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INTRODUCTION

Crystals are oriented graphs which can be interpreted as the combinatorial skeletons of certain modules for complex Lie algebras and their infinite-dimensional analogues: the Kac-Moody algebras. Crystal bases were introduced by Lusztig (for any finite root system) and Kashiwara (for classical root systems) in 1990. The graph structure arises from the action of the so-called Kashiwara operators, a certain renormalisation of the Chevalley operators. In Kashiwara's approach, crystals are obtained via "crystallisation" at q = 0 of representations of the corresponding quantum group, a q-deformation of the Kac-Moody algebra introduced by Jimbo. Later, it was proved that crystals coincide with Littelmann's graphs defined by using his path model. Since its introduction, crystal theory has revealed numerous fruitful interactions with modern particle physics theory and integrable systems. We refer the reader to [START_REF] Bump | Crystal Bases: Representations And Combinatorics[END_REF] and the references therein for a recent exposition.

The present paper is concerned with generalisations of crystals where multimodule structures are considered rather than just ordinary module structures. This means that we consider analogues of crystals for complex vector spaces endowed with commuting actions of several Lie algebras (or Kac-Moody algebras). It turns out that most of the combinatorial structures (crystals, Fock spaces, one-dimensional sums, Pitman transforms) that we shall consider in the sequel were defined to solve problems connected to theoritical physics. We expect similar interactions with the results we establish here.

The prototypical example of an interesting bicrystal is obtained by starting from the gl n × gl ℓ -module C n ⊗ C ℓ and considering the associated symmetric and antisymmetric (gl n × gl ℓ )-modules S(C n ⊗ C ℓ ) and Λ(C n ⊗ C ℓ ). Using two sets of indeterminates {x 1 , . . . , x n } and {y 1 , . . . , y ℓ }, one can check that their characters are given by the formulas char S(C n ⊗ C ℓ ) = ∏ 1≤i≤n 1≤j≤ℓ 1 1x i y j and char Λ(C n ⊗ C ℓ ) = ∏ 1≤i≤n 1≤j≤ℓ

(1 + x i y j ).

The classical Cauchy identities then gives the decomposition of each character in terms of the Schur functions. More precisely, recall that the irreducible finite-dimensional gl n -modules are parametrised by partitions of length n (that is, nonincreasing sequences λ = (λ 1 , . . . , λ n ) of nonnegative integers) and the character of the irreducible module parametrised by λ is the Schur symmetric polynomial s λ (x) in the variables x 1 , . . . , x n . We then have char S(C n ⊗ C ℓ ) = ∏ where λ tr is the transpose of the partition λ. Both identities, which can be seen as a combinatorial version of Howe duality, admit an elegant combinatorial proof based on the Robinson-Schensted-Knuth (RSK) correspondence, see [START_REF] Fulton | Young Tableaux[END_REF]. The idea is first to observe that

∏ 1≤i≤n 1≤j≤ℓ 1 1 -x i y j = ∑ (m i,j )∈N ∏ 1≤i≤n 1≤j≤ℓ (x i y j ) m i,j
where N is the set of n × ℓ matrices with nonnegative integer entries. Next, the RSK correspondence yields a bijection between N and the set of pairs of semistandard tableaux with the same partition shape. The identity then follows from the fact that s λ is the generating function of the set of semistandard tableaux with shape λ for the evaluation map on tableaux. Similarly, one has

∏ 1≤i≤n 1≤j≤ℓ (1 + x i y j ) = ∑ (m i,j )∈M ∏ 1≤i≤n 1≤j≤ℓ (x i y j ) m i,j
where M is the set of binary n × ℓ matrices, and the second Cauchy identity comes from an adapted version of the RSK correspondence. This construction admits numerous extensions, notably based on generalisations of the previous Cauchy identities due to Littlewood, and involving the characters of simple modules corresponding to the orthogonal or symplectic Lie algebras. We refer the reader to [START_REF] Fu | Non-symmetric Cauchy kernels for the classical groups[END_REF] and the references therein for a more detailed presentation, and for a generalisation to the Demazure characters.

We now turn out to the main topic of this article. One can define two commuting families of crystal operators (one for gl n and another for gl ℓ ) directly on the set of matrices N and M yielding the structure of a (gl n × gl ℓ )-crystal, or type (A n-1 × A ℓ-1 )-crystal. This approach, explained in detail in [START_REF] Marc Van Leeuwen | Double Crystals of Binary and Integral Matrices[END_REF], see also [START_REF] Halacheva | Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group[END_REF]Chapter 11], permits to overcome the RSK construction. One gets the decomposition N = λ partition of length min(n,ℓ) B(λ) ⊗ Ḃ(λ) and M = λ contained in the rectangle n×ℓ B(λ) ⊗ Ḃ(λ tr )

where B(λ) (respectively Ḃ(λ)) is the crystal of the gl n -module (respectively gl ℓ -module) parametrised by λ. This immediately implies the Cauchy identities. In the following sections, we shall present different extensions of this construction of multicrystal structures on sets of binary matrices (possibly infinite). They arise naturally from the notion of combinatorial Fock spaces F(s), where s is a integer. The A n-1 and A ℓ-1 crystal structures of F(s) correspond to the gl n and gl ℓ modules

s 1 +...s ℓ =s Λ s 1 (C n ) ⊗ • • • ⊗ Λ s ℓ (C n ), and ṡ1 +••• ṡn =s Λ ṡ1 (C ℓ ) ⊗ • • • ⊗ Λ ṡn (C ℓ ).
A similar phenomenon has been studied in the case where gl n is replaced by a Lie superalgebra of type A [START_REF] Kwon | Duality on Fock spaces and combinatorial energy functions[END_REF].

Note also that the notion of Fock space arises in different mathematical physics contexts. For instance, the corner transfer matrix method, used in the study of the Yang-Baxter equations, gives rise to the combinatorics of weighted paths. These, in turn, provide a realisation of the crystal base of the quantum group of sl n . This approach has been extensively studied by the Kyoto group in the late 1980's and early 1990's, see in particular [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF].

More recently, the study of weighted paths has yielded (generalisations of) the Rogers-Ramanujan identities in enumerative combinatorics [START_REF] Foda | Cylindric partitions, W r characters and the Andrews-Gordon-Bressoud identities[END_REF]. In another direction, in affine type A, there is a similar construction due to Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] where the ordinary wedge products are replaced by their thermodynamical limits. It plays a central role in the representation theory of Cherednik algebras, see [START_REF] Shan | Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras[END_REF], and in the construction of some representations of the Virasoro algebra [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF]. We get the structure of an ( sl n × H × sl ℓ )-module where H is a Heisenberg algebra, and therefore a tricrystal structure on the affine Fock space. This structure has been made completely explicit in [START_REF] Gerber | The sl ∞ -crystal combinatorics of higher level Fock spaces[END_REF].

A key tool in our approach is to exploit a combinatorial duality which permits to easily switch between the different combinatorial actions defined on F(s). In finite type A, this coincides with the transposition of binary matrices, and enables us to bypass the RSK correspondence. This is particularly convenient because the insertion algorithm (on which the RSK correspondence is based) in other types is more complicated and less well understood. This point of view enables us to unify and extend the existing constructions in affine type, by considering a block transposition on appropriate infinite matrices. Through the previous duality, each combinatorial object or Dynkin diagram automorphism for one structure admits a natural counterpart for the other one. For example, the cyclage operation introduced by Lascoux and Sch ützenberger on the semistandard tableaux of type A n-1 will correspond to the promotion operator on the A ℓ-1 -highest weight vertex in F(s). This permits us to give a short proof of the equality between Kostka polynomials and one-dimensional sums established by Nakayashiki and Yamada in [START_REF] Nakayashiki | Kostka polynomials and energy functions in solvable lattice models[END_REF]. Note that one-dimensional sums appear in mathematical physics in the context of solvable lattice models and the corner transfer matrix method. Using the combinatorics of crystal bases and rigged configurations, one can show that they coincide with the fermionic formula via the Bethe Ansatz, thereby giving a proof of the X = M conjecture in some cases, see [START_REF] Schilling | X = M Theorem: fermionic formulas and rigged configurations under review[END_REF]. This observation also provides an algebraic interpretation of the Pitman transform M -2X introduced in [START_REF] Pitman | One dimensional Brownian motion and the three-dimensional Bessel process[END_REF] to obtain the law of a Brownian motion conditioned to stay positive. Historically, Brownian motions have strong connections with thermodynamics and molecular motions. This is achieved in the spirit of [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF], where the dual version of the Pitman transform is shown to map each Littelmann path on its associated highest path. It is also worth mentioning that the previous combinatorial constructions have interesting applications in problems related to percolation models [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF]. Further, by considering subsets of the combinatorial Fock spaces F(s) invariant under Dynkin diagram automorphisms of type A (affine or not), we get various bicrystal (or tricrystal) structures of classical types on sets of binary matrices. In a connected direction, based on the results of [START_REF] Lecouvey | Crystal graphs and combinatorics of infinite rank quantum groups[END_REF], we also establish that it is also possible to define a combinatorial Fock space with an (X ∞ × A ℓ-1 )-structure (with X of type B, C or D) on some infinite binary matrices similar to the finite type A construction. We expect that this bicrystal to be related to the charge statistics defined for type C in [START_REF] Lecouvey | Kostka-Foulkes polynomials, cyclage graphs and charge statistics for the root system C n[END_REF], once the appropriate duality relating both crystal structures is discovered. Note that Howe-type dualities and a bicrystal structure involving type C constructions have been recently studied in [START_REF] Heo | Combinatorial Howe duality of symplectic type[END_REF] and [START_REF] Seung | Crystal structure on King tableaux and semistandard oscillating tableaux[END_REF] respectively. It would be interesting to link these results with that of the present paper.

Finally, as already mentioned, the combinatorial Fock spaces that we shall study can be defined in terms of (infinite) binary matrices (this corresponds to the second Cauchy identity). This is indeed the natural context corresponding to the existing mathematical material (such as Kashiwara-Nakashima columns tableaux and Uglov's Fock space), but it would be interesting to get analogous results for infinite matrices with nonnegative integer coefficients.

In the present paper, we have chosen to illustrate our results by numerous examples. Quite often, they can be established by adapting proofs existing in the literature to the unified formalism that we propose. We then give precise references rather than complete proofs. The next sections are organised as follows. Section 2 is devoted to a re-exposition of the type (A n-1 × A ℓ-1 )-crystal structure on M . This serves as a basis for the various generalisations of the subsequent sections. In particular, we quickly reach a simple proof that the two crystals commute in Theorem 2.21, recovering the results of [START_REF] Marc Van Leeuwen | Double Crystals of Binary and Integral Matrices[END_REF] and [START_REF] Halacheva | Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group[END_REF]. Also, thanks to the connection between the cyclage and the promotion operator, we are able to give a short proof of the relation between the charge and the energy function originally proved in [START_REF] Nakayashiki | Kostka polynomials and energy functions in solvable lattice models[END_REF]. In Section 3, the classical (A n-1 × A ℓ-1 )-crystal structure on M is made compatible with an affine similar construction given in [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. The highest weight vertices for the different possible (simple, double an triple) actions are described. Also, a new combinatorial interpretation of the (e, s)cores introduced in [START_REF] Jacon | Keys and Demazure crystals for Kac-Moody algebras[END_REF] for describing the blocks of cyclotomic Hecke algebras is proposed. Section 4 describes a type X ∞ × A ℓ-1 analogue to the previous bicrystal. This means that we define a type A ℓ-1 -crystal structure on products of X ∞ -columns. This is done directly in terms of sliding (Jeu de Taquin) operations. Nevertheless, due to the lack of a straightforward duality, the results of Section 2 are needed to prove that this indeed yields the desired A ℓ-1 -crystal structure. The results of Section 5 focus on the vertices of the combinatorial type A (of both finite and affine type) Fock spaces fixed under the action of Dynkin diagram automorphisms. By using results of Naito and Sagaki [START_REF] Naito | Crystal Bases and Diagram Automorphisms[END_REF], they are proved to have various bicrystal (or tricrystal) structures of classical types. Finally in Section 6, we relate Pitman's 2M -X transform on the line to its dual version (the X -2M transform) and the promotion operator on tensor products of type A

(1)

1 Kirillov-Reshetikhin crystals. This permits notably to show that iterations of this transform on any trajectory will eventually tend to the trivial one (that is, with all steps equal to 1). Using this time A [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] ℓ -crystals, a highest dimensional generalisation of the 2M -X transform which shares the same convergence behavior is defined. Its probabilistic properties will be studied elsewhere.

FINITE TYPE A DUALITY

In the rest of the paper, fix n, ℓ ∈ Z ≥2 .

Products of type A columns.

Let P be the weight lattice for the Lie algebra sl n , with basis {ω 1 , . . . , ω n-1 }, where ω 1 , . . . , ω n-1 are the fundamental weights for sl n . Each partition λ = (λ 1 , . . . , λ n ) ∈ Z n ≥0 shall be identified with the A n-1 -dominant weight λ = ∑ n-1 i=1 a i ω i where for any i = 1, . . . , n -1 the integer a i is the number of columns of height i in the Young diagram of the partition λ. Observe that the contribution of the columns of height n is thus equal to zero and we have a one-to-one correspondence between the type A n-1 -dominant weights and the partitions with at most n -1 parts. In what follows, it thus makes sense to use the symbol λ as a partition with at most n parts or a dominant weight of type A n-1 .

Example 2.1. Let n = 3 and λ = 3ω 1 + ω 2 . Then the corresponding partition is (4, 1, 0) = .

A column of type A n-1 is a subset c of {1, . . . , n} such that |c| ≤ n, which we identify with the semistandard Young tableau of shape ω |c| = (1, . . . , 1) containing the elements of c. (2) The product

1 3 ⊗ 1 2
⊗2 is an antitableau which we identify with 1 1 2 2 3 .

(3) The product

1 3 ⊗ 1 2
is both a tableau and an antitableau, which we identify in with Clearly, for all λ ∈ P + , there is a unique Yamanouchi tableau (respectively antitableau) of shape λ.

Example 2.7. The Yamanouchi tableau and antitableau of shape (4, 3, 1) are respectively given by 

= (s 1 , . . . , s ℓ ) ∈ R(n, ℓ) = {0, . . . , n} ℓ and ṡ = ( ṡℓ , . . . , ṡ1 ) ∈ R(ℓ, n) = {0, . . . , ℓ} n , denote |s| = ∑ ℓ j=1 s j and | ṡ| = ∑ n i=1 ṡi .
For p = n, ℓ and for all A ⊆ Z p , write Finally, we denote

S (s) = {λ = (λ 1 , . . . , λ n ) ⊢ s | λ 1 ≤ ℓ} .
The elements introduced in the previous section appear as vertices of certain tensor products of crystal graphs, which we start by recalling. For all j = 1, . . . , ℓ, the crystal of the irreducible highest weight sl n -module of highest weight ω s j (with the convention ω 0 = ω n = 0) can be realised using columns of height s j [START_REF] Hong | Introduction to Quantum Groups and Crystal Bases[END_REF]Chapter 7]. More precisely, B(ω s j ) is the A n-1 -crystal with vertices the columns of height s j and arrows i from c to c ′ when c ′ is obtained from c by changing i into i + 1. Observe that the trivial crystal of highest weight 0 can so be realised as the graph with a unique vertex: the empty column or the column containing all the integers 1, . . . , n. Definition 2.8. Let s = (s 1 , . . . , s ℓ ) ∈ R(n, ℓ). The combinatorial Fock space associated to s is the A n-1 -crystal

F(s) = B(ω s ℓ ) ⊗ • • • ⊗ B(ω s 1 )
By classical crystal theory, the elements of F(s) can be realised as tensor products of ℓ columns with entries in {1, . . . , n}. Let us recall the rule for computing F(s), following [START_REF] Hong | Introduction to Quantum Groups and Crystal Bases[END_REF]Section 4.4]. Fix i ∈ {1, . . . , n -1} and let b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s). consider the subword w i (b) of w(b) obtained by keeping only letters i and i + 1, and encode each i by a symbol + and each i + 1 by a symbol -. Deleting all factors +recursively yields a word called the i-signature of b.

Theorem 2.9. The action of the A n-1 -crystal operators on F(s) is given by the following rule

(1) The raising crystal operator e i acts on b ∈ F(s) by changing the entry i + 1 corresponding to the rightmostin the i-signature of b into i if it exists; and by 0 otherwise. (2) The lowering crystal operator f i acts on b ∈ F(s) by changing the entry i corresponding to the leftmost + in the i-signature into i + 1 if it exists; and by 0 otherwise.

We define similarly the combinatorial Fock space Ḟ( ṡ) = B(ω ṡ1 ) ⊗ • • • ⊗ B(ω ṡn ) for ṡ = ( ṡ1 , . . . , ṡn ) ∈ Z n , and the rule for computing Ḟ( ṡ) is the same as for F(s), expect that the role of n and ℓ have been swapped 2 .

