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Abstract. Convolution kernels are essential tools in signal processing: they are
used to filter noisy signal, interpolate discrete signals, . . . . However, in a given
application, it is often hard to select an optimal shape of the kernel. This is why,
in practice, it may be useful to possess efficient tools to perform a robustness
analysis, talking the form in our case of an imprecise convolution. When convo-
lution kernels are positive, their formal equivalence with probability distributions
allows one to use imprecise probability theory to achieve such an imprecise con-
volution. However, many kernels can have negative values, in which case the
previous equivalence does not hold anymore. Yet, we show mathematically in
this paper that, while the formal equivalence is lost, the computational tools used
to describe sets of probabilities by intervals on the singletons still retain their key
properties when used to approximate sets of (possibly) non-positive kernels. We
then illustrate their use on a single application that consists of filtering a human
electrocardiogram signal by using a low-pass filter whose order is imprecisely
known. We show, in this experiment, that the proposed approach leads to tighter
bounds than previously proposed approaches.

Keywords: Signal filtering · Probability intervals · Signed fuzzy measures ·
Interval-valued filtering

1 Introduction

Filtering a signal aims at removing some unwanted components or features, i.e. other
signals or measurement noise. It is a common problem in both digital analysis and
signal processing [5]. In this context, kernels are used for impulse response modelling,
interpolation, linear and non-linear transformations, stochastic or band-pass filtering,
etc. However, how to choose a particular kernel and its parameters to filter a given
signal is often a tricky question.

A way to circumvent this difficulty is to filter the signal with a convex set of kernels,
thus ending up with a set-valued signal, often summarized by lower/upper bounds. The
set of kernels has to be convex due to the fact that, if two kernels are suitable to achieve
the filtering, a combination of those two kernel should be suitable too. A key problem is
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then to propose a model to approximate this convex set of kernels in a reasonable way
(i.e., without losing too much information) that will perform the set-valued filtering in
an algorithmic efficient way guaranteeing the provided bounds (in the sense that the
sets of signals obtained by filtering with each kernel of the set is contained within the
bounds).

In the case of positive summative kernels, i.e., positive functions summing up to
one, previous works used the formal equivalence between such kernels and probabil-
ities at their advantage, and have proposed to use well-known probability set models
as approximation tools. For example, maxitive [6] and cloudy [4] kernels respectively
use possibility distributions and generalized p-boxes to model sets of kernels, and have
used the properties of the induced lower measure on events to propose efficient filtering
solutions from a computational standpoint.

However, when the kernel set to approximate contains functions that are not pos-
itive everywhere (but still sum up to one), this formal analogy is lost, and impre-
cise probabilistic tools cannot be used straightforwardly to model the set of kernels.
Yet, recent works [9] have shown that in some cases such imprecise models can be
meaningfully extended to accommodate negative values, while preserving the prop-
erties that makes them interesting for signal filtering (i.e., the guarantees of obtained
bounds and the algorithmic efficiency). More formally, this means that we have to study
the extension of Choquet-integral based digital filtering to the situation where kernels
κ : X → [−A,B]⊆ R can be any (bounded) function.

In this work, we show that this is also true for another popular model, namely prob-
ability intervals [1], that consists in providing lower/upper bound on singleton prob-
abilities. In particular, while principle applied to sets of additive but possibly negative
measures lead to a model inducing a non-monotone set function, called signed measure,
we show that the Choquet integral of such a measure still leads to interesting bounds
for the filtered signal, in the sense that these bounds are guaranteed and are obtained for
specific additive measure dominated by the signed measure. Let us call this new kind
of interval-valued kernels imprecise kernels.

The paper is structured as follows. Section 2 recalls the setting we consider, as
well as a few preliminaries. We demonstrate in Section 3 that probability intervals can
be meaningfully extended to accommodate sets of additive but non-positive measures.
Section 4 shows how these results can be applied to numerical signal filtering.

2 Preliminaries: filtering, signed kernels and fuzzy measures

We assume a finite space X = {x1, . . . ,xn} of n points, that is a subset of an infinite
discrete space Ω that may be a discretization of a continuous space (e.g., the real line),
and an observed signal whose values at these points are f (x1), . . . , f (xn), that can rep-
resent a time- or space-dependent record (EEG signal, sound, etc.). A kernel is here a
bounded discrete function η : Ω → [−A,B], often computed from a continuous kernel
(corresponding, for example, to assumed filter impulse response). This kernel is such
that ∑x∈Ω η(x) = 1, and for a given kernel we will denote bη and aη the sum of the
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positive and negative parts of the kernel, respectively. That is:

bη = ∑
x∈Ω

max(0,η(x)) aη = ∑
x∈Ω

max(0,−η(x))

