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Abstract. We consider the (inverse) problem of finding back the pa-
rameter values of a physical model given a set of measurements. As the
deterministic solution to this problem is sensitive to measurement error
in the data, one way to resolve this issue is to take into account uncertain-
ties in the data. In this paper, we explore how interval-based approaches
can be used to obtain a solution to the inverse problem, in particular
when measurements are inconsistent with each other. We show on a set
of experiments, in which we compare the set-based approach with the
Bayesian one, that this is particularly interesting when some measure-
ments can be suspected of being outliers

Keywords: Inverse problem · Interval uncertainty · Outlier detection.

1 Introduction

Identifying the parameters of a physical model from a set of measurements is a
common task in many fields such as image processing (tomographic reconstruc-
tion [1]), acoustic (source identification [2]), or mechanic (material properties
identification [3]). Such a problem is known as the inverse problem and is the
converse of the so-called forward problem. While the forward problem is usually
well-posed, it is not the case of the inverse problem. Indeed, whenever there is
noise in the measurements or error in the model, such a problem may well end-up
having no solutions [4]. Common recourse to this issue that have been proposed
in the literature is to consider either Least-square minimization techniques [5]
or Bayesian approaches [6] modeling the noise in measurements.

Both these approaches, however, can be quite sensitive to outliers [7, 8] or
aberrant measurements. In addition to that, a lot of researchers argued that
probabilistic methods such as Bayesian inverse methods are not well suited for
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representing and propagating uncertainty when information is missing or in case
of partial ignorance [9–11]. In contrast, interval-valued methods [12–15] make a
minimal amount of assumptions about the nature of the associated uncertainties,
as they only require to define the region in which should be the measurement. In
this paper, we propose an inverse strategy relying on interval analysis to deal with
uncertain measurements and to detect inconsistent measurements (outliers). We
apply the proposed strategy in experimentation concerning the identification of
material elastic parameters in the presence of possibly inconsistent measurements
(here, full-field displacements [16]).

This paper is organized as follows. Section 2 describes the identification strat-
egy based on a set-valued approach and outlier detection method to select set
of consistent measurements and also the numerical implementation of the iden-
tification strategy, including the discrete description of sets [11]. In Section 3,
we present an application to static tensile tests of homogeneous plates to iden-
tify material parameters using the proposed outlier detection method and we
compare it to the Bayesian inference method with sensitive data.

2 Identification strategy and outlier detection method

This section is composed of four parts. In Section 2.1, we introduce the inverse
problem. The identification strategy with a set-valued approach based on in-
tervals is described in Section 2.2. Section 2.3 introduces the outlier detection
method to select a subset of consistent measurements. Section 2.4 describes the
numerical implementation of the identification strategy with the discrete de-
scription of sets.

2.1 Inverse problem introduction

We consider an inverse problem where we want to identify some parameters
of a model y = f(θ) from N measurements made on quantity y. The model
f yields the relationship between the M model parameters θ ∈ RM and the
measured quantity. We will denote by ỹ ∈ RN the measurements made on y.
A typical example introduced in Section 3 is where θ corresponds to elastic
Lamé parameters (λ and µ) and y is full-field displacement data obtained after
applying a given strength on the material. In this paper, we consider the case
where the discrepancy between f(θ) and ỹ is mainly due to measurement errors,
i.e., we leave the issue of model error to future investigations.

2.2 Set-valued inverse problem

In this Section, we propose a set-valued inverse problem strategy based on the
interval-valued measurements.
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Intervals to model uncertainty. Within the framework of Interval analysis,
an interval [x] in R is a closed set of connected real values noted by [x] =
[x, x] = {x ∈ R | x ≤ x ≤ x} where x ∈ R is the lower bound and x is the upper
bound [17]. In our work, we choose to describe uncertainty on the measurements
in interval form, as such a description requires almost no assumption regarding
the nature and source of uncertainty [14]. To describe prior information about
parameters, we use a multidimensional extension of intervals, i.e. hypercube or
box of Rn defined as the Cartesian product of n intervals. For example, in the
case of two paramaters, x1 and x2, information on them is described by set X
such that X = [x1] × [x2] = [x1, x1] × [x2, x2]. Boxes are the easiest way to
describe multidimensional sets.