Example 2.10.

Let ℓ = 4, n = 3, s = (2, 2, 1, 2), b = 1 2 ⊗ 1 3 ⊗ 1 ⊗ 1 2 = c 4 ⊗ c 3 ⊗ c 2 ⊗ c 1 and choose i = 1.
Then w(b) = 1213112, so that w 1 (b) = 121112, which gives the encoded word + -+ + +-. Thus, the i-signature of b is ++, whose leftmost + corresponds to the entry 1 of c 3 . Therefore, we have

f 1 b = 1 2 ⊗ 2 3 ⊗ 1 ⊗ 1 2 = c 4 ⊗ c 3 ⊗ c 2 ⊗ c 1 .
In other terms, in the crystal F(s), we have an arrow

1 2 ⊗ 1 3 ⊗ 1 ⊗ 1 2 1 2 ⊗ 2 3 ⊗ 1 ⊗ 1 2 . 1
Let us now explain how the tableaux and Yamanouchi elements naturally appear in the context of crystals. In the following, we set

F(s) = s∈R(n,ℓ)(s) F(s) and Ḟ(s) = ṡ∈R(ℓ,n)(s) Ḟ( ṡ).
The following results are well-known, see for instance [START_REF] Lothaire | Algebraic combinatorics on words[END_REF].

Theorem 2.11.

( Theorem 2.11 also holds for Ḟ(s), replacing tableaux by antitableaux. We denote similarly Ḟ(µ) the connected component of Ḟ(s) consisting of all antitableaux of shape µ ∈ Ṡ (s) = {µ ⊢ s | µ tr ∈ S (s)}.

Example 2.13. Take n = 3, ℓ = 3 and s = (s 3 , s 2 , s 1 ) = (2, 1, 2). Then one checks that b =

1 2 ⊗ 3 ⊗ 1 2 ∈ F(s) is Yamanouchi. We compute the connected component of F(s) containing b: 1 2 ⊗ 3 ⊗ 1 2 1 2 ⊗ 3 ⊗ 1 3 1 2 ⊗ 3 ⊗ 2 3 . 2 1
This is isomorphic to the crystal B(ω 2 ), which we can compute:

1 1 2 2 3 1 1 2 3 3 1 2 2 3 3 . 2 1
This means that

P(b) = 1 1 2 2 3
, and so on. Alternatively, we can use an isomorphic realisation of this crystal by antitableaux:

1 1 2 2 3 1 1 2 3 3 1 2 2 3 3
. 

= P(b).

Now, the minimal skew Young tableau3 associated to b is

1 2 2 3
and the Jeu de Taquin corresponds to the following two sliding operations

1 • 2 2 3 → 1 2 2 • 3 → 1 2 2 3 • , • 1 2 2 3 → 1 • 2 2 3 → 1 2 2 • 3 = P(b).

The duality.

There is a duality

F(s) ←→ Ḟ(s) b ←→ b * defined as follows. If b = c ℓ ⊗ • • • ⊗ c 1 is
a tensor product of columns, then for each i = 1, . . . , n, let d(i) be the column with letters in the set {j ∈ {1, . . . , ℓ} | i ∈ c j }. 

Then we set b * = d(1) ⊗ • • • ⊗ d(n) ∈ Ḟ(s).
⊗ 4 ⊗ 1 4 ⊗ 1 2 4 ⊗ 1 3 . Then d(1) = {1, 2, 3, 5}, d(2) = {2, 5}, d(3) = {1, 5}, d(4) = {2, 3, 4}, so that b * = 1 2 3 5 ⊗ 2 5 ⊗ 1 5 ⊗ 2
M =     1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0     and M tr =       1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0       .
Therefore, we recover the crystal skew Howe duality of [START_REF] Halacheva | Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group[END_REF]Section 11.2], also studied in [START_REF] Marc Van Leeuwen | Double Crystals of Binary and Integral Matrices[END_REF].

The duality * intertwines several classical notions. We already observe some occurences of this phenomenon now, and will give more results in the upcoming sections. For all map ϕ : Ḟ(s) → Ḟ(s) ⊔ {0}, denote ϕ * : F(s) → F(s) ⊔ {0} the map determined by the formula

(ϕ * (b)) * = ϕ(b * ) if ϕ(b * ) ∈ Ḟ(s) 0 if ϕ(b * ) = 0.
that is, ϕ * is the conjugation of ϕ by the duality * . Similarly, for all map ψ :

F(s) → F(s) ⊔ {0}, denote * ψ : Ḟ(s) → Ḟ(s) ⊔ {0} the map determined by the formula * ψ(b * ) = (ψ(b)) * if ψ(b) ∈ F(s) 0 if ψ(b) = 0.
Note that we have ψ = ϕ * if and only if * ψ = ϕ.

Proposition 2.17. The element b is a tableau (respectively Yamanouchi) if and only if b * is Yamanouchi (respectively an antitableau).

Proof. Let b ∈ F(s) be a tableau. Then s j ≥ s j+1 for all j = 1, . . . , ℓ -1, which means that the number of j's in b * is greater than or equal to the number of j + 1's, which is a necessary condition to be Yamanouchi. In fact, the k first components of b correspond by duality to the subtableau of b with letters less or equal to k. Since all such subtableau is semistandard, the vertex b * has the Yamanouchi property. The converse holds by the same observation, and the analogue statement with antitableaux holds similarly.

Example 2.18.

(1) Let ℓ = 2, n = 4, and b =

1 3 4 ⊗ 1 2 4
, so that b is a tableau. Then b * = 1 2

⊗ 1 ⊗ 2 ⊗ 1 2
, which is Yamanouchi.

(

) Let ℓ = 5, n = 3, and b = 1 ⊗ 1 ⊗ 1 2 ⊗ 2 ⊗ 1 2 3 2 
, so that b is Yamanouchi. Then b * =

1 3 4 5 ⊗ 1 2 3
⊗ 1 , which is an antitableau.

We have already recalled the Jeu de Taquin procedure for computing the tableau in Theorem 2.11. Let us denote by J j the map F(s) → F(s) ⊔ {0} where J j (b) is obtained from b by an elementary horizontal Jeu de Taquin slide from column j + 1 to column j if possible, and J j (b) = 0 otherwise. Let us moreover recall that there is a unique

isomorphism of A n-1 -crystals B(ω i ) ⊗ B(ω i ′ ) ∼ -→ B(ω i ′ ) ⊗ B(ω i
) called the combinatorial R-matrix, which we can compute by a simple combinatorial procedure, see [START_REF] Shimozono | Crystals for Dummies[END_REF]Section 4.8] and the references therein. It induces an isomorphism R j,j ′ : F(s) -→ F(s) permuting the components B(ω s j ) and B(ω s j ′ ), which is the composition of R-matrices of the form R j,j+1 , which we denote R j for simplicity. Finally, recall that the Weyl group (here the symmetric groups on n letters) acts on the crystal F(s) by letting the Coxeter generators σ i , i = 1 . . . , n -1 act by reversing each i-string [START_REF] Bump | Crystal Bases: Representations And Combinatorics[END_REF]Definition 2.35], see also [START_REF] Shimozono | Crystals for Dummies[END_REF]Section 2.1]. All of the above maps have counterparts defined on Ḟ(s) (defined using antitableaux instead of tableaux when needed). We now prove that the duality * intertwines crystal operators with elementary Jeu de Taquin slides, as well as the Weyl group action with the R-matrix. Theorem 2.19. For all j = 1, . . . , ℓ -1, we have [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] 

ė * j = J j and (2) σj * = R j .
Proof.

(1) Assume first that b * is a highest weight vertex. Then ėj b * = 0, so we have by definition ė * j b = 0 = J j (b). Note that this simply means that the Jeu de Taquin is not authorised for b, which makes sense because b is a tableau by Theorem 2.11 and Proposition 2.17. Now, assume that b * = d 1 ⊗ • • • ⊗ d n is not a highest weight vertex, so that ėj b * ∈ Ḟ(s). Let i denote the index of the column containing the entry of b * affected by ėj , see Theorem 2.9. Then by definition of the duality * , ė * j acts on b = c ℓ ⊗ • • • ⊗ c 1 by sliding entry i from c j+1 to c j . Now, consider the Jeu de Taquin between columns j and j + 1 of b. The procedure used to determine i ensures us that all entries of c j that are smaller than or equal to i are matched to an element of c j+1 . Therefore, the first entry that slides from c j+1 to c j is i. In other terms, J j (b) is obtained from b by sliding i from c j+1 to c j . Thus ė * (1) Take n = 6 and ℓ = 4, and let

j b = J j (b). (2) Set N = |c j+1 | -|c j |, where b = c ℓ ⊗ • • • ⊗ c 1 . If N ≥ 0,
b * = 1 2 4 ⊗ 2 3 ⊗ 2 3 4 ⊗ 1 ⊗ 1 3 ⊗ 2 , so that b = 1 3 ⊗ 2 3 5 ⊗ 1 2 3 6 ⊗ 1 4 5 
.

Then one can check that

ė1 b * = 1 2 4 ⊗ 2 3 ⊗ 1 3 4 ⊗ 1 ⊗ 1 3 ⊗ 2 , whose dual is b ′ = 1 3 ⊗ 2 3 5 ⊗ 1 2 6 ⊗ 1 3 4 5 
.

On the other hand, the horizontal slide from column 2 to column 1 of b is achieved as

1 • 2 1 3 4 6 5 → 1 1 2 • 3 4 6 5 → 1 1 2 3 • 4 6 5 → 1 1 2 3 6 4 • 5 = 1 2 6 ⊗ 1 3 4 5
, and we see that we recover b ′ .

(2) Take n = 5, ℓ = 4, and

b * = 1 3 ⊗ 3 4 ⊗ 1 2 3 ⊗ 3 ⊗ 1 2 so that b = 2 ⊗ 1 2 3 4 ⊗ 3 5 ⊗ 1 3 5 .
Let us look at j = 2. One checks that ε j (b * ) = 3 and ϕ j (b * ) = 1, (i.e. there are 3 incoming and 1 outgoing arrows with color 2 at vertex b * ∈ Ḟ(s)), so that

s 2 b * = 1 3 ⊗ 2 4 ⊗ 1 2 3 ⊗ 2 ⊗ 1 2 , whose dual is b ′ = 2 ⊗ 1 3 ⊗ 2 3 4 5 ⊗ 1 3 5
. Now, we can compute R 2 (b), by doing the following two Jeu de Taquin slides between columns 2 and 3

1 2 • 3 3 4 5 → 1 2 3 3 • 4 5 → 1 2 3 3 4 • 5 , 1 • 2 3 3 4 5 → 1 2 • 3 3 4 5 → 1 2 3 3 • 4 5 = 1 3 ⊗ 2 3 4 5
, from which we recover b ′ . Of course, Theorem 2.19 also holds when switching F(s) and Ḟ(s) and taking the dual versions of the different maps.

2.4. Bicrystal structure. We are ready to prove that the A n-1 and A ℓ-1 crystal structures commute (modulo the duality * ). This is best stated as follows.

Theorem 2.21. For all j = 1, . . . , ℓ -1, the restriction of ḟ * j to any connected component of F(s) is either 0 or an A n-1crystal isomorphism. Similarly, for all i = 1, . . . , n -1, the restriction of * f i to any connected component of Ḟ(s) is either 0 or an A ℓ-1 -crystal isomorphism.

Proof. Note that by symmetry, both statements are equivalent, and it is enough to prove that for all j = 1, . . . , ℓ -1, the map ḟ * j , is an [START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF], and b * is an antitableau by Proposition 2.17. By Theorem 2.11 [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF], ḟj b * is again an antitableau, so ḟ * j b is Yamanouchi, i.e. a highest weight vertex. This shows that ḟ * j maps highest weight vertices to highest weight vertices with the same weight. It remains to show that it commutes with the lowering crystal operators f i . We have, for all i = 1, . .

A n-1 -crystal isomorphism. Fix j ∈ {1, . . . , ℓ -1}. First of all, if b ∈ F(s) is a highest weight vertex, then b is Yamanouchi by Theorem 2.11
. , n -1, ḟ * j f i = J -1 j f i by Theorem 2.19(1) = f i J -1 j by Theorem 2.11(1) = f i ḟ * j .
This yields an (A n-1 × A ℓ-1 )-crystal structure on F(s). For i = (i 1 , . . . , i r ) ∈ {1, . . . , n} r (respectively j = (j 1 , . . . , j t ) ∈ {1, . . . , ℓ} t ), denote

f i = f i r • • • f i 1 (respectively ḟj = ḟj t • • • ḟj 1 )
. The following corollary is imme- diate from Proposition 2.17 and Theorem 2.21. For a given λ ∈ P + , denote b λ the Yamanouchi tableau of shape λ.

Corollary 2.22. Each connected component of the (A n-1 × A ℓ-1 )-crystal F(s) has a unique source vertex. The sources are exactly the Yamanouchi tableaux. In other terms, we have

F(s) = λ=ω s 1 +•••+ω s ℓ s 1 +•••+s ℓ =s ḟ * j f i b λ ,
where the sum runs over all possible i and j.

Remark 2.23. Accordingly, the (A n-1 × A ℓ-1 )-crystal structure can be considered on Ḟ(s). In this case, the sources are the Yamanouchi antitableaux.

Example 2.24. Take ℓ = 4, n = 3. The element

1 ⊗ 1 2 ⊗ 1 2 ⊗ 1 2 3 is a Yamanouchi tableau, i.e. a source in the (A n-1 × A ℓ-1 )-crystal. Its dual is the following Yamanouchi an- titableau 1 2 3 4 ⊗ 1 2 3 ⊗ 1 .
By Corollary 2.22, for all b ∈ F(s), there is a unique Yamanouchi tableau b such that b = ḟ * j f i b for some i and j.

Set P(b) = f i b and Q(b) = ḟj b * .
Theorem 2.25. For all b ∈ F(s), P(b) is a tableau and Q(b) is an antitableau of transpose shape. Moreover, the assignment

Φ : b -→ (P(b), Q(b)) yields a bijection F(s) → Φ(F(s)) called the crystal RSK correspondence.
In particular, we have the decomposition

F(s) ≃ λ∈S (s) B(λ) ⊗ Ḃ(λ tr ).
Proof. By Theorem 2.21, the two crystals commute, so since b is a highest weight vertex for the A ℓ-1 -crystal, P(b) = f i b is also a highest weight vertex for the A ℓ-1 -crystal, i.e. P(b) * is Yamanouchi. By Proposition 2.17, P(b) is a tableau. Similarly, we get that Q(b) is an antitableau. Moreover, Φ is clearly injective, so that Φ :

F(s) → Φ(F(s)) is a bijection.
Accordingly, for b * ∈ Ḟ(s), we will write

P(b * ) = Q(b) and Q(b * ) = P(b).
2.5. Crystal structure on self-dual elements.

An element b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s) is called self-dual if b * = c 1 ⊗ • • • ⊗ c ℓ .
In particular, self-dual elements exist only if n = ℓ. Alternatively, if M denotes the binary matrix associated to b, then b is self-dual if and only if M tr = M. We denote F(s) * the set of self-dual elements of F(s). Now, for all i = 1, . . . , n -1, set

f * i = ḟ * i f i . The operators f * i , i = 1, . . . , n -1, induce an A n-1 -crystal structure on F(s) * . More precisely, we get the decom- position F(s) * ≃ λ∈S (s) λ tr =λ B(λ).
2.6. Keys and bikeys. Keys are certain tableaux introduced by Lascoux and Sch ützenberger [START_REF] Lascoux | Keys and standard bases Invariant theory and tableaux[END_REF] that are used to compute Demazure crystals [START_REF] Bump | Crystal Bases: Representations And Combinatorics[END_REF]. In this section, we generalise the notion of keys using the bicrystal structure of Section 2.4.

Definition 2.26. An element b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s)

is called a key (respectively an antikey) if b is a tableau (respectively an antitableau) and if c

ℓ ⊆ • • • ⊆ c 1 (respectively c 1 ⊆ • • • ⊆ c ℓ ).
For b ∈ F(s), let O S n (b) be the orbit of b under the action of the Weyl group S n . The following proposition is easy to establish by induction on the length of the elements of S n .

Proposition 2.27. The set of all keys of given shape λ ∈ S (s) is equal to O S n (b λ ).

