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A Deep Network for Reconstructing Images from
Undersampled Poisson data

A Lorente Mur, F Peyrin, Member, IEEE, N. Ducros, Member, IEEE,

Abstract—We consider the reconstruction of an image from
a sequence of a few linear measurements corrupted by Poisson
noise. This generic problem has many biomedical applications,
such as computerized tomography, positron emission tomogra-
phy, and optical microscopy. Here, we focus on a computational
optics problem where the set-up acquires some coefficients of the
Hadamard transform of the image of the scene.

We formalize this problem in a Bayesian setting where we
estimate the missing Hadamard coefficients from those acquired.
Then, we propose a deep-learning network that consists of two
fully connected layers (FCLs) that map data from the measure-
ment domain to the image domain, followed by convolutional
layers that act in the image domain. On the one hand, we set
the FCLs so that they compute the best linear solution of the
problem. While the first FCL denoises the raw measurements,
the second FCL completes the missing measurements from
the denoised measurements. The convolutional layers undergo
learning through a training phase.

We also describe a framework for training the network in the
presence of Poisson noise. In particular, our approach includes an
estimation of the image intensity, together with a normalization
scheme that allows varying noise levels to be handled during
training. We compare our network to linear reconstructors and
to network variants that do not address the noise issue at all, or
that address it implicitly.

Finally, we present results from simulated and experimental
acquisitions, considering varying noise levels. Our network yields
higher reconstruction peak signal-to-noise ratios in scenarios
where the actual noise level is higher than that expected and
used during the training phase.

Index Terms—Image reconstruction, Poisson noise, undersam-
pled data, deep learning, convolutional neural network, compu-
tational optics, single-pixel imaging.

I. INTRODUCTION

IMAGE reconstruction from noisy measurements where the
number of unknowns is larger than the number of mea-

surements is a generic problem that has several applications
in computational imaging. While such inverse problems have
long benefited from the compressed sensing theory, which
exploits sparsity priors, recent advances in deep learning
have been revolutionizing the field [1], [2], [3]. In particular,
convolutional neural networks have shown great success at
solving computed tomography problems, either by learning a
direct inverse mapping [4], or through the use of adversarial

All authors are with the University of Lyon, INSA-Lyon, Université Claude
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neural networks [5]. Much effort is currently devoted to
bridging the gap between more traditional approaches for
image reconstruction and the deep-learning-based approach
to solving inverse problems. Convolutional neural networks
have been used to serve as a prior to solve ill-posed inverse
problems. As such they have been used as a prior for manifolds
of natural images [6], as a projector for sets of natural images
[7], or as sparsifying transforms [8]. These priors are then
plugged into an unrolled optimisation algorithm [9] or used as
a series expansion, like the Neumann series [10]. This trend is
very strong in computational optics [11], where deep learning
is also used to optimize the design of experiments [12].

Single-pixel imaging is an extreme configuration of com-
putational optics, where a single point detector is used to
recover an image [13]. Since the seminal work by Duarte
and coworkers [14], single-pixel imaging has been successfully
applied to fluorescence microscopy [15], hyperspectral imag-
ing [16], [17], diffuse optical tomography [18], image-guided
surgery [19], short-wave infrared imaging [20], and imaging
through scattering media [21]. Single-pixel measurements can
be modeled as dot products between an image and some two-
dimensional functions that are implemented through a spatial
light modulator [13]. To limit acquisition times, it is highly
desirable to reduce the number of light patterns, which leads
to an undetermined inverse problem.

In the field of single-pixel imaging, deep learning has
been used to unmix the fluorescence intensity and lifetime
from time-resolved measurements [22], [23]. In [24], they
proposed a convolutional auto-encoder for single-pixel image
reconstruction imaging that outperformed compressed sensing
approaches. This network directly maps the measurement
vector to the desired image, using a fully connected layer
(FCL) followed by convolutional layers. In [21], a similar
network was used for measurements with very low signal-to-
noise ratio, while in [25], a network was introduced where the
first FCL computes the conditional expectation of the image
for a given set of noiseless measurements.

Focusing on single-pixel imaging, we consider that our
data to be corrupted by a Poisson noise model. Tradition-
ally, inverse problems with data corrupted by Poisson noise
are tackled using variance stabilizing transforms, such as
the Anscombe transform [26], followed by a Wiener filter
[27]. However, the resulting image can be blurred, and in
particular for undersampled data. More recent alternatives
solve this issue by exploiting statistical or handmade image
priors [28], [29]. Solving the resulting optimization problem
is usually prohibitive for real-time applications. Alternatively,
the Poisson-Gaussian unbiased risk estimator-linear expansion
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of thresholds [30], [31] seeks a solution as an optimal linear
parameterization of Wiener filters, followed by a domain-
transform thresholding. Although this approach is much faster,
it still takes several seconds to reconstruct an image. In this
regard, deep networks are ideal candidates, due to their rapid
evaluation. As indicated by [32], however, the robustness of a
neural network to various noise conditions is still not fully
understood. For data corrupted by signal-dependent noise,
such as Poisson noise, this can be a severe limitation.

A. Contribution

We interpret the reconstruction from undersampled data
as a completion problem, where the missing data needs to
be estimated before reconstruction. Preliminary results were
shown for this idea in [25], and these are extended here.

1) Completion in the presence of noise: Inspired by [33],
we adopt a Bayesian framework where we use deep learning to
compute a conditional expectation. Under Gaussian assump-
tions, we derive an analytical solution that is the best linear
solution to our problem. We interpret this as denoising of the
raw measurements, followed by completion of the missing
measurements. We propose to implement this as the FCL of
a convolutional neural network, where only the convolution
layers are trained to mitigate the nonGaussian distribution of
the data in the image domain .

2) Training a network with Poisson noise: We describe
a machinery that allows for a network to be trained in the
presence of Poisson noise. The contribution here is two-
fold. First, we propose an approximation for the covariance
matrix of the measurement. This approximation is required
when the image intensity is not known. Secondly, we provide
a normalization scheme that allows raw data with different
orders of magnitudes to be considered, which is mandatory
for realistic scenarios where the image intensity is not known.

3) Experimental data: We validate our approach by recon-
struction of an experimental dataset that we acquired with
varying integration time and light flux. Upon acceptation of
this paper, the datasets will be made available.

4) Open source software: Upon acceptation of this pa-
per, implementations of our reconstruction methods in Mat-
lab (SPIRiT [34]; only for the linear methods) and Python
(SPYRiT [35] toolbox) will be made available.

