fi f 2
i+1 fi if i = (n− 1)/2.

Then every b ∈ B(λ)θ is obtained by applying a sequence of modified crystal operators to the highest weight vertex bλ of
B(λ). This induces a crystal structure on B(λ)θ. Moreover, we have

B(λ)θ ≃ B(X⌊n/2⌋)(λ′),

the crystal of classical type X⌊n/2⌋ with highest weight λ′. In each case, the action of the modified crystal operators is mapped
to the action of the classical crystal operators.
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Example 5.4.

(1) Take n = 4, and λ = ω1 + ω3 = , so that λ ∈ Pθ
+. Then we have

B(λ)θ =
1 1

2

3

1
−→

1 2

2

4

2
−→

1 2

3

4

2
−→

1 3

3

4

1
−→

2 4

3

4

≃ B(B2)(λ′)

with λ′ = ω′1.

(2) Take n = 5, and λ = ω1 + ω4 = , so that λ ∈ Pθ
+. Then we have

B(λ)θ =

1 1

2

3

4

1
−→

1 2

2

3

5

2
−→

1 4

3

4

5

1
−→

2 5

3

4

5

≃ B(C2)(λ′)

with λ′ = ω′1.

Case (1) is a particular occurrence of a phenomenon called “similarity of crystal bases” by Kashiwara [23, Theo-
rem 5.1]. In fact, in the case where n− 1 is odd, we can also exhibit a type Cn/2 crystal structure on a subset of
B(λ)θ as follows.
Assume n − 1 is odd and let λ is a partition with at most n parts and with associated weight of the form λ =

∑
n/2
i=1 ai(ωi + ωn−i). Let η : B(λ)→ B(λ) be the involution defined by η(bλ) = bλ and

η( f̃i1 · · · f̃ir
(bλ)) = f̃

ai1
n−i1
· · · f̃

air
n−ir

(bλ) with aik
=

{
1 if ik 6= n/2,
2 otherwise.

for any sequence i1, . . . , ir in {1, . . . , n− 1} of arbitrary length. Accordingly, we write

P
η
+ =

{
λ ∈ P+

∣∣∣∣λ =
n/2

∑
i=1

ai(ωi + ωi+1)

}
⊂ Pθ

+,

and for λ ∈ P
η
+, let λ† = ∑

n/2
i=1 aiω

†
i where ω†

i denotes the i-th fundamental weight of type Cn/2. Let

B(λ)η = {b ∈ B(λ) | η(b) = b} .

Theorem 5.5. Assume n− 1 is odd and let λ be a partition with associated weight in P
η
+. Consider the modified crystal

operators

f
η
i = fi fn−i for all i = 1, . . . , n/2.

Then every b ∈ B(λ)η is obtained by applying a sequence of modified crystal operators f
η
i to the highest weight vertex bλ of

B(λ). This induces a crystal structure on B(λ)η. Moreover, we have

B(λ)η ≃ B(Cn/2)(λ†),

the crystal of type Cn/2 with highest weight λ†, where the action of the modified crystal operators is mapped to the action of
the classical crystal operators.

Example 5.6. Take n = 4, and λ = ω1 + ω3 = , so that λ ∈ P
η
+. Then we have

B(λ)η =
1 1

2

3

1
−→

1 2

2

4

2
−→

1 3

3

4

1
−→

2 4

3

4

≃ B(C2)(λ′)

with λ′ = ω′1.

Remark 5.7. For λ ∈ P+, one might also consider the set B(λ)θ = {b ∈ B(λ) | θ(wt(b)) = wt(b)} ⊃ B(λ)θ.
Nevertheless, the modified crystal operators of Theorem 5.3 and Theorem 5.5 do not endow B(λ)θ with the
structure of a crystal. For example in type A3 for λ = (4, 3, 3), B(λ)θ would so have a source vertex of weight
(4, 3, 2, 1) whose associated connected component is not a type B2-crystal.
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5.3. Bicrystal structure on fixed points sets: the finite case. In this section, we combine the results from Sec-
tion 2.4 and Section 5.2 to exhibit bicrystals structures of mixed types A× B, A× C and B × C. Recall that we
have fixed s ∈ Z≥0 and considered

F(s) =
⊕

s∈Zℓ(s)

F(s) =
⊕

s∈Zℓ(s)

B(ωs1
)⊗ · · · ⊗ B(ωsn).