Therefore, we have the following characterisation of keys (which could also be proved directly by using the definition of * ). λ by applying a sequence of R j 's, which simply permute the columns since each column of b * λ is included in the next. Example 2.29. Take n = 3, ℓ = 2. Then the crystal of highest weight λ = ω 1 + ω 2 is realised by tableaux as follows

1 1 2 1 2 2 1 1 3 1 3 2 1 2 3 1 3 3 2 2 3 2 3 3 1 2 2 1 2 1 1 2
The keys of shape λ are obtained by keeping all vertices at the extremity of each i-string

(for i = 1, 2), namely 1 1 2 , 1 2 2 , 1 1 3 , 1 3 3 , 2 2 3 , 2 3 3 
, whose respective dual are the following products of Yamanouchi columns

1 2 ⊗ 2 ⊗ ∅ , 2 ⊗ 1 2 ⊗ ∅ , 1 2 ⊗ ∅ ⊗ 2 , 2 ⊗ ∅ ⊗ 1 2 , ∅ ⊗ 1 2 ⊗ 2 , ∅ ⊗ 2 ⊗ 1 2 .
We are ready to introduce the generalised notion of key.

Definition 2.30. An element b = c 1 ⊗ • • • ⊗ c ℓ ∈ F(s) is called a bikey if there exists ẇ ∈ S ℓ such that c ẇ(1) ⊆ • • • ⊆ c ẇ(ℓ) .
Write K for the set of bikeys in F(s). Observe that for bikeys, the distinction between tableaux and antitableaux disappears. More precisely, when b is a bikey, for any j = 1, . . . , ℓ -1 we have the inclusion Finally, we prove that the duality * maps bikeys to bikeys. For this, consider the set K of bikeys in Ḟ(s), and for

c j ⊆ c j+1 or c j+1 ⊆ c j . It thus follows from Theorem 2.19(2) that ẇ * (b) = c ẇ(1) ⊗ • • • ⊗ c ẇ(ℓ) . Moreover, ẇ * (b)
µ ⊢ s let K(µ) = { ḃ ∈ K | P( ḃ) has shape µ}. Proposition 2.32. We have b ∈ K(λ) if and only if b * ∈ K(λ tr ).
Proof. It suffices to observe that for any b ∈ K, there exists a partition λ and (w,

ẇ) ∈ S n × S ℓ such that b = w ẇ * (b λ ). Then b * = * w ẇ(b * λ ) = * w ẇ(b λ tr ) belongs to K.
Let K be the set of binary matrices corresponding to the bikeys in K. For any λ ∈ S (s), recall that the binary matrix M λ corresponding to b λ is the n × ℓ matrix whose entries equal to 1 form a pattern corresponding to the Young diagram of λ. Also, we have a right S ℓ -action (respectively a left S n -action) on the set of n × ℓ matrices where the action of ẇ ∈ S ℓ (respectively of w ∈ S n ) is given by the right (respectively left) multiplication by the permutation matrix P ẇ (respectively P w ) associated to ẇ (respectively w). Since permuting the columns of b (respectively of b * ) is equivalent to permuting the columns (respectively the rows) of the corresponding binary matrix, we get the following corollary.

Corollary 2.33. We have

K = (w, ẇ)∈S n ×S ℓ P w M λ P ẇ and ∑ (m i,j )∈K ∏ 1≤i≤n 1≤j≤ℓ (x i y j ) m i,j = ∑ λ∈S (s)
m λ (x)m λ tr (y).

Cyclage and promotion.

In this section, we show that the duality * intertwines two important maps, namely the cyclage and the promotion operators. This will be used in Section 2.8 to study the relationship between charge and energy.

Definition 2.34.

(1

) Let b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s). The cyclage of b is the element of F(s) defined by ξ(b) = c ℓ-1 ⊗ • • • ⊗ c 1 ⊗ c ℓ . (2) Let b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s). The promotion of b * is the element of Ḟ(s) defined by pr(b * ) = pr(d 1 ) ⊗ • • • ⊗ pr(d n )
where, for all i = 1, . . . , n,

pr(d i ) = {k + 1 mod ℓ ; k ∈ d i } Remark 2.35.
The promotion operator permits to endow Ḟ(s) with the structure of an affine type A

(1)

ℓ-1 -crystal that we shall denote by Ḟ(s) aff . This structure is obtained by considering the additional crystal operators ḟ0 = pr -1 ḟ1 • pr and ė0 = pr -1 ė1 • pr. The crystal Ḟ(s) aff splits into affine connected components. Each such component is isomorphic to a tensor product of n column Kirillov-Reshetikhin crystals. Observe that these components are not highest weight crystals.

The following proposition is immediate from the definitions. Proposition 2.36.

(1) For all b ∈ F(s), we have ξ(b) * = pr(b * ). 

⊗ 4 ⊗ 1 4 ⊗ 1 2 4 ⊗ 1 3 1 2 3 5 ⊗ 2 5 ⊗ 1 5 ⊗ 2 3 4 4 ⊗ 1 4 ⊗ 1 2 4 ⊗ 1 3 ⊗ 1 2 3 1 2 3 4 ⊗ 1 3 ⊗ 1 2 ⊗ 3 4 5 * ξ * pr
In order for the cyclage to be relevant for the description of the Kostka polynomials, we need to restrict to some cases, which we call authorised.

Definition 2.38. Let b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s).
(1) We say that the cyclage is authorised for b if either (a) b is of dominant evaluation, i.e. b has no more k + 1 than k for all k = 1, . . . , n -1, and 1 / ∈ c ℓ . (b) b is a tableau and there is no k ∈ {1, . . . , n} appearing in every column c j .

(2) Suppose that there exists k ∈ {1, . . . , n} such that k ∈ c j for all j = 1 . . . , ℓ. In particular, b is not authorised. Let k 0 be minimal with this property. The reduction of b is the element red(b) obtained by deleting all occurences of k 0 in b, and replacing each k > k 0 by k -1.

Remark 2.39. In particular, if b verifies (2), there exists m such that the cyclage is authorised for the tableau red m (b).

We denote ξ : b → ξ(red m (b)). It can be read off the dual if the cyclage is authorised, and how reduction acts. We have seen in 2.2 how one can associate to any product b * = d 1 ⊗ d 2 ∈ Ḟ(s) of two columns a unique skew tableau T of minimal shape. Write leg(b * ) for the number of boxes in the left column of T having no box to their right. The following definition of the local energy H is slightly different but equivalent to the original one (see [START_REF] Nakayashiki | Kostka polynomials and energy functions in solvable lattice models[END_REF] and also [START_REF] Shimozono | Crystals for Dummies[END_REF] for an equivalent definition in the case of rows and affine crystals). 

= c ℓ ⊗ • • • ⊗ c 1 ∈ F(s). (1) If b is a column, set ch(b) = 0. (2)
* = d 1 ⊗ d 2 ∈ Ḟ(s). H(b * ) = leg(b * ) if |d 1 | ≥ |d 2 | H(R 1 (b * )) if |d 1 | < |d 2 |.
Example 2.45. The minimal skew tableau corresponding to Proof. Since D is invariant under the action of the combinatorial R-matrices, we can assume that d 1 = {1, . . . , ℓ}.

b * = 1 3 4 6 ⊗ 1 7 8 is 1 3 4 1 6 7 8 , therefore we get H(b * ) = 2. Let b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s). For all 1 ≤ i < j ≤ n, denote d 1 ⊗ • • • ⊗ d i ⊗ d (j) i+1 ⊗ • • • ⊗ d n the element obtained from b * by applying sucessively the R-matrices R j-1 , . . . , R i+1 . Definition 2.46. The energy D is defined as follows. For b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s), we set D(b * ) = ∑ 1≤i<j≤n H(d i ⊗ d (j) i+1 ). Remark 2.47. If ṡ1 = • • • = ṡn , then the R-matrices act as the identity, thus D(b * ) = ∑ 1≤i≤n-1 (n -i) H(d i ⊗ d i+1 ).
Then D(b * ) = D(b × ) + n-1 ∑ i=1 (n -i) H(d 1 ⊗ d i+1 ).
But by definition of H, we have H(d 1 ⊗ d i+1 ) = 0 for any i = 1, . . . , n -1.

We are now going to prove the following proposition.

Proposition 2.49. Let b

* = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s) be Yamanouchi such that d i = {1, . . . , ℓ} for all i = 1, . . . , n. Then D(pr(b * )) = D(b * ) -N, where N is the number of ℓ in b * .
To do this, let us set for any b

* = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s) ∆ n (b * ) = D(b * ) -D(pr(b * )).
When n = 2, one can use Definition 2.44 to compute ∆ 2 . This immediately gives:

Lemma 2.50. Assume b * = d 1 ⊗ d 2 with h(d 1 ) ≥ h(d 2 ). Then ∆ 2 (d 1 ⊗ d 2 ) =    -1 if ℓ ∈ d 1 and ℓ / ∈ d 2 , 1 if ℓ / ∈ d 1 and ℓ ∈ d 2 , 0 otherwise.
Proof of Proposition 2.49. Since the combinatorial R-matrices preserve the energy, we can and shall assume that

h(d 1 ) ≥ • • • ≥ h(d n ). For any Yamanouchi vertex b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s), we have ∆ n (b * ) = ∆ n (d 1 ⊗ • • • ⊗ d n ) = ∆ n-1 (d 1 ⊗ • • • ⊗ d n-1 ) + n-1 ∑ i=1 ∆ 2 (d i ⊗ d (n) i+1 ).
because the promotion operator commutes with the R-matrices. Since b * is Yamanouchi, the vertex

d 1 ⊗ • • • ⊗ d n-1 is also Yamanouchi. By induction on n, we can assume that ∆ n-1 (d 1 ⊗ • • • ⊗ d n-1 ) is equal to the number of letters ℓ in d 1 ⊗ • • • ⊗ d n-1
. This shows that the proposition is in fact equivalent to the assertion

S n (b * ) := n-1 ∑ i=1 ∆ 2 (d i ⊗ d (n) i+1 ) = 1 if ℓ ∈ d n , 0 otherwise. for any Yamanouchi vertex b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s).
Here again, we proceed by induction on n. When n = 2, this follows from Lemma 2.50. Note that we cannot have ℓ ∈ d 1 in this case because we have assumed that

d 1 = {1, . . . , ℓ}. When n ≥ 3, set b * (n -1) = d 1 ⊗ • • • ⊗ d n-2 ⊗ d (n) n-1 . Then b * (n -1) is Yamanouchi and S n (b * ) = S n-1 (b * (n -1)) + ∆ 2 (d n-1 ⊗ d n ). Assume first ℓ / ∈ d n and ℓ / ∈ d n-1 . Then, we have ℓ / ∈ d (n)
n-1 and by the induction hypothesis 

S n-1 (b * (n -1)) = 0. Also, ∆ 2 (d n-1 ⊗ d n ) = 0

AFFINE TYPE A DUALITY

The study of the combinatorics of highest weight representations for the quantum groups of affine type A has been initiated in [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF] in the context of solvable lattice models. There, the affine Fock space plays a crucial role. It has been subsequently considered in various settings, ranging from mathematical physics to symmetric functions or finite group representation theory, see [START_REF] Leclerc | Fock spaces representations of U q ( ŝ l n ) Geometric Methods in Representation Theory[END_REF] for a good review. In this section, we examine the crystal combinatorics of the affine Fock space, and show that the results of Section 2 generalise to this setting.

3.1. Infinite columns. In this affine setting, columns are semi-infinite, i.e. of the form

c = {x 1 , . . . , x k } ⊔ {x ∈ Z | x < x 1 } and represented as c = x 1 x k , for some k ∈ Z ≥1 and some x 1 < • • • < x k ∈ Z.
Note that this expression is not unique. For instance, the values k = 2, x 1 = 1, x 2 = 3 and k = 3, x 1 = 0, x 2 = 1, x 3 = 3 both yield the semi-infinite column {. . . , -2, -1, 0, 1, 3}. If we impose that x 1 is minimal in Z with the condition that x 1 + 1 / ∈ c, then this expression becomes unique: we call it the standard form of c. Finally, we set

s(c) = x 1 + k -1.

Affine combinatorial Fock space. Following [8, Chapter 6], highest weight crystals of type A

(1)

n-1 and level ℓ can be realised by using the combinatorics of symbols (or equivalently of abaci). By analogy with type A, we identify symbols with tensor products of columns (and abaci with semi-infinite binary matrices as in Remark 2.16).

Definition 3.1. Let s = (s 1 , . . . , s ℓ ) ∈ Z ℓ .

The affine combinatorial Fock space of type A (1)

n-1 and level ℓ associated to s is

F(s) = {b = c ℓ ⊗ • • • ⊗ c 1 | s(c j ) = s j for all j = 1, . . . , ℓ}.
For all b ∈ F(s), the tuple s is called the shape of b 4 .

We say that b ∈ F(s) is in standard form if all columns have the same smallest entry and (at least) one of them is in standard form. For convenience, we represent negative entries -x by x. Example 3.2. The representation

1 0 1 ⊗ 1 2 ⊗ 1 0 3 is the standard form of the element b = c 3 ⊗ c 2 ⊗ c 1 where c 3 = {. . . , -2, -1, 0, 1}, c 2 = {. . . , -2, -1, 2}, c 1 = {. . . , -2, -1, 0, 3}.
We now define affine analogues of tableaux in a natural way, by requesting semistandardness on a cylinder. We use the following notation:

if c = x 1 x k is a column, set c + = x 1 x 1 + n -1 x 1 + n x k + n . Definition 3.3. An element b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s) is called (1) cylindric if the top-aligned juxtaposition c + ℓ c 1 • • • c ℓ is a semistandard Young tableau (with entries in Z). (2) anticylindric if the bottom-aligned juxtaposition c 1 • • • c ℓ c + 1 is a semistandard skew Young tableau (with entries in Z). Example 3.4. Take ℓ = 3, n = 2.
(1) The element

1 1 ⊗ 1 1 4 ⊗ 1 0 2 is cylindric because 1 1 1 1 0 0 1 1 1 2 4 3 is a semistandard Young tableau. (2) The element 2 1 0 1 3 ⊗ 2 0 1 3 ⊗ 2 1 0 2 is anticylindric because 2 2 1 2 2 1 0 1 0 0 1 0 1 1 2 2 3 3 4
is a semistandard skew Young tableau. Remark 3.5. Note that the elements of F(s) can alternatively be described as charged multipartitions: they form the standard basis of the (algebraic) Fock space, see [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF]Chapter 6], [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. More precisely, tensor products of columns are the representation of charged multipartitions by their β-sets, also known as Lusztig's symbols [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF]Chapter 5]. In turn, tensor products that are cylindric correspond to cylindric multipartitions, which are important objects in algebraic combinatorics. They were first introduced by Gessel and Krattenthaler [START_REF] Gessel | Cylindric partitions[END_REF], and have since then been used in combinatorics, representation theory, and mathematical physics, see [START_REF] Foda | Cylindric partitions, W r characters and the Andrews-Gordon-Bressoud identities[END_REF] and [START_REF] Gerber | Cylindric multipartitions and level-rank duality[END_REF] for more details.

Further, we give an affine analogue of the Yamanouchi property. For this, given an element b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s), we define the first n-period of b to be the sequence P 1 = (x, x -1, . . . , xn + 1) of entries of b such that x is maximal in b and such that for all i = 0, . . . , n -1, xi ∈ c k i where k 0 ≤ • • • ≤ k n-1 with k i maximal. One then defines the r-th n-period of b by induction, by setting P r to be the first period of the element b (r-1) obtained from b by removing P 1 , . . . , P r-1 if they all exist. Definition 3.6. An element b ∈ F(s) is called totally n-periodic if the r-th n-period of b exists for all r ∈ Z ≥1 . Example 3.7. Take n = 3 and ℓ = 4. Then the following element is totally periodic

0 1 2 3 ⊗ 0 1 ⊗ 0 2 4 ⊗ 0 2 3 4
, where we have highlighted the first period in blue, the second in purple and the third in yellow (and the periods P r for r > 3 then obviously exist).

3.3. Affine crystal structures. In the following, for s = (s ℓ , . . . , s 1 ) ∈ Z ℓ and ṡ = ( ṡ1 , . . . , ṡn ) ∈ Z n , denote

b s = s ℓ ⊗ • • • ⊗ s 1 and ḃṡ = ṡ1 ⊗ • • • ⊗ ṡn .
Moreover, define analogues of the sets S (s) and Ṡ (s) of Section 2 by considering As in Section 2.2, the combinatorial Fock space F(s) can be endowed with the structure of an A

D (s) = (s ℓ , . . . , s 1 ) ∈ Z ℓ (s) | s ℓ ≤ • • • ≤ s 1 ≤ s ℓ + n and Ḋ (s) = ( ṡ1 , . . . , ṡn ) ∈ Z ℓ (s) | ṡ1 ≤ • • • ≤ ṡn ≤ ṡ1 + ℓ ,
(1)

n-1 -crystal, where the action of the lowering crystal operators f i is given by changing a certain entry x such that x mod n = i to x + 1, see for instance [START_REF] Geck | Representations of Hecke Algebras at Roots of Unity[END_REF]Chapter 6]. Also, the connected component containing b s is isomorphic to the crystal B(s) of the irreducible highest weight module of highest weight ω s = ω s ℓ + • • • + ω s 1 where ω 0 , . . . , ω n-1 are the fundamental weights of type A [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] n-1 . Let us recall the crystal structure on F(s), due to [START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF], [START_REF] Foda | Branching functions of A (1) n-1 and Jantzen-Seitz problem for Ariki-Koike algebras[END_REF], [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. We construct the word w i (b) as in Section 2.2, by the following procedure:

(1) For all k ∈ Z, let w Remark 3.13. If n is sufficiently large, any column (in standard form) has at most one entry with residue i or i + 1, and therefore one recovers the finite type A crystal rule (forgetting the arrows indexed by 0).