Identification strategy. In the proposed approach, intervals describe the un-
certainty on the measurements and an hyper-cube describes the prior information
about parameters. Hence, the solution of the inverse problem can be obtained
thanks to a set inversion process [17].The uncertainty in the measurements is
described through the set Sy.

Sy =

N∏
k=1

[ỹk, ỹk] ⊂ IRN (1)

Each measurement is described with its lower bound ỹk and an upper bound ỹk.

Prior information about parameter is described through Soθ ⊂ RM , i.e., with the
box. Given a set Sy ⊂ RN describing the uncertainty on ỹ and prior parameter
set Soθ ⊂ RM , the set Sθ ⊂ RM describing the solution of the inverse problem
is defined as follows.

Sθ = {θ ∈ Soθ | f(θ) ∈ Sy} (2)

In the current work, it is possible to obtain a solution set for each measurement
as follows.

Skθ = {θ ∈ Soθ | yk(θ) ∈ [ỹk, ỹk]} (3)

where yk(θ) represents kth response of the model y = f(θ) and then Sθ can be
obtained as the intersection of the Skθ .

Sθ =

N⋂
k=1

Skθ (4)

In case of inconsistent measurements, the set-valued inverse method gives an
empty solution set Sθ = ∅ corresponding to

⋂N
k=1 Skθ = ∅. There may be several

reasons for the inconsistency of the measurements with respect to the model
such as presence of measurement outliers or model error.

Example 1. We illustrate the set-valued inverse problem on a toy example. We
consider a spring-mass system which can be described mathematically as

F/p = f(θ) = y (5)
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Fig. 1: Spring-mass system

where F represents the force applied on the spring in Newton(N), p is the
spring stiffness constant(N/m) and the parameter to estimate, and y is the
measured displacement of the spring in meter (m). We consider a case where
a force F=100 N is applied on the spring and a displacement, ỹ=0.01 m is
measured. Here, inverse problem consists of determining parameter from the
measurement ỹ. To do this, we describe uncertainty on the prior knowledge about
the parameter and the measurement in the interval form such that Soθ i.e., p ∈
[P ] = [8000 , 12000] and Sy i.e., ỹ ∈ [Ỹ ] = [0.009 , 0.0110]. We solve the inverse
problem numerically using Equation (2), which gives set of parameter which
belongs to set [P]. We obtain the lower bound P = 9152.5 and puper bound P =

11050.1 of the interval [P] by taking y = Ỹ and y = Ỹ respectively. Hence, new
interval of parameter is described by [P] ⊂ [P ] = [P ,P] = [9152.5 , 11050.1]. In
the case of 1D, the length of the interval i.e., P −P measures the area A([P])
of [P ].

2.3 Outlier detection method

In case of inconsistency, a way to restore consistency is to remove incompatible
measurements, i.e., possible outliers. To do this, our method relies on measures
of consistency that we introduce now.

For any two solution sets Skθ and Sk′θ corresponding to ỹk and ỹk′ measurement
respectively, (k, k′) ∈ {1, ..., N}2, we define the degree of inclusion (DOI) of one
measurement ỹk′ with respect to another ỹk as

DOIkk′ =
A(Skθ ∩ Sk′θ )

A(Sk′θ )
(6)

where A(Skθ) corresponds to the area of the set Skθ .

The DOI between two measurements is non-symmetric, i.e.,DOIkk′ 6= DOIk′k.
DOI reaches to its boundary values in the following situations as illustrated in
Figure 2.

DOIkk′ =

{
1 iff Sk′θ ⊆ Skθ
0 iff Skθ ∩ Sk′θ = ∅ (7)
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Fig. 2: DOI between two sets

Furthermore, the value of DOIkk′ will always be between 0 and 1 when A(Skθ)
is non-zero. The larger the value of DOI between two measurements, the higher
the possibility of Sk′θ included in Skθ and vice-versa.

