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We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate per-
ovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar
theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic
rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called
Cosserat couple modulus lc that characterizes the micropolar medium. We investigate both wave prop-
agation and dispersion. The wave propagation simulations in both potassium nitrate ðKNO3Þ and bridg-
manite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of
motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field.
The dispersion analysis predicts that the optic mode only appears above a cutoff frequency,xr , which has
been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal.
The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us
to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus
lc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions
observed in laboratory experiments that were before neglected and that can now be used to constrain
the micropolar elastic constants of Earth’s mantle like material. This pioneer work aims at encouraging
the use of micropolar theory in future works on deep Earth’s mantle material by providing Cosserat cou-
ple modulus that were not available before.
1. Introduction

In order to describe various phenomena related to the micro-
scale structures, which cannot be accounted for by classical contin-
uum mechanics, various generalized theories for elastic continua
have been developed, namely micro-continuum field theories
(Eringen, 1999). Micro-continuum field theories is a family of the-
ories with enriched kinematics, where each different particle
inside the elastic medium has intrinsic degrees of freedom,
(Mindlin, 1964). They are mainly divided into three different cate-
gories: micromorphic, microstretch and micropolar media.

The micropolar medium, also called the Cosserat’s medium
(Cosserat et al., 1909), is the simplest case: it describes materials
with additional rotational degrees of freedom at each point
(Eringen and Kafadar, 1976; Nowacki, 1986; Jeong and Neff,
2010; Neff and Jeong, 2009). In other words, each particle of the
elastic medium can independently rotate. This rotational degree
of freedom is called spin or micro-rotation and will be hereafter
denoted #. The theory assumes that this spin field is different from
the continuum rotation.

The theory of microstretch media describes elastic materials
with rotational and stretching degrees of freedom (Eringen,
1999). In other words, each particle inside the elastic material
can independently rotate and possess stretching motions. The
main inconvenience with the microstretch theory is the large
amount of elastic constants that have to be determined in order
to be successfully applied. Indeed, it requires detailed and well cal-
ibrated laboratory experiments which until today prevented any
realistic application of the microstretch theory.

The theory of micromorphic media was formulated with the
purpose to describe features that the Cosserat’s (micropolar) and
microstretch theories cannot describe (Eringen, 1999). In particu-
lar, it includes any kind of micro-distortion in the elastic material.
Despite its generality, like microstretch theory, it raises the prob-
lem of the big amount of material parameters that are needed for
any application of this theory.
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As a consequence, we will focus in this study on the theory of
micropolar media. According to Mindlin (1964) there are three
main areas where the application of the micropolar theory is
justified:

� Zones with large stress gradients, for instance in the vicinity of
holes and/or cracks.

� Waves with high frequency (ultrasonic waves).
� Granular materials or bodies with large molecules, such as
polymers.

The theory of micropolar media has been applied successfully.
For instance it has been used to model the dielectric relaxation
process observed in many types of perovskites (e.g. Randall et al.,
1990; Krupanidhi, 2003; Peláiz-Barranco et al., 2005; Heywang
et al., 2008; Borkar et al., 2014; Smiga and Ukrainian, 2012).
Indeed, the polarization mechanism in the material originates from
micropolar clusters, their dynamic nature and, from the induced
ferroelectric transition in the non-polar micro-regions. More gen-
erally, micro-continuum field theories have been applied for mod-
elling microscopic processes (Madeo et al., 2016a,b,c), as well as
macroscopic processes (Teisseyre, 1973; Teisseyre et al., 2006;
Nagahama and Teisseyre, 2000a,b; Teisseyre, 2008a,b; Teisseyre,
2011; Twiss, 2009; Twiss et al., 1993). The term micro in the name
of the theory refers to a reference scale: for instance, it can refer to
the rotation of kilometre size blocks in the Earth’s crust, which,
compared to the total size of the Earth’s crust, behaves as a micro-
scopic motion (Twiss, 2009; Twiss et al., 1993).

The presence of micropolar effects in crystalline solids have also
been observed through several laboratory experiments like X-ray
diffraction, neutron diffraction, specific heat measurements and
infra-red and Raman spectroscopy (Hemley et al., 1987; Karki
et al., 2000; Durben and Wolf, 1992; Chopelas, 1996; Williams
et al., 1987; Shim et al., 2007). During these experiments some
micropolar elastic constants for potassium nitrate ðKNO3Þ, have
been determined and compared to lattice models (Pouget et al.,
1986a).

