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Abstract. Deep networks, like some other learning models, can asso-
ciate high trust to unreliable predictions. Making these models robust
and reliable is therefore essential, especially for critical decisions. This
experimental paper shows that the conformal prediction approach brings
a convincing solution to this challenge. Conformal prediction consists
in predicting a set of classes covering the real class with a user-defined
frequency. In the case of atypical examples, the conformal prediction
will predict the empty set. Experiments show the good behavior of the
conformal approach, especially when the data is noisy.
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1 Introduction

Machine learning and deep models are everywhere today. It has been shown,
however, that these models can sometimes provide scores with a high confidence
in a clearly erroneous prediction. Thus, a dog image can almost certainly be
recognized as a panda, due to an adversarial noise invisible to the naked eye
[4]. In addition, since deep networks have little explanation and interpretability
by their very nature, it becomes all the more important to make their decisions
robust and reliable.

There are two popular approaches that estimate the confidence to be placed in
the predictions of machine learning algorithms : Bayesian learning and Probably
Approximately Correct (PAC) learning. However, both these methods provide
major limitations. Indeed, the first one needs correct prior distributions to
produce accurate confidence values, which is often not the case in real-world
applications. Experiments conducted by [10] show that when assumptions are
incorrect, Bayesian frameworks give misleading and invalid confidence values (i.e.
the probability of error is higher than what is expected by the confidence level).
The second method, i.e. PAC learning, does not rely on a strong underlying prior
but generates error bounds that are not helpful in practice, as demonstrated in
[13]. Another approach that offers hedged predictions and does not have these
drawbacks is conformal prediction [14].
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Conformal prediction is a framework that can be implemented on any machine
learning algorithm in order to add a useful confidence measure to its predictions. It
provides predictions that can come in the form of a set of classes whose statistical
reliability (the average percentage of the true class recovery by the predicted set)
is guaranteed under the traditional identically and independently distributed
(i.i.d.) assumption. This general assumption can be relaxed into a slightly weaker
one that is exchangeability, meaning that the joint probability distribution of
a sequence of examples does not change if the order of the examples in this
sequence is altered. The principle of conformal prediction and its extensions will
be recalled in Section 2.

Our work uses an extension of this principle proposed by [6]. They propose
to use the density p(x|y) instead of p(y|x) to produce the prediction. This makes
it possible to differentiate two cases of different uncertainties: the first predicts
more than one label compatible with x in case of ambiguity and the second
predicts the empty set ∅ when the model does not know or did not see a similar
example during training. This approach is recalled in Section 2.3. However, the
tests in [6] only concern images and Convolutional Neural Networks.

Therefore, the validity and interest of this approach still largely remains
to be empirically confirmed. This is what we do in Section 3, where we show
experimentally that this approach is very generic, in the sense that it works for
different neural network architectures (Convolutional Neural Networks, Gated
Recurrent Unit and Multi Layer Perceptron) and various types of data (image,
textual, cross sectional).

2 Conformal prediction methods

Conformal prediction was initially introduced in [14] as a transductive online
learning method that directly uses the previous examples to provide an individual
prediction for each new example. An inductive variant of conformal prediction is
described in [11] that starts by deriving a general rule from which the predictions
are based. This section presents both approaches as well as the density-based
approach, which we used in this paper.

2.1 Transductive conformal prediction

Let z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn) be successive pairs constituting
the examples, with xi ∈ X an object and yi ∈ Y its label. For any sequence
z1, z2, . . . , zn ∈ Z∗ and any new object xn+1 ∈ X, we can define a simple predictor
D such as :

D : Z∗ ×X −→ Y. (1)

This simple predictor D produces a point prediction D(z1, . . . , zn, xn+1) ∈ Y ,
which is the prediction for yn+1, the true label of xn+1.

By adding another parameter ε ∈ (0, 1) which is the probability of error called
the significance level, this simple predictor becomes a confidence predictor Γ that
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can predict a subset of Y with a confidence level 1− ε, which corresponds to a
statistical guarantee of coverage of the true label yn+1. Γ is defined as follows:

Γ : Z∗ ×X × (0, 1) −→ 2Y , (2)

where 2Y denotes the power set of Y . This confidence predictor Γ ε must be
decreasing for the inclusion with respect to ε, i.e. we must have:

∀n > 0, ∀ε1 ≥ ε2, Γ ε1(z1, . . . , zn, xn+1) ⊆ Γ ε2(z1, . . . , zn, xn+1). (3)

The two main properties desired in confidence predictors are (a) validity,
meaning the error rate does not exceed ε for each chosen confidence level ε, and
(b) efficiency, i.e. prediction sets are as small as possible. Therefore, a prediction
set with fewer labels will be much more informative and useful than a bigger
prediction set.