We now introduce a measurement-wise consistency degree from a set of mea-
surements. By using the pairwise degree of inclusion (DOI) of the measurements,
we define the global degree of consistency (GDOC) of any kth measurement with
respect to all other measurements as

GDOC(k) =

∑N
k′=1

A(Skθ∩S
k′
θ )

A(Skθ )
+
∑N
k′=1

A(Skθ∩S
k′
θ )

A(Sk′θ )

2N
, (8)

which reaches its boundary values in the following situations:

GDOC(k) =

{
1 iff S1θ = S2θ, ...,= Skθ
0 iff Skθ ∩ Sk′θ = ∅, ∀ k′ ∈ {1, ..., N} (9)

The value of GDOC(k) will always be between 0 and 1. Note that the con-
dition for GDOC =1 is very strong, as it requires all sets to be identical. If
GDOC(k) = 0 then the kth measurement is fully inconsistent with all other
measurements. A high value of GDOC for the kth measurement then indicates
a high consistency with other measurements.

Finally, we define a global consistency measure for a group of measurements.
Let S = {S1θ, . . . ,Skθ , . . . ,SNθ } with Skθ ⊆ RM be the set of solutions to the inverse
problems for the measurements {y1,.....,yN}. We define the general consistency
(GCONS) for any subset E ⊂ S of measurements as

GCONS(E) =

A(
⋂

Skθ)
Skθ∈E

min
Skθ∈E
A(Skθ)

(10)

It has the following properties:

1. It is insensitive to permutation of the sets of measurement (commutativity).
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2. The value of GCONS is monotonically decreasing with the size of the set
E, meaning that the more measurement we had, the less they are consistent
with each other.

3.

GCONS(E) =


0 iff A(

⋂
Skx)

Skx∈E
= ∅

1 iff A(
⋂
Skθ)

Skθ∈E
= min

Skθ∈E
A(Skθ)

A good principle to choose a subset of consistent measurements would be to
search to the biggest subset E (the maximal number of measurements) that has
a reasonable consistency, that is for which GCONS(E) is above some threshold.
Yet, such a search could be exponential in N , which can be quite big, and
therefore untractable. This is why we propose a greedy algorithm (Algorithm 1)
that make use of GDOC measures to find a suitable subset E. The idea is quite
simple: starting from the most consistent measurement according to GDOC and
ordering them according to their individual consistency, we iteratively add new
measurements to E unless they bring the global consistency GCONS under a
pre-defined threshold, that is unless they introduce too much inconsistency.

Algorithm 1 GCONS outlier detection method

Require: S = {S1
x,.....,SNθ }, GCONSthreshold . Set S1

θ, S2
θ, ...SNθ are arranged such

that GDOC(1) > GDOC(2).... > GDOC(N).
Ensure: Consistent set of solution sets corresponding to consistent measurements,

Snew from S

1: Snew = {S1
θ, S2

θ}; . Initial set
2: for k ← 3 to N do
3: Ek = {Snew} ∪ {Skθ} . Skθ from S
4: if GCONS(Ek) > GCONSthreshold then
5: Accept Skθ
6: Snew = {Snew} ∪ {Skθ}; . Skθ from S
7: else
8: Snew = Snew; . Basically we are removing kth measurement which gives

solution set Skθ .

2.4 Implementation with discrete description of sets

To solve the set-valued inverse problem, we need a discrete description of the
sets. There are multiple ways to represent the sets in a discrete way, such as
using boxes (SIVIA algorithm [15]) or a grid of points. Here, we use the same
description as in [11], that is a grid of points is, θi, i ∈ {1, ..., Ng} as shown
in Figure 3(a) where Ng is the number of grid points. Such a description is
convenient when comparing or intersecting the sets since the grid of points is
the same for any set. Any set Sθ ⊂ Soθ is then characterized through its discrete
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characteristic function, defined at any point θi ∈ Soθ of the grid as shown in
Equation (11) and Figure 3(b).

χSθ (θi) =

{
1 if θi ∈ Sθ
0 otherwise

(11)

S0θ

θi

(a) Prior set(S0θ)

S0θ

θi

Sθ

(b) Characterized set(Sθ)

Fig. 3: Discrete description of sets

In the current application, a uniform grid is chosen to describe prior parame-
ter set Soθ, but it is not mandatory. In our method, each Skθ is therefore described
by its discrete characteristic function, defined at any point of the grid as

χSkθ
(θi) =

{
1 if ỹk ≤ f(θi) ≤ ỹk
0 otherwise

(12)

These discrete characteristic functions can be collected in a Ng ×N matrix
X as columns of boolean values as shown in Equation (13). Ng × N matrix X
is described as

X =


1 1 .. 1
0 1 .. 1
.. .. .. ..
1 1 .. 0

 (13)

where χSkθ
(θi) is the element of column k and line i. Using matrix X, a N×N

symmetric matrix T = XTX can be obtained, which is directly proportional to
the inverse sets area, and can therefore be sued as an estimation of such areas:

T ∝


A(S1θ) A(S1θ ∩ S2θ) .. A(S1θ ∩ Sk′θ )

A(S1θ ∩ S2θ) A(S2θ) .. A(S2θ ∩ Sk′θ )
.. .. .. ..