In fact, we have

F(s) ≃ F((s ℓ )) ⊗ • • • ⊗ F((s 1 )).
Remark 3.14. Note that the rule used to compute the affine crystal above is not the tensor product rule, which means that the above isomorphism is not an equality in general. However, we recover the tensor product rule (and hence the equality) if the differences s j+1s j are sufficiently large.

Similarly, for any n-tuple of integers ṡ = ( ṡ1 , . . . , ṡn ), there is a level n A

(1)

ℓ-1 -crystal structure on the set of tensor products of n columns ˙

F( ṡ) = {a = d 1 ⊗ • • • ⊗ d n | s(d i ) = ṡi for all i}.
In order for these crystals structures to commute (see Section 3.6), we need to use a slightly different rule for computing the A (1) ℓ-1 -crystal. More precisely, we construct a word ẇj (a) by the following procedure:

(1) For all k ∈ Z, let ẇ(k) j (a) be the word obtained by reading the entries j + kℓ and j + kℓ + 1 in a from left to right (i.e., going through the columns d 1 , . . . , d n ).

(2) Set ẇj (a) to be the concatenation of the words ẇ(k) j ordered by increasing values of k.

Now, we compute the j-signature by the exact same procedure as for the A

(1)

n-1 -crystal, and the action of the crystal operators ḟj and ėj is given by the same rule as in Theorem 3.10. We obtain again

˙ F(s) ≃ ˙ F(( ṡ1 )) ⊗ • • • ⊗ ˙ F(( ṡn )).
Example 3.15. For ℓ = 3, j = 0, n = 4 and a = 1

0 1 2 3 ⊗ 1 0 1 4 ⊗ 1 0 2 3 4 5 ⊗ 1 0 1 2 = d 1 ⊗ d 2 ⊗ d 3 ⊗ d 4 ,
where we highlighted the entries with relevant residues with boldface, we have ẇ(0) 0 (a) = 0101001 and ẇ(1) 0 (a) = 3434, therefore ẇ0 (a) = 01010013434. This yields the sequence + -+ -+ + -+ -+ -, so the 0-signature is +, in which the leftmost + corresponds to the 0 in d 3 . Therefore, ḟ0 acts on a by changing that 0 into a 1, i.e. ḟ0 a = 1

0 1 2 3 ⊗ 1 0 1 4 ⊗ 1 1 2 3 4 5 ⊗ 1 0 1 2
.

In other terms, in the crystal F(s), we have an arrow

1 0 1 2 3 ⊗ 1 0 1 4 ⊗ 1 0 2 3 4 5 ⊗ 1 0 1 2 1 0 1 2 3 ⊗ 1 0 1 4 ⊗ 1 1 2 3 4 5 ⊗ 1 0 1 2 . 0 Let us set F(s) = s∈Z ℓ (s) F(s) and ˙ F(s) = ṡ∈Z n (s) ˙ F( ṡ).
We can now state an analogue of Theorem 2.11.

Theorem 3.16.

(1) The set of cylindric elements of F(s) is stable under the crystal operators f i , e i , i = 0, . . . , n -1. Moreover, for any b ∈ F(s), there is a cylindric element P(b) ∈ F(s) such that P(b) and b appear at the same place in two isomorphic connected components of F(s). ( 2

) An element b ∈ F(s) is a highest weight vertex in the A (1)

n-1 -crystal if and only if b is totally periodic. Proof. One checks that Definition 3.3 is equivalent to the definition of cylindricity used in [START_REF] Tingley | Three combinatorial models for sl n crystals, with applications to cylindric plane partitions[END_REF] and [START_REF] Gerber | Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A[END_REF]. Therefore, the first statement of (1) translates to [45, Section 3], see also [START_REF] Gerber | Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A[END_REF]Proposition 4.10]. A constructive proof of the second statement of (1) can be derived from [9, Section 4.3]. Part (2) was obtained in [19, Theorem 5.9]. Remark 3.17. Note that P(b) is not unique, unlike the tableau P(b) of Theorem 2.11. There is uniqueness by putting some extra constraints on P(b), see [START_REF] Gerber | Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A[END_REF] for more details.

Uglov's duality.

There is a duality [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Remark 4.2], see also [START_REF] Xavier | Bases canoniques d'espaces de Fock de niveau supérieur[END_REF]Section 1.1.5]. It is best explained in terms of binary matrices. We first encode

F(s) ←→ ˙ F(s) b ←→ b ⋆ defined in
b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s) by the ∞ × ℓ matrix M defined by M i,j = 1 if i ∈ c j 0 otherwise
Now, for all k ∈ Z, consider the submatrices M (k) of size n × ℓ of M defined by, for all 1

≤ i ≤ n, M (k) i,j = M (k-1)n+i,j .
Set N (k) = M (k) tr . Then the ∞ × n matrix N defined by, for all j ∈ Z, say (k

-1)ℓ + 1 ≤ j ≤ kℓ, N j,i = N (k) j-(k-1)ℓ,i
decodes to an element b ⋆ of ˙ F(s). . Then we have

M = . . . . . . -5 -4 -3   1 1 1 1 1 1   M (-1) -2 -1 0   1 1 1 0 0 1   M (0) 1 2 3   0 1 1 0 0 1   M (1) 4 5 6   0 0 0 0 0 0   M (2)
. . . . . . and we get N = . . . . . .

-3 -2 1 1 1 1 1 1 M (-1) tr = N (-1) -1 0 1 1 0 1 0 1 M (0) tr = N (0) 1 2 0 1 0 1 0 1 M (1) tr = N (1) 3 4 0 0 0 0 0 0 M (2) tr = N (2)
. . . . . . 

⋆ = 2 1 0 2 ⊗ 2 1 1 ⊗ 2 0 2 . Remark 3.19. Assume that each column c = {x 1 , . . . , x k } of b written in standard form verifies 0 ≤ x 1 < • • • < x k ≤ n. ( 1 
)
Then b is determined by M (1) , and the duality ⋆ is just transposing this single matrix. We recover precisely the duality * , see Remark 2.16. For instance, for ℓ = 4, n = 3 and b = 0 2 3

⊗ 0 3 ⊗ 0 1 ⊗ 0 1 3
. The corresponding

matrix is   1 1 0 0 0 0 0 1 1 0 1 1   , whose transpose is     1 0 1 1 0 0 0 0 1 0 1 1     , so we get b ⋆ = 0 1 2 ⊗ 0 4 ⊗ 0 1 3 4
.

(2) Moreover, the orders ≺ and ≺• used to compute the crystals coincide, in analogy with the finite case again.

The first result concerning the duality ⋆ is an analogue of Proposition 2.17. The following result can be checked purely combinatorially. We omit its proof because it is essentially equivalent to [START_REF] Gerber | Cylindric multipartitions and level-rank duality[END_REF]Theorem 3.3] in the convention of the present paper.

Proposition 3.20. Let b ∈ F(s). Then b is totally periodic if and only if b

⋆ is anticylindric.

Remark 3.21. Similarly, there is a notion of antiperiods that yield a characterisation of highest weight vertices in ˙ F( ṡ). We get that b is cylindric if and only if b ⋆ is totally antiperiodic, completing the previous proposition Now, we would like to establish an analogue of Theorem 2.19. Let S n be the affine symmetric group on n elements, which is the Weyl group of type A

(1)

n-1 . We denote by σ i , i = 0, . . . , n -1 the involutions generating S n , subject to the usual braid relations modulo n. The group S n acts on the crystal F(s) as in finite type. Similarly, we denote σj , j = 0, . . . , ℓ -1 the generators of S ℓ . First of all, we focus on the maps ėj and σj but only in the case j = 1, . . . , ℓ -1. The case j = 0 will be treated in upcoming Section 3.5 using the promotion operator. As in Section 2.3, for j = 1, . . . , ℓ -1, we denote by J j the elementary Jeu de Taquin map on F(s) between columns j and j + 1, and by R j the combinatorial R-matrix on F(s) realising the isomorphism of crystals F((s 1 , . . . , s j , s j+1 , . . . , s ℓ )) ∼ -→ F((s 1 , . . . , s j+1 , s j , . . . , s ℓ )).

Theorem 3.22. For all j = 1, . . . , ℓ -1, we have [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] 

ė⋆ j = J j and (2) σj ⋆ = R j .
Proof. The proof is analogous to that ot Theorem 2.19. In particular, (1) is immediate. For (2), an explicit formula for R j was given in [18, Proposition 5.2.2]. This formula coincides with the formula for the R-matrix in finite type which can be found in [START_REF] Shimozono | Crystals for Dummies[END_REF]Example 4.10]. Therefore, we conclude using Theorem 2.19.

3.5. Affine cyclage and promotion. We now show that the results of Section 2.7 generalise to the affine case. Consider the affine cyclage map ξ :

F(s) -→ F(s + n) c ℓ ⊗ • • • ⊗ c 1 -→ c ℓ-1 ⊗ • • • ⊗ c 1 ⊗ c + ℓ
where c + ℓ at the beginning of 3.2. By [18, Proposition 5.2.1], ξ is an isomorphism of A

(1)

n-1 -crystals. Now, consider the promotion map pr :

˙ F(s) -→ ˙ F(s + n) d 1 ⊗ • • • ⊗ d n -→ pr(d 1 ) ⊗ • • • ⊗ pr(d n )
where pr(d i ) = {k + 1 ; k ∈ d i } for all i = 1, . . . , n. Exactly as in Proposition 2.36, we have the following result, which is immediate by definition of ⋆. As a direct consequence, we get a description of the action of the maps ė0 and σ0 directly on F(s). This completes the statement of Theorem 3.22.

Corollary 3.24.

(1) ė⋆

0 = ξ -1 • J 1 • ξ and (2) σ0 ⋆ = ξ -1 • R 1 • ξ.
By analogy with Theorem 3.22, we denote R 0 = σ⋆ 0 . If c j is a column, denote by c - j the column such that (c

- j ) + = c j . Since ξ -1 (c ℓ ⊗ • • • ⊗ c 1 ) = c -1 1 ⊗ c ℓ ⊗ • • • ⊗ c 2 , we have R 0 (c ℓ ⊗ • • • ⊗ c 1 ) = c - 1 ⊗ c ℓ-1 ⊗ • • • ⊗ c 2 ⊗ c + ℓ . 3.6.
Triple crystal structure. The affine duality ⋆ is more complex than its finite type counterpart * , and this is related to the existence of a third crystal structure on F(s) [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]. This arises from the action of a Heisenberg algebra H, and the resulting crystal is of type A ∞ . More precisely, each b ∈ F(s) writes uniquely on the form b = a κ (b) for some partition κ and some highest weight vertex b for the H-structure. Here a κ is the so-called Heisenberg crystal operator corresponding to the partition κ. The explicit action of a κ is described in [START_REF] Gerber | Heisenberg algebra, wedges and crystals[END_REF] Theorem 3.25. The three crystals commute 5 , i.e. for all i = 1, . . . , n -1, for all j = 1, . . . , ℓ -1 and for all partition κ, we have

f i ḟ ⋆ j = ḟ ⋆ j f i , a κ f i = f i a κ , and ḟ ⋆ j a κ = a κ ḟ ⋆ j .
Recall that we have introduced the sets D (s), Ḋ (s) and the notation b s , ḃṡ for a ∈ D (s), ṡ ∈ Ḋ (s) in Section 3.3. Write respectively ω0 , . . . , ωℓ-1 and δ the fundamental weights and the null root for the root system of type A

(1)

ℓ-1 . The definition of ⋆ implies the following important property. columns in the reverse order in ˙ F(s), and using the different ordering.

Lemma 3.26. Let b ∈ F(s). We have b = b s for some s ∈ D (s) if and only if b ⋆ = ḃs ⋆ for some s ⋆ ∈ Ḋ (s). Moreover, the A

(

ℓ-1 -dominant weight corresponding to ḃs ⋆ has the form

(n -s 1 + s ℓ ) ω0 + ℓ-1 ∑ j=1 (s j -s j+1 ) ωj + k δ
where k is an integer.

Example 3.27. Take ℓ = 4, n = 3 and s = (-2, -1, -1, 1) ∈ D (-3). Then

b s = 2 ⊗ 1 ⊗ 2 ⊗ 1 , i.e. b s = 2 ⊗ 2 1 ⊗ 2 1 ⊗ 2 1 0 1
.

The corresponding matrix is

M = . . .   1 1 1 1 1 1 1 0 1 0 0 0   M (0)
  1 0 0 0 0 0 0 0 0 0 0 0   M (1) . . .

which gives M ⋆ = . . .     1 1 1 1 1 0 1 1 0 1 0 0     M (0) tr     1 0 0 0 0 0 0 0 0 0 0 0     M (1) tr . . . , therefore b ⋆ s = 3 2 1 0 1 ⊗ 3 2 1 ⊗ 3 = ḃs ⋆ with s ⋆ = (1, -1, -3) ∈ Ḋ (-3).
Remark 3.28. We see that the map s → s ⋆ is an analogue of the transposition of partitions used in Section 2.

The commutation of the three crystals in Theorem 3.25 induces an (A (1)

n-1 × A ∞ × A (1)
ℓ-1 )-crystal structure on F(s), and as in the finite case (see Corollary 2.22), each connected component of the tricrystal of F(s) has a unique source vertex. The following corollary is the translation of [START_REF] Gerber | Triple crystal action in Fock spaces[END_REF]Theorem 6.19] in our terminology.

Corollary 3.29. Let b ∈ F(s). Then b is a highest weight vertex in the (A (1)

n-1 × A ∞ × A (1)
ℓ-1 )-crystal if and only if b = b s for some s ∈ D (s).

To be complete, we give a characterisation of the highest weight vertices in the different bicrystals. In order to do this, we consider the vertices of B(s), the connected component of the A (1) b is a highest weight vertex in the (A ( 1)

n-1 × A (1)

ℓ-1 )-crystal if and only if b is cylindric and totally periodic. (2) b is a highest weight vertex in the (A (1)

n-1 × A ∞ )-crystal if and only if b ⋆ is ℓ-FLOTW.
Proof. Assertion (1) follows from the characterisation of the highest weight vertices in the A yields a bijection F(s) → Φ( F(s)). In particular, we have the decomposition tr . Now, by [START_REF] Kashiwara | Similarity of crystal bases[END_REF], self-transpose partitions realise the crystal graph Y of the basic representation of type B ∞ , by setting

F(s) ≃ s∈D(s) B(s) ⊗ Y ⊗ ˙ B(s ⋆ ).
F(s) ⋆ , that is, the set of all b = c 1 ⊗ • • • ⊗ c ℓ ∈ F(s) such that b ⋆ = c ℓ ⊗ • • • ⊗ c 1 . Again, self-dual elements exist only if n = ℓ. Moreover, by [10, Proposition 5.2], for all b ∈ F(s), we have κ(b ⋆ ) = κ(b) tr , therefore if b ∈ F(s) ⋆ , we have κ(b) = κ(b)
κ k -→ κ ′ in Y if and only if κ k -→ κ ′′ -k -→ κ ′ in Y.
If one prefers, one can also consider the vertices of Y as shifted Young diagrams since self-conjugate partitions are in bijection with strict partitions. Further, for all i = 1, . . . , n -1, set again

f ⋆ i = ḟ ⋆ i f i .
Therefore, the operators f ⋆ i for i = 1, . . . , n -1 and a κ for κ = κ tr induce an (A

n-1 × B ∞ )-crystal structure on F(s) ⋆ . More precisely, we get the decomposition

F(s) ⋆ ≃ s∈D(s) s ⋆ =s B(s) ⊗ Y.
Other multicrystal structures on fixed points sets will be studied in Section 5.

3.8. Affine keys and bikeys. We now construct affine analogues of keys and bikeys as defined in Section 2.6. [START_REF] Jacon | Keys and Demazure crystals for Kac-Moody algebras[END_REF] uses the terminology (n, s)-cores instead of affine bikeys. Indeed, it is observed that if b = c ℓ ⊗ • • • ⊗ c 1 is an affine key, then each c j is in particular the beta-set of a partition which is an n-core. 