B. Organization of the paper

In Section II, we model an undersampled computational
(compressive) acquisition device and describe the associated
reconstruction problem. In Section III, we introduce a deep
network that includes a FCL that implements an interpretable
raw solution for a Bayesian inversion. In Section IV, we
propose an approach to address data corrupted by Poisson
noise. In Section V, we describe how we implement and
train the network. In Section VI, we describe the simulations,
experimental acquisition, and variants for the reconstructions.
In Section VII, we report and analyze our reconstruction
results, before concluding in Section VIII.

C. Notations

Throughout this paper, deterministic variables are indicated
by italic letters. In particular, we use normal font letters to
denote scalars (e.g., x ∈ R), lowercase bold letters for vectors
(e.g., x ∈ RN ), and capital bold letters for matrices (e.g.,
X ∈ RN×M ). The i-th element of the vector x ∈ RN is
denoted by (x)i. Diag (x) ∈ RN×N is a diagonal matrix
where the diagonal elements are given by x ∈ RN , while
diag (A) ∈ RN is a vector where the elements are taken from
the main diagonal of the matrix A ∈ RN×N . We define the
weighted squared norm as ‖x‖2A = x>Ax, where A is a
positive definite matrix.

We use bold, non-italic symbols to denote random vectors.
An N -dimensional random vector x that follows a multivariate
normal distribution with mean µ ∈ RN and covariance matrix
Σ ∈ RN×N is written as x ∼ N (µ,Σ). An N -dimensional
random vector x is said to follow a Poisson distribution with
mean µ ∈ RN in notations x ∼ P(µ), if it contains N
independent Poisson-distributed random variables. We denote
the expected value of a random variable x as E (x).

II. COMPRESSIVE IMAGING

A. Compressive image acquisition

Let f ∈ [0, 1]N be the image to be acquired. The main idea
of compressive optics is to measure a compressed version of
f using hardware, and to recover this using software. The
acquisition can be modeled by

m =H1f , (1)

where m ∈ RM is the measurement vector and H1 ∈ RM×N ,
with M < N , is the acquisition matrix. The matrix H1 col-
lects the patterns that are sequentially uploaded onto a spatial
light modulator, to get m. The patterns in H1 are traditionally
chosen from among a basis H ∈ RN×N ; i.e., H1 = SH
with S = [IM ,0]. Classical choices include Fourier, discrete
cosine, wavelets, and Hadamard bases (for a comparison, see
[36]). The patterns H1 are often chosen before acquisition
(e.g., retaining low frequency patterns; [37]), but they can also
be sampled adaptively during acquisition [38]. An example of
measurements that are available is illustrated in Fig. 1, where
a Hadamard basis with the sampling strategy introduced in
[37], [24] is used.

In practice, optical data are subject to Poisson noise [39].
Furthermore, implementation of the negative values of H1

implies the performing of extra measurements that are com-
bined (more details can be found in [40]). Denoting H+

1 as
the matrix such that (H+

1 )i,n = max((H1)i,n, 0), and H−1
as the matrix such that (H−1 )i,n = max(−(H1)i,n, 0), the
noisy measurement vector m̂α is obtained by subtracting the
Poisson corrupted raw measurements m̂α

+ and m̂α
−; i.e.,

m̂α = m̂α
+ − m̂α

−, (2a)

m̂α
+ ∼ P(αH+

1 f) and m̂α
− ∼ P(αH−1 f), (2b)

where α is the intensity (in photons) of the image. This
parameter is a scaling factor that controls the noise level.
The larger the α, the larger the signal-to-noise ratio of the



DRAFT ARTICLE, LAST COMPILED ON SEPTEMBER 21, 2020 3

Ground Truth Hadamard Transform

Down-sampled 
 Hadamard Transform

Noisy down-sampled 
 Hadamard Transform

Fig. 1. An image from the stl-10 dataset, alongside its Hadamard transform,
the Hadamard transform with missing coefficients (down-sampled Hadamard
transform), and the Hadamard transform with missing coefficients (noisy
down-sampled Hadamard transform). The noisy coefficients are subject to
Poison noise, and we chose α = 10 ph.

measurements. The effect of noise on the raw data is illustrated
in Fig. 1. The scaling factor depends on the image photon flux
(in photons/s), the quantum efficiency of the detector, and the
the acquisition time (in s).

For different reasons that will be detailed in Section III and
Section IV-A, we also introduce the normalized measurements
here

mα =
1

α
m̂α ∼ 1

α
P(αH+

1 f)−
1

α
P(αH−1 f). (3)

Note that the expected value of the normalized measurements
is consistent with the noiseless model of Equation (1), as
E (mα) =H+

1 f −H
−
1 f =H1f =m, and it is independent

of α.

B. Compressive image reconstruction

Classical image reconstruction approaches consist of solv-
ing a minimization problem of the form

min
f
R(f) such that ‖mα −H1f‖ ≤ ε. (4)

where ε > 0 is a parameter related to the noise level. A popular
choice for R is the `2-norm R = ‖·‖2, which leads to a closed
form solution; in the case of ε = 0 for instance, the least
squares solution is f∗ = H>1 [H1H

>
1 ]−1m. An alternative

choice is total variation R =
∑
n ‖∇n · ‖2, where ∇n com-

putes the gradient at pixel n, or the variants that promote piece-
wise constant solutions. In this case, Equation (4) has to be
solved using time-consuming iterative optimisation algorithms.

More recently, a lot of effort has been put into learning to
reconstruct f using non-linear models

f∗ = H(mα;θ), (5)

where H is typically a neural network parameterized by θ.
Given an image database, the parameters θ are determined

during a training stage by minimizing the reconstruction
error. Many different neural network architectures have been
proposed for this, which usually rely on convolutional layers.
A very simple convolution architecture that includes a FCL
and three convolutional layers is shown in Fig. 2. In particular,
the network needs to adapt to the level of noise - implicitly
or explicitly.

III. DENOISED COMPLETION

A. Bayesian completion

Let y ∈ RN be the full data vector, such that

y =

[
y1
y2

]
=Hf =

[
H1

H2

]
f (6)

where y1 = m ∈ RM are the coefficients that are actually
acquired in Equation (1), and y2 ∈ RJ , J = N −M are the
missing coefficients. Assuming H is an orthogonal matrix, the
least-squares solution simplifies to

f∗ =H>y∗, with y∗ =
[
mα

0

]
, (7)

where y∗ is obtained by zero-padding the acquired coeffi-
cients. However, neglecting the missing coefficients leads to
reduced image quality, as will be shown in Section VII.

