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Many biomedical imaging techniques, such as computerized tomography, positron emission tomography, and optical microscopy, involve reconstruction of an image from a sequence of a few linear measurements that are corrupted by Poisson noise. In this study, we focus on computational optics, and more precisely single-pixel imaging, where the set-up acquires some of the coefficients of the Hadamard transform of the image of the scene.

Recently, this problem has benefited from the advent of deep learning. Although deep methods were initially considered as black boxes, they are now understood as learnable optimisation schemes. Here, we propose a network architecture based on the expectation-maximization algorithm that optimizes the maximum a posteriori of the unknown image for measurements corrupted by Poisson noise. This leads to an interpretable network that generalizes several existing approaches.

Finally, we present some reconstruction results from simulated data and from experimental acquisitions from a singlepixel camera. Our network yields higher reconstruction peak signal-to-noise ratios than other similar approaches.

INTRODUCTION

Single-pixel imaging is an extreme configuration of computational optics, where a single point detector is used to recover a two-dimensional image [START_REF] Edgar | Principles and prospects for single-pixel imaging[END_REF]. Since the original work of Duarte and coworkers [START_REF] Duarte | Single-pixel imaging via compressive sampling[END_REF], single-pixel imaging has been successfully applied to fluorescence microscopy [START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF], hyperspectral imaging [START_REF] Rousset | Time-resolved multispectral imaging based on an adaptive single-pixel camera[END_REF], image-guided surgery [START_REF] Aguénounon | Single snapshot imaging of optical properties using a single-pixel camera: a simulation study[END_REF], fluorescence lifetime imaging [START_REF] Yao | Net-flics: fast quantitative widefield fluorescence lifetime imaging with compressed sensing -a deep learning approach[END_REF], and others. A single-pixel camera measures the dot products between an image and a set of two-dimensional functions that are implemented through a spatial light modulator. To limit acquisition times, it is highly desirable to reduce the number of light patterns and acquisition time, which leads to an under-determined inverse problem with Poisson noise.

Image reconstruction from noisy measurements where the number of unknowns is larger than the number of measurements is a generic problem that has several applications in computational imaging. Such problems have long benefited from the theory of compressed sensing, but recent advances in deep learning have revolutionized the field [START_REF] Arridge | Solving inverse problems using data-driven models[END_REF]. In particular, convolutional neural networks have shown great success for solving inverse problems [START_REF] Mccann | Convolutional neural networks for inverse problems in imaging: A review[END_REF][START_REF] Kang | Cycle-consistent adversarial denoising network for multiphase coronary CT angiography[END_REF].

Traditional optimisation-based approaches for image reconstruction have inspired deep-learning-based reconstructors to solve inverse problems. For instance, they have been used as priors for manifolds of natural images [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF], and as projectors for sets of natural images [START_REF] Gupta | Cnn-based projected gradient descent for consistent ct image reconstruction[END_REF]. While these methods have outperformed traditional image reconstruction methods, they implicitly assume signal-independent noise, and are therefore not optimal for tackling problems with Poisson noise.

Inspired by the unrolled deep-learning methods, such as indicated by [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF], we derive an iterative neural network based on the expectation-maximization (EM) algorithm [START_REF] Fessler | Space-alternating generalized expectation-maximization algorithm[END_REF], to specifically tackle data corrupted by noise with nonconstant variance. This provides a framework for handling signaldependent noise flowing through iterations, which generalizes existing methods.

In Section 2, we model a compressive acquisition device and describe the associated reconstruction problem. In Section 3, we introduce the core ideas for our Bayesian inversion approach to the inverse problem. In Section 4, we propose our EM-based unrolled network to process data corrupted by Poisson noise. In Section 5, we describe how we implement and train the network. In Section 6, we report and analyze our reconstruction results, before concluding in Section 7.

COMPRESSIVE IMAGING

Let f ∈ [0, 1] N be the image to acquire. The main idea of compressive optics is to measure m = H 1 f using hardware, and to recover f using software. The system matrix H 1 ∈ R M ×N , with M < N , collects the patterns that are sequentially uploaded on a spatial light modulator to get the measurement vector. The patterns are traditionally chosen from within a basis H ∈ R N ×N , i.e., H 1 = SH with S = [I M , 0]. Classical choices include Fourier, discrete cosine, wavelets, and Hadamard bases [START_REF] Ochoa | Assessing patterns for compressive fluorescence lifetime imaging[END_REF].