Definition 3.34. An element b = c ℓ ⊗ • • • ⊗ c 1 ∈ F(s) is called an affine key if b is cylindric and c ℓ ⊆ • • • ⊆ c 1 ⊆ c + ℓ . Remark 3.35. Note that
⊗ 1 0 1 1 1 ⊗ 1 0 1 1 0 ⊗ 1 0 2 1 2 ⊗ 1 0 1 1 0 ⊗ 1 0 3 1 3 ⊗ 1 0 1 1 2 ⊗ 1 0 2 1 1 ⊗ 1 0 3 1 0 ⊗ 1 0 4 . . . . . . . . . . . . . . . . . . 0 1 1 0 0 1 0 1 1 0 1 0 1 0
Note that b s is cylindric, and therefore all vertices appearing are cylindric. In the picture, only

b s = 1 0 ⊗ 1 0 1 , 1 1 ⊗ 1 0 1 and 1 0 ⊗ 1 0 2
are in O S n (b s ). One checks that these are affine keys in the sense of Definition 3.34, and that the others are not, which illustrates Proposition 3.36.

We can now give a characterisation of the dual of an affine key, in the spirit of Proposition 2.28. It will be convenient to consider the action of S n on Z n determined by the formulas w(z 1 , . . . , z n ) = (z w(1) , . . . , z w(n) ) for w ∈ S n and σ 0 (z 1 , . . . ,

z n ) = (z 1 -ℓ, z 2 , . . . , z n-1 , z n + ℓ).
Observe that the set Ḋ (s) is a fundamental domain for this action.

Proposition 3.38. Let b ∈ F(s). Then b is an affine key if and only if b

⋆ = ḃṡ for some ṡ ∈ Z n (s).
Proof. It suffices to observe that b ⋆ s = ḃṡ for some ṡ ∈ D (s). The rest of the proof is analogous to that of Proposition 2.28. The maps R i , i = 1, . . . , n -1 simply permute the columns of ḃṡ , and by Corollary 3.24

⋆ σ 0 ( ṙ1 ⊗ • • • ⊗ ṙn ) = ṙ1 -ℓ ⊗ ṙ2 ⊗ • • • ⊗ ṙn-1 ⊗ ṙn + ℓ , i.e. ⋆ σ 0 ( ḃṡ ) = ḃσ 0 ( ṡ) . Thus, for all w ∈ S n , we have ⋆ w( ḃṡ ) = ḃw(ṡ) . Now, we have b is an affine key ⇔ b ∈ O S n (b s ) for some s ∈ D (s) ⇔ b ⋆ ∈ O S n ( ḃṡ ) for some ṡ ∈ Ḋ (s) ⇔ there exists w ∈ S n such that b ⋆ = ⋆ w( ḃṡ ) ⇔ there exists w ∈ S n such that b ⋆ = ḃw(ṡ)
Let s ∈ D (s). By analogy with Proposition 2.31, we say that b ∈ F(s) is an affine bikey of shape s if b in is the orbit of b s under the action of S n × S ℓ . We denote K(s) the set of bikeys of shape s. Similarly, given ṡ ∈ Ḋ (s), Finally, we can describe affine bikeys directly, in a slightly less explicit way than in finite type. First, as in Section 2.6 the maps R j for j = 1, . . . , ℓ act on affine keys by permuting their columns. Therefore, the elements of K(s) are obtained from affine keys by combining permutations of their columns and applications of R 0 .

let ˙ K( ṡ) ⊆ ˙ F( ṡ)
Example 3.39. Take ℓ = n = 2 and s = (r 1 , r 2 ) = (1, 0) as in Example 3.37. The orbit of b s under the action of S ℓ consists of the following elements

b s = 0 ⊗ 0 1 , 0 1 ⊗ 0 , 1 ⊗ 1 0 1 2 , 1 0 1 2 ⊗ 1 , 2 ⊗ 2 1 0 1 2 3 , 2 1 0 1 2 3 ⊗ 2 , • • •
The same procedure applied to each affine key in F(s) yields K(s).

BICRYSTAL STRUCTURES INVOLVING INFINITE RANK CLASSICAL ROOT SYSTEMS

In this section, we denote by X ∞ any infinite Dynkin diagram of type A +∞ , B ∞ , C ∞ or D ∞ . We refer to [START_REF] Lecouvey | Crystal graphs and combinatorics of infinite rank quantum groups[END_REF] and the references therein for the notations and definition used in this section. In particular, the nodes of the Dynkin diagrams of types B ∞ , C ∞ or D ∞ are parametrised by the integers of Z ≥0 so that one gets a Dynkin diagram of type A +∞ by removing the 0-node. Our aim in this section is to explain how the A n-1 × A ℓ-1 bicrystal structure described in Section 2.4 can be generalised to obtain X ∞ × A ℓ-1 bicrystal structures.

4.1. Recollection on extremal crystals of type X ∞ . By [START_REF] Lecouvey | Crystal graphs and combinatorics of infinite rank quantum groups[END_REF], one can associate to each partition λ an extremal weight crystal7 B ∞ (λ) of type X ∞ which can be regarded as the direct limit of the finite type X n -crystal B n (λ) associated to the dominant weight λ when n tends to infinity. To be more precise let introduce the infinite alphabets

A X ∞ =        {1 < • • • < n < • • • } for X = A, {• • • < n < • • • < 1 < 0 < 1 < • • • < n < • • • } for X = B, {• • • < n < • • • < 1 < 1 < • • • < n < • • • } for X = C, {• • • < n < • • • < 2 < 1, 1 < 2 < • • • < n < • • • } for X = D.
The crystal B ∞ (λ) admits a convenient realisation in terms of Kashiwara-Nakashima tableaux of type X ∞ defined exactly as their finite rank counterpart by relaxing the admissibility condition of the columns. The general picture is identical to the finite type A. First, the crystals B ∞ (1) for each type A +∞ , B ∞ , C ∞ and D ∞ are respectively

1 2 • • • n -1 n • • • 1 2 n-2 n-1 n • • • n n -1 • • • 2 1 0 1 2 • • • n -1 n • • • n n-1 n-2 2 1 0 0 1 2 n-2 n-1 n • • • n n -1 • • • 2 1 1 2 • • • n -1 n • • • n n-1 n-2 2 1 0 1 2 n-2 n-1 n • • • n n -1 • • • 2 1 1 2 • • • n -1 n • • • n n-1 n-2 2 0 1 1 0 2 n-2 n-1 n
Next, one introduces for any k ≥ 1, column tableaux c of height k as the vertices of the crystal B ∞ (1) ⊗k with extremal vertex the column c(k

) = 1 ⊗ • • • ⊗ k. Finally, for any partition λ with ℓ-columns of heights k 1 ≥ • • • ≥ k ℓ the tableaux of shape λ are identified with the vertices b = c ℓ ⊗ • • • ⊗ c 1 in the connected component of the crystal B ∞ (1 k ℓ ) ⊗ • • • ⊗ B ∞ (1 k 1 ) with extremal vertex c(k ℓ ) ⊗ • • • ⊗ c(k 1 ).
In type C ∞ , one can show that a tableau T = c 1 • • • c l of shape λ is a filling of the Young diagram λ by letters of A C ∞ so that the filling of each column c i of λ is strictly increasing from top to bottom and the split form of T is semistandard. The split form of T is obtained by splitting each column c i according to the following procedure. Given a column c, its split form is the pair (lc, rc) of columns containing no pair of letters (z, z) with z unbarred defined as follows. Let I = {z 1 < • • • < z r } the set of unbarred letters z such that the pair (z, z) occurs in c. Define the set J = {t 1 < • • • < t r } of unbarred letters such that:

t 1 is the lowest unbarred letter satisfying: t 1 > z 1 , t 1 / ∈ c and t 1 / ∈ c, -for i = 2, ..., r, t i is the lowest unbarred letter satisfying:

t i > min(t i-1, z i ), t i /
∈ c and t i / ∈ c. Then write: rc for the column obtained by changing in c, z i into t i for each letter z i ∈ I and by reordering if necessary, lc for the column obtained by changing in c, z i into t i for each letter z i ∈ I and by reordering if necessary. Now T is a tableau of type C ∞ when its split form spl(T) = lc 1 rc 1 • • • lc l rc l is semistandard. Observe this implies that T itself is semistandard but a semistandard tableau on A C ∞ is not always of type C ∞ . Also, the tableaux of type A +∞ which are the semistandard tableaux on the alphabet A A +∞ coincide with the tableaux of type C ∞ with no barred letter.

Example 4.1. For

T = 2 1 2 1 2 2 3 one gets spl(T) = 3 2 1 1 2 2 1 1 2 2 2 3 3 3 therefore T is a tableau of type C ∞ , but T ′ = 2 2 2 1 2 2 3 with spl(T ′ ) = 3 2 4 2 2 2 1 1 2 2 2 3 3 4 is not, although it is semistandard on A C ∞ .
The tableaux of types B ∞ and D ∞ can be described in a similar way, through a splitting operation on their columns. Nevertheless, in type B ∞ (respectively D ∞ ), blocks of the form 0 (respectively

1 1
) can appear in the same column. This slightly modifies the procedure for computing the splitting form of the tableaux. A juxtaposition T = c 1 • • • c l of columns with decreasing heights will be a tableau of type B ∞ (respectively D ∞ ) if its split form spl(T) = lc 1 rc 1 • • • lc l rc l is semistandard (respectively is semistandard and each two columns tableau rc i lc i+1 avoids a particular pattern π D ). We refer the reader to [START_REF] Lecouvey | Combinatorics of Crystal Graphs for the Root Systems of Types A n , B n , C n , Dn and G 2[END_REF] for a complete description. There exists a convenient notion of weight on the crystals B ∞ (1) ⊗m , m ≥ 0 (and thus also on any tensor product 1) ⊗m , the weight wt(b) is the sequence (γ i ) 0≤ where for any 0 ≤ i the integer γ i is equal to the number of letters i in b minus its number of letters i.

B ∞ (1 k ℓ ) ⊗ • • • ⊗ B ∞ (1 k 1 )). For any b = x 1 ⊗ • • • ⊗ x m in B(
Given λ and µ two partitions, it was proved in [START_REF] Lecouvey | Crystal graphs and combinatorics of infinite rank quantum groups[END_REF] that the crystal B ∞ (λ) ⊗ B ∞ (µ) decomposes as the disjoint union of extremal weight crystals and this decomposition is independent of the type considered.

Theorem 4.2. For the type X

∞ extremal crystals B ∞ (λ) and B ∞ (µ) we have B ∞ (λ) ⊗ B ∞ (µ) ≃ ν B ∞ (ν) c ν λ,µ
where c ν λ,µ is the usual Littlewood-Richardson coefficients associated to λ, µ and ν. Remark 4.3.

(1) The theorem extends to the tensor products

B ∞ (λ 1 ) ⊗ B ∞ (λ 2 ) ⊗ • • • ⊗ B ∞ (λ ℓ ) associated to any sequence (λ 1 , . . . , λ ℓ ) of partitions. This tensor product contains a unique component isomorphic to B ∞ (λ 1 + • • • + λ ℓ
) that we will refer as the principal component (here 4.2. Jeu de Taquin on two columns and A 1 -crystal structure. For any integer u ≥ 0, write B ∞ (ω u ) for the type X ∞ -crystal extremal associated to the partition 1 u . It contains exactly the column tableaux of type X ∞ and shape 1 u . More generally, we identify the partition λ with a u columns of height u with the formal weight λ = ∑ u a u ω u . By Theorem 4.2, we get for any integers u, v ≥ 1

λ 1 + • • • + λ ℓ is the partition whose k-th part is the sum of the k-th part of each λ a , a = 1, . . . , ℓ). ( 2 
B ∞ (ω u ) ⊗ B ∞ (ω v ) ≃ min(u,v) t=0 B ∞ (ω t + ω u+v-t ) = B ∞ (ω u+v ) ⊕ B ∞ (ω 1 + ω u+v-1 ) ⊕ • • • ⊕ B ∞ (ω min(u,v) + ω max(u,v) ). When u ≤ v, the principal component B ∞ (ω u + ω v ) of B ∞ (ω u ) ⊗ B ∞ (ω v ) contains exactly the tableaux of type X ∞ and shape ω u + ω v . When u > v, the vertices of the principal component B ∞ (ω v + ω u ) of B ∞ (ω u ) ⊗ B ∞ (ω v ) are called antitableaux of type X ∞ .
As in Section 2.4, they can be easily described by using the splitting operation given in Section 4.1.

Consider a vertex c 2 ⊗ c 1 in B ∞ (ω u ) ⊗ B ∞ (ω v ) which is not a tableau. This means we have either u > v, or u ≤ v and the connected component B ∞ (c 2 ⊗ c 1 ) containing c 2 ⊗ c 1 is isomorphic to a crystal B ∞ (ω t + ω u+v-t ) with t ≤ u -1.
In both cases the above crystal decomposition implies that the crystal

B ∞ (ω u-1 ) ⊗ B ∞ (ω v+1 ) contains a unique component isomorphic to B ∞ (c 2 ⊗ c 1 ). Write ė(c 2 ⊗ c 1 ) for the vertex in B ∞ (ω u-1 ) ⊗ B ∞ (ω v+1 ) matched with c 2 ⊗ c 1 by this isomorphism. When c 2 ⊗ c 1 is a tableau, we set ė(c 2 ⊗ c 1 ) = 0.
Similarly, for any vertex

c 2 ⊗ c 1 in B ∞ (ω u ) ⊗ B ∞ (ω v ) which is not an antitableau, there exists a unique vertex ḟ (c 2 ⊗ c 1 ) in B ∞ (ω u+1 ) ⊗ B ∞ (ω v-1 ) such that the components B ∞ (c 2 ⊗ c 1 ) and B ∞ ( ḟ (c 2 ⊗ c 1 )) are isomorphic and ḟ (c 2 ⊗ c 1 ) is matched with c 2 ⊗ c 1 by this isomorphism. When c 2 ⊗ c 1 is an antitableau, we set ḟ (c 2 ⊗ c 1 ) = 0. For any c 2 ⊗ c 1 in B ∞ (ω u ) ⊗ B ∞ (ω v ), write Ḃ∞ (c 2 ⊗ c 1 )
for the set obtained by applying operators ė and ḟ to c 2 ⊗ c 1 . We get immediately the following proposition. The previous proposition can be regarded as an analogue of the Jeu de Taquin procedure on skew tableaux of type A with two columns. In fact, such a notion of skew tableaux also exists in type B ∞ , C ∞ and D ∞ . A skew tableau of type X ∞ is defined as the filling of a skew Young diagram by letters of A X ∞ whose duplicated form is semistandard (and avoid the pattern π D in type D ∞ ). To any skew tableau

c 1 • • • c ℓ , one associates the tensor product of columns c ℓ ⊗ • • • ⊗ c 1 .
Conversely, any tensor product c 2 ⊗ c 1 of two columns can be regarded as a minimal skew tableau as in Example 2.14. The operators ė and ḟ can then be interpreted as horizontal sliding operations on this skew tableau. In type A +∞ , one so recovers the usual Jeu de Taquin procedure, see Example 2.14, in types B ∞ and C ∞ this corresponds to the sliding operations described in [START_REF] Lecouvey | Combinatorics of Crystal Graphs for the Root Systems of Types A n , B n , C n , Dn and G 2[END_REF].

Example 4.5. In type C ∞ , for

c 1 ⊗ c 2 = 2 1 2 5 ⊗ 4 2 3 5 
, the corresponding minimal skew tableau is . By using the sliding procedure in type C ∞ or the previous crystal isomorphisms, one gets

ė     2 4 1 2 2 3 5 5     = 4 2 1 1 1 5 3 5 and ḟ     2 4 1 2 2 3 5 5     = 2 1 4 2 2 3 5 5 . 4.3. Bicrystal structure on product of columns of type X ∞ . Consider n, ℓ ∈ Z ≥2 , s = (s 1 , . . . , s ℓ ) ∈ Z ℓ ≥0 and s ∈ Z ≥0 . With the notation of the previous paragraph, write B ∞ (s) = B ∞ (ω s 1 ) ⊗ • • • ⊗ B ∞ (ω s l ) and set B ∞ (s) = ⊕ |s|=s B ∞ (s). By definition B ∞ (s) is a type X ∞ -crystal.
We are going to show that it admits in fact the structure of a type X ∞ × A ℓ-1 -crystal. First, for any j = 1, . . . , ℓ -1 define the operators ėj and ḟj on each B ∞ (s) as the action of ė and ḟ on its j and j + 1-th components, that is for any

c 1 ⊗ • • • ⊗ c ℓ ∈ B ∞ (s) ėj = c 1 ⊗ • • • ⊗ ė(c j ⊗ c j+1 ) ⊗ • • • c ℓ and ḟj = c 1 ⊗ • • • ⊗ ḟ (c j ⊗ c j+1 ) ⊗ • • • c ℓ .
By definition, the operators ė and ḟ commute with the action of the X ∞ -crystal operators, therefore ėj and ḟj also commute with the operators e i and f i with i ∈ X ∞ . Denote by ḟj any finite composition of operators ḟj with j ∈ {1, . . . , ℓ} and by k i any finite composition of operators e i , f i with i ≥ 0.