By Corollary 2.22 and Theorem 2.25, we get

F(s) =
⊕

λ∈S (s)

ḟ ∗j fibλ, which implies F(s) ≃
⊕

λ∈S (s)

B(λ)⊗ B(λtr)

where S (s) is the set of partitions of s with Dynkin diagram contained in the rectangle n × ℓ. Now, for all

b = ḟ ∗j fibλ ∈ F(s) such that θ(λ) = λ, we set

θ(b) = ḟ ∗j θ( fibλ)

where θ( fibλ) = fn−ir · · · fn−i1 bλ if i = (i1, . . . , ir), and we consider

F(s)θ =
{

b ∈ F(s) | b = ḟ ∗j fibλ with θ(λ) = λ and θ(b) = b
}

.

By Theorem 5.3, we then get a bicrystal structure.

Theorem 5.8. The set F(s)θ has an (X⌊n/2⌋ × Aℓ−1)-crystal structure, where

X =

{
B if n− 1 is odd,
C if n− 1 is even.

This yields the decomposition

F(s)θ ≃
⊕

λ∈S (s), θ(λ)=λ

B(X⌊n/2⌋)(λ′)⊗ B(λtr).

In fact, we can consider fixed points on either side, and on both sides simultaneously. To see this, we need to
consider the automorphism θ̇ of the Dynkin diagram of type Aℓ−1. Similarly to θ, the map θ̇ induces an involution
on the set of partitions with at most ℓ columns flipping rows of length j and ℓ− j for 0 < j < ℓ and fixing rows of

length 0 or ℓ. Then, for any partition λ fixed by θ̇, we can define θ̇ on b = ḟ ∗j fibλ ∈ F(s) by setting

θ̇(b) = fi(θ̇ ḟ j)
∗bλ

where θ̇( ḟ ∗j bλ) = ḟ ∗ℓ−jr
· · · ḟ ∗ℓ−j1

bλ if j = (j1, . . . , jr), and also consider

F(s)θ̇ =
{

b ∈ F(s) | b = ḟ ∗j fibλ with θ̇(λ) = λ and θ̇(b) = b
}

.

Theorem 5.9. The set F(s)θ̇ has an (An−1× Ẋ⌊ℓ/2⌋)-crystal structure, where

Ẋ =

{
B if ℓ− 1 is odd
C if ℓ− 1 is even

This yields the decomposition

F(s)θ̇ ≃
⊕

λ∈S (s), θ̇(λ)=λ

B(λ)⊗ B(Ẋ⌊ℓ/2⌋)((λtr)′).

Now set
S (s)θ,θ̇ = {λ ∈ S (s) | θ(λ) = λ and θ̇(λ) = λ}.

Then the set
F(s)θ,θ̇ = F(s)θ ∩ F(s)θ̇.

is the subset of F(s) obtained from the double highest weight vertices bλ with λ ∈ S (s)θ,θ̇ by applying the

modified crystal operators f θ
i and ḟ θ̇

j .
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Theorem 5.10. The set F(s)θ,θ̇ has the structure of an (X⌊n/2⌋ × Ẋ⌊ℓ/2⌋)-crystal where

X⌊n/2⌋ =

{
B if n− 1 is odd,
C if n− 1 is even,

and Ẋ⌊ℓ/2⌋ =

{
B if ℓ− 1 is odd,
C if ℓ− 1 is even.

Moreover, we have the decomposition

F(s)θ,θ̇ ≃
⊕

λ∈S (s)θ,θ̇

B(X⌊n/2⌋)(λ′)⊗ B(Ẋ⌊ℓ/2⌋)((λtr)′).

Remark 5.11.

(1) It would be interesting to have a combinatorial description of the set F(s)θ,θ̇ as tensor products of columns
or binary matrices.