Filtering the signal f by using the kernel η consists of estimating the filtered signal
f̂ at each point x of X by:

f̂ (x) =
n

∑
i=1

f (xi)η(xi− x) =
n

∑
i=1

f (xi)η
x(xi), (1)

where ∀y ∈X , ηx(y) = η(y− x).
Since filtering f amounts to compute the value of f̂ at each point of X , let us

simplify the previous formal statements by assuming that, at each point x of X exists
a kernel κ = ηx. Note that the domain of κ can be restricted to X without any loss of
generality. Moreover, bκ = ∑x∈Ω max(0,κ(x)) = bη and aκ = ∑x∈Ω max(0,−κ(x)) =
aη .

From any kernel κ , we can build a set function µκ : 2X → [−aκ ,bκ ] such that
µκ(A) = ∑x∈A κ(x) for any A⊆X . It is clear that we have µκ(X ) = 1 and µκ( /0) = 0,
but that we can have µκ(A) > µκ(B) with A ⊂ B (simply consider A = /0 and B = x
where κ(x) < 0). Note also that if A∩B = /0, we keep µκ(A∪B) = µκ(A)+ µκ(B),
hence the additivity of the measure.

Estimating the value of the signal f̂ in a given point x ∈X requires to compute a
value Cκ that can be written as a weighted sum Cκ( f ) = ∑

n
i=1 f (xi)κ(xi). If we order

and rank the values of f such that f (x(1))≤ f (x(2))≤ . . .≤ f (x(n)), this weighted sum
can be rewritten

f̂ (x) = Cκ( f ) =
n

∑
i=1

(
f (x(i))− f (x(i−1))

)
µκ(A(i)) (2)

where A(i) = {x(i), . . . ,x(n)}, f (x(0)) = 0 and A(1) = X . One can already notice the
similarity with the usual Choquet integral.

Example 1. Consider a kernel η that is a Hermite polynomial of degree 3, and its sam-
pled version pictured in Figure 1, with a =−2. From the picture, it is obvious that some
of the values are negative.

η(x) =


(a+2)|x|3− (a+3)|x|2 +1 if |x| ≤ 1
a|x|3−5a|x|2 +8a|x|−4a if 1≤ |x| ≤ 2
0 else

In this paper, we consider the case where the ideal η is ill-known, that is we only
know that, for each x ∈X , η belongs to a convex set N , which entails that κ belongs
to a convex set K . This set N (and K ) can reflect, for example, our uncertainty
about which kernel should be ideally used (they can vary in shape, bandwidth, etc.). In
the following section, we propose to approximate this set K of kernels that we deem
suitable to filter f at point x by a measure µ

K
that is close to a fuzzy measure: it
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Fig. 1. Sampled Hermite polynomial of degree 3

shares with such measures the fact that µ
K
( /0) = 0 and µ

K
(X ) = 1, and will be a

standard fuzzy measure in the case where all κ ∈K are positive. However, in the case
of negative κ ∈K , we may have µ

K
(A) < 0 for some A, as well as have for some

couple A⊂ B non-monotonicity in the form µ
K
(A)> µ

K
(B).

3 Approximating set of kernels with extended probability intervals

We now consider a set K of kernels κ defined on X , that can be discretised versions
of a set of continuous kernels. We make no assumptions about this set, except for the
fact that each kernel κ ∈K is bounded and such that ∑x∈X κ(x) = 1. If K contains
a large amount of kernels, filtering the signal with each of them and getting the set
answer {Cκ |κ ∈K } for each possible point of the signal can be untractable. Rather
than doing so, we may search some efficient way to find some lower and upper bounds
of {Cκ |κ ∈K } that are not too wide.

To achieve such a task, we propose here to use tools inspired by the imprecise
probabilistic literature, namely non-additive set functions and the Choquet integral. To
use such tools, we must first build a set-function approximating the set K . To do so, we
will extend probabilistic intervals [1] that consist in associating lower and upper bounds
[l(x),u(x)] to each atom, given a set of probabilities. In our case, for each elements
x ∈X , we consider the interval-valued kernel

ρ(x) = [ρ(x),ρ(x)] (3)

such that the bounds are given, for each x ∈X , as

ρ(x) = inf
κ∈K

κ(x) and ρ(x) = sup
κ∈K

κ(x). (4)

Clearly, both can be negative and are not classical probability intervals. Nevertheless,
we will show that set-functions induced by these bounds enjoy properties similar to
those of standard probability intervals, and hence can be used to efficiently approximate
{Cκ |κ ∈K }.
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From the imprecise kernel ρ , we propose to build the set function µ : X →R such
that, for A⊆X