To build such a predictor, conformal prediction relies on a non-conformity
measure An. This measure calculates a score that estimates how strange an
example zi is from a bag of other examples *z1, . . . , zi−1, zi+1, . . . , zn+. We then
note αi the non-conformity score of zi compared to the other examples, such as:

αi := An(*z1, . . . , zi−1, zi+1, . . . , zn+, zi). (4)

Comparing αi with other non-conformity scores αj with j 6= i, we calculate a
p-value of zi expressing the proportion of less conforming examples than zi, with:

|{j = 1, . . . , n : αj ≥ αi}|
n

. (5)

If the p-value approaches the lower bound 1/n then zi is non-compliant to
most other examples (an outlier). If, on the contrary, it approaches the upper
bound 1 then zi is very consistent.

We can then compute the p-value for the new example xn+1 being classified
as each possible label y ∈ Y by using (5). More precisely, we can consider for
each y ∈ Y the sequence (*z1, . . . , zn, zn+1 = (xn+1, y)) and derive from that
scores αy1 , . . . , α

y
n+1. We thus get a conformal predictor by predicting the set :

Γ ε(xn+1) =

{
y ∈ Y :

|{i = 1, . . . , n, n+ 1 : αyi ≥ α
y
n+1}|

n+ 1
> ε

}
. (6)

Constructing a conformal predictor therefore amounts to defining a non-
conformity measure that can be built based on any machine learning algorithm
called the underlying algorithm of the conformal prediction. Popular underlying
algorithms for conformal prediction include Support Vector Machines (SVMs)
and k-Nearest Neighbours (k-NN).

2.2 Inductive conformal prediction

One important drawback of Transductive Conformal Prediction (TCP) is the fact
that it is not computationally efficient. When dealing with a large amount of data,
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it is inadequate to use all previous examples to predict an outcome for each new
example. Hence, this approach is not suitable for any time consuming training
tasks such as deep learning models. Inductive Conformal prediction (ICP) is a
method that was outlined in [11] to solve the computational inefficiency problem
by replacing the transductive inference with an inductive one. The paper shows
that ICP preserves the validity of conformal prediction. However, it has a slight
loss in efficiency.

ICP requires the same assumption as TCP (the i.i.d. assumption or the
weaker assumption exchangeability), and can also be applied on any underlying
machine learning algorithm. The difference between ICP and TCP consists of
splitting the original training data set *z1, . . . , zn+ into two parts in the inductive
approach. The first part Dtr = *z1, . . . , zl+ is called the proper training set, and
the second smaller one Dcal = *zl+1, . . . , zn+ is called the calibration set. In this
case, the non-conformity measure Al based on the chosen underlying algorithm
is trained only on the proper training set. For each example of the calibration
set i = l + 1, . . . , n, a non-conformity score αi is calculated by applying (4) to
get the sequence αl+1, . . . , αn. For a new example xn+1, a non-conformity score
αyn+1 is computed for each possible y ∈ Y , so that the p-values are obtained and
compared to the significance level ε to get the predictions such as:

Γ ε(xn+1) = {y ∈ Y :
|{i = l + 1, . . . , n, n+ 1 : αi ≥ αyn+1}|

n− l + 1
> ε}. (7)

In other words, this inductive conformal predictor will output the set of all
possible labels for each new example of the classification problem without the
need of recomputing the non-conformity scores in each time by including the
previous examples, i.e., only αn+1 is recomputed for each y in Equation (7).