(2) By applying the relevant weight functions on the previous decompositions obtained for F(s)θ, F(s)θ̇ and

F(s)θ,θ̇, one can get analogues of Cauchy identities in our bicrystal context . For example, for any vertex b

in F(s)θ,θ̇, wt(b)′ is a weight of type X⌊n/2⌋ whereas wt(b∗)′ is a weight of type Ẋ⌊ℓ/2⌋. One obtains

∑
b∈F(s)θ,θ̇

xwt(b)′ywt(b∗)′ = ∑
λ∈S (s)θ,θ̇

s
(X⌊n/2⌋)

λ′ (x)s
(Ẋ⌊ℓ/2⌋)

(λtr)′
(y)

where for any partition ν of length at most m (respectively at most p), s
(Xm)
ν (respectively s

(Ẋp)
ν ) stands for

the Weyl character of type Xm (respectively Ẋp) associated to ν.
(3) The results of this paragraph have analogues when the map θ is replaced by the map η defined in Sec-

tion 5.2 and Pθ by Pη.
(4) In [24], King established the interesting Cauchy type formula

n

∏
i=1

ℓ

∏
j=1

(xi + x−1
i + yj + y−1

j ) = ∑
λ⊂n×ℓ

s
(Cn)
λ (x)s

(Cℓ)
[λ]

(y)

where [λ] is the transposed of the rectangular complement of λ in n × ℓ. Although the right-hand side
looks similar to the sum appearing in our results when n− 1 and ℓ− 1 are even, it is not obvious to relate
both.

To conclude this paragraph, let us introduce a last natural involution θ̈ on the set S (s). Here for any λ ∈ S (s),
the Young diagram of θ̈(λ) is obtained from that of λ by changing each column of height 0 ≤ i ≤ n in a column
of height n− i. In other words, θ̈(λ) is the π-rotation of the complement of λ in the n× ℓ-rectangle as illustrated
in Example 5.12 below. In particular θ and θ̈ coincide on the partitions with no column of height n or 0 but this is
not true in general.

Example 5.12. Take ℓ = 5, n = 3 and λ = . Then λ and θ̈(λ) fit in the n× ℓ-rectangle as follows

λ π-rotation of θ̈(λ) so we have θ̈(λ) = .

One may also observe that θ̈(λ) = λ if and only if θ̈(λ) is obtained from λ by changing each row of length
0 ≤ j ≤ ℓ in a row of length ℓ− j. In fact, we see that θ̈(λ) = λ if and only if each box of the Young diagram of λ
is paired with a box of n× ℓ outside λ.
Also, the weights of type An−1 and Aℓ−1 associated to the partitions in the set

S
θ̈(s) = {λ ∈ S (s) | θ̈(λ) = λ}

are fixed simultaneously by θ and θ̇ (since columns of height n and rows of length ℓ do not contribute to An−1

and Aℓ−1 weights, respectively). Thus

F(s)θ̈ = {b ∈ F(s)θ,θ̇ | b = fi ḟ ∗j bλ with θ̈(λ) = λ}

has a bicrystal structure exactly as in Theorem 5.10. Also, note that when ℓ and n are both odd, the set S θ̈(s) is
empty.
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Example 5.13. Assume n = 4 and ℓ = 3. Then the set S θ̈(s) contains exactly the partitions
(2, 2, 1, 1), (3, 3, 0, 0), (3, 2, 1, 0). We have

∑
b∈F(s)θ̈

xwt(b)′ywt(b∗)′ = s
(B2)
(1,1)

(x)s
(Ċ1)
(2)

+ s
(B2)
(3,3)

(x)s
(Ċ1)
(0)

(y) + s
(B2)
(2,1)

(x)s
(Ċ1)
(1)

(y).

5.4. Bicrystal struture on fixed points sets: the affine case. Consider the type A
(1)
n−1 Dynkin diagram automor-

phism θ : i 7→ −i mod n, for all i = 0, . . . , n − 1. Its induces an involution on the cone of dominant weights
P+ sending each fundamental weight ωi, i = 0, . . . , n− 1 on ω−i mod n. Let Pθ

+ be the subset of P+ of dominant
weights fixed by θ. When n = 2m is even (respectively n = 2m− 1 is odd), there is a bijection λ 7→ λ′ between the

sets Pθ
+ and the set P

(D
(2)
m+1)

+ (respectively P
(A

(2)
2(m−1)

)

+ ) of dominant weights for the root system D
(2)
m+1 (respectively

A
(2)
2(m−1)

) (in Kac’s classification of affine Dynkin diagrams [22]).