The acquisition, which is corrupted by Poisson noise [START_REF] Foi | Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[END_REF], can be modeled as

m α = ( mα + -mα -)/α, (1a) 
mα + ∼ P(αH + 1 f ) and mα -∼ P(αH - 1 f ). ( 1b 
)
where α is the image intensity (in photons), and m α is the normalized noisy measurement vector. Note that the implementation of the negative values of H 1 is carried out through the use of positive patterns [START_REF] Lorente | Handling negative patterns for fast single-pixel lifetime imaging[END_REF] for details).

H + 1 and H - 1 , such that (H + 1 ) i,n = max((H 1 ) i,n , 0) and (H + 1 ) i,n = max(-(H 1 ) i,n , 0) (see

BAYESIAN RECONSTRUCTION

Bayesian inversion aims at the computing of a point-wise estimator of the probability density function of (f | m). Assuming that f has finite mean and variance, the conditional expectation is given by the minimum mean squared error

f * = E (f | m α = m α ) = G * (m α ), (2) 
where the mapping G * is given by

G * ∈ argmin G E( G(m α ) -f 2 ). (3) 
For general distributions of f , the mapping G * is nonlinear, and there are no closed-form solutions. Instead of solving Equation (3), which is computationally intractable in general, deep-learning-based methods replace the expectation by the empirical mean over a database, and optimize a mapping G ω within a family of mappings parameterized by some weights ω. The choice of the form of the nonlinear mapping G ω is central to the reconstruction. Much attention has been devoted to neural network models where the architecture mimics iterative maximum a posteriori (MAP) optimisation schemes [START_REF] Ongie | Deep learning techniques for inverse problems in imaging[END_REF].

PROPOSED METHOD

Unrolling the EM algorithm

We aim to compute the MAP for our problem

argmax f log p(m α |f ) + log p(f ), (4) 
where we assume p(

m α |f ) ∝ exp -1 2 H 1 f -m α 2 Σ -1 α
, and Σ α is the covariance of the noise, and p(f ) is an unknown probability density function.

The EM algorithm has commonly been used to estimate the MAP for image reconstruction tasks [START_REF] Zhou | A bayesian map-em algorithm for pet image reconstruction using wavelet transform[END_REF]. This is an iterative algorithm that produces a sequence of estimations {f (k) } that converge to a local maximum of Equation ( 4). Every iteration of the EM algorithm is based on two steps.

The expectation step computes the conditional expectation of the log-likelihood of f with respect to an auxiliary random variable x (commonly called the complete data), given the current estimate f (k) and the measurements m α

Q(f |f (k) ) = p(x|m α , f (k) ) log p(x, m α |f )dx + p(f ) (5)
This quantity is then maximized with respect to f during the maximization step, to produce the next iteration

f (k+1) = argmax f Q(f |f (k) ) (6) 
The EM algorithm converges to a local maximum of Equation (4) if the complete data x satisfy some admissibility proprieties. When p(m α |f ) is Gaussian, x can be chosen as a Gaussian vector, such that [START_REF] Fessler | Space-alternating generalized expectation-maximization algorithm[END_REF] x ∼ N (Hf , Σ)

m α |x ∼ N (Sx, Σ α ). (7) 
Therefore, x satisfies the admissibility properties if H 1 ΣH 1 = SΣS , where Σ is the covariance of f , and Equation ( 5) simplifies to

x(k) = E(x|m α , f (k) ), (9) 
Q(f |f (k) ) = log p( x(k) |f ) + log p(f ). (10) 
Using classical properties of Gaussian vectors (see Chapter 5 of [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]), we can rewrite these two steps

x(k) = argmin x Sx -m α 2 Σ -1 α + x -Hf (k) 2 Σ -1 (11a) f (k+1) = argmin f x(k) -Hf 2 Σ -1 -log p(f ). (11b) 
As p(f ) is an unknown probability density function, we propose to estimate Equation (11b) using a neural network D ω

x(k) = argmin x Sx -m α 2 Σ -1 α + x -Hf (k) 2 Σ -1 (12a) f (k+1) = D ω (H x(k) ). (12b) 
Note that Equation (12a) is commonly called the dataconsistency layer in the literature on deep unrolled methods [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF].