Like silicate perovskite minerals found in the Earth’s mantle,
potassium nitrate, at room temperature, has an orthorhombic crys-
tal structure. In fact, the orthorhombic crystal structure discussed
for KNO3 is representative for a large class of crystalline solids like
BaTiO3;NaNO3, all perovskite crystals, aromatic crystals and
hydrogen-bonded crystals (Eringen, 1999). The corresponding
micropolar moduli for these crystals can be calculated by means
of the appropriate lattice parameters, and/or from frequencies of
various modes found in the laboratory.

As mentioned before, one of the main drawbacks of using
micro-continuum field theories for the description of the elastic
wave propagation is the lack of knowledge of the micropolar elas-
tic constants and their physical interpretations. This problem has
been addressed in several studies (Eringen, 1999; Pouget et al.,
1986a; Madeo et al., 2016a), however, no general agreement is
found in the literature.

The use of micro-continuum field theories for the description of
realistic physical problems is wide and there are still many open
questions. In this study we focus on the description of the elastic
wave propagation using the micropolar model at ultrasonic fre-
quencies so that we take into account the local information of
the crystallographic medium. We also propose a method to com-
pute the Cosserat couple modulus for deep Earth’s mantle-like
material using experimental results. This is to our knowledge the
first time that such a catalogue of Cosserat couple moduli is pro-
vided for application to deep mantle materials.

In the following, we first give a brief introduction to the theory
of micropolar media, explaining strain and stress concepts. Second,
we present our simulations to model the elastic wave propagation
using the micropolar theory in potassium nitrate ðKNO3Þ and
bridgmanite crystals. Then, we study the dispersion behaviour pre-
dicted by the micropolar theory and use the observation of this
behaviour in experiments to propose a Cosserat couple modulus
values for bridgmanite. Finally, we draw conclusions related to
the applicability of the micropolar media for the solution of the
elastic wave propagation problem.
2. Micropolar theory

As explained before, the distinguishing feature of micropolar
theory is the introduction of a material particle rotation that is
independent of the classical continuum rotation. As a consequence,
in the case of the linear Cosserat model, additional terms appear in
the strain ðeijÞ and stress ðrijÞ tensors as shown in the following
expressions

ð2:1Þ
where u is the displacement vector, # is spin or micro-rotation vec-
tor, �ijk the Levi–Civita symbol and d is the Dirac delta function. The
parameters k and l are the classical Lamé moduli. It is noteworthy
that a new elastic constant, lc , is introduced. It is called the Cosserat
couple modulus and it couples the macro and the micro medium.
The main difference between the linear elastic and the micropolar
models is the presence of the antisymmetric part in the strain ten-
sor eij (see Eq. (2.1)), which is absent from in the linear elastic
model. If lc ¼ 0 we recover the conventional expression for the
symmetric stress tensor. The antisymmetric part is given by the dif-
ference between the macro rotation-12 curlu-and spin #. It means
that the micropolar model allows the macro rotation to be different
from the spin #; if they are the same, we simply recover the conven-
tional linear elastic model. Finally, we can mention that the microp-
olar theory only influences shear waves (Eringen, 1999), which
means that the equation of motion for P waves in a micropolar
media is the same as for linear elastic media. For a more detailed
introduction to the theory of micropolar media the reader should
refer to Eringen (1999).

In this study we consider the 1D horizontally polarized S wave
(SH) in a micropolar medium governed by the following coupled
PDE’s

@2u2

@t2
¼ lþ lc

q
@2u2

@x21
� 2lc

q
@#3

@x1
;

@2#3

@t2
¼ lL2c

g
@2#3

@x21
þ 2lc

g
@u2

@x1
� 4lc

g
#3: ð2:2Þ

where x1 represents the x direction, u2 is the displacement field in
the y direction and #3 is the spin field in the z direction. The term
Lc is the characteristic length of the problem and g the micro-
inertia density. The elastic term lL2c is a simplification of the origi-
nal elastic constants required in the micropolar model and it is
equivalent to the hypothesis that r � # and r� # do not cause
any stress in the medium (Neff and Jeong, 2009; Neff et al.,
2010a,b). There exist continua that do not satisfy this restriction
such as for instance electromagnetic media, however, it is useful
for our purposes.