µ
K
(A) = max{∑

x∈A
ρ(x),1−∑

x 6∈A
ρ(x)}, (5)

which is formally the same equation as the one used for probability intervals. We still
have that µ( /0) = 0 and µ(X ) = 1 (as ρ(x)≤ κ(x) for any µ ∈K , we necessarily have
∑x∈X ρ(x) ≤ 1). However, we can have µ(A) > µ(B) with A ⊂ B, meaning that µ is
not a classical fuzzy measure, and not a so-called coherent lower probability4. It is also
non-additive, as we have µ(A∪B) 6= µ(A)+µ(B) for A∩B = /0 in general.

Simply replacing µκ by µ
K

in Equation 2 gives us

C K ( f ) =
n

∑
i=1

(
f (x(i))− f (x(i−1))

)
µ

K
(A(i)) (6)

=
n

∑
i=1

f (x(i))
(

µ(A(i))−µ(A(i+1))
)
, (7)

where A(n+1) = /0 and f (x0) = 0.
In the positive case, C K ( f ) is well-known to outer-approximate {Cκ |κ ∈K }, as

C K ( f ) = infµκ≥µ
K

Cκ( f ). In the rest of this section, we show that this is also true
when the set K contains non-positive functions. In particular, we will show:

1. that Equation (6) still provides a lower bound of infµκ≥µ
K

Cκ( f ) and,
2. that this lower bound corresponds to an infimum, meaning that it is obtained for a

peculiar additive measure of K .

To show the first point, we will first prove the following proposition concerning µ:

Proposition 1. Given a set K , we have for any A⊆X

µ
K
(A)≤ inf

κ∈K
µκ(A)

Proof. To prove it, consider a given κ ∈K , we have µκ(A)=∑x∈A κ(x)= 1−∑x 6∈A κ(x)
since ∑x∈X κ(x) = 1. Now, from Eq. (5), we have either

– µ
K
(A) = ∑x∈A ρ(x)≤ ∑x∈A κ(x)

– µ
K
(A) = 1−∑x 6∈A ρ(x)≤ 1−∑x 6∈A κ(x)

and since this is true for any κ ∈K , we have the inequality.

Note that µ is a tight measure on singletons, since µ(x) = ρ(x) = infκ∈K κ(x), hence
any set-function higher than µ on singletons would not be a lower envelope of K . The
fact that C K ( f ) ≤ Cκ( f ) for any κ ∈K then simply follows from Proposition 1. If
K reduces to a single kernel κ , then we find back the classical filtering result. Note
that C K ( f ) is equivalent to filter f , that is to compute Cκ , with the specific kernel
κ(x(i)) = µ(A(i))− µ(A(i+1)). To prove that C K is a tight lower bound, it remains to
show that such a kernel is within K .

To show that the bound obtained by Equation (6) is actually obtained by an additive
measure dominated by µ

K
, we will first show that it still satisfies a convexity property

4 The lower envelope of a set of probability measures.
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Proposition 2. Given a set K of kernels, the measure µ
K

is 2-monotone and convex,
as for every pair A,B⊆X we have

µ
K
(A∪B)+µ

K
(A∩B)≥ µ

K
(A)+µ

K
(B)

Proof. We will mainly adapt the proof from [1, Proposition 5] to the case of non-
positive kernels and signed measures, as its mechanism still works in this case.

A key element will be to show that for any two subsets C,D with C∩D = /0, there
exists a single additive measure µκ with κ ∈K such that

µ
K
(C) = µκ(C) and µ

K
(C∪D) = µκ(C∪D), (8)

as if we then take C = A∩B and D = (A∪B)\ (A∩B) and choose κ so that it coincides
on µ

K
for events C,D, we do have

µ
K
(A∩B)+µ

K
(A∪B) = µκ(A∩B)+µκ(A∪B)

= µκ(A)+µκ(B)

≥ µ
K
(A)+µ

K
(B).

By Equation (5), we know that

µ
K
(A) = max{∑

x∈A
ρ(x),1−∑

x 6∈A
ρ(x)}

which means that for any event A, we have two possibilities (the two terms of the max).
This means four possibilities when considering C and C∪D together. Here, we will
only show that Equation (8) is true for one of those case, as the proofs for the other
cases follow similar reasoning.

So let us consider the case where

µ
K
(C) = ∑

x∈C
ρ(x)≥ 1−∑

x 6∈C
ρ(x),

µ
K
(C∪D) = 1− ∑

x 6∈C∪D
ρ(x)≥ ∑

x∈C∪D
ρ(x).