Theorem 4.7.

(1) The crystal B ∞ (s) has the structure of an (X ∞ × A ℓ-1 )-crystal. This bicrystal is extremal for the X ∞ -structure and of highest weight for the A ℓ-1 -structure. ( 2 We conclude this section with some important remarks.

Remark 4.9.

(1) In another direction, Kwon established and studied in [START_REF] Kwon | Differential operators and crystals of extremal weight modules[END_REF] a bicrystal structure arising from a duality between extremal A +∞ -crytals and generalised Verma A ∞ -crystals. (2) Contrary to Section 2.4, we dit not introduce a duality b → b * from which the A ℓ-1 -crystal structure on B ∞ (s) can easily be made explicit. Although the A ℓ-1 -highest vertices of B ∞ (s) correspond to Kashiwara-Nakashima tableaux of type X ∞ , we cannot use the same duality as in type A ℓ-1 . Indeed, in types B ∞ and D ∞ , these tableaux are not semistandard on A X ∞ in general. Moreover, even in type C ∞ , the action of a crystal operator ėj and ḟj does not coincide with a horizontal sliding of the ordinary Jeu de Taquin of type A. This problem, also related to the cyclage operation on tableaux defined in [START_REF] Lecouvey | Kostka-Foulkes polynomials, cyclage graphs and charge statistics for the root system C n[END_REF] and [START_REF] Lecouvey | Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B n[END_REF] will be considered elsewhere. (3) The previous corollary can also be obtained without referring to Section 2.4.

For b = c 1 ⊗ • • • ⊗ c ℓ a A ℓ-1 -
highest weight in B ∞ (s), the equality ėj (b) = 0 for any j = 1, . . . , ℓ -1 means that c j ⊗ c j+1 is a tableau of two columns for any j = 1, . . . , ℓ -1. This implies that b is a tableau of type X ∞ because the tableaux are characterised locally by conditions on their pairs of consecutive columns. (4) The results of this section can also be regarded as bicrystal structures on particular matrix sets. In type

A +∞ or C ∞, each vertices b = c 1 ⊗ • • • ⊗ c ℓ of B ∞ (s)
can indeed be encoded in an infinite matrix M = (m i,j ) with rows indexed by Z \ {0} and columns indexed by {1, . . . , ℓ}, where m i,j = 1 if c j contains the letter i ∈ Z \ {0} and m i,j = 0 otherwise. In type B ∞ we proceed similarly, except that the integers in the rows m 0,j may be greater than 1. Finally in type D ∞ , the coefficient m 0,j counts the number of blocks 1 1 in c j .

FIXED POINTS IN BICRYSTALS

In this section, we show that bicrystals structures of classical types can be obtained by considering fixed points sets under involutions defined on our combinatorial Fock spaces. We shall detail mainly the classical case, the methods and arguments being similar in the affine situation.

Dynkin diagram involutions in finite type A.

In type A n-1 , let θ be the Dynkin diagram automorphism mapping the vertex i to ni, for all i = 1, . . . , n -1. Then θ induces a map on the set of dominant weights of type A n-1 that we denote by the same symbol

θ : P + → P + , n-1 ∑ i=1 a i ω i → n-1 ∑ i=1 a i ω n-i .
We can also define the map θ on the partitions of length at most n: θ replaces each column of height 0 < i < n by a column of height ni and fixes the columns of height 0 or n. For any partition λ, recall that B(λ) is the crystal of highest weight vertex b λ . It can be realised by using semistandard tableaux of shape λ, and in this case b λ is the tableau of shape λ with only k's in row k [START_REF] Hong | Introduction to Quantum Groups and Crystal Bases[END_REF]Section 7.3].

The map θ induces a map on B(λ) that we denote by the same symbol

θ : B(λ) -→ B(θ(λ)),
which maps b λ to b θ(λ) and which is a θ-isomorphism of crystals, i.e. for all b ∈ B(λ), and for all i = 1, . . . , n -1,

θ( f i b) = f θ(i) (θ(b)) = f n-i (θ(b)).
Example 5.1. Take n = 3 and let λ = ω 1 = , so that θ(λ) = ω 2 = . We get the following crystals.

B(λ) = 1 1 -→ 2 2 -→ 3 and B(θ(λ)) = 1 2 2 -→ 1 3 1 -→ 2 3 .
5.2. Crystal structure on fixed points sets. Denote

P θ + = {λ ∈ P + | θ(λ)
= λ} the set of dominant weights fixed under θ, so that 

λ ∈ P θ + ⇔ ∃ a 1 , . . . , a ⌊n/2⌋ ∈ Z s.t. λ =            n/2-1 ∑ i=1 a i (ω i + ω n-i ) + a n/2 ω n/2 if n -1 is odd, (n-1)/2 ∑ i=1 a i (ω i + ω n-i ) if n -
= B if n -1 is odd and X = C if n -1 is even
For any partition λ with at most n parts and such that θ(λ) = λ, there exists a unique crystal involution on B(λ)

such that θ( fi 1 • • • fi r (b λ )) = fθ(i 1 ) • • • fθ(i r ) (b λ
) for any sequence i 1 , . . . , i r in {1, . . . , n -1} of arbitrary length. This permits to consider the set

B(λ) θ = {b ∈ B(λ) | θ(b) = b} .
In [START_REF] Naito | Lakshmibai-Seshadri Paths Fixed by a Diagram Automorphism[END_REF][START_REF] Naito | Crystal Bases and Diagram Automorphisms[END_REF] Naito and Sagaki established the following theorem. Consider a partition λ with at most n parts and such that θ(λ) = λ. Theorem 5.3. For i = 1, . . . , ⌊n/2⌋, define the modified crystal operators (1) if n -1 is odd,

f θ i = f i f n-i if i = 1, . . . , n/2 -1 f i if i = n/2. (2) if n -1 is even, f θ i = f i f n-i if i = 1, . . . , (n -1)/2 -1 f i f 2 i+1 f i if i = (n -1)/2.
Then every b ∈ B(λ) θ is obtained by applying a sequence of modified crystal operators to the highest weight vertex b λ of B(λ). This induces a crystal structure on B(λ) θ . Moreover, we have

B(λ) θ ≃ B (X ⌊n/2⌋ ) (λ ′ ),
the crystal of classical type X ⌊n/2⌋ with highest weight λ ′ . In each case, the action of the modified crystal operators is mapped to the action of the classical crystal operators.

Example 5.4.

(1) Take n = 4, and λ = ω 1 + ω 3 = , so that λ ∈ P θ + . Then we have

B(λ) θ = 1 1 2 3 1 -→ 1 2 2 4 2 -→ 1 2 3 4 2 -→ 1 3 3 4 1 -→ 2 4 3 4 ≃ B (B 2 ) (λ ′ ) with λ ′ = ω ′ 1 .
(2) Take n = 5, and λ = ω 1 + ω 4 = , so that λ ∈ P θ + . Then we have 1) is a particular occurrence of a phenomenon called "similarity of crystal bases" by Kashiwara [START_REF] Kashiwara | Similarity of crystal bases[END_REF]Theorem 5.1]. In fact, in the case where n -1 is odd, we can also exhibit a type C n/2 crystal structure on a subset of B(λ) θ as follows.

B(λ) θ = 1 1 2 3 4 1 -→ 1 2 2 3 5 2 -→ 1 4 3 4 5 1 -→ 2 5 3 4 5 ≃ B (C 2 ) (λ ′ ) with λ ′ = ω ′ 1 . Case (
Assume n -1 is odd and let λ is a partition with at most n parts and with associated weight of the form λ = ∑ n/2 i=1 a i (ω i + ω n-i ). Let η : B(λ) → B(λ) be the involution defined by η(b λ ) = b λ and

η( fi 1 • • • fi r (b λ )) = f a i 1 n-i 1 • • • f a ir n-i r (b λ ) with a i k = 1 if i k = n/2, 2 otherwise.
for any sequence i 1 , . . . , i r in {1, . . . , n -1} of arbitrary length. Accordingly, we write

P η + = λ ∈ P + λ = n/2 ∑ i=1 a i (ω i + ω i+1 ) ⊂ P θ + ,
and for λ ∈ P 

B(λ) η = 1 1 2 3 1 -→ 1 2 2 4 2 -→ 1 3 3 4 1 -→ 2 4 3 4 ≃ B (C 2 ) (λ ′ )
with λ ′ = ω ′ 1 . Remark 5.7. For λ ∈ P + , one might also consider the set B(λ

) θ = {b ∈ B(λ) | θ(wt(b)) = wt(b)} ⊃ B(λ) θ .
Nevertheless, the modified crystal operators of Theorem 5.3 and Theorem 5.5 do not endow B(λ) θ with the structure of a crystal. For example in type A 3 for λ = (4, 3, 3), B(λ) θ would so have a source vertex of weight (4, 3, 2, 1) whose associated connected component is not a type B 2 -crystal. 5.3. Bicrystal structure on fixed points sets: the finite case. In this section, we combine the results from Section 2.4 and Section 5.2 to exhibit bicrystals structures of mixed types A × B, A × C and B × C. Recall that we have fixed s ∈ Z ≥0 and considered 

F(s) = s∈Z ℓ (s) F(s) = s∈Z ℓ (s) B(ω s 1 ) ⊗ • • • ⊗ B(ω s n ).
= ḟ * j f i b λ ∈ F(s) such that θ(λ) = λ, we set θ(b) = ḟ * j θ( f i b λ ) where θ( f i b λ ) = f n-i r • • • f n-i 1 b λ if i = (i 1 , .
. . , i r ), and we consider Theorem 5.8. The set F(s) θ has an (X ⌊n/2⌋ × A ℓ-1 )-crystal structure, where

F(s) θ = b ∈ F(s) | b = ḟ * j f i b λ with θ(λ) = λ
X = B if n -1 is odd, C if n -1 is even. This yields the decomposition F(s) θ ≃ λ∈S (s), θ(λ)=λ B (X ⌊n/2⌋ ) (λ ′ ) ⊗ B(λ tr ).
In fact, we can consider fixed points on either side, and on both sides simultaneously. To see this, we need to consider the automorphism θ of the Dynkin diagram of type A ℓ-1 . Similarly to θ, the map θ induces an involution on the set of partitions with at most ℓ columns flipping rows of length j and ℓj for 0 < j < ℓ and fixing rows of length 0 or ℓ. Then, for any partition λ fixed by θ, we can define θ on b = ḟ

* j f i b λ ∈ F(s) by setting θ(b) = f i ( θ ḟj ) * b λ where θ( ḟ * j b λ ) = ḟ * ℓ-j r • • • ḟ * ℓ-j 1 b λ if j = (j 1 , .
. . , j r ), and also consider

F(s) θ = b ∈ F(s) | b = ḟ * j f i b λ with θ(λ) = λ and θ(b) = b .
Theorem 5.9. The set F(s) θ has an (A n-1 × Ẋ⌊ℓ/2⌋ )-crystal structure, where

Ẋ = B if ℓ -1 is odd C if ℓ -1 is even This yields the decomposition F(s) θ ≃ λ∈S (s), θ(λ)=λ B(λ) ⊗ B ( Ẋ⌊ℓ/2⌋ ) ((λ tr ) ′ ). Now set S (s) θ, θ = {λ ∈ S (s) | θ(λ) = λ and θ(λ) = λ}. Then the set F(s) θ, θ = F(s) θ ∩ F(s) θ.
is the subset of F(s) obtained from the double highest weight vertices b λ with λ ∈ S (s) θ, θ by applying the modified crystal operators f θ i and ḟ θ j .

Theorem 5.10. The set F(s) θ, θ has the structure of an (X ⌊n/2⌋ × Ẋ⌊ℓ/2⌋ )-crystal where

X ⌊n/2⌋ = B if n -1 is odd, C if n -1 is even, and Ẋ⌊ℓ/2⌋ = B if ℓ -1 is odd, C if ℓ -1 is even.
Moreover, we have the decomposition

F(s) θ, θ ≃ λ∈S (s) θ, θ B (X ⌊n/2⌋ ) (λ ′ ) ⊗ B ( Ẋ⌊ℓ/2⌋ ) ((λ tr ) ′ ).
Remark 5.11.

(1) It would be interesting to have a combinatorial description of the set F(s) θ, θ as tensor products of columns or binary matrices. (2) By applying the relevant weight functions on the previous decompositions obtained for F(s) θ , F(s) θ and F(s) θ, θ, one can get analogues of Cauchy identities in our bicrystal context . For example, for any vertex b in F(s) θ, θ, wt(b) ′ is a weight of type X ⌊n/2⌋ whereas wt(b * ) ′ is a weight of type Ẋ⌊ℓ/2⌋ . One obtains

∑ b∈F(s) θ, θ x wt(b) ′ y wt(b * ) ′ = ∑ λ∈S (s) θ, θ s (X ⌊n/2⌋ ) λ ′ (x)s ( Ẋ⌊ℓ/2⌋ ) (λ tr ) ′ (y)
where for any partition ν of length at most m (respectively at most p), s

(X m ) ν (respectively s ( Ẋp ) ν
) stands for the Weyl character of type X m (respectively Ẋp ) associated to ν.

(3) The results of this paragraph have analogues when the map θ is replaced by the map η defined in Section 5.2 and P θ by P η . (4) In [START_REF] Curtis | Branching Rules for Classical Lie Groups using Tensor and Spinor Methods[END_REF], King established the interesting Cauchy type formula

n ∏ i=1 ℓ ∏ j=1 (x i + x -1 i + y j + y -1 j ) = ∑ λ⊂n×ℓ s (C n ) λ (x)s (C ℓ ) [λ] (y)
where [λ] is the transposed of the rectangular complement of λ in n × ℓ. Although the right-hand side looks similar to the sum appearing in our results when n -1 and ℓ -1 are even, it is not obvious to relate both.

To conclude this paragraph, let us introduce a last natural involution θ on the set S (s). Here for any λ ∈ S (s), the Young diagram of θ(λ) is obtained from that of λ by changing each column of height 0 ≤ i ≤ n in a column of height ni. In other words, θ(λ) is the π-rotation of the complement of λ in the n × ℓ-rectangle as illustrated in Example 5.12 below. In particular θ and θ coincide on the partitions with no column of height n or 0 but this is not true in general.

Example 5.12. Take ℓ = 5, n = 3 and λ = . Then λ and θ(λ) fit in the n × ℓ-rectangle as follows λ π-rotation of θ(λ) so we have θ(λ) = .

One may also observe that θ(λ) = λ if and only if θ(λ) is obtained from λ by changing each row of length 0 ≤ j ≤ ℓ in a row of length ℓj. In fact, we see that θ(λ) = λ if and only if each box of the Young diagram of λ is paired with a box of n × ℓ outside λ. Also, the weights of type A n-1 and A ℓ-1 associated to the partitions in the set

S θ (s) = {λ ∈ S (s) | θ(λ) = λ}
are fixed simultaneously by θ and θ (since columns of height n and rows of length ℓ do not contribute to A n-1 and A ℓ-1 weights, respectively). Thus

F(s) θ = {b ∈ F(s) θ, θ | b = f i ḟ * j b λ with θ(λ) = λ}
has a bicrystal structure exactly as in Theorem 5.10. Also, note that when ℓ and n are both odd, the set S θ (s) is empty.

Example 5.13. Assume n = 4 and ℓ = 3.

Then the set S θ (s) contains exactly the partitions (2, 2, 1, 1), (3, 3, 0, 0), (3, 2, 1, 0). We have

∑ b∈F(s) θ x wt(b) ′ y wt(b * ) ′ = s (B 2 ) (1,1) (x)s ( Ċ1 ) (2) + s (B 2 ) (3,3) (x)s ( Ċ1 ) (0) (y) + s (B 2 ) (2,1) (x)s ( Ċ1 )
(1) (y).