 3
A more simplified model is called the reduced dynamic Cosserat
model (Grekova et al., 2009), or internal variable model (Forest and
Sievert, 2003), obtained when considering the term lLc ¼ 0 in the
equations of motion (Eq. 2.2). It is used when no assumption of the
characteristic length Lc of the problem is made and it shows differ-
ent wave propagation properties as we will show in the next
sections.

Eq. (2.2) reveals the existence of a cutoff frequency xr , which
corresponds to the frequency at which independent spin motions
start to appear. It is defined as follows

xr ¼
ffiffiffiffiffiffiffiffi
4lc

g

s
: ð2:3Þ

The cutoff frequency xr can be interpreted also as an eigen-
frequency of a rotational oscillator with the inertia density g, as
one of the point-body of the medium, and elastic constant 4lc .
Note that if the critical frequency xr and micro-inertia density g
are known, it is then possible to compute from Eq. (2.3) the Cos-
serat couple modulus lc.

The system of Eqs. (2.2) can be solved numerically so that we
can analyse the effect of micorpolar motions on the wave propaga-
tion. The only requirement is to know the Cosserat couple modu-
lus, lc , and to consider a characteristic length of the problem, Lc .
If not provided in the literature, the Cosserat couple modulus lc

can be computed using Eq. (2.3). It, however, still requires a value
of the micro-inertia density g that can be approximated by the fol-
lowing expression

g � qL2c ; ð2:4Þ
(for further details see (Eringen, 1999; Pouget et al., 1986a). We are
therefore able to perform simulations of wave propagation in a
micropolar medium.
3. Micropolar simulations

3.1. In potassium nitrate KNO3 crystals

Before considering the elastic wave propagation phenomena in
perovskite-like structures including micro-rotational fields, we
first focus on potassium nitrate KNO3 crystals for which the
micropolar elastic constants have been measured (Eringen,
1999). However, they are given for an anisotropic orthorhombic
crystal structure that cannot be used directly in Eq. (2.2) since
we are using isotropic equations. In order to overcome this prob-
lem, we thus compute the equivalent 1-D isotropic constants
which provides values of the shear modulus l and Cosserat mod-
ulus lc , and allows us to simulate the wave propagation in a
micropolar medium and to make comparisons between the
micropolar and linear elastic models. Details about how to find
the isotropic equivalent medium are given in Appendix A, and
the results are given in Table 1 (first row).

We then simulate, using the Finite-Difference method (FDM),
the elastic wave propagation through a perfect alignment of potas-
sium nitrate KNO3 crystals. For details regarding the numerical dis-
cretization using the FDM see Appendix B. The parameters used to
run the simulation are presented in Table 2. In this simulation, we
consider a Ricker source time function located in the displacement
field only (see Appendix B).

Fig. 1(a–c) shows the obtained displacement (a), macroscopic
rotation-12 curlu-(b) and microscopic rotation (c). Also displayed
for comparison, are the results obtained with the conventional lin-
ear elastic theory (red curves). We can observe that the amplitude
of the seismograms (Fig. 1) are similar but the micropolar model
produces faster waves. The measured velocity contrast between
the velocity predicted by the micropolar theory and the conven-
tional linear elastic theory is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rlc ;l

p
where rlc ;l ¼ lc

l

is called the Cosserat ratio and it is equal to 0:0035 in the case of
potassium nitrate (see Table 1). We can also observe that the
micropolar model predicts a spin field # which is smaller in ampli-
tude and has a different waveform compared to the macro-
rotational field-12 curlu-.
3.2. In bridgmanite ðMgSiO3Þ crystals

In this section we want to consider a more realistic case and
therefore test the effect of micropolar motions on wave propaga-
tion in deep Earth’s mantle-like material. Bridgmanite may form
up to 93% of the Earth’s lower mantle (Murakami et al., 2012).
With the micropolar elastic constants given by Eringen (1999),
measured at ambient conditions, and according to PREM model
(Dziewonski and Anderson, 1981), one could simulate micropolar
elastic wave propagation through a bridgmanite-like material close
to the surface of the Earth. However, for a realistic micropolar sim-
ulation of elastic wave propagation within the Earth’s lower man-
tle pressure and temperature conditions (between 670 and
2700 km depth), all the elastic constants have to be computed at
the appropriate depth. From he study by Oganov and Ono (2004),
we obtain values of the an equivalent isotropic shear modulus
l ¼ 310:9 GPa, shear wave velocity v s ¼ 7636 m=s and density
q ¼ 5331:98 kg=m3, at pressures of 120 GPa (close to the Earth’s
core-mantle boundary) for bridgmanite.