Let us now consider the κ distribution such that κ(x) = ρ(x) if x ∈ C, κ(x) = ρ(x) if
x ∈ (C∪D)c, that fits the requirements of Equation (8) and so far satisfy the constraints
on K . To get an additive kernel whose weights sum up to one, we must still assign
λ = 1−∑x∈C ρ(x)−∑x∈(C∪D)c ρ(x) mass over the singletons composing D. One can
see that ∑x∈D ρ(x) ≤ λ ≤ ∑x∈D ρ(x): for instance, that ∑x∈D ρ(x) ≤ λ immediately
follows from the fact that in this sub-case 1−∑x 6∈C∪D ρ(x)≥ ∑x∈C∪D ρ(x). This means
that one can choose values κ(x) ∈ [ρ(x),ρ(x)] for each x ∈D such that ∑x∈D κ(x) = λ .
So in this case we can build an additive κ ∈K with ∑κ(x) = 1.

That a single additive κ ∈K reaching the bounds µ
K
(C) and µ

K
(C∪D) can be

built in other sub-cases can be done similarly (we refer to [1, Proposition 5], as the
proofs are analogous).
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Hence C K is a signed Choquet integral with respect to the convex capacity µ
K

.
We have µ

K
( /0) = 0, so according to [10, Theorem 3], C K is the minimum of the inte-

grals or expectations taken with respect to the additive measures dominating µ
K

, i.e.,
C K ( f ) = min{Cµ |µ ∈ core(µ

K
}, where the core of a capacity is the set of additive

set function that lie above the capacity everywhere. This allows us to state the following
property

Proposition 3. C µ
K
( f ) = min{Cµ |µ ∈ core(µ

K
)}.

We have therefore shown that, to approximate the result of filtering with any set of
kernels (bounded and with no gain), it is still possible to use tools issued from imprecise
probabilistic literature. However, it is even clearer in this case that such tools should not
be interpreted straightforwardly as uncertainty models (as set-functions are not mono-
tone, a property satisfied by standard fuzzy measures and coherent lower probabilities),
but as convenient and efficient tools to perform robust filtering.

Remark 1. An upper bound C K ( f ) can be obtained by using the conjugate capacity
µK (A) = 1− µ

K
(Ac) in Equation (6). As µK is a concave capacity, we also have

C K ( f ) = max{Cµ |µ ∈ anticore(µK )}, where the anticore of a capacity is the set of
additive set function that lie below the capacity everywhere. Note that µ ∈ core(µ

K
)

is equivalent to µ ∈ anticore(µK ).

Example 2. Consider the imprecise kernel ρ whose values on X = {x1, . . . ,x5} are
given in Table 1. For such an imprecise kernel, we have for instance µ

K
({x1}) =

x1 x2 x3 x4 x5
ρ −0.1 0.3 0.9 0.3 −0.1
ρ −0.2 0.2 0.8 0.2 −0.2

Table 1. Imprecise kernel example

max(−0.2,1−(1.4)) =−0.2 and µ
K
({x1,x5}) =max(−0.4,1−(1.5)) =−0.4, show-

ing that the defined measure is not monotonic with inclusion.

Finally, it should be noted that applying Equation (6) does not require to evaluate
our lower measure on every possible events, but only in a linear number of them (once
function values have been ordered). Moreover, evaluating the value of this lower mea-
sure on any interval is quite straightforward given Equation (5). So, even though the
measure is non-additive (and not necessarily monotonic), evaluating the filtered values
can be done quite efficiently.

4 Illustration of signed filtering on a real case

We now illustrate the use of our method on a real case scenario involving the filtering
of human electrocardiogram (ECG) signals, using data initially collected to detect heart
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conditions under different settings [7]. ECG signals contain many types of noises - e.g.
baseline wander, power-line interference, electromyographic (EMG) noise, electrode
motion artifact noise, etc. Baseline wander is a low-frequency noise of around 0.5 to
0.6 Hz that is usually removed during the recording by a high-pass filtering of cut-off
frequency 0.5 to 0.6 Hz. EMG noise, which is a high frequency noise of above 100 Hz,
may be removed by a digital low-pass filter with an appropriate cut-off frequency. In
[7] they propose to use a cut-off frequency of 45 Hz to preprocess the ECG signals. The
noisy ECG signal to be filtered is presented in Figure 2.
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Fig. 2. The ECG signal to be low-pass filtered.

To prevent phase distortion in the bandpass, a Butterworth kernel should preferably
be chosen. Moreover, since the signal has not to be processed on line, a symmetric
Butterworth filter can be used, that is the combination of a causal and an anti-causal
Butterworth kernel. Using such an even kernel prevents from phase delay.