Bicrystal struture on fixed points sets: the affine case. Consider the type A (1)

n-1 Dynkin diagram automorphism θ : i → -i mod n, for all i = 0, . . . , n -1. Its induces an involution on the cone of dominant weights P + sending each fundamental weight ω i , i = 0, . . . , n -1 on ω -i mod n . Let P θ + be the subset of P + of dominant weights fixed by θ. When n = 2m is even (respectively n = 2m -1 is odd), there is a bijection λ → λ ′ between the sets P θ + and the set P ) of dominant weights for the root system D 2(m-1) ) (in Kac's classification of affine Dynkin diagrams [START_REF] Kac | Infinite dimensional Lie algebras[END_REF]). For any λ ∈ P + , similarly to the classical case, we have a crystal anti-isomorphism also denoted by θ from B(λ) to B(θ(λ)) which flips the labels i and -i mod n of the arrows. Assuming that θ(λ) = λ, one gets an involution on B(λ) (also denoted by θ) and it makes sense to set B θ (λ) = {b ∈ B(λ) | θ(b) = b}. Let us define some modified crystal operators by

f θ i = f i f 2m-i , i = 1, . . . , n -1, f θ 0 = f 0 and f θ m = f m when n = 2m, f θ i = f i f 2m-1-i , i = 1, . . . , n -1, f θ 0 = f 0 and f θ m = f m f 2 m-1 f m when n = 2m -1.
In [START_REF] Naito | Crystal Bases and Diagram Automorphisms[END_REF], it was proved that when n = 2m -1 (respectively n = 2m) these operators stabilize B(λ) θ and the crystal structure obtained in this way is isomorphic to B (D (2) m+1 ) (λ ′ ) (respectively to B (A (2) 2m ) (λ ′ )). Write for short B (X) (λ ′ ) the crystal obtained in both cases. By Lemma 3.26, for any s ∈ D (s), the image of the vertex b = b s by the duality ⋆ is ḃs ⋆ with s ⋆ ∈ Ḋ (s). Recall that we had denoted

ω s = ω s ℓ + • • • + ω s 1 for s ∈ D (s) and ωṡ = ω ṡn + • • • + ω ṡ1 for ṡ ∈ Ḋ (s)
. By mimicking the construction in Section 5.3, one can define, for any combinatorial Fock space F(s), the crystal F(s) θ as the crystal generated from the triple highest weight vertices b s with s ∈ D (s) θ where

D (s) θ = {s ∈ D (s) | θ(ω s ) = ω s } .
Then, F(s) θ has the structure of an (X × A ∞ × A 

≤ s 1 ≤ s 1 ≤ • • • ≤ s ℓ < n with s j = s ℓ-j+1
for any j = 1, . . . , ℓ. Then we clearly have θ(s) = s. But by Lemma 3.26 we also get θ(s) = s since for any j = 1, . . . , ℓ -1 we have s j+1s j = (ns j ) -(ns j+1 ) = s ℓ-j+1s ℓ-j . In particular s ∈ D (s) θ, θ .

Now define F(s) θ, θ as the crystal generated by the operators f θ i and ( ḟ θ i ) * applied on the triple highest weight vertex b s with s ∈ D (s) θ, θ. Then F(s) θ, θ has the structure of an (X × A ∞ × Ẋ)-crystal. The crystals F(s) θ , F(s) θ and F(s) θ, θ can then be regarded as combinatorial Fock spaces carrying a crystal structure other than type A.

When n = 2m is even, one can also define the subset P η + (respectively P ζ + ) of P θ + of weights with an even ω 0coordinate (respectively with even ω 0 and ω m -coordinates). Then, there is a bijective map ω s → ω † s between P (1) m , respectively. From any combinatorial Fock space F(s), one can then define the combinatorial Fock spaces F(s) η , F η (s), F(s) ζ and F(s) ζ as previously and also get triple structures of crystal with one structure of affine type other than A. In general, one can define sets D (s) ♯, ♭ = {s ∈ D (s) | ω s ∈ P ♯ + and ωṡ ∈ Ṗ♭ + } where the symbols ♯ and ♭ belong to the set {θ, η, ζ}. We can then define F(s) ♯, ♭ as the crystal generated by the operators f ♯ i and ( ḟ ♭ i ) * applied on the triple highest weight crystal b s with s ∈ D (s) ♯, ♭. It admits the structure of an (X × A ∞ × Ẋ)-crystal described by the table below.

θ, n = 2m -1 θ, n = 2m η, n = 2m ζ, n = 2m θ, ℓ = 2p -1 A (2) 2(m-1) × A ∞ × Ȧ(2) 2(p-1) D (2) m+1 × A ∞ × Ȧ(2) 2(p-1) Ã(2) 2m × A ∞ × Ȧ(2) 2(p-1) C (1) m × A ∞ × Ȧ(2) 2(p-1)
θ, ℓ = 2p A

(2)

2(m-1) × A ∞ × Ḋ(2) p+1 D (2) m+1 × A ∞ × Ḋ(2) p+1 Ã(2) 2m × A ∞ × Ḋ(2) p+1 C (1) m × A ∞ × Ḋ(2) p+1 η, ℓ = 2p A (2) 2(m-1) × A ∞ × Ȧ(2) 2p D (2) m+1 × A ∞ × Ȧ(2) 2p Ã(2) 2m × A ∞ × Ȧ(2) 2p C (1) m × A ∞ × Ȧ(2) 2p ζ, ℓ = 2p A (2) 2(m-1) × A ∞ × Ċ(1) p D (2) m+1 × A ∞ × Ċ(1) p Ã(2) 2m × A ∞ × Ċ(1) p C (1) m × A ∞ × Ċ (1) 
p

In each case, F(s) ♯, ♭ can be regarded as a combinatorial Fock space carrying a triple crystal structure, two of them being of affine type other than A. Observe that this gives rises to all possible classical affine crystal structures except those corresponding to Dynkin diagrams containing a sub-Dynkin diagram of classical type D.

PROMOTION OPERATOR AND A GENERALISATION OF PITMAN'S 2M-X TRANSFORM

In this section, we first relate the Pitman transform 2M-X to the affine crystals A

(1)

1 and show how the energy can be used to prove that the successive iterations of this transform on trajectories on Z with steps ±1 tend to the trivial trajectory, all of whose steps are equal to 1. We next define a transformation analogue in higher dimension and establish that it also yields a natural convergence of trajectories. There is a straightforward bijection between the vertices b * = ε 1 ⊗ • • • ⊗ ε n ∈ B ⊗n and the trajectories π of length n on the set Z of integers starting at 0 with steps +1 or -1 defined by π(k) = π + (k)π -(k) for any k = 0, . . . , n where π + (k) (respectively π -(k)) is the numbers of letters 1 (respectively of letters 2) in ε 1 ⊗ • • • ⊗ ε k . In the sequel, we shall abuse the notation and identify the vertices b * with their associated path π. This corresponds to the Littelmann path model for A 1 and it is easy to check that b * is a Yamanouchi word if and only if π(k) ≥ 0 for any k = 0, . . . , n. We now define the two Pitman transforms P min and P max on the trajectories π ∈ B ⊗n by P min (π)(k) = π(k) -2 min for any 0 ≤ k ≤ n. The following properties are easy to check.

(1) The image by P min or P * max of any trajectory π ∈ B ⊗n is a trajectory which always remains nonnegative. (2) The trajectory P min (π) corresponds to the highest weight vertex associated to π in B ⊗n for the A 1 -structure obtained by deleting the 0-arrows. (3) The nonnegative trajectories are fixed by the transformation P min (since we then have inf 0≤a≤k π(k) = 0 for any 0 ≤ a ≤ n). This is not true for the transformation P max . (4) We have P min (π) = π if and only if min 0≤a≤k π(a) = 0 for any 0 ≤ k ≤ n, that is π remains nonnegative. [START_REF] Foda | Cylindric partitions, W r characters and the Andrews-Gordon-Bressoud identities[END_REF] We have P max (π) = π if and only if max 0≤a≤k π(a) = π(k) for any 0 ≤ k ≤ n. This means that π(k) = k for any 0 ≤ k ≤ n, i.e. π is the trivial trajectory π 0 whose all steps are equal to 1.

In the particular case A

(1)

1 , the promotion operator pr acts on each trajectory π just by flipping the steps +1 and -1. Thus, the path pr(π) is obtain by reflecting the path π i.e. we have pr(π)(k) = -π(k) for any 0 ≤ k ≤ n. This implies that P max = P min • pr. By using the results of Section 2.7, we get the following proposition Proposition 6.1.

-For any π in B ⊗n , we have D(P min (π)) = D(π): the Pitman transform P min preserves the energy D.

-For any nonnegative trajectory π in B ⊗n , we have D(pr(π)) = D(π)π -where π -is equal to the number of steps -1 in π: the promotion operator makes decrease the energy of a trajectory as the number of its negative steps. -For any trajectory π in B ⊗n , there exists an integer m 0 such that for any m ≥ m 0 , we have P (m) max (π) = π 0 . Proof. The first claim follows from the fact that P min (π) is the highest weight vertex of the A 1 -connected component containing π and D is constant on classical components. The second one is a consequence of Lemma 2.50. Finally, the sequence of integers D(π (m) ) is nonnegative, strictly decreasing while π (m) contains at least a step -1. It will eventually becomes equal to zero for m sufficiently large. Then π (m) = π 0 because π 0 is the unique nonnegative trajectory such that D(π 0 ) = 0 (or the unique fixed point by the transform P max . [START_REF] Pitman | One dimensional Brownian motion and the three-dimensional Bessel process[END_REF], Pitman proves that the image by the transforms P max and P min of a onedimensional Brownian motion is a 3-dimensional Bessel process (i.e. the norm of a 3-dimensional Brownian motion). One can replace this Brownian motion by a random walk with transitions +1 and -1 and related probabilities p 1 , p -1 where p 1 + p -1 = 1. Its image by P min or P max yields a Markov chain on Z ≥0 . Later, it was observed by Biane, Bougerol and O'Connell [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] that P min can be interpreted in Littelmann's path theory as the transform associating to each path its corresponding highest weight path. The previous one-dimensional results then admit higher dimensional generalisations (see for example [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] and [START_REF] Lecouvey | Random walks in Weyl chamber and crystals[END_REF]). As far as we are aware, our interpretation of P max in terms of affine crystals is new. 6.2. Generalisation to higher dimension. The generalised Pitman transform P min introduced in [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] is defined for any finite root system R with Dynkin diagram I. It associates to each Littelmann path, its highest weight path. Here, one can first define a Pitman transform P i,min for any node i ∈ I as in Section 6.1: it just computes the highest weight path for the A 1 -crystal corresponding to the node i. Then one has P min = P min,i 1 • • • P min,i r where s i 1 • • • s i r is a decomposition of the longest element w 0 of the Weyl group of R as a product of elementary reflections s i , i ∈ I. In particular P min does not depend on the reduced decomposition considered. Proposition 6.1 suggests to look for a natural higher dimensional generalisation of the results of Section 2.4. Let B be the A One might first define a transform P ′ max as in [START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] by setting P ′ max = P max,i 1 • • • P max,i r where w 0 = s i 1 • • • s i r is a reduced decomposion of w 0 . But then, as illustrated by the following example, P ′ max would depend on the chosen reduced decomposition. Example 6.4. Assume ℓ = 3 and n = 5. To apply P max,1 (respectively P max,2 ) to a vertex b * in Ḃ5,3 , we have first to flip the letters 1 and 2 (respectively 2 and 3) and next compute the source vertex of the 1-chain (respectively

( 1 +

 1 length min(n,ℓ) s λ (x)s λ (y) and char Λ(C n ⊗ C ℓ ) = ∏ 1≤i≤n 1≤j≤ℓ x i y j ) = ∑ λ contained in the rectangle n×ℓ s λ (x)s λ tr (y)

Example 2 . 2 . 3 4 is a column of type A 3 . 2 . 3 . 2 ( 1 )

 223432321 The set {1, 3, 4} = 1 Definition Let c 1 , . . . , c ℓ be columns of type A n-1 . The symbol b = c ℓ ⊗ • • • ⊗ c 1 is called (1) a tableau if the top-aligned juxtaposition c 1 • • • c ℓ yields a semistandard Young tableau. (2) an antitableau if the bottom-aligned juxtaposition c 1 • • • c ℓ yields a semistandard skew Young tableau. The shape of a tableau (respectively of an antitableau) is the partition (|c 1 |, . . . , |c ℓ |) tr (respectively (|c ℓ |, . . . , |c 1 |) tr ). Example 2.4. Let ℓ = 3 and n = The product 2 ⊗ 1 ⊗ 1 3 is a tableau which we identify with 1 1 2 3.

⊗ 1 ⊗ 2 and 1 2 ⊗ 1 ⊗ 1 2Definition 2 . 5 . 3 ⊗ 2 .

 12112532 are neither tableaux nor antitableaux.For the next definition, define first the word w(b) of a product b = c ℓ ⊗ • • • ⊗ c 1 to be the concatenation of the elements of c ℓ (in increasing order), then c ℓ-1 , and so on. The element b is called Yamanouchi 1 if every prefix of w(b) contains at least as many letters i as i + 1, for all i = 1, . . . , n -1. Example 2.6. Let ℓ = 4 and n = 3, and take b = 1 ⊗ 2 ⊗ 1 Then w(b) = 12132, and the different prefixes are 1, 12, 121, 1213, 12132 and we see that b is Yamanouchi.

2 1 2 3 ⊗ 2 .

 2232 In general, P(b) can be computed by carrying out one of the following procedures:-performing Schensted's insertion on the word w(b) [6, Section 1.1], -performing the Jeu de Taquin on the skew Young tableau corresponding to b [6, Section 1.2], -applying a sequence of plactic relation to w(b) [6, Section 2.1]. Example 2.14. Let ℓ = 2, n = 3 and let b = 1 Let us compute P(b) by using the first two methods. The word associated to b is w(b) = 12413, and Schensted's insertion yields the following sequence of tableaux 1 ,

Example 2 . 15 .

 215 Let ℓ = 5 and n = 4. Take b = 1 2 3

3 4 . 2 . 16 .

 34216 Remark As mentioned in the introduction, we can use binary matrices to represent elements in F(s) and Ḟ(s), which yields an easy description of the duality * . More precisely, encode b = c ℓ ⊗ • • • ⊗ c 1 by the n × ℓ matrix M defined by M i,j = 1 if i ∈ c j 0 otherwise Then b * is the element of Ḟ(s) encoded by M tr , the transpose of M. For instance, take b as in Example 2.15. Then b and b * are respectively encoded by the following matrices (remember that we read the columns of b starting from the right)

  then the element R j (b) is obtained by using N Jeu de Taquin slides between columns j and j + 1 of b. Therefore, by Part (1), (R j (b)) * = ėN j b * . Now, by definition of the duality * , we have N = ε j (b * )ϕ j (b * ), therefore ėN j b * = σj (b *) and the claim is proved. The case N < 0 is proved similarly by using the lowering operators ḟj instead.

Example 2

 2 

Proposition 2 . 28 .

 228 Let b ∈ F(s). Then b is a key if and only if b * is a product of Yamanouchi columns. Proof. We know that b * λ is the Yamanouchi antitableau of shape λ tr . In particular, b * λ is an antikey. Now by Theorem 2.19(2) and Proposition 2.27, b is a key if and only if b * is obtained from b *

Proposition 2 . 31 .

 231 is a tableau (and an antitableau), thus for a bikey b we must have P(b) = ẇ * (b). For all λ ∈ S (s), write K(λ) = {b ∈ K | P(b) has shape λ}. The next result justifies the terminology of the previous definition. For all λ ∈ S (s), we have K(λ) = O S n ×S ℓ (b λ ). Proof. We have already observed that ẇ * (b) is a tableau. Since c ẇ(1) ⊆ • • • ⊆ c ẇ(ℓ) , it is a key of shape λ. Thus, there exists w ∈ S n such that w ẇ * (b) = b λ which proves that K(λ) ⊆ O S n ×S ℓ (b λ ). Now for any w ∈ S n and ẇ ∈ S n , the vertex b = w ẇ * (b λ ) = ẇ * w(b λ ) is a bikey since w(b λ ) is a key on which the action of ẇ * (which is a combination of R-matrices) reduces to a permutation of the columns. Hence we get K(λ) = O S n ×S ℓ (b λ ).

( 2 )

 2 For all b * ∈ Ḟ(s), we have pr •R(b * ) = R • pr(b * ) Example 2.37. Take the same values as in Example 2.15. Then we have 1 2 3

Example 2 . 40 . 3 ⊗ 2 3. 2 ⊗ 2 .

 2403222 Take ℓ = 2, n = 3 and b = 1 2 We have k 0 = 2 and red(b) = 1

Proposition 2. 41 . ( 1 )

 411 Let b ∈ F(s) and write b * = d 1 ⊗ • • • ⊗ d n . The cyclage is authorised for b if and only if either (a) |d 1 | ≥ • • • ≥ |d n | and ℓ / ∈ d 1 , or (b) b * is Yamanouchi and for all i = 1, . . . , n, d i = {1, . . . , ℓ}. (2) red(b) * is obtained from red(b) be deleting the leftmost column {1, . . . , ℓ} in b * Proof. For (1), one checks from the definition that an element b is of dominant evaluation if and only if its dual b * has columns of non-increasing size, and (a) follows. Point (b) is a direct consequence of Proposition 2.17. Point (2) is clear from the definition of * .

2. 8 .Definition 2 . 43 .

 8243 Charge and energy. Charge and energy are two classic statistics defined on F(s) and Ḟ(s). The goal of this section is to establish that the duality * intertwines these two notions. Lemma 2.42. For all tableau b ∈ F(s), there exists m > 1 such that P(ξ m (b)) is a column. The charge is defined as follows. Let b

  If b is a tableau, define ch(b) by induction by setting ch(b) = ch(ξ(b)) + |c ℓ | and ch(red(b)) = ch(b) and using Lemma 2.42. (3) In general, set ch(b) = ch(P(b)).