Implementation of the data-consistency layer

Introducing the variable y (k) = x(k) -Hf (k) , the analytical solution of Equation (12a) is given by

y (k) = Σ 1 Σ 21 (Σ α + Σ 1 ) -1 (m α -H 1 f (k) ), (13) 
Denoising layers

D ω DC layers D C IT H (16a) (16b) (16c) f (k) f (k+1)
x(k) m α where

Σ 1 ∈ R M ×M , Σ 21 ∈ R (N -M )×M and Σ 2 ∈ R (N -M )×(N -M ) are the blocks of the covariance Σ Σ = Σ 1 Σ 21 Σ 21 Σ 2 . ( 14 
)
To circumvent the difficulty of inverting the signal-dependant matrix in Equation ( 13), we choose to neglect the nondiagonal terms of Σ 1 , as in [START_REF] Lorente | A Deep Network for Reconstructing Images from Undersampled Poisson data[END_REF]. Denoting σ 2 1 = diag (Σ 1 ), we get

y (k) 1 (m α ) = σ 2 1 /(σ 2 1 + σ 2 α )(m α -H 1 f (k) ), (15) 
where division and multiplication apply element-wise. Finally, we can summarize our algorithm by

y (k) 1 = σ 2 1 /(σ 2 1 + σ 2 α )(m α -H 1 f (k) ) (16a) y (k) 2 = Σ 21 Σ -1 1 y (k) 1 (16b) x(k) = Hf (k) + y (k) (16c) f (k+1) = D ω (H x(k) ). (16d) 
The outline of our algorithm can be found in Fig. 1. In this scheme, we propose to learn σ 1 , Σ 21 Σ -1 1 , and D ω in an endto-end fashion. Note that as in [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF], σ 1 , Σ 21 Σ -1 1 , and the parameters of our network D ω are shared across every iteration 0 ≤ k ≤ K to reduce the number of learned parameters.

Denoised completion in the presence of Poisson noise

By using the normal approximation to the Poisson distribution (see [START_REF] Huang | Introduction to statistical physics[END_REF]), Equation ( 1) can be approximated as

m α ∼ 1 α N (αH + 1 f , Σ+ α ) -N (αH - 1 f , Σ- α ) , ( 17 
)
where Σ+ α = Diag αH + 1 f and Σα = Diag αH - 1 f . This can also be expressed as As σ 2 α depends on the unknown image f as well as on the intensity α, we exploit the raw data that also depends on f and α. Recalling that the variance of a Poisson variable is the same as its expected value, we can write Σ+ α = E mα + and Σα = E mα -, and choose to approximate the expected value by the noisy sample, i.e., σ 2 α ≈ 1/α 2 ( mα + + mα -).

Σ α = Diag σ 2 α = Diag 1 α H + 1 f + 1 α H - 1 f . (18)

EXPERIMENTS

In our experiments, we chose M = 512 Hadamard patterns of size N = 64 × 64 pixels. We trained our network for K = 5 iterations in a end-to-end fashion. The architecture of D ω is a U-net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. We consider two network variants: (i) a standalone (direct) U-net reconstructor, which is equivalent to one iteration of our algorithm; and (ii) model-based reconstruction using deep-learned priors (MoDL) [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF], which is equivalent to setting Σ 21 = 0 and Σ 1 = λI in Equation ( 16). All of the networks are trained using 105,000 images (i.e., the 'unlabeled' and 'train' subsets of the STL10 database [START_REF] Coates | An analysis of single-layer networks in unsupervised feature learning[END_REF]); 8,000 images were used for the test (i.e., the 'test' subset of STL10). The original 96×96 images were cropped to 64×64, and normalized between -1 and 1. We train our unrolled network using Pytorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. For training, we consider the ADAM optimiser for 20 epochs. The step size is initialized to 10 -3 and divided by 5 every 5 epochs. The weight decay regularization parameter is set to 10 -6 . The number of learned parameters is 4,432,657. Note that our initial estimate of f (0) is computed as described in [START_REF] Ducros | A completion network for reconstruction from compressed acquisition[END_REF].