A(S1θ ∩ Sk′θ ) A(S2θ ∩ Sk′θ ) .. A(Skθ)

 (14)

Indeed, the diagonal element Tkk of T represents the number of grid points
for which the kth measurement is consistent and it is proportional to A(Skθ).
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The non-diagonal element Tkk′ of T represents the number of grid points for
which both kth and k′th measurements are consistent and it is proportional
to A(Skθ ∩ Sk′θ ). Hence, GDOC can be computed from matrix T for any kth

measurement as follows

GDOC(k) =

∑Ny
k′=1

Tk′k
Tkk

+
∑Ny
k′=1

Tkk′
Tk′k′

2N
(15)

We have presented an identification strategy and outlier detection method that
makes use of intervals to represent information about parameters and measure-
ments. The next section will be devoted to an application of this strategy to
a mechanical problem, as well as to a comparison with the Bayesian inference
method, exploring in particular their behaviour in presence of outliers.

3 Experiments

In this Section, we apply the set-valued inverse method to identify elastic proper-
ties (Lamé parameters: λ and µ) of a homogeneous 2D plate as shown in Figure
5(a). The plate is clamped on the left side and loaded on the right side by a uni-
form traction f = 1000 N . To generate displacement measurement data ỹ (386
measurements), exact displacement data yRef is simulated by a Finite Element
(FE) model (193 nodes, 336 elements) as shown in Figure 5(b) considering the
reference values λ0 = 1.15 · 105MPa and µ0 = 7.69 · 104MPa. We also consider
a possible Gaussian noise with 0 mean (no systematic bias) and with standard
deviation σ. In the current work, σ was taken as 5% of the average of all the
exact displacement values and it can be assumed that σ can be deduced from
the measurement technique.

(a) 2D homogeneous plate (b) FEM mesh

Fig. 4: A homogeneous plate and its model
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For the set-valued inverse method, the uncertainty on the measurements
has to be given in interval form. Therefore, each measurement is modelled as
[ỹk − 2σ, ỹk + 2σ]. The width of 2σ ensures that sufficient measurements will
have a solution to the inverse problem. Prior information about the parameters
(Soθ) is considered as a uniform grid λ × µ with λ = [0.72 105, 1.90 105]MPa
and µ = [ 7.2 104, 8.15 104]MPa.

3.1 Application with the set-valued inverse method

We first apply the set-valued inverse method to identify the set of elastic pa-
rameters when there is no noise in the data. The measurement data was chosen
such that ỹ =yRef , and the information on the measurement ỹ was described in
an interval form: [ ỹ − 2σ, ỹ + 2σ ].

Fig. 5: Feasible set of parameters

Figure 6 shows the feasible set (yellow color) of the identified parameter which
is consistent with all 386 measurements using the set-valued inverse method.

We then apply the set-valued inverse method along with GCONS outlier de-
tection method (Algorithm 1) to identify the set of elastic parameters when there
is random noise in the data. The measurement ỹ is created from yRef by adding
to it a Gaussian white noise with standard deviation σ and the information on
the measurement ỹ was described in an interval form: [ ỹ − 2σ, ỹ + 2σ ].
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(a) Empty solution set (b) Solution set after detecting outlier

Fig. 6: Outlier detection

Figure 7(a) shows that the identified set (green color) is empty due to incon-
sistency within the measurements. To obtain a non-empty solution set, we use
our proposed solution and Algorithm 1 with the value of the GCONSthreshold
settled to 0.1. We use a low value of GCONS to ensure that a high enough num-
ber of measurements will be included. Figure 7(b) shows the feasible set (yellow
color) of the identified parameter using GCONS method, with 55 measurements
removed.