In order to perform the numerical simulation we compute the
Cosserat couple modulus lc . To do this we can apply Eq. (2.3) since
this cutoff frequency has been measured in laboratory experiments
(Hemley et al., 1987; Karki et al., 2000; Durben and Wolf, 1992;
Chopelas, 1996; Williams et al., 1987; Shim et al., 2007). Elastic
wave propagation in crystal structures is described by two types
of modes: the acoustic one and the optic one. In the acoustic type
(longitudinal acoustic LA and/or transverse acoustic TA), all the
atoms in the unit cell move in phase, this means that the atoms
move coherently in the lattice, resulting in the deformation of
the lattice (see Fig. 3). In the optic type (longitudinal optic LO
and/or transverse optic TO), the atoms move out of phase (see
Fig. 3). In micropolar theory, we relate the frequency at which
the optic modes are observed in laboratory experiments to the
cut-off frequency that appears in the micropolar wave equations
(Eq. 2.2). For instance, in several Raman spectroscopy experiments
done on bridgmanite, micropolar and microstretch behaviour of
the SiO6 octahedron have been observed (Hemley et al., 1987;
Karki et al., 2000; Durben and Wolf, 1992; Chopelas, 1996;
Williams et al., 1987; Shim et al., 2007). In particular, (Williams
et al., 1987; Shim et al., 2007) have observed modes at 251 cm�1

and 280 cm�1 at ambient conditions, which are related to symmet-
ric stretching vibration of the SiO6 octahedral (microstretch beha-
viour), and octahedral rotation and deformation coupled with
displacement of cations in the dodecahedral sites (micropolar
behaviour), respectively. Williams et al. (1987) and Shim et al.
(2007). At high pressures of 150 GPa, modes related to SiO6 octahe-
dral rocking motion (micropolar behaviour) have also been
observed at 234 cm�1 (Karki et al., 2000). For our purposes, we thus
consider the micro-rotational mode at 234 cm�1, which can be
written in terms of frequency

xr ½Hz� ¼ clightxr ½cm�1� ¼ 7:015� 1012 Hz; ð3:5Þ

where clight is the speed of light. This value is the cutoff frequency of
micro-rotational motionsxr in bridgmanite (Karki et al., 2000). One
can note that the micro-rotational motions reported by Karki et al.
(2000) were observed at a higher pressure (150 GPa) compared to



Table 1
Micropolar elastic constants computed for potassium nitrate ðKNO3Þ at surface conditions and bridgmanite at pressures of the Earth’s lowermost mantle. Two sets of elastic values
are given for bridgmanite because we have tried two different methods to compute the micro-inertia density g.

Compound l ½GPa� lc ½GPa� rlc ;l q ½kg=m3� g ½kg=m� Lc ½Å�
KNO3 7.175 0.025 0.00349 340.0 2:5� 10�18 0

bridgmanite (br1) 310.9 1.770 0.00569 5332 1:439� 10�16 1.643

bridgmanite (br2) 310.9 0.304 0.00098 5332 2:474� 10�17 1.695

Table 2
Finite-Difference simulation parameters. The dimensions of the unit crystal a; b; c for potassium nitrate ðKNO3Þ are documented in Pouget et al. (1986b), and for bridgmanite in
Oganov and Ono (2004). The grid spacing is denoted by Dx and the time step by Dt. The exponents m and ce stand respectively for micropolar and conventional elastic theory. The
term L refers to the total distance travelled. The term Pts refers to the (approximate) number of points per wavelength. The dominant frequency of the simulation is x and the
cutoff frequency xr .