For any λ ∈ P+, similarly to the classical case, we have a crystal anti-isomorphism also denoted by θ from B(λ) to
B(θ(λ)) which flips the labels i and −i mod n of the arrows. Assuming that θ(λ) = λ, one gets an involution on
B(λ) (also denoted by θ) and it makes sense to set Bθ(λ) = {b ∈ B(λ) | θ(b) = b}. Let us define some modified
crystal operators by

f θ
i = fi f2m−i, i = 1, . . . , n− 1, f θ

0 = f0 and f θ
m = fm when n = 2m,

f θ
i = fi f2m−1−i, i = 1, . . . , n− 1, f θ

0 = f0 and f θ
m = fm f 2

m−1 fm when n = 2m− 1.

In [39], it was proved that when n = 2m− 1 (respectively n = 2m) these operators stabilize B(λ)θ and the crystal

structure obtained in this way is isomorphic to B(D
(2)
m+1)(λ′) (respectively to B(A

(2)
2m)(λ′)). Write for short B(X)(λ′)

the crystal obtained in both cases.

By Lemma 3.26, for any s ∈ D(s), the image of the vertex b = bs by the duality ⋆ is ḃs⋆ with s⋆ ∈ Ḋ(s). Recall

that we had denoted ωs = ωsℓ + · · ·+ ωs1
for s ∈ D(s) and ω̇ṡ = ω̇ṡn + · · ·+ ω̇ṡ1

for ṡ ∈ ˙D(s). By mimicking the

construction in Section 5.3, one can define, for any combinatorial Fock space F̂(s), the crystal F̂(s)θ as the crystal

generated from the triple highest weight vertices bs with s ∈ D(s)θ where

D(s)θ = {s ∈ D(s) | θ(ωs) = ωs} .

Then, F̂(s)θ has the structure of an (X × A∞ × A
(1)
ℓ−1)-crystal. Similarly, by considering θ̇ the Dynkin diagram

automorphism of type A
(1)
ℓ−1, one can define the crystal F̂(s)θ̇ , which has an (A

(1)
n−1 × A∞ × Ẋ)-crystal structure.

Finally, write

D(s)θ,θ̇ = {s ∈ D(s) | θ(ωs) = ωs and θ̇(ω̇s⋆) = ω̇s⋆}

Example 5.14. Assume s = (s1, . . . , sℓ) belong to D(s) and is such that 0 ≤ s1 ≤ s1 ≤ · · · ≤ sℓ < n with sj = sℓ−j+1

for any j = 1, . . . , ℓ. Then we clearly have θ(s) = s. But by Lemma 3.26 we also get θ̇(s) = s since for any

j = 1, . . . , ℓ− 1 we have sj+1 − sj = (n− sj)− (n− sj+1) = sℓ−j+1− sℓ−j. In particular s ∈ D(s)θ,θ̇ .

Now define F̂(s)θ,θ̇ as the crystal generated by the operators f θ
i and ( ḟ θ̇

i )
∗ applied on the triple highest weight

vertex bs with s ∈ D(s)θ,θ̇. Then F̂(s)θ,θ̇ has the structure of an (X × A∞ × Ẋ)-crystal. The crystals F̂(s)θ , F̂(s)θ̇

and F̂(s)θ,θ̇ can then be regarded as combinatorial Fock spaces carrying a crystal structure other than type A.

When n = 2m is even, one can also define the subset P
η
+ (respectively P

ζ
+) of Pθ

+ of weights with an even ω0-

coordinate (respectively with even ω0 and ωm-coordinates). Then, there is a bijective map ωs 7→ ω†
s between P

η
+

and P
(Ã

(2)
2m)

+ the set of dominant weights for the affine root system Ã
(2)
2m . We also have a bijective map ωs 7→ ω

‡
s

between P
ζ
+ and P

(C
(1)
m )

+ the set of dominant weights for the affine root system C
(1)
m . Let us define some modified

crystal operators by

f
η
i = fi f2m−i, i = 1, . . . , n− 1, f

η
0 = f 2

0 and f
η
m = fm,

f
ζ
i = fi f2m−i, i = 1, . . . , n− 1, f

ζ
0 = f 2

0 and f
ζ
m = f 2

m.