In this experiment, we suppose that the 45 Hz cutoff frequency proposed in [7] is ap-
propriate while the suitable order of the kernel is imprecisely known. Figure 3 presents
the superposition of 13 kernels that are the impulse responses of the 13 symmetric low-
pass Butterworth kernels of orders 1 to 13. Figure 3.a shows the superimposed kernels,
that constitute the set N of kernels we have to approximate.

Applying our approximation to N provides the upper (ρ) and lower (ρ) bounds
of the imprecise kernel that are pictured in Figure 3.c, with the lower in red, the upper
in blue. These bounds are simply obtained by computing ρ = minn=1...13 ηn and ρ =
maxn=1...13 ηn where ηn is the impulse response of the lowpass symmetric Butterworth
kernel of order n with cutoff frequency equal to 45 Hz.

To have a comparison point, we will also apply to the same signal the maxitive ap-
proach proposed in [9], where a signed kernel is approximated by a couple of extended
possibility distributions (π−,π+). This couple of functions is computed in this way:
π+ = maxn=1...13 π+

n , where π+
n is the most specific maxitive kernel that dominates

η+
n = max(0,ηn) and π− = maxn=1...13 π−n , where π−n is the most specific maxitive ker-
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Fig. 3.a: 13 superimposed symmetric Butterworth kernel impulse responses.
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Fig. 3.b: maxitive kernel.
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Fig. 3.c: lower (red) and upper (blue)
bounds of our imprecise kernel

Imprecise kernelMaxitive kernel

Fig. 3. Original kernel family and corresponding imprecise models.
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nel that dominates η−n = max(0,−ηn) (see [9] Equation (4)). Figure 3.b plots π+ (in
blue) and −π− (in red). One can readily notice that, if their shape are similar, their
boundary values are quite different (the imprecise maxitive kernel varying between -0.5
and 1.5, and our imprecise kernel between -0.01 and 0.07).

In Figures 5 and 4, we have plotted the ECG signal of Figure 2 filtered by the 13
kernels of Figure 3.a, as well as the imprecise signal obtained by using the most specific
signed maxitive kernel defined by the couple of functions (π−,π+), and the imprecise
signal obtained by using the imprecise kernel plotted in Figure 3.c, respectively. The
upper bounds of the imprecise filtered signals are plotted in blue while their lower
bounds is plotted in red.
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Fig. 4. The ECG signal being low-pass filtered by the 13 classical symmetric Butterworth (in
cyan) and by the imprecise kernel (in red - lower and blue - upper).

It seems obvious, by looking at Figure 4, that the imprecise signal obtained by
this new approach reaches our pursued goal, i.e. the obtained imprecise signal con-
tains all the signals that would have been obtained by using the conventional approach.
Moreover, the bounds are reasonably tight, which means that the core of the impre-
cise kernel is specific enough as an approximation. Indeed, non-parametric imprecise
representation of kernels always leads to include unwanted kernels, and may lead to
over-conservative bounds.

This is even more patent if we compare it to the signal bounds obtained with the
maxitive approach, as this latter one leads to a less specific interval-valued signal. For
instance, the values spanned by the interval-valued signal in our approach span from
-500 to 200, and -800 to 500 for the maxitive approach. Another possible advantage of
our approach is that the Krœnecker impulse is not necessarily included in the described
set of kernels, while it is systematically included in a maxitive kernel, meaning that in
this latter case the interval-valued signal always include the noisy original signal itself.
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Fig. 5. The ECG signal being low-pass filtered by the 13 classical symmetric Butterworth (in
cyan) and by the signed maxitive kernel (in red - lower and blue - upper).

5 Discussion and conclusion

In this paper, we have explored to which extent some of the tools usually used to model
and reason with sets of probabilities can still be used when considering sets of additive
measures that can be negative and fail the monotonicity condition. Such a situation
happens, for instance, when filtering a signal.

We have proved that approximating such sets with interval-valued bounds on sin-
gletons by extending probability intervals still provides tools that allow on the one hand
to use efficient algorithms, and on the other hand to get tight bounds (in the sense that
obtained bounds are reached by specific additive measures). We have provided some
preliminary experiments showing how our results could be used in filtering problems.

Future works could include the investigation of other imprecise probabilistic models
that also offer computational advantages in the case of positive measures, such as using
lower and upper bounds over sequences of nested events [3, 8]. Complementarily, we
could investigate whether computations with some parametric sets of signed kernels
can be achieved exactly and efficiently without resorting to an approximation, as can be
sometimes done for positive kernels [2].
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