2.3 Density-based conformal prediction

The paper [6] uses a density-based conformal prediction approach inspired from
the inductive approach and considers a density estimate p̂(x|y) of p(x|y) for the
label y ∈ Y . Therefore, this method divides labeled data into two parts: the first
one is the proper training data Dtr = {Xtr, Y tr} used to build p̂(x|y), the second
is the calibration data Dcal = {Xcal, Y cal} to evaluate {p̂(xi|y)} and set t̂y to be
the empirical quantile of order ε of the values {p̂(xi|y)} :

t̂y = sup

{
t :

1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) ≥ t) ≥ 1− ε

}
, (8)

where ny is the number of elements belonging to the class y in Dcal, and Dcal
y =

{zi ∈ Dcal : yi = y} is the subset of calibration examples of class y. For a new
observation xn+1, we set the conformal predictor Γ εd such that :

Γ εd(xn+1) = {y ∈ Y : p̂(xn+1|y) ≥ t̂y}. (9)
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This ensures that the observations with low probability — that is, the poorly
populated regions of the input space — are classified as ∅. This divisional
procedure avoids the high cost of deep learning calculations in the case where
the online approach is used. The paper [6] also shows that |P (y ∈ Γ εd(xn+1))−
(1 − ε)| → 0 with miny ny → ∞, which ensures the validity of the model. The
training and prediction algorithms are defined in the algorithms 1 and 2.

Algorithm 1 Training algorithm

Input: Training data Z = (xi, yi), i = 1 . . . n, Class list Y, Confidence level ε, Ratio
p.
Initialize: p̂list = list, t̂list = list
for y ∈ Y do
Xtr

y , X
cal
y ←− SubsetData(Z,Y, p)

p̂y ←− LearnDensityEstimator(Xtr
y )

t̂y ←− Quantile(p̂y(Xcal
y ), ε)

p̂list.append(p̂y); t̂list.append(t̂y)
end for
return p̂list, t̂list

Algorithm 2 Prediction algorithm

Input: Input to be predicted x, Trained p̂list, t̂list, Class list Y.
Initialize: C = list
for y ∈ Y do

if p̂y(x) ≥ t̂y then
C.append(y)

end if
end for
return C

We can rewrite (9) in such a way that it approaches (7) with a few differences,
mainly the fact that Γ εd uses a conformity measure based on the density estimation
(calculating how much an example is compliant with the others) instead of a
non-conformity measure as in Γ ε, with αyi = −p̂(xi|y) [14], and the fact that the
number of examples used to build the predicition set depends on y. Thus, Γ εd can
also be written as :

Γ ε(xn+1) =

{
y ∈ Y :

|{zi ∈ Dcal
y : αyi ≥ α

y
n+1}|

ny
> ε

}
. (10)

The proof can be found in appendix A.
The final quality of the predictor (its efficiency, robustness) depends in part

on the density estimator. The paper [7] suggests that the use of kernel estimators
gives good results under weak conditions.
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The results of the paper show that the training and prediction of each label
are independent of the other classes. This makes conformal prediction an adaptive
method, which means that adding or removing a class does not require retraining
the model from scratch. However, it does not provide any information on the
relationship between the classes. In addition, the results depend on ε: when ε
is small, the model has high precision and a large number of classes predicted
for each observation. On the contrary, when ε is large, there are no more cases
classified as ∅ and fewer cases predicted by label.

3 Experiments

In order to examine the effectiveness of the conformal method on different types
of data, three data sets for binary classification were used. They are :

1. CelebA [8] : face attributes dataset with over 200,000 celebrity images used
to determine if a person is a man (1) or a woman (0).

2. IMDb [9] : contains more than 50,000 different texts describing film reviews
for sentiment analysis (with 1 representing a positive opinion and 0 indicating
a negative opinion).

3. EGSS [1] : contains 10000 examples for the study of the electrical networks’
stability (1 representing a stable network), with 12 numerical characteristics.

3.1 Approach

The overall approach followed the same steps as in density-based conformal
prediction [6] and meets the conditions listed above (the i.i.d. or exchangeability
assumptions). Each data set is divided into proper training, calibration and test
sets. A deep learning model dedicated to each type of data is trained on the
proper training and calibration sets. The before last dense layer serves as a feature
extractor which produces a fixed size vector for each dataset and representing
the object (image, text or vector). These feature vectors are then used for the
conformal part to estimate the density. Here we used a gaussian kernel density
estimator of bandwidth 1 available in Python’s scikit-learn [12]. The architecture
of deep learning models is shown in Figure 1. It is built following the steps below:

1. Use a basic deep learning model depending on the type of data. In the case
of CelebA, it is a CNN with a ResNet50 [5] pre-trained on ImageNet [2] and
adjusted to CelebA. For IMDb, this model is a bidirectional GRU that takes
processed data with a tokenizer and padding. For EGSS, this model is a
multilayer perceptron (MLP).