As in [25], we propose to complete the data vector with
non-zero coefficients before reconstruction; i.e.,

f∗ =H>y∗, with y∗(mα) =

[
y∗1
y∗2

]
, (8)

Our idea is to estimate the missing coefficients y∗2 through
their correlation with the acquired coefficients. In the pres-
ence of noise, however, the acquired measurements mα are
replaced by y∗1 , to make the reconstruction more robust.

To formalize this idea, we adopt a Bayesian point-of-view
and assume that the measurement mα is a sample of a random
vector mα. In this framework, the full data vector y∗ is given
by the conditional expectation

y∗(mα) = E (y1,y2 |mα =mα) (9)

where y1 and y2 are the random vectors associated to the
acquired coefficients and the missing coefficients, respectively.

B. Gaussian completion in the presence of noise measure-
ments

We first assume that the data random vector follows a
multivariate normal distribution with mean µ ∈ RN and
covariance matrix Σ ∈ RN×N . In notations

y =

[
y1

y2

]
∼ N (µ,Σ). (10)

where the covariance matrix takes the following form

Σ =

[
Σ1 Σ>21
Σ21 Σ2

]
(11)

with Σ1 ∈ RM×M and Σ21 ∈ RJ×M . This assumption is
consistent with [41], where the statistical distributions of the
coefficients of discrete Hadamard transforms of natural images
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Fig. 2. Proposed denoised completion network (DC-Net). The first layer is a
fully connected layer (FCL) that implements the best linear mean squared
estimator of Equation (9) according to the analytical solution given by
Equation (13). The raw image f̃ is corrected by a cascade of convolution
layers (CL) followed by rectified linear units (ReLU), which correct the
remaining artefacts.

are best modeled by generalized Gaussian distributions. For
our problem, we illustrate this assumption with the marginal
distribution of Fig. 4.

We also consider that the measurement vector is corrupted
by additive Gaussian noise. In the Bayesian framework, we
have

mα |y ∼ N (y1,Σα), (12)

where Σα ∈ RM×M is the noise covariance. Under the
assumptions of Equations (10) and (12), we can exploit the
properties of multivariate Gaussian variables (see Appendix
A.1 of [42]), to obtain the full vector as

y∗1(m
α) = µ1 +Σ1[Σ1 +Σα]

−1(mα − µ1), (13a)

y∗2(m
α) = µ2 +Σ21Σ

−1
1 [y∗1(m

α)− µ1]. (13b)

where Equation (13a) corresponds to denoising the acquired
image mα, and Equation (13b) to completing the missing
coefficient from the denoised image. When the Gaussian as-
sumptions of Equations (10) and (12) are not met, the denoised
completion scheme of Equation (13) is optimal, in the sense
that it provides the best linear estimator of our problem, as
Equation (14). This solution thus solves (see Chapter 5 of
[43])

y∗ = argmin
y

‖Sy −mα‖2
Σ−1

α
+ ‖y − µ‖2Σ−1 . (14)

C. Proposed denoised completion network

Assuming y has finite mean and variance, the conditional
expectation of Equation (9) is given by the minimum mean
squared error estimator

y∗ = G∗(mα), (15)

where the mapping of G∗ is given by

G∗ ∈ argmin
G

E(‖G(mα)− y‖2). (16)

Under the Gaussian assumption of Equation (10), G∗ simplifies
to the linear mapping provided by Equation (13). However,
for general probability distributions of y, the mapping of G∗
is nonlinear, and there are no closed-form solutions.

As the problem of Equation (16) is computationally in-
tractable in general, we propose to use learning of a mapping
among a family of mappings parameterized by θ. Therefore,
we replace the expectation by the empirical mean over a
database, which leads to

G∗ ∈ argmin
θ

1

K

K∑
k=1

‖Hθ(mα,(k))− f (k)‖2 (17)

where {f (k)}Kk=1 represents a database of K images, and
{mα,(k)}Kk=1 represent the measurements associated to the
image database through Equation (3). Note that the learning of
Equation (17) is to map the raw data into the image domain,
whereas the learning of Equation (16) is to complete the raw
data in the measurement domain.

Much attention has been devoted to neural network models
with cascaded layers

Hθ = HLθ ◦ . . . ◦ H1
θ (18)

where H`, 1 ≤ ` ≤ L is the `-th (nonlinear) layer of the
network, and ◦ is the function composition. Classically, the
first layer is a FCL that maps the measurement mα ∈ RM
to a raw solution in f̃ ∈ RN . To establish a link between
measurement domain and image domain learning, we propose
to parameterize the FCL H1 such that it provides the best
linear mean squared error estimator; i.e.,

f̃ = H1(mα) =H>(Wmα + b) (19)

where the weight W and bias b are computed using Equation
(13). We illustrate the resulting network in Fig. 2. As the
parameters of the FCL are fixed, the dimension of the variable
θ, which is optimized during the training phase, is much
reduced compared to more common neural networks where
the FCL is free. Note that this architecture is similar to the
automated transform by manifold approximation (AUTOMAP)
network [44], which has been successfully applied to magnetic
resonance imaging.

IV. HANDLING POISSON NOISE

A. Denoised completion in the presence of Poisson noise

Using the normal approximation to the Poisson distribution
and assuming that the raw measurements are independent, we
can approximate the noise model of Equation (3) as

mα ∼ 1

α

[
N (αH+

1 f , Σ̂
+
α )−N (αH−1 f , Σ̂

−
α )
]

(20)

where Σ̂+
α = Diag

(
αH+

1 f
)

and Σ̂−α = Diag
(
αH−1 f

)
.

Rearranging the different terms leads to an expression that
is in agreement with Equation (12)

Σα =
1

α2

(
Σ̂+
α + Σ̂−α

)
, (21)

which can also be expressed as

Σα = Diag
(
σ2
α

)
= Diag

(
1

α
H+

1 f +
1

α
H−1 f

)
. (22)
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Therefore, we can investigate two extreme cases for the
denoised completion scheme given by Equation (13). In high
signal-to-noise situations for which α is large, Equation (13a)
tends to y∗1 = mα and y∗2 = µ2 + Σ21Σ

−1
1 (mα − µ1).

In other words, no denoising is required, and the completion
approach of [25] applies directly. However, in low signal-to-
noise situations for which α is small, y∗1 of Equation (13a)
behaves as Σ1Σ

−1
α mα. The lower α, the more the raw

measurements are filtered out.