Compound a ½Å� b ½Å� c ½Å� Dx ½Å� ðDtÞm ½s� ðDtÞce ½s� L ½Å� x ½Hz� xr ½Hz� Pts

KNO3 7 3.75 3.24 3:75� 10�4 8:149� 10�18 8:163� 10�18 7.5 1:23� 1015 6:325� 1012 100

Bridgmanite 2.474 8.121 6.138 1:62� 10�3 2:121� 10�17 2:127� 10�17 22.7 2:35� 1015 2:906� 1012 20

Fig. 1. Result of the simulations. Left column (a–c): seismogram comparisons for wave propagation through 7.5 Å of potassium nitrate KNO3 material treated isotropically at
1:227� 1015 Hz. Right column (d–f): seismogram comparisons for elastic wave propagation through 2.842 Å of bridgmanite material treated isotropically at 5:2� 1015 Hz.
From the top to the bottom in both columns: (a,d) displacement seismograms comparison between the conventional linear elastic (red curve) and the micropolar models
(black curve), (b, e) macro-rotation field-12 curlu-predicted by the conventional linear elastic theory and (c–f) spin (micro-rotation) field predicted by the micropolar model.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4 . 



Fig. 2. (a) The structure of bridgmanite silicate perovskite ðMg; FeÞSiO3. Red circles represent oxygen atoms, orange circles magnesium or iron atoms and green circles silicon
atoms. The silicon atoms are located at the centre of the blue SiO6 octahedrons. The distance between the silicon and oxygen atoms depends on their position in the
octahedrons and (Oganov and Ono, 2004) reported that are Si� O1 ¼ 1:643ð�2Þ Å and Si� O2 ¼ 1:695ð�4Þ Å. (b) The structure of the bridgmanite unit cell. The octahedron
SiO6 at the centre of four magnesium atoms. Left figure made by Sebastian Merkel. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Typical motions for two atoms in a unit cell, where ‘‘L” stands for
longitudinal, ‘‘T” for transverse, ‘‘A” for acoustic and ‘‘O” for optic (after Chen
et al., 2004).
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the shear modulus l found in Oganov and Ono (2004) (120 GPa).
However, we show below that the pressure on the Cosserat couple
modulus does not significantly affect our results.

In order to compute the Cosserat couple modulus from Eq. (2.2),
we still have to estimate the micro-inertia density g. The determi-
nation of the micro-inertia density g is a crucial step of the proce-
dure for calculating the Cosserat modulus lc. A physical definition
for g is given in Askar (1972), Pouget et al. (1986a), Pouget et al.
(1986b), Eringen (1999), Nowacki (1986), as follows

g ¼ j
V
; ð3:6Þ

where j is the conventional micro-inertia (moment of inertia) and V
is the considered volume.

Here we are interested in the micro-motions of the unit MgSiO3

cell. In order to compute the moment of micro-inertia j related to
the rotation of the molecular group SiO6, we assume that the rota-
tional motion occurs with respect to the silicon and two oxygen
atoms. The moment of micro-inertia j can then be found as follows

j ¼ 4MO

NA
� ðSi� O2Þ2 ¼ 3:051� 10�45 kg m2; ð3:7Þ

where NA is the Avogadro’s constant, Si-O2 the distance of the oxy-
gen atoms to the silicon atom and MO the molecular weight of the
oxygen, 15:99 g mol�1. The micro-inertia density g is then found by

g ¼ j
V
¼ 2:474� 10�17 kg m�1;

with V ¼ a� b� c ¼ 1:23310�28 m3; ð3:8Þ
the volume of the unit cell.
These calculations finally yield a Cosserat couple modulus of
0.304 GPa that we will use in our simulations. One should note that
we could also have used Eq. (2.4) to compute the micro-inertia
density g. This would imply to assume some characteristic length
Lc. A reasonable characteristic length could be the distance
between the silicon and oxygen atoms Si� O1 ¼ 1:643 Å (Oganov
and Ono, 2004), which gives g ¼ 1:439� 10�16 kg m�1 and a Cos-
serat couple modulus of 1.77 GPa. The results for both calculations
are summarized in Table 1.