2. Apply an intermediate dense layer and use it as a feature extractor with a
vector of size 50 representing the object, and which will be used later for
conformal prediction.

3. Add a dense layer to obtain the class predicted by the model (0 or 1).
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Fig. 1: Architecture of deep learning models.

Based on the recovered vectors, a Gaussian kernel density estimate is made
on the proper training set of each class to obtain the values P (x|y). Then, the
calibration set is used to compute the density scores and sort them to determine
the given ε threshold of all the values, thus delimiting the density region of each
class. Finally, the test set is used to calculate the performance of the model. The
code used for this article is available in Github 1.

The visualization of the density regions (figure 2) is done via the first two
dimensions of a Principal Component Analysis. The results show the distinct
regions of the classes 0 (in red) and 1 (in blue) with a non-empty intersection
(in green) representing a region of random uncertainty. The points outside these
three regions belong to the region of epistemic uncertainty, meaning that the
classifier ”does not know”.
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Fig. 2: Conformal prediction density regions for all datasets.

1 https://github.com/M-Soundouss/density_based_conformal_prediction
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3.2 Results on the test examples

To obtain more information on the results of this experiment, the accuracy of
the models was calculated with different values ε between 0.01 and 0.5 when
determining the threshold of conformal prediction density as follows:

– DL accuracy: the accuracy of the basic deep model (CNN for CelebA, GRU
for IMDb or MLP for EGSS) on all the test examples.

– Valid conformal accuracy: the accuracy of the conformal model when one
considers only the singleton predictions 0 or 1 (without taking into account
the {0, 1} and the empty sets).

– Valid DL accuracy: The accuracy of the basic deep model on the test examples
that have been predicted as 0 or 1 by the conformal model.

The percentage of empty sets ∅ and {0, 1} sets was also calculated from all
the predictions of the test examples made by the conformal prediction model.
The results are shown in the figure 3.

The results show that the accuracy of the valid conformal model and the
accuracy of the valid basic deep learning model are almost equal and are better
than the accuracy of the base model for all ε values. In our tests, the addition
of conformal prediction to a deep model does not degrade its performance, and
sometimes even improves it (EGSS). This is due to the fact that the conformal
prediction model allows to abstain from predicting (empty set ∅) or to predict
both classes for ambiguous examples, thus making it possible to have a more
reliable prediction of the label. It is also noticed that as ε grows, the percentage
of predicted {0, 1} sets decreases until it is no longer predicted (at ε = 0.15 for
CelebA for example). Conversely, the opposite is observed with the percentage of
empty sets ∅ which escalates as ε increases.

3.3 Results on noisy and foreign examples

CelebA : Two types of noise were introduced: a noise masking parts of the face
and another Gaussian on all the pixels. These perturbations and their predictions
are illustrated in the figure 4 with ”CNN” the prediction of the CNN and ”CNN
+ CP” that of the conformal model. This example shows that the CNN and
the conformal prediction model correctly identify the woman in the image (a).
However, by masking the image (b), the CNN predicts it as a man with a score
of 0.6 whereas the model of conformal prediction is more cautious by indicating
that it does not know (∅). When applying a Gaussian noise over the whole image
(c), the CNN predicts that it is a man with a larger score of 0.91, whereas the
conformal model predicts both classes. For outliers, examples (d), (e), and (f)
illustrate the ability of the conformal model to identify different outliers as such
(∅) in contrast to the deep model that predicts them as men with a high score.

IMDb : The figure 5 displays a comparison of two texts before and after the
random change of a few words (in bold) by other words in the model’s vocabulary.
The actual text predicted as negative opinion by both models becomes positive for
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the GRU after disturbance. Nevertheless, the conformal model is more cautious
by indicating that it can be both cases ({0, 1}). For the outlier example formed
completely of vocabulary words, the GRU model predicts positive with a score
of 0.99, while the conformal model says that it does not know (∅).

EGSS : The figure 6 displays a comparison of the positions of the test
examples on the density regions before (a) and after (b) the addition of a
Gaussian noise. This shows that several examples are positioned outside the
density regions after the introduction of the disturbances. The outlier examples
(c) created by modifying some characteristics of these test examples with extreme
values (to simulate a sensor failure, for example) are even further away from the
density regions, and recognized as such by the conformal model (∅).