B. Noise covariance estimation

It is important to note that σ2
α depends on the unknown

image f as well as on its unknown intensity α, as underlined
in Equation (22). To address this issue, we propose to exploit
the raw data that also depend on f and α. Recalling that the
variance of the Poisson variable is equal to its expected value,
we can write Σ̂+

α = E
(
m̂α

+

)
and Σ̂−α = E

(
m̂α
−
)
, and choose

to approximate the expected value by the noisy sample; i.e.,

σ2
α ≈

1

α̃2
(m̂α

+ + m̂α
−) (23)

Note that we replace the unknown intensity α in the denomi-
nator of Equation (21) by an estimation α̃. The derivation of
α̃ from the raw measurement is detailed in Section IV-C.

C. Raw estimation of α

Data normalization as given by Equation (3) is fundamental
in the presence of Poisson noise, as different noise levels are
obtained by scaling the intensity of the light source. Scaling
the measurement is not an issue for linear reconstructors; the
reconstruction is scaled in the same way. However, this is a
major concern for nonlinear reconstructors that behave quite
differently for measurements with different amplitudes.

For image denoising, the estimation of α can be achieved
through fitting methods (e.g., see [39]). These methods usually
exploit homogeneous regions of the image, and are therefore
not suited to raw measurements. Instead, we propose a simple
empirical method, which consists of estimating α from a rough
estimate of the nonnormalized image αf . Considering the
pseudo inverse, which is a linear operator that scales with
α, we consider

α̃ = max
i∈{1,...,N}

(H>y∗)i, with y∗ =
[
m̂α

0

]
(24)

In practice, this simple estimator can provide the order of
magnitude of α with good approximation, but it obviously
leads to some inaccuracies. This is illustrated in Fig. 3, where
we show the distribution of the error of our estimation over the
STL-10 dataset [45] (i.e., 113,000 images obtained by merging
the unlabeled, training and testing sets) for different values of
M (512 or 1024) and α (5, 50, 2500 photons). As expected, we
obtain the poorest estimations under high noise; i.e., when α
is small (e.g, 5 photons). Overall, the relative error is usually
below 50%. More advanced methods, such as that of [46],
might improve the estimation of α; however, their iterative
nature limits their integration within deep learning training
strategies.

(5, 512) (5, 1024) (50, 512) (50, 1024) (2500, 512)(2500, 1024)
( , M)

0.2

0.0

0.2

0.4

0.6

Fig. 3. Box plot of the distribution of the relative error on the estimation of
α using Equation (24) with six combinations of values of (α, M ).

(a)

(b)

Fig. 4. Training of the network. (a) Overview of the full network involved
during the training phase. The first module of the network simulates the
raw measurements, considering an image intensity of µα ± σα photons.
Secondly, the raw measurement are normalized by an estimation of α. Thirdly,
the network depicted in Fig. 2 reconstructs the image. While µ and Σ
are precomputed according to Equations (25) and (26), Σα = Diag

(
σ2
α

)
is computed according to Equation (23). (b) Detailed description of the
simulation of the measurements. Note that the image intensity is sampled
from a normal distribution with mean µα and variance σ2

α, and that the
raw measurements m̂α

+ and m̂α
− are passed to the reconstruction layers to

estimate Σα.

V. NETWORK IMPLEMENTATION AND TRAINING

A. Full network overview

Our full network is not limited to the reconstruction stage
shown in Fig. 2. As shown in Fig. 4a, it also includes a
module that simulates the raw measurements and a normaliza-
tion stage. This implementation, where the forward model is
computed by the network, allows the raw data to be simulated
on graphics processor units directly, which is usually fast. This
solution is also more flexible (e.g., easy access to a large
variety of image databases).
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The measure module of our network essentially imple-
ments Equation (2), where the image intensity α is sampled
from a normal distribution with mean µα and variance σ2

α.
Note that the raw measurement m̂α

+ and m̂α
− are passed to

the reconstruction layers to estimate Σα.
The rescaling module essentially normalizes the raw

measurements according to Equation (3). However, as α is
unknown in practice, i.e., when only the raw measurement
are available, the division by α is replaced by division by an
estimation α̃ that is obtained according to Equation (24). α̃ is
also passed to the reconstruction layers, to estimate Σα.

The reconstruction module corresponds to the de-
noised completion network to reconstruct the image, as shown
in Fig. 2. While µ and Σ are precomputed according to
Equations (25) and (26), Σα = Diag

(
σ2
α

)
is computed

according to Equation (23).
We implement the full networks using Pytorch [47] (ver-

sion 1.5.1; cuda V10.2.89). We train the network by solving
Equation (17) using the ADAM optimizer [48], with an initial
learning rate of 10−3, which is halved every 10 epochs, for a
maximum of 100 epochs. In our experiments, the validation
loss traditionally stops decreasing after 70 epochs. The training
phase takes 3 h and 45 min on a NVIDIA GP107GLM
[Quadro P1000 Mobile]. Our implementation of the denoised
statistical completion network will be made publicly available
through the initial release of the open-source Python SPYRiT
toolbox [35]). We will also provide the Matlab implementation
of the denoised completion method (as part of a new release
of the SPIRiT Toolbox [34]).

B. Dataset

We train our network using the STL10 database [49], with
K = 105, 000 images that correspond to the ‘unlabeled’ and
‘train’ subsets. We consider 8,000 images for the testing (i.e.,
the ‘test’ subset). The original 96×96 images are resized to
64×64 using bicubic transform, and are normalized between
−1 and 1.

C. A-priori mean and covariance

We compute the mean µ and covariance Σ as introduced
in Equation (10) from the same 105,000 STL10 images that
are considered during the training. We consider the classical
estimators

µ =
1

K

K∑
k=1

Hf (k), (25)

Σ =
1

K − 1

K∑
k=1

(Hf (k) − µ)(Hf (k) − µ)> (26)

Note that both quantities are computed once and for all. We
load them into the graphical processor unit when the network
is initialized, with no need to re-compute them later (e.g.,
during training or evaluation).

D. Training with different source intensities

As seen in Section IV-C, it is not realistic to consider the
intensity α as a known constant. Therefore, we make α vary
during the training, with mean µα and standard deviation σα.
Therefore, the network has to learn how to be robust to vary
α about µα. To fit with the observations made in Fig. 3, we
choose σα = 0.5µα to account for the worst-case scenarios.
As shown in Section VII-C, varying alpha during the training
phase, i.e., considering different noise levels, is crucial to get
a robust network.