Definition 2 . 44 .

 244 Let ℓ = 2 and b

Lemma 2 . 48 .

 248 Let b * = d 1 ⊗ • • • ⊗ d n ∈ Ḟ(s) be Yamanouchi such that d i = {1, . . . , ℓ} for some i = 1, . . . , n. Then D(b * ) = D(b × ), where b × is the element obtained from b * by deleting its leftmost column {1, . . . , ℓ}.

  and we thus get S n (b * ) = 0 as desired. The arguments are similar for the three remaining cases : ℓ ∈ d n and ℓ / ∈ d n-1 , ℓ / ∈ d n and ℓ ∈ d n-1 , ℓ ∈ d n and ℓ ∈ d n-1 . Combining Definition 2.43, the combinatorial description of the duality * , Lemma 2.48 and Proposition 2.49, we get the expected following theorem. Theorem 2.51. For all b ∈ F(s), we have ch(b) = D(b * ).

i 7 = c 3 ⊗Theorem 3 . 10 .. 3 . 12 .⊗.

 73310312 (b) be the word obtained by reading the entries i + kn and i + kn + 1 in b from left to right (i.e., going through the columns c ℓ , . . . , c 1 ). (2) Set w i (b) to be the concatenation of the words w (k) i ordered by decreasing values of k. Remark 3.8. Because of the semi-infinite form of each column, it is enough to consider only the integers k such that i + kn appears in the standard form of b. That way, we construct w i (b) from finitely many subwords w (k) i . Example 3.9. For n = 4, i = 3, ℓ = 3 and b = 1 c 2 ⊗ c 1 , where we highlighted the entries with relevant residues with boldface, we have w (1) 3 (b) = 77 and w (0) 3 (b) = 3344, therefore w 3 (b) = 773344. As in type A, this induces a word in the symbols + andby encoding each i + kn by + if and each i + kn + 1 by -. Deleting all factors +recursively yields a word called the i-signature of b. With these conventions, one checks that the following result is equivalent to [8, Theorem 6.2.12]. The set F(s) is endowed with an A (1) n-1 -crystal structure, where (1) The lowering crystal operators f i act on b ∈ F(s) by changing the entry x corresponding to the leftmost + in the i-signature of b into x + 1 if it exists; and by 0 otherwise. (2) The raising crystal operators f i act on b ∈ F(s) by changing the entry x + 1 corresponding to the rightmostin the i-signature of b into x if it exists; and by 0 otherwise. Example 3.11. In the previous example, we first get the sequence + + + + --, and the signature is ++. The leftmost + corresponds to the 7 in c 2 , and therefore f 3 acts on b by changing that 7 into an 8, i.e.f 3 b = 1 3 Example Take ℓ = 3, n = 2, s = (s 3 , s 2 , s 1 ) = (7, 4, 6) and b = c 3 ⊗ c 2 ⊗ c 1 = One checks that e 0 b = e 1 b = e 2 b = 0, i.e. b is a highest weight vertex, and that the beginning of the connected component of the A

Example 3 . 18 .

 318 Take ℓ = 2, n = 3, and b =

1 2 3 ,

 3 where we indicated the rows and column indices. This gives b

Proposition 3 . 23 .

 323 For all b ∈ F(s), ξ(b) ⋆ = pr(b ⋆ ).

  in terms of translating (generalised) n-periods. By writing κ(b) = κ, the map b → κ(b) yields a bijection between the connected component containing b and the Young lattice Y. Now, the Young lattice carries a crystal structure corresponding to the the basic representation of type A ∞ . More precisely, there is an arrow λ k -→ µ in Y with k ∈ Z if and only if µ/λ has only one box of content k. This endows F(s) with the structure of an A ∞ -crystal. The following result is [10, Theorem 6.17].

1 -

 1 crystal containing b s , where s ∈ D (s). These are called n-FLOTW elements, and the have an explicit combinatorial description, see [8, Definition 5.7.8]6 . In particular, FLOTW elements are cylindric, which is immediate from Theorem 3.16 because b s is. Theorem 3.30.

( 1 )

 1 n-1 -crystal and the A[START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] ℓ-1 -crystal given in Theorem 3.16[START_REF] Baik | On the distribution of the length of the longest increasing subsequence of random permutations[END_REF] and Proposition 3.20. Assertion (2) is proved in[START_REF] Gerber | Triple crystal action in Fock spaces[END_REF].Remark 3.31. Note that it is more challenging to give a simple description of the (A[START_REF] Biane | Littelmann paths and Brownian paths Duke Math[END_REF] n-1 × A ∞ )-highest weight vertices. Nevertheless, a characterisation of the A ∞ -highest weight vertices has been given in[START_REF] Gerber | The sl ∞ -crystal combinatorics of higher level Fock spaces[END_REF] Theorem 5.1], but this does not yield to an analogue of the previous theorem. By Theorem 3.25 and Corollary 3.29, for each b ∈ F(s), there is a unique s ∈ D (s) such that b = ḟ ⋆ j a κ f i b s for some i, j and some partition κ. Set P(b) = f i b s , κ(b) = κ,and Q(b) = ḟj b ⋆ s . Note that the elements P (b) and Q(b) are FLOTW by definition. Therefore, we get an analogue of Theorem 2.25, yielding an affine crystal version of the RSK correspondence. Theorem 3.32. The assignment Φ : b -→ (P (b), κ(b), Q(b))

Remark 3 . 33 . 3 . 7 .

 33337 Another way to express the affine crystal RSK correspondence is to consider the bijection b ←→ (P(b), Q(b))where Q(b) is defined as before, and P(b) = a κ f i b s (in particular P(b) is cylindric). In a symmetric fashion, one can establish a bijection b ←→ (P (b), Q(b)) where Q(b) is anticylindric. It would be interesting to compare this with the results of[START_REF] Langer | Enumeration of Cylindric Plane Partitions -Part II[END_REF]. Bicrystal structure on self-dual elements. As in Section 2.5, let us consider the set of self-dual elements

Proposition 3 . 36 .

 336 In particular, if b ∈ F(s) is an affine key, b is cylindric and therefore s(b) ∈ D (s). Now, for an element b ∈ F(s), denote O S n (b) the orbit of b under the action of S n . The following result is an analogue of Proposition 2.27 and is a reformulation of [20, Proposition 5.14]. Let s ∈ D (s). The set of all affine keys in F(s) is equal to O S n (b s ).

Example 3 . 37 . 1 .

 3371 Take ℓ = n = 2 and s = (r 1 , r 2 ) = (1, 0), so that b s = 0 ⊗ 0 Let us compute the beginning of the connected component of F(s) containing b s . 1 0

  ) For any m ≥ 0, any connected component B of B(1) ⊗m contains a unique distinguished extremal vertex, namely a vertex b ext = x 1 ⊗ • • • ⊗ x m such that x 1 , . . . , x m are unbarred letters and x 1 • • • x m is a Yamanouchi word. When b ext = b λ is the tableau of shape λ whose i-th row contains only letters i, B(b λ ) coincides with the set of tableaux of shape λ. In the general case, we get that wt(b) = λ is a partition and there is a unique crystal isomorphism from B(b ext ) = B to B(b λ ) sending b ext on b λ .

Proposition 4 . 4 .

 44 The set Ḃ∞ (c 2 ⊗ c 1 ) has the structure of a highest weight A 1 -crystal .

Proposition 4 . 6 .

 46 For any b = c 1 ⊗ • • • ⊗ c ℓ ∈ B ∞ (s), the colored and oriented graph Ḃ(b) defined by applying the operators ėj and ḟj to b has the structure of a type A ℓ-1 crystal. Proof. Assume first that b only contains unbarred letters. Then the result follows from Theorem 2.21. In the general case, there exists a path in B ∞ (s) from b to the distinguished extremal vertex b ext defined in Remark 4.3. This path corresponds to a composition of operators e i and f i , i ∈ X ∞ which commute with the operators ėj and ḟj , j ∈ {1, . . . , ℓ}. Therefore the graph Ḃ(b) and Ḃ(b ext ) are isomorphic and we are done because b ext only contains unbarred letters.

Corollary 4 . 8 .

 48 ) The tableaux b λ associated to the partitions of rank s are the unique vertices in B ∞ (s) both distinguished extremal for X ∞ and of highest weight for A ℓ-1 . (3) We have the decomposition B ∞ (s) = |λ|=s ḟj k j b λwhere the sum runs over all the possible i and j. In particularB ∞ (s) ≃ |λ|=s B ∞ (λ) ⊗ B(λ tr ) Proof. Assertion (1)is just a reformulation of the previous proposition. To prove Assertion (2), observe first that the vertices b λ are clearly both distinguished extremal for X ∞ and of highest weight for A ℓ-1 . Consider now b = c ℓ ⊗ • • • ⊗ c 1 with this property. Since b only contains unbarred letters, we can apply Corollary 2.22 and conclude that b = b λ for λ ⊢ s. Assertion (3) easily follows from 1 et 2. The A ℓ-1 -weight highest vertices in B ∞ (s) are exactly the tableaux of type X ∞ . Proof. Consider b a A ℓ-1 -weight vertices in B ∞ (s). Then, by Assertion (3) of the previous theorem, there should exist a partition λ of rank s and sequence k i such that b = k i b λ . This means that b is a tableau of type X ∞ . Conversely, any tableau b can be written b = k i b λ and for j = 1, . . . , ℓ -1, we have ėj (b) = ėj (k i b λ ) = k i ėj (b λ ) = 0 since both crystal structures commute.

η+Theorem 5 . 5 .

 55 , let λ † = ∑ n/2 i=1 a i ω † i where ω † i denotes the i-th fundamental weight of type C n/2 . Let B(λ) η = {b ∈ B(λ) | η(b) = b} . Assume n -1 is odd and let λ be a partition with associated weight in P η + . Consider the modified crystal operators f η i = f i f n-i for all i = 1, . . . , n/2. Then every b ∈ B(λ) η is obtained by applying a sequence of modified crystal operators f η i to the highest weight vertex b λ of B(λ). This induces a crystal structure on B(λ) η . Moreover, we have B(λ) η ≃ B (C n/2 ) (λ † ), the crystal of type C n/2 with highest weight λ † , where the action of the modified crystal operators is mapped to the action of the classical crystal operators. Example 5.6. Take n = 4, and λ = ω 1 + ω 3 = , so that λ ∈ P η + . Then we have

By Corollary 2 .

 2 [START_REF] Kac | Infinite dimensional Lie algebras[END_REF] and Theorem 2.25, we getF(s) = λ∈S (s) ḟ * j f i b λ , which implies F(s) ≃ λ∈S (s) B(λ) ⊗ B(λ tr )where S (s) is the set of partitions of s with Dynkin diagram contained in the rectangle n × ℓ. Now, for all b

  and θ(b) = b . By Theorem 5.3, we then get a bicrystal structure.

  )-crystal. Similarly, by considering θ the Dynkin diagram automorphism of type A (1) ℓ-1 , one can define the crystal F(s) θ , which has an (A (1) n-1 × A ∞ × Ẋ)-crystal structure. Finally, write D (s) θ, θ = {s ∈ D (s) | θ(ω s ) = ω s and θ( ωs ⋆ ) = ωs ⋆ } Example 5.14. Assume s = (s 1 , . . . , s ℓ ) belong to D (s) and is such that 0

  dominant weights for the affine root system Ã(2) 2m . We also have a bijective map ω s → ω ‡ s dominant weights for the affine root system C(1)m . Let us define some modified crystal operators byf η i = f i f 2m-i , i = 1, . . . , n -1, f η 0 = f 2 0 and f η m = f m , f ζ i = f i f 2m-i , i = 1, . . . , n -1, f ζ 0 = f 2 0 and f ζ m = f 2 m . Write F(s) η (respectively F(s) ζ )for the subcrystal of F(s) obtained by applying the operators f η i (respectively the operators f ζ i ) to vertices of the form b s with s fixed by η (respectively ζ). By the results of [23], one gets that F(s) η and F(s) ζ are isomorphic to the crystals F ( Ã(2) 2m ) (s † ) and F (C (1) m ) (s ‡ ) of type Ã(2) 2m and C

6. 1 . 1 ) 1 -

 111 Affine type A(crystal and Pitman's 2M-X transform. In this paragraph, we shall consider tensor products B ⊗n of the affine Kirillov-Reshetikhin crystal of type A

  0≤a≤k π(a) and P max (π)(k) = 2 max 0≤a≤k π(a)π(k)

1 -

 1 crystal with set of vertices {1, 2, . . . , ℓ} such that for any j = 0, . . . , ℓ -1 we haveḟj (k) = k + 1 mod ℓ if k = j mod ℓ, 0 otherwise.This is the simplest nontrivial Kirillov-Reshetikhin crystal of type A (1) ℓ-1 associated to the rectangle 1 × 1. For any integer n, the vertices of Ḃn,ℓ = B ⊗n coincide with the tensor product b * = d 1 ⊗ • • • ⊗ d n of n columns with height 1 on the alphabet {1, . . . , ℓ}. With the notation of Section 2.4, the corresponding vectors b ∈ F(n) are the tensor products b = c ℓ ⊗ • • • ⊗ c 1 of ℓ-columns in which each letter of {1, . . . , n} appears exactly once. Set b * fin = 1 ⊗n . Then b fin = ∅ ⊗ ∅ ⊗ • • • ⊗ c 1,...,n where c 1,...,n is the column containing exactly the letters {1, . . . , n}.

  Crystal structures. From now on, fix s ∈ Z ≥0 . Further, for s

	1 1 1 1		1	
	2 2 2	and	1 1 2	.
	3		1 2 2 3	
	2.2.			

  1 is even. For any weight λ in P θ , set λ ′ = ∑

	Definition 5.2. ⌊n/2⌋ i=1 a i ω ′ i where ω ′ i is the i-th fundamental weight of type X ⌊n/2⌋ , with
	X

  Example 6.2. Starting with π = 112121, we get pr(π) = 221212, P max = P min • pr(π) = 111212, prP max (π) = 222121, P 2 max (π) = 111121, pr•P 2 max (π) = 222212, P 3 max (π) = 111112, pr • P 3 max (π) = 222221, P 4 max (π) = 111111. Remark 6.3. In his seminal article

Note that the usual convention is to use suffixes instead of prefixes. In fact, our definition coincides with the notion of lattice word in the literature.

Note that the order in which the components of s and ṡ are enumerated is reversed. Though this seems artificial at this point, this will be crucial in Section 2.3

This skew tableau is minimal in the sense that its skew shape is minimal (for the inclusion of skew shapes) among all the possible shapes of the skew tableaux associated to b.

The element s is usually called the (multi)charge in the literature, see[START_REF] Jimbo | Combinatorics of representations of U q ( sl(n)) at q = 0[END_REF]. We choose this alternative terminology for two reasons : by analogy with the finite case (Section 2.1), since s plays a similar role to the partition λ (in fact, s can itself be represented by a partition as in the original approach [21, Definition 3.1]); and because "charge" has already been introduced with a different meaning in Section 2.8.

Note that in[START_REF] Gerber | Triple crystal action in Fock spaces[END_REF], the commutation was proved for a twisted version of this duality. This is accounted for here by enumerating

Note that FLOTW elements are originally defined for a more constrained condition on s, but it is easy to see that our condition induces the same combinatorial characterisation

The crystal B ∞ (λ) is not a highest weight crystal in types C ∞ , B ∞ , D ∞ .

T.G. is supported by an Ambizione grant of the Swiss National Science Foundation.

the 2-chain) corresponding to the vertex so obtained. For the vertex b * = 2 ⊗ 1 ⊗ 2 ⊗ 3 ⊗ 2 = 21232 (we omit the symbol ⊗ for short), we get 21232 (1) By sligthly generalizing the notion of an authorised cyclage operation, it is possible to define an analogue of P max on any tensor product of columns (not only for columns of height 1) which yields a similar convergence property. (2) In [START_REF] Lecouvey | Random walks in Weyl chamber and crystals[END_REF], random walks are defined from tensor products of crystals. In particular, one can endow the crystal Ḃn,ℓ with a probability distribution compatible with the A ℓ-1 -weight graduation (i.e.; two vertices with the same A ℓ-1 -weight have the same probability). This permits to define a random walk on the weight lattice of type A ℓ-1 whose image by P min is a Markov chain in the Weyl chamber. We though that our transform P max also admits interesting probabilistic properties that we aim to study later. (3) For the other classical affine root systems, it is also possible to define an analogue of the transformation P max by using the results of [START_REF] Lecouvey | X=K under review[END_REF] which essentially reduces their study (and notably the computation of the energy) to affine type A crystals by using relevant Dynkin diagram automorphisms.