4 Conclusions and perspectives

We used the conformal prediction and the technique presented in [6] to have a
more reliable and cautious deep learning model. The results show the interest of
this method on different data types (image, text, tabular) used with different deep
learning architectures (CNN, GRU and MLP). Indeed, in these three cases, the
conformal model not only adds reliability and robustness to the deep model by
detecting ambiguous examples but also keeps or even improves the performance
of the basic deep model when it predicts only one class. We also illustrated the
ability of conformal prediction to handle noisy and outlier examples for all three
types of data. These experiments show that the conformal method can give more
robustness and reliability to predictions on several types of data and basic deep
architectures.

To improve the experiments and results, the perspectives include the opti-
mization of density estimation based on neural networks. For instance, at a fixed
ε the problem of finding the most efficient model arises that could be done by
modifying the density estimation technique, but also by proposing an end-to-end,
integrated estimation method. Also, it would be useful to compare the conformal
prediction with calibration methods, for example, evidential ones that are also
adopted for cautious predictions [3].

A Appendix

This appendix is to prove that equations (9) and (10) in Section 2.3 are equivalent.
We recall that equation (10) is

Γ ε(xn+1) =

{
y ∈ Y :

|{zi ∈ Dcal
y : αyi ≥ α

y
n+1}|

ny
> ε

}
. (11)

We recall that equation (9) uses the ”greater or equal” sign. Here we need to use
the ”greater” signs in equations (12) and (13) to have an equivalence, which is

Γ εd(xn+1) = {y ∈ Y : p̂(xn+1|y) > t̂y}, (12)
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such that

t̂y = sup

{
t :

1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) > t) ≥ 1− ε

}
. (13)

Let f(t) be the decreasing function f(t) = 1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) > t).

Let us prove that (12) =⇒ (11).
Since t̂y is the upper bound such that f(t̂y) ≥ 1− ε, then p̂(xn+1|y) does not

satisfy this inequality, thus

f(p̂(xn+1|y)) =
1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) > p̂(xn+1|y)) < 1− ε

=
1

ny

∑
{zi∈Dcal

y }

1− I(p̂(xi|y) ≤ p̂(xn+1|y)) < 1− ε

= 1− 1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) ≤ p̂(xn+1|y)) < 1− ε

=
1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) ≤ p̂(xn+1|y)) > ε (14)

Since p̂(xn+1|y)) is a conformity score, whereas αyi is a non-conformity score,
we can write p̂(xn+1|y)) = −αyi [14]. So (14) becomes

1

ny

∑
{zi∈Dcal

y }

I(αyi ≥ α
y
n+1) > ε =⇒

|{zi ∈ Dcal
y : αyi ≥ α

y
n+1}|

ny
> ε

This shows that (12) =⇒ (11).

Let us now prove that (11) =⇒ (12). Using the indicator function of the
complement, and changing the non-conformity score into a conformity score as
shown before, we can simply find that

|{zi ∈ Dcal
y : αyi ≥ α

y
n+1}|

ny
> ε =⇒ 1

ny

∑
{zi∈Dcal

y }

I(p̂(xi|y) > p̂(xn+1|y)) < 1− ε

Using the same function f , we then have

f(p̂(xn+1|y)) < 1− ε. (15)

Let us show by contradiction that p̂(xn+1|y) > t̂y. Suppose that p̂(xn+1|y) ≤ t̂y.
Since f is a decreasing function, we have f(p̂(xn+1|y)) ≥ f(t̂y). By the definition
of t̂y, we have f(t̂y) ≥ 1− ε. Thus f(p̂(xn+1|y)) ≥ f(t̂y) ≥ 1− ε. However, this
contradicts (15). So we proved that (11) =⇒ (12), which concludes the proof.
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Fig. 3: The accuracy and the percentages according to ε for CelebA (top), IMDb (middle)
and EGSS (bottom).
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Fig. 4: Examples of outlier and noisy images compared to the actual image for CelebA.

Fig. 5: Examples of outlier and noisy texts compared to the original one for IMDb.
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EGSS Noise : ε = 0.1
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Fig. 6: Density visualization of (a) real, (b) noisy and (c) outlier examples for EGSS.