Table 2 gives the simulation parameters. We again consider a
Ricker source time function located in the displacement field only
(see Appendix B). Fig. 1(d–f) shows the obtained results. We
observe that there exists a visible time lag (less than 1 s) between
both time series obtained with the linear micropolar and conven-
tional linear elastic theories (Fig. 1-d). Moreover, as in the previous
simulation, the spin field # shows smaller amplitude and different
waveform compared to the rotational field predicted by the con-
ventional linear elastic theory (Fig. 1-e-f). We find from our numer-
ical experiments that the conventional linear elastic and
micropolar models no longer agree in their predictions of linear
elastic wave propagation.
4. Dispersion analysis

In order to perform a dispersion analysis in the case of microp-
olar theory, we assume plane wave solutions for the equations of
motion of the form

ðuðx; tÞ; #ðx; tÞÞ ¼ ðc1; c2Þeiðkx�xtÞ; ð4:9Þ

where c ¼ ðc1; c2Þ are the unknown amplitudes of the considered
waves. Substituting Eq. (4.9) in the micropolar equations of motion
Eq. (2.2), we obtain the following expression

A � c ¼ 0 with A ¼ qx2 � lþ lc

� �
k2� ik2lc

ik2lc gx2 � lL2c k
2 � 4lc

" #
:

ð4:10Þ

In order to obtain non-trivial solutions ðc – 0Þ of the algebraic
system in Eq. (4.10), one must impose that

det A ¼ 0: ð4:11Þ



1 Localization phenomena or more generally strain localization refers to a narrow
zone of intense shear strain developed during the deformation process

6

Eq. (4.11) is called the dispersion relation xðkÞ for a micropolar
model. From Eq. (4.11) we obtain explicit expressions for the fre-
quency x and phase velocity c ¼ x

k given by the following
expressions

x ¼ �


lL2c
g þ lþlc

q

� �
k2 þx2

r

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lL2c
g þ lþlc

q

� �
k2 þx2

r

h i2
� 4k2 lþlc

q

� �
lL2c
g

� �
k2 þx2

r
l
q

h ir
2

vuuut
;

ð4:12Þ

c ¼ x
k

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc
q þ lL2c

g þ 1� x2
r

x2

� �
l
q

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð4:13Þ
We find that there are four possible phase velocities

ðc1;�c1; c2;�c2Þ which correspond to four wavenumbers
ðk1;�k1; k2;�k2Þ, which means that there are four waves that are
solution of the micropolar wave equation, two in each directions.
Therefore, the solutions in displacement and spin ðuðx; tÞ; #ðx; tÞÞ
are of the form

uðx; tÞ ¼A�eiðxt�k1xÞ þ Aþeiðxtþk1xÞ þ B�eiðxt�k2xÞ þ Bþeiðxtþk2xÞ;

¼A�eik1ðc1t�xÞ þ Aþeik1ðc1tþxÞ þ B�eik2ðc2t�xÞ þ Bþeik2ðc2tþxÞ:

#ðx; tÞ ¼C�eiðxt�k1xÞ þ Cþeiðxtþk1xÞ þ D�eiðxt�k2xÞ þ Dþeiðxtþk2xÞ;

¼C�eik1ðc1t�xÞ þ Cþeik1ðc1tþxÞ þ D�eik2ðc2t�xÞ þ Dþeik2ðc2tþxÞ: ð4:14Þ

where Aþ;A�;Bþ;B�; Cþ; C�;Dþ;D� are the waveform amplitudes
that need to be determined from the boundary conditions of the
problem. The phase velocities c1; c2 are frequency dependent, unlike
in the linear elastic theory. It is interesting to consider the case
Lc ¼ 0, called reduced Cosserat model (Kulesh et al., 2009;
Grekova et al., 2009; Grekova, 2012a,b, 2016), which gives from
(4.13)

c2 ¼ c2T
1�x2=x2

1

1�x2=x2
r

with cT ¼
ffiffiffiffi
l
q

r
; x1 ¼ xrffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ lc
l

q ;

ð4:15Þ
This equation tells us that the phase velocity is zero forx ¼ x1,

meaning there is no wave propagation, and that the phase velocity
goes to infinity forx ¼ xr . These two frequencies actually define a
frequency gap between x1 and xr where there is no wave propa-
gation. Moreover, it is noteworthy that for Lc ¼ 0 and for x	 xr ,
as used in our simulations in potassium nitrate, we find only two
phase velocities

c ¼ x
k
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ lc

q

r
: ð4:16Þ

This phase velocity tells us that, for this particular case, the dif-
ference between the linear micropolar and conventional linear
elastic model is given by the micropolar couple modulus lc.

In Fig. 4 we display the obtained micropolar phase velocity as a
function of the frequency x for potassium nitrate (panel a) and
bridgmanite (panel b). As a matter of simplicity