However, such an approach does not guarantee that a
network trained around a given intensity µα can perform
well for another intensity. A neural network trained for a
certain probability distribution cannot generalize ’for free’ to
another probability distribution. We look into this question in
Section VII-D.

E. Data normalization

Data normalization is a key to obtaining a robust network.
By bringing the values of the measurements into the same
range, the resulting network generalizes better to different
noise levels, in particular when different noise levels are used
during the training phase (see Section VII-C).

Here, we chose to train our network using zero-mean
images fnet with values in the range [−1, 1], to accelerate the
optimisation [50]. By plugging fnet = 2f − 1 into Equation
(1), where 1 = [1, . . . , 1]> ∈ RN , we obtain the following
input for the convolutional layers mα

net =
2
α̃m̂

α −H11.
The output of the neural network fnet can be normalized

back to [0, 1] by computing 1
2 (fnet + 1), which allows fair

comparison of the reconstruction and the ground truth. For
simplicity, the diagram of Fig. 4 does not include the zero-
mean normalization, and works with f directly.

F. Diagonal covariance approximation for rapid denoising

Implementing the denoised completion scheme of Equation
(13) as a layer of a neural network is challenging, due to the
matrix inversion required in Equation (13a). As the matrix
to be inverted is signal dependent, the inverses cannot be
precomputed; the inversion has to be computed on the fly, i.e.,
during the training phase. A matrix inversion is typically much
more time consuming than the operations usually used during
training (e.g., convolutions). Repeating matrix inversions many
times during the optimization of Equation (17) might be
prohibitive.

To lighten the computational burden, we choose to neglect
the nondiagonal terms of Σ1. Denoting σ2

1 = diag (Σ1), we
consider

y∗1(m
α) = µ1 + σ

2
1/(σ

2
1 + σ

2
α)(m

α − µ1), (27)

where division and multiplication apply element-wise. As
illustrated in Fig. 5, this approximation impacts on the quality
of the reconstruction. The diagonal approximation of the
covariance leads to reduced quality compared to the vanilla
approach of Equation (13). However, the quality loss appears
to be limited. Compared to no denoising at all (see Fig. 5b,
c), diagonal denoising leads to clear improvement.
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a) b)
 PSNR = 18.18

c)
 PSNR = 19.19

d)
 PSNR = 19.58

Fig. 5. (a) An image from the stl-10 dataset. (b) Reconstruction using
statistical completion (SC); i.e., using Equation (13b) with y∗1 = mα. (c)
Reconstruction using denoised statistical completion (diagonal DSC) with the
diagonal approximations; i.e., Equations (13a) and (27). (d) Reconstruction
using the vanilla denoised statistical completion (DSC) of Equation (13). The
acquired coefficients are subjected to Poison noise according to Equation (2),
where we set α = 7 photons. The noise covariance was computed using
Equation (23).

VI. EXPERIMENTS

A. Reconstruction methods

We consider three linear reconstruction methods and three
nonlinear methods.

The linear reconstruction methods are :
1) Pseudo inverse (PI): This solution is given by Equation

(7) and corresponds to no completion and no noise handling.
2) Statistical completion (SC): This solution is given by

Equation (13) (where Σα is replaced by 0). Here, the noise
is not taken into account.

3) Denoised statistical completion (DSC): This solution
is given by Equation (13). It corresponds to the best linear
solution of Equation (16).

The nonlinear reconstructors are some of the variants of the
reconstruction network depicted on Fig. 2. These networks
have different FCL H1, and differ in the way they are trained.

4) Completion network (C-Net): The weights of the FCL
are frozen such that no denoising is performed; i.e., Equation
(13) is used with y∗1 = mα. This is the network that was
introduced in [25]

5) Noisy completion network (NC-Net): The architecture
of the NC-Net and the C-Net are identical; however, the NC-
Net is trained in the presence of noise, with benefit from the
training machinery described in Section V. Here, the post-
processing layers HLθ ◦ . . . ◦ H2

θ implicitly learn in the image
domain how to cope with noise.

6) Denoised completions network (DC-Net): The weights
of the FCL are chosen so as to implement Equation (13), which

Fig. 6. Measurement scatter plot for two coefficients of the measurement
vector in the absence of noise. Each dot represents an image from the
STL10 test set. The two histograms represent the marginal distribution of each
variable, while the full line on top of the scatter plot indicates the correlation
between the two variables.

includes the denoising step of Equation (13a). Here, we cope
with noise explicitly in the measurement domain.

Note that all of these approaches are suited to real-time
imaging, as the slowest method, which is the DC-Net, can re-
construct an image in only 30 ms with a NVIDIA GP107GLM
GPU [Quadro P1000 Mobile]; the other approaches can take
up to 4 ms less than the DC-Net.

B. Simulated data

We evaluate the reconstruction error for each of the 5,000
unseen images (i.e., the‘test’ subset of STL-10) using the
measure module described in Fig. 4. We recall that this in-
cludes two sources of uncertainties; namely, the measurement
noise and the variability of the image intensity.

Figure 6 illustrates the distribution of two coefficients of the
measurement vector in the absence of noise. It can be seen that
the marginal distributions for both of the coefficients are nearly
Gaussian, which is representative of all of the coefficients
and motivates the hypothesis of Equation (10). The full line
represents the correlation between the two coefficients, which
motivate the use of the completion scheme of Equation (13b).

C. Experimental data

To validate our reconstruction methods, we consider the
single-pixel camera experimental set-up depicted in Fig. 7,
as first described in [51]. The telecentric lens (Edmund Optics
62901) is positioned such that its image side projects the image
of the scene onto the digital micro-mirror device (DMD; vialux
V-7001), which is positioned at the object side of the lens.
The object is transparent and is illuminated by a LED lamp
(Thorlabs LIUCWHA/M00441662). The DMD can implement
different light patterns (denoted as H1 in Section II) by
reflection of the incident light onto a relay lens, which projects
the light into an optical fiber (Thorlabs FT1500UMT 0.39NA).
This optical fiber is connected to a compact spectrometer
(BWTek examplar BRC115P-V-ST1). For every object, we
sequentially upload onto the DMD all of the M = 4096
Hadamard patterns of dimension N = 64 × 64 pixels. We
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can down-sample the full measurement vector a posteriori to
achieve any sampling ratio. To consider different noise levels,
we acquire the same object with varying integration times and
neutral optical densities.