Write F̂(s)η (respectively F̂(s)ζ) for the subcrystal of F̂(s) obtained by applying the operators f
η
i (respectively the

operators f
ζ
i ) to vertices of the form bs with s fixed by η (respectively ζ). By the results of [23], one gets that F̂(s)η
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and F̂(s)ζ are isomorphic to the crystals F(Ã
(2)
2m)(s†) and F(C

(1)
m )(s‡) of type Ã

(2)
2m and C

(1)
m , respectively. From any

combinatorial Fock space F̂(s), one can then define the combinatorial Fock spaces F̂(s)η , Fη̇(s), F̂(s)ζ and F̂(s)ζ̇ as
previously and also get triple structures of crystal with one structure of affine type other than A.
In general, one can define sets

D(s)♯,♭̇ = {s ∈ D(s) | ωs ∈ P♯
+ and ω̇ṡ ∈ Ṗ♭

+}

where the symbols ♯ and ♭ belong to the set {θ, η, ζ}. We can then define F̂(s)♯,♭̇ as the crystal generated by the

operators f ♯i and ( ḟ ♭̇i )
∗ applied on the triple highest weight crystal bs with s ∈ D(s)♯,♭̇. It admits the structure of

an (X × A∞ × Ẋ)-crystal described by the table below.

θ, n = 2m− 1 θ, n = 2m η, n = 2m ζ, n = 2m

θ̇, ℓ = 2p− 1 A
(2)
2(m−1)

× A∞ × Ȧ
(2)
2(p−1)

D
(2)
m+1× A∞ × Ȧ

(2)
2(p−1)

Ã
(2)
2m × A∞ × Ȧ

(2)
2(p−1)

C
(1)
m × A∞ × Ȧ

(2)
2(p−1)

θ̇, ℓ = 2p A
(2)
2(m−1)

× A∞ × Ḋ
(2)
p+1 D

(2)
m+1× A∞ × Ḋ

(2)
p+1 Ã

(2)
2m × A∞ × Ḋ

(2)
p+1 C

(1)
m × A∞ × Ḋ

(2)
p+1

η̇, ℓ = 2p A
(2)
2(m−1)

× A∞ ×
˙̃A
(2)
2p D

(2)
m+1× A∞ ×

˙̃A
(2)
2p Ã

(2)
2m × A∞ ×

˙̃A
(2)
2p C

(1)
m × A∞ ×

˙̃A
(2)
2p

ζ̇, ℓ = 2p A
(2)
2(m−1)

× A∞ × Ċ
(1)
p D

(2)
m+1× A∞ × Ċ

(1)
p Ã

(2)
2m × A∞ × Ċ

(1)
p C

(1)
m × A∞ × Ċ

(1)
p

In each case, F̂(s)♯,♭̇ can be regarded as a combinatorial Fock space carrying a triple crystal structure, two of them
being of affine type other than A. Observe that this gives rises to all possible classical affine crystal structures
except those corresponding to Dynkin diagrams containing a sub-Dynkin diagram of classical type D.

6. PROMOTION OPERATOR AND A GENERALISATION OF PITMAN’S 2M-X TRANSFORM

In this section, we first relate the Pitman transform 2M-X to the affine crystals A
(1)
1 and show how the energy can

be used to prove that the successive iterations of this transform on trajectories on Z with steps ±1 tend to the
trivial trajectory, all of whose steps are equal to 1. We next define a transformation analogue in higher dimension
and establish that it also yields a natural convergence of trajectories.

6.1. Affine type A
(1)
1 -crystal and Pitman’s 2M-X transform. In this paragraph, we shall consider tensor products

B⊗n of the affine Kirillov-Reshetikhin crystal of type A
(1)
1 where

B : 1
0
⇆
1

2.

There is a straightforward bijection between the vertices b∗ = ε1 ⊗ · · · ⊗ εn ∈ B⊗n and the trajectories π of length
n on the set Z of integers starting at 0 with steps +1 or −1 defined by π(k) = π+(k)−π−(k) for any k = 0, . . . , n
where π+(k) (respectively π−(k)) is the numbers of letters 1 (respectively of letters 2) in ε1 ⊗ · · · ⊗ εk. In the
sequel, we shall abuse the notation and identify the vertices b∗ with their associated path π. This corresponds to
the Littelmann path model for A1 and it is easy to check that b∗ is a Yamanouchi word if and only if π(k) ≥ 0 for
any k = 0, . . . , n.
We now define the two Pitman transforms Pmin and Pmax on the trajectories π ∈ B⊗n by

Pmin(π)(k) = π(k)− 2 min
0≤a≤k

π(a) and Pmax(π)(k) = 2 max
0≤a≤k

π(a)− π(k)

for any 0 ≤ k ≤ n. The following properties are easy to check.