RESULTS AND DISCUSSION

In Table 1, we compare our proposed deep EM network with three other methods: the Moore-Penrose pseudo inverse (PI), a stand-alone U-net, and MoDL [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF]. According to our sim- ulations, our method outperforms the other methods in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) for different image intensities α (i.e., different levels of noise). Note that the benefits of our method are more apparent for high noise (i.e., low α).

In Fig. 2, we consider fluorescence microscopy imaging of yeast cell membranes, which do not belong to the STL-10 test set. The membrane proteins are fused with red and green fluorescent protein markers. Each channel was treated independently. We obtain an improved PSNR in the red channel with the proposed network (23.14 dB for the proposed method, compared to 22.99 dB for U-net, and 22.03 dB for MoDL). For the green channel, however, MoDL [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF] gives the best PSNR (19.33 dB) followed by our proposed method (17.92 db) and then U-net (17.04 dB). Visually, our deep EM reconstruction presents less strike artefacts than the alternative methods.

In Fig. 3, we finally assess our deep EM network using experimental data obtained using the set-up described in [START_REF] Lorente | A Deep Network for Reconstructing Images from Undersampled Poisson data[END_REF]. We obtain improved PSNR with the proposed method. Visually, the deep EM network and the stand-alone U-net yield images with fewer compression artifacts. The MoDL [START_REF] Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF] reconstruction is noisier, which can be explained on the basis that each iteration assumes signal-independent Gaussian noise, rather than signal-dependent noise.

CONCLUSION AND PERSPECTIVES

We propose a recursive network based on the EM algorithm. This deep EM network can solve linear underdetermined inverse problems where the data are corrupted by signal-dependent noise (e.g., Poisson noise, mixed Poisson-Gaussian noise). This approach is shown to yield greater PSNR under several levels of noise compared to the the U-net approach alone or a MoDL type of approach. To the best of our knowledge, most unrolled networks assume noise to be Gaussian with constant variance, and are therefore ill-suited for compressive optics applications. The proposed method is promising for single-pixel biological imaging and can further be adapted to the reconstruction of other types of biophotonic imaging modalities. 
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Fig. 1 .

 1 Fig. 1. Proposed deep EM reconstruction network. The data consistency (DC) layers consist of three steps: the denoising (D) step, the completion (C) step, and the inverse transform (IT) step. The denoising layers D ω implement a U-Net [20].

Fig. 2 .

 2 Fig. 2. Reconstruction of a yeast cell membrane fluorescence microscopy image.

Fig. 3 .

 3 Fig. 3. Reconstructions of two experimental datasets by the different methods (top row: LED lamp with M = 512; bottom row: STL-10 cat with M = 512). The images shown were reconstructed from a fully sampled dataset (ground-truth; GT) acquired with high image intensity (first column, α = 148 photons, and α = 195 photons) and lower image intensity (second column, α = 80 photons, and α = 10 photons). The following columns show reconstructions using pseudo inverse (PI), U-Net reconstructor, MoDL [10], and the proposed method.

Table 1 .

 1 Average peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) over the stl-10 test dataset for the different reconstruction methods: PI (pseudo inverse), standalone U-Net, MoDL, and the proposed deep EM network.

	α(ph.)		PI	U-Net MoDL Proposed
	2	PSNR 12.97 17.17	17.14	17.82
		SSIM	0.61	0.72	0.73	0.78
	5	PSNR 15.32 19.41	19.49	19.85
		SSIM	0.73	0.81	0.81	0.85
	10	PSNR 16.51 20.61	20.7	20.88
		SSIM	0.78	0.85	0.84	0.88
	50	PSNR 17.8	21.8	21.42	21.89
		SSIM	0.82	0.9	0.85	0.9
	2500	PSNR 18.17 22.11	21.55	22.15
		SSIM	0.84	0.91	0.86	0.91
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