As shown in the first column of Fig. 8, we acquire three
different objects: the LED lamp directly (first row); a cat from
the STL-10 test set printed on a transparent sheet (middle row);
and the Siemens Star resolution target (bottom row) [52]. The
ground-truth image is computed (see Section VI-D) from a
fully sampled measurement vector that is acquired with the
highest signal-to-noise ratio (i.e., high flux illumination, long
acquisition time). Specifically, we consider no neutral density,
and the integration time to 1 ms per pattern for the lamp, to
4 ms per pattern for the STL-10 cat, and to 8 ms per pattern
for the Siemens target,

For each object, we also acquire a high-noise dataset by
placing neutral optical density behind the lamp to reduce the
light flux. We consider optical densities of 1.3 for the LED
lamp, 0.6 for the STL-10 cat, and 0.3 for the Siemens target.
We set the integration time to 4 ms for both the LED lamp
and the STL-10 cat, and to 8 ms for the Siemens target, we
retain only M = 512 measurements for both the LED lamp
and the STL-10 cat, which accelerates the acquisition by a
factor of 8. For the Siemens target, which has a richer spatial
frequency content, we keep more measurements (M = 2048;
acceleration factor of 2).

D. Evaluation metrics

Given the ground-truth image f , we compute the peak
signal-to-noise ratio (PSNR) of a reconstructed image f∗ as

PSNR(f∗,f) = 10 log10
22

‖f∗ − f‖2
(28)

For the experimental data, we have no direct access to the
ground truth image. This image is computed as f =H>ygt,
where ygt is a fully sampled measurement with high signal-to-
noise ratio. Before computing the PSNR according to Equation
(28), we normalize the ground truth image in the range [0, 1]
with f ← (f −mini(f)i)/(maxi(f)i −mini(f)i).

VII. RESULTS AND DISCUSSION

A. Performance of linear reconstructors

In Table I, we report the performance of the SC and the
DSC methods for five image intensities/noise levels (from α =
2 ± 1 photons, to α = 2500 ± 1250 photons). We observe
that DSC outperforms SC for all noise levels. On average, the
gain is 7.89 dB, 5.84 dB, 4.68 dB, 2.06 dB, 0.06 dB for the
mean intensity of 2, 5, 10, 50, and 2500 photons, respectively.
As expected, the superiority of DSC vanishes for increasing
intensity of α (i.e., decreasing noise).

Note that the PSNRs for the two image intensities are
not directly comparable. This is mainly due to the rescaling
described in Fig. 4. The rescaling is carried out with an
estimated image intensity α̃, which deviates from the true
intensity α̃. This has a high impact on the PSNR when α
is high. However, reconstruction methods from the same level

Fig. 7. Optical set-up of the single-pixel camera [14]. This set-up is composed
of a sample (S) illuminated by a lamp (L) in front of a filter wheel (FW), a
telecentric lens (TL), a digital micro-mirror device (DMD), some relay lenses
(RL), an optical fiber (OF), and a spectrometer (SM).

of noise can be compared without any issues, as they apply to
the same dataset.

We also observe the superiority of DSC for the experimental
data in Fig. 8. For the LED lamp, we get a PSNR of 15.98
dB, as opposed to 15.56 dB and 13.96 dB for SC and
pseudo inverse, respectively. For the STL-10 cat, the PSNR
is significantly improved using DSC (18.73 dB) than using
SC (16.92 dB) or pseudo inverse (15.96 dB). For the Siemens
Star, we get a PSNR of 16.09 dB, compared to 15.95 dB and
15.88 dB for SC and pseudo inverse, respectively. Visually it
appears that the denoising approach tends to remove some
of the artifacts introduced by the Poisson noise; the LED
lamp and the STL-10 cat in particular are much smoother
and easier to recognize. This confirms that the completion
approach performs well in the presence of Poisson noise.

B. Training a network for noisy data

In Table II, we report the reconstruction PSNR using net-
works that are trained for different noise levels. In particular,
the first column (α = ∞) corresponds to networks that
are trained with no noise. Here, we observe that a network
that is trained with no noise performs very poorly when it
is evaluated on noisy data. The reconstruction PSNR drops
to as low as 9.48 ± 1.78 dB for α = 2 ± 1 ph and the
reconstruction quality is significantly degraded, even under
very low noise levels (e.g., α = 2500±1250 ph.), as the PSNR
reaches only 15.88± 2.11 dB, while the NC-Net trained with
α = 2500±1250 ph. performs significantly better, with PSNR
of 22.19± 1.56 dB.

This can be further confirmed with the experimental data of
Fig. 8. We recall that the C-Net and the NC-Net share the same
architecture but the NC-Net is trained with noise, contrary to
the C-Net. Training with no noise leads to significant drop in
the reconstruction PSNR (15.65-13.79 = 1.86 dB for the LED;
2.35 dB for the cat; 0.15 dB for the Siemens Star).
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Testing
α 2± 1 5± 2.5 10± 5 50± 25 2500± 1250

SC 9.72± 1.76 12.43± 1.80 13.91± 1.85 15.63± 1.96 16.19± 2.02

DSC 17.61± 1.23 18.37± 1.22 18.59± 1.26 17.70± 1.58 16.25± 2.01

TABLE I
AVERAGE PEAK SIGNAL-TO-NOISE RATIO OF STATISTICAL COMPLETION (SC) [25] AND DENOISED STATISTICAL COMPLETION (DSC) OF EQUATION

(27) - RECONSTRUCTIONS UNDER VARIOUS NOISE LEVELS: α = 2± 1 PH.; α = 5± 2.5 PH.; α = 10± 5 PH.; α = 50± 25 PH.; AND α = 2500± 1250
PH.. FROM LEFT TO RIGHT, IMAGES ARE RECONSTRUCTED FROM DATA SIMULATED WITH DECREASING NOISE LEVELS.