(1) The image by Pmin or P∗max of any trajectory π ∈ B⊗n is a trajectory which always remains nonnegative.
(2) The trajectoryPmin(π) corresponds to the highest weight vertex associated to π in B⊗n for the A1-structure

obtained by deleting the 0-arrows.
(3) The nonnegative trajectories are fixed by the transformation Pmin (since we then have inf0≤a≤k π(k) = 0

for any 0 ≤ a ≤ n). This is not true for the transformation Pmax.
(4) We have Pmin(π) = π if and only if min0≤a≤k π(a) = 0 for any 0 ≤ k ≤ n, that is π remains nonnegative.
(5) We have Pmax(π) = π if and only if max0≤a≤k π(a) = π(k) for any 0 ≤ k ≤ n. This means that π(k) = k

for any 0 ≤ k ≤ n, i.e. π is the trivial trajectory π0 whose all steps are equal to 1.
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In the particular case A
(1)
1 , the promotion operator pr acts on each trajectory π just by flipping the steps +1 and

−1. Thus, the path pr(π) is obtain by reflecting the path π i.e. we have pr(π)(k) = −π(k) for any 0 ≤ k ≤ n.
This implies that

Pmax = Pmin ◦ pr.

By using the results of Section 2.7, we get the following proposition

Proposition 6.1.

– For any π in B⊗n, we have D(Pmin(π)) = D(π): the Pitman transform Pmin preserves the energy D.
– For any nonnegative trajectory π in B⊗n, we have D(pr(π)) = D(π)− π−where π− is equal to the number of

steps −1 in π: the promotion operator makes decrease the energy of a trajectory as the number of its negative steps.

– For any trajectory π in B⊗n, there exists an integer m0 such that for any m ≥ m0, we have P
(m)
max(π) = π0.

Proof. The first claim follows from the fact that Pmin(π) is the highest weight vertex of the A1-connected compo-
nent containing π and D is constant on classical components. The second one is a consequence of Lemma 2.50.

Finally, the sequence of integers D(π(m)) is nonnegative, strictly decreasing while π(m) contains at least a step

−1. It will eventually becomes equal to zero for m sufficiently large. Then π(m) = π0 because π0 is the unique
nonnegative trajectory such that D(π0) = 0 (or the unique fixed point by the transform Pmax. �

Example 6.2. Starting with π = 112121, we get

pr(π) = 221212, Pmax = Pmin ◦ pr(π) = 111212, prPmax(π) = 222121,

P2
max(π) = 111121, pr◦P2

max(π) = 222212, P3
max(π) = 111112,

pr ◦ P3
max(π) = 222221, P4

max(π) = 111111.

Remark 6.3. In his seminal article [41], Pitman proves that the image by the transforms Pmax and Pmin of a one-
dimensional Brownian motion is a 3-dimensional Bessel process (i.e. the norm of a 3-dimensional Brownian
motion). One can replace this Brownian motion by a random walk with transitions +1 and −1 and related
probabilities p1, p−1 where p1 + p−1 = 1. Its image by Pmin or Pmax yields a Markov chain on Z≥0. Later, it
was observed by Biane, Bougerol and O’Connell [1] that Pmin can be interpreted in Littelmann’s path theory as
the transform associating to each path its corresponding highest weight path. The previous one-dimensional
results then admit higher dimensional generalisations (see for example [1] and [34]). As far as we are aware, our
interpretation of Pmax in terms of affine crystals is new.

6.2. Generalisation to higher dimension. The generalised Pitman transform Pmin introduced in [1] is defined
for any finite root system R with Dynkin diagram I. It associates to each Littelmann path, its highest weight
path. Here, one can first define a Pitman transform Pi,min for any node i ∈ I as in Section 6.1: it just computes
the highest weight path for the A1-crystal corresponding to the node i. Then one has Pmin = Pmin,i1 · · · Pmin,ir

where si1 · · · sir
is a decomposition of the longest element w0 of the Weyl group of R as a product of elementary

reflections si, i ∈ I. In particular Pmin does not depend on the reduced decomposition considered.
Proposition 6.1 suggests to look for a natural higher dimensional generalisation of the results of Section 2.4. Let

B be the A
(1)
ℓ−1-crystal with set of vertices {1, 2, . . . , ℓ} such that for any j = 0, . . . , ℓ− 1 we have

ḟ j(k) =

{
k + 1 mod ℓ if k = j mod ℓ,
0 otherwise.