3.2 Comparison of set-valued and Bayesian inverse method

We now compare the set-valued inverse method with the standard Bayesian in-
ference method. We apply the set-valued inverse method and Bayesian inference
method to identify elastic properties (Lamé parameters: λ and µ) of a homoge-
neous 2D plate with same 386 measurements. For the set-valued inverse method,
information on the measurement ỹ is described in an interval form: [ ỹ − 2σ,
ỹ + 2σ ] with σ = 0.0020 and prior information about the parameters is de-
scribed with a discretization of the set λ× µ with λ = [0.72 105, 1.90 105]MPa
and µ = [7.2 104, 8.15 104]MPa. With Bayesian inference method, error on the
measurement ỹ is modelled by a Gaussian noise:∼ N(0, σ2) with σ = 0.0020 and
prior information about the parameter is modeled with a uniform distribution:
Uλ(0.72 105, 1.90 105)MPa, Uµ(7.2 104, 8.15 104)MPa. Rouhgly speaking, this
means that the Bayesian model is not misspecified.
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Fig. 7: Feasible set of parameters

Figure 8 shows the feasible set (yellow color) of the identified parameter using
the set-valued inverse method and the feasible set (red color) of the identified
parameter using Bayesian inference method. In the case of Bayesian inference
method, the feasible set (red color) corresponds to a credibility set having a prob-
ability of 90%. The results on this specific example indicate that both methods
are consistent with each others, with the Bayesian approach delivering more
precise inferences. This observation has been made on other simulations using a
well-specified Bayesian model.

Now, we compare the set-valued inverse method and the Bayesian inference
method in terms of their sensitivity to outliers i.e, how they perform when some
data becomes aberrant, hence departing from the Bayesian assumptions. To do
this, we use 8 sets of 100 experiments (each experiment with 386 measurements)
in a way such that for each set the percentage of outlier measurements will
increase. In practice, we use the following scheme

ỹ0 = yRef + ε (16)

ỹ = ỹ0 + αIε (17)

Where ỹ0 are noisy measurements, ε ∼ N(0, σ2) is the initial noise , α = 5
is a multiplicative constant applied to ε when a measurement is an outlier, and
I ∼ B(pi) is a Bernoulli variable with parameter pi depending on the experiment
set, and indicating the average percentage of outlier measurements. In particular,
we used the values 0%, 3%, 5%, 7%, 9%, 11%, 13%, 15% for pi in our sets of
experiment, starting from no outliers to an average of 15%.

For each experiment of 8 sets (thus for 800 experiments), we have performed
identification using our set-valued inverse method and the Bayesian inference
method to check their sensitivity towards outliers. For all experiments, we have
chosen the value of GCONSthreshold = 0.1.

For each set of experiment, we have computed the average number of times
that each method includes the true parameter values, denote Ac in Figure 8.
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Fig. 8: Consistency with exact parameter values

From this figure, it can be observed that when there is an increase in the per-
centage of over noisy data points per set, the AC value starts to decreases in the
case of Bayesian inference method but not with GCONS method. So, while the
Bayesian approach strongly suffers from a model misspecification, our method is
robust to the presence of outliers, even in significant proportion. Hence, we can
conclude that the two methods clearly follows different strategies and provide
results that are qualitatively different in presence of outliers.

4 Conclusions

In this paper we have presented a new parameter identification strategy relying
on set theory and on interval measurements. In this approach, we have used
intervals to describe uncertainty on measurements and parameters. In order to
solve the inverse problem, we have proposed a discrete description of sets that
describe information about parameters. We have introduced indicators of con-
sistency of measurements, suing them to propose the outlier detection method,
i.e., GCONS method.

We applied this strategy to identify the elastic properties of homogenous
isotropic material. The results showed that the identification strategy is not
only helpful to obtain a feasible set of the parameters but is also able to detect
the outliers in the noisy measurements. We also compared our identification
strategy with the Bayesian inference method in terms of sensitivity to outliers
and results showed that the Bayesian inference method can give a false prediction
of the parameter when data is too noisy.

The application of the identification strategy considered in the current work
concerns a relatively small number of measurements (at least for mechanical



Set-valued approach to inverse problem 13

applications) and a 2D parameter identification. However, computational com-
plexity in case of very high dimensions is an important issue that remains to
be investigated. The next step in this work is to apply this strategy with high
dimensional data as well as parameter identification.
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