Testing Training
α (in ph.) ∞ / C-Net 2± 1 5± 2.5 10± 5 50± 25 2500± 1250

2± 1 9.48± 1.78 18.79± 1.33 18.12± 1.41 17.04± 1.50 15.19± 1.43 14.55± 1.38
5± 2.5 12.11± 1.87 19.80± 1.42 20.11± 1.39 19.84± 1.40 18.70± 1.34 18.12± 1.28

NC-Net 10± 5 13.58± 1.94 20.11± 1.47 20.75± 1.46 20.88± 1.44 20.39± 1.38 19.98± 1.31
50± 25 15.32± 2.06 20.32± 1.51 21.16± 1.53 21.59± 1.53 21.83± 1.52 21.76± 1.49

2500± 1250 15.88± 2.11 20.37± 1.52 21.24± 1.55 21.73± 1.56 22.14± 1.57 22.19± 1.56

2± 1 18.79± 1.47 18.74± 1.53 18.60± 1.55 18.31± 1.55 18.14± 1.55
5± 2.5 19.76± 1.39 20.05± 1.50 19.99± 1.55 19.61± 1.60 19.34± 1.59

DC-Net 10± 5 19.88± 1.33 20.64± 1.42 20.82± 1.51 20.55± 1.61 20.21± 1.62
50± 25 18.68± 1.43 20.15± 1.36 21.04± 1.39 21.86± 1.54 21.69± 1.61

2500± 1250 17.40± 1.71 18.89± 1.63 19.94± 1.59 21.69± 1.51 22.17± 1.56

TABLE II
RECONSTRUCTION OF PEAK SIGNAL-TO-NOISE RATIOS (PSNRS) FOR DIFFERENT NETWORKS. NOTE THAT THE NC-NET TRAINED WITH NO NOISE

(α =∞) CORRESPONDS TO THE C-NET. FROM TOP TO BOTTOM, IMAGE ACQUISITION IS SIMULATED ASSUMING INCREASING LIGHT INTENSITY α (I.E.,
DECREASING NOISE LEVELS). FROM LEFT TO RIGHT, IMAGES ARE RECONSTRUCTED BY NETWORKS THAT ARE TRAINED USING DECREASING NOISE
LEVELS. TO FACILITATE THE COMPARISON BETWEEN THE TWO NETWORKS, WE UNDERLINE SIMILAR PSNRS (I.E., DIFFERENCE ¡0.1 DB) AND USE

BOLD FONT TO INDICATE THE BEST PERFORMING NETWORKS (I.E., DIFFERENCE ¿0.1 DB). BLUE FONT INDICATES THAT THE TESTING AND TRAINING
NOISE ARE THE SAME LEVEL; GREEN FONT, THAT THE TESTING NOISE IS LOWER THAN THE TRAINING NOISE; AND RED FONT, THAT THE TESTING NOISE

IS HIGHER THAN THE TRAINING NOISE.

C. Training with varying levels of noise

In Table III, we evaluate the effect of training a network
under a varying noise levels. We also simulate the acquisition
of the test images with all with the same source intensity (α
= 50 photons) and for varying intensities (mean values µα =
50 photons and standard deviation σα = 25 photons).

Training a network under different noise levels is detri-
mental when the image intensity is known; on average, it
results in a PSNR drop of 23.19 − 22.13 = 1.06 dB. On the
contrary, noise-varying training improves the reconstruction
when the image intensity is unknown; on average, we obtain
an enhancement of 21.07− 19.33 = 1.74 dB (second row of
Table III).

This observation is crucial, as the exact image intensity is
not available beforehand in real-life experiments. Although we
can estimate the image intensity from the raw data (e.g., by
the method introduced in Section IV-C), this inevitably leads
to inaccuracies. In the following, we only consider realistic
scenarios where the image intensity is not known, which
requires training with varying noise levels.

D. Performance of nonlinear methods in simulations

In Table II, we report the reconstruction PSNRs obtained
using NC-Net, DC-Net, and also C-Net, which is given by the
first column of NC-Net (α = ∞). We train both the NC-Net
and the DC-Net with varying noise levels, where the standard
deviation of the image intensity is set to 50%, in agreement
with the findings of Section IV-C and in Section VII-C.

As expected, the C-Net, which is trained with no noise,
performs very poorly in the presence of noise. Therefore, we

Testing Training
α (in ph.) 50 50± 25

50 23.19± 1.98 22.13± 1.88

50± 25 19.33± 1.67 21.07± 1.63

TABLE III
TRAINING AND TESTING UNDER VARYING NOISE LEVELS. TOP ROW:

DATA SIMULATED FOR A GIVEN THE SOURCE INTENSITY (α = 50
PHOTONS), WHICH IS THE SAME FOR ALL TEST IMAGES. BOTTOM ROW:
DATA SIMILATED FOR TEST IMAGES WITH VARYING INTENSITIES (MEAN

VALUES µα = 50 PHOTONS AND STANDARD DEVIATION σα = 25
PHOTONS). RECONSTRUCTION PSNRS ARE REPORTED FOR A NETWORK

TRAINED USING CONSTANT INTENSITY (MIDDLE COLUMN) AND VARYING
INTENSITY (RIGHT COLUMN).

focus our analysis on the NC-Net and the DC-Net, and divide
our analysis into three cases, which depend on the relative
noise levels used during training and testing.

1) Training noise and testing noise have the same levels:
In Table II, the PSNRs of these experiments (i.e., equal
noise levels) are shown in blue (i.e., diagonals). The NC-Net
and DN-Net have very similar performances. For decreasing
noise levels, for NC-Net and DC-Net we obtain (respectively):
18.79 ± 1.78 dB against 18.79 ± 1.44 dB; 20.11 ± 1.39 dB
against 20.05±1.50 dB; 20.88±1.44 dB against 20.82±1.51
dB; 21.83±1.52 dB against 21.86±1.54 dB; and 22.19±1.56
dB against 22.17 ± 1.56 dB. For all of the noise levels, the
differences are below 0.1 dB on average. This means that the
post processing layers of the NC-Net can compensate for the
lack of the denoising layer, due to a training scenario that
perfectly mimics the test one.
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2) Training noise is lower than testing noise: In Table II,
the PSNRs of these experiments (i.e., training lower than
testing) are shown in red (below lower diagonal). For all of the
experiments except one, the NC-Net produces better average
reconstructed PSNRs than the DC-Net. For example, a DC-
Net trained using α = 2 ± 1 photons, gives a reconstruction
PSNR of 17.40±1.71 dB, while an NC-Net trained at the same
noise level gives a PSNR of 20.37±1.52 dB, which is a large
improvement of 2.97 dB, on average. Here, the presence of
the denoising layer is detrimental; it kills the fine information
that is useful in low-noise experiments.

3) Training noise is higher than testing noise: In Table II,
the PSNRs of these experiments (i.e., training higher than
testing) are shown in green (above diagonals). Contrary to
the previous scenario, the DC-Net outperforms the NC-Net in
all experiments but one. For example, a DC-Net trained using
α = 2500 ± 1250 photons, gives a reconstruction PSNR of
18.14± 1.55 dB while a NC-Net trained the same noise level
yields to a PSNR of 14.55±1.38 dB, which is a large decrease
of 3.59 dB, on average. Here, the presence of the denoising
layer has a great advantage; the DC-Net generalizes better to
high noise experiments.