This is the simplest nontrivial Kirillov-Reshetikhin crystal of type A
(1)
ℓ−1 associated to the rectangle 1× 1. For any

integer n, the vertices of Ḃn,ℓ = B⊗n coincide with the tensor product b∗ = d1 ⊗ · · · ⊗ dn of n columns with height
1 on the alphabet {1, . . . , ℓ}. With the notation of Section 2.4, the corresponding vectors b ∈ F(n) are the tensor
products b = cℓ ⊗ · · · ⊗ c1 of ℓ-columns in which each letter of {1, . . . , n} appears exactly once. Set b∗fin = 1⊗n.
Then bfin = ∅⊗ ∅⊗ · · · ⊗ c1,...,n where c1,...,n is the column containing exactly the letters {1, . . . , n}.
One might first define a transform P ′max as in [1] by setting P ′max = Pmax,i1 · · · Pmax,ir

where w0 = si1 · · · sir
is a

reduced decomposion of w0. But then, as illustrated by the following example, P ′max would depend on the chosen
reduced decomposition.

Example 6.4. Assume ℓ = 3 and n = 5. To apply Pmax,1 (respectively Pmax,2) to a vertex b∗ in Ḃ5,3, we have first
to flip the letters 1 and 2 (respectively 2 and 3) and next compute the source vertex of the 1-chain (respectively
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the 2-chain) corresponding to the vertex so obtained. For the vertex b∗ = 2⊗ 1⊗ 2⊗ 3⊗ 2 = 21232 (we omit the
symbol ⊗ for short), we get

21232
Pmax,1
→ 12131

Pmax,2
→ 12121

Pmax,1
→ 11212,

21232
Pmax,2
→ 21223

Pmax,1
→ 12113

Pmax,2
→ 12112.

Thus Pmax,1Pmax,2Pmax,1 6= Pmax,2Pmax,1Pmax,2.

In order to generalize Proposition 6.1, we rather set

Pmax :

{
Ḃn,ℓ → Ḃn,ℓ

b∗ → pr ◦ Pmin(b∗)

where Pmin is the generalised Pitman transform of [1], that is Pmin(b∗) is the highest weight vertex of the Aℓ−1-
connected component containing b∗.

Theorem 6.5.

(1) For any vertex b∗ in Ḃn,ℓ, we have D(Pmin(b∗)) = D(b∗).

(2) For any vertex b∗ in Ḃn,ℓ, there exists an integer m0 such that for any m ≥ m0, we have P
(m)
max(b∗) = b∗fin.

Proof. Assertion (1) follows from the fact that the energy D is constant over classical components and Pmin(b∗)

is the highest weight vertex associated to b∗. For Assertion (2), set b∗m = pr−1 ◦ P
(m)
max(b∗) for any m ≥ 0. Then

b∗1 = Pmin(b∗) and thus b1 is a tableau. More generally, by using the results of Section 2.7, we get that the

sequence bm, m ≥ 1 coincides with the sequence of tableaux ξm−1(b1), that is with the cyclage sequence defined
from the standard tableau b1. Since all these tableaux are standard, this sequence is indeed well-defined and

eventually ends on the column c1,...,n. This means that there exists an integer m0 such that P
(m0)
max (b

∗) = b∗fin. Since

P
(a)
max(b

∗
fin) = b∗fin for any a ≥ 0, we get P

(m)
max(b

∗) = b∗fin for any m ≥ m0. �

Remark 6.6.

(1) By sligthly generalizing the notion of an authorised cyclage operation, it is possible to define an ana-
logue of Pmax on any tensor product of columns (not only for columns of height 1) which yields a similar
convergence property.

(2) In [34], random walks are defined from tensor products of crystals. In particular, one can endow the
crystal Ḃn,ℓ with a probability distribution compatible with the Aℓ−1-weight graduation (i.e.; two vertices
with the same Aℓ−1-weight have the same probability). This permits to define a random walk on the
weight lattice of type Aℓ−1 whose image by Pmin is a Markov chain in the Weyl chamber. We though that
our transform Pmax also admits interesting probabilistic properties that we aim to study later.

(3) For the other classical affine root systems, it is also possible to define an analogue of the transformation
Pmax by using the results of [35] which essentially reduces their study (and notably the computation of
the energy) to affine type A crystals by using relevant Dynkin diagram automorphisms.
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