In summary, the noise levels of the images under acquisition
are a key feature. In real-life experiments, this implies that
this parameter can be estimated first, and then the network
that fits the actual noise level can be evaluated. In this case,
both the NC-Net and the DC-Net are equivalent. However,
this approach requires the loading of several networks, which
might be a severe limitation for real-time applications, and
in particular if the models are too large to be stored directly
on the graphics processor unit. If only one network has to be
retained, the DC-Net outperforms the NC-Net in high-noise
situations. For α = 2± 1 photons, the worst PSNR across all
of the noise levels used for training is 18.14±1.55 dB for the
DC-Net, while it collapses to 14.55±1.38 dB for the NC-Net.
Also, for a target noise level, it might be safe the choose the
DC-Net, as it is more robust to noise levels that are higher
than expected, compared to the NC-Net.

E. Performance of nonlinear methods considering experimen-
tal data

Fig. 8 illustrates the performance of our networks on
experimental data acquired with the experimental set-up of
a single-pixel camera presented in Section VI. We choose
a training intensity of α = 50 photons, which corresponds
to an intermediate level of noise (neither as noisy as α =
2 photons, nor as uncorrupted as α = 2500 photons). We
find that the DC-Net outperforms the other networks (as
well as the linear methods). For the LED lamp, the DC-
Net yields a reconstruction PSNR of 16.14 dB, which is a
16.14 − 15.65 = 0.49 dB (16.14 − 13.79 = 2.35 dB, resp.)
improvement compared to the NC-Net (C-Net, resp.). For
the STL-10 cat, the DC-Net outperforms the DC-Net (C-Net,
resp.) by 0.73 dB (3.09 dB, resp.). For the Siemens Star, the
the DC-Net outperforms the DC-Net (C-Net, resp.) by 0.46
dB (0.61 dB, resp.).

The gain provided by the DC-Net is more apparent in cases
where the noise is high (α̃ = 10 photons for the LED lamp,

and α̃ = 9 photons for the STL-10 cat), whereas it is more
modest when the noise level is lower (α̃ = 25 photons for
the Siemens star). Visually, the C-Net images are subject to
multiple artefacts that share their pattern with the artefact
observed in the pseudo inverse images. While the NC-Net has
a smoothing effect, removing most noise artefacts, the DC-Net
provides the smoothest images, while preserving most of the
details (see the Siemens star image, for instance).

F. Limitations
One limitation of our deep network compared to more

classic approaches such as [28], [30], [31] is that there is
has no theoretical guarantee that it will work for any image;
in particular, the image under acquisition significantly differs
from those of in our training set. This is a common concern
for deep-learning approaches that are, however, seen to work
well in practise. Also, this deep network that is trained using
simulations only generalizes relatively well considering the
experimental data. A limiting aspect of our work might be the
choice of our architecture, which is shallower than popular
architectures, such as the U-Net used in [53] and more recent
variants. However, we are keen to keep the number of network
parameters as low as possible, to keep both the training
and evaluation times as short as possible. Another limitation
of this work concerns the analysis of the PSNRs of the
images reconstructed from the experimental data, where the
ground truth is not known. We limit this common issue by
acquiring fully sampled low-noise images. Finally, we only
test our algorithms on N × N pixel images, with N = 64.
By considering a database with high-resolution images (e.g.,
ImageNet), our network can be generalized to handle the case
where N > 64, directly or by implementing a patch-based
strategy to limit the memory requirements.

G. Generalization to other problems
Although this work focuses on single-pixel imaging, it can

provide some insight for any linear reconstruction problem
where the measured data is scarcely sampled (e.g., limited
angle computerized tomography, accelerated magnetic reso-
nance imaging). For orthogonal transform, the generalization
is straightforward, as it only consists of setting H to the corre-
sponding basis (e.g., discrete Fourier for magnetic resonance
imaging). For nonorthogonal transforms (e.g., computerized
tomography), Equations (8) and (24) need to be updated by
replacing H> with H>(HH>)−1.

This network can easily be adapted to other noise models,
as we only need an estimation of the mean and covariance
of the noisy measurements. For instance, we can handle the
Poissonian-Gaussian noise models advocated in [39] simply
by adding a constant term to Σα in Equation (22).

Compared to most studies dedicated to deep learning for
inverse problems, we mainly focus on the (fully connected)
layers of the network, which acts in the measurement domain.
The post-processing layers that act in the image domain can be
replaced by any variants (e.g., U-Net, resNet, others). More-
over, our approach is compatible with architectures inspired
by conventional variational methods (e.g., [6]). This will be
the object of future work.
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Fig. 8. Reconstructions of three experimental datasets by the different methods (top row: LED lamp with M = 512, middle row: STL-10 cat with M = 512;
bottom row: Siemens star resolution target with M = 2048). We display the images reconstructed from a fully sampled dataset (ground-truth; GT) acquired
with high image intensity (first column, α = 148 photons) and lower image intensity (second column, α = 9 photons). The following columns shown
reconstructions using the pseudo inverse (PI) of Equation (7), the statistical completion (SC) of Equation (13), the denoised statistical completion (DSC) of
Equation (13), the C-Net Section VI-A5, the NC-Net Section VI-A5 (trained with µα = 50 photons and σα = 0.5µα), and the DC-Net Section VI-A6
(trained with µα = 50 photons and σα = 0.5µα). All of the PSNRs are computed as described in Section VI-D, with the first column as the ground-truth.

VIII. CONCLUSION

We proposed a deep network that can reconstruct images
from a small number of noisy single-pixel measurements. Our
method is generic and can be applied to any linear inverse
problem where the raw data is corrupted by Poisson noise.
The proposed network includes a FCL that maps data from
the measurement domain to the image domain. This FCL takes
into account the signal-dependent covariance of the noise, and
computes the best linear solution of a completion problem.
This approach yields better reconstructions in scenarios where
the network is tested under more noisy conditions when
compared to their training values of noise. This is verified here
on experimental data from a single-pixel camera. These results
are particularly interesting under real-time constraints, or when
the use of several neural networks to deal with different noise
levels is not compatible with the amount of memory available.
Under experimental conditions, we cannot foretell what levels
of noise we will be faced with, therefore our approach is suited
for dealing with real-time experimental data. In future work,
we will use deep learning models that ensures that the output
of the model is consistent with the inputs of said model. In
order to do so, we will work on unrolled recursive networks
that extend the ideas developed in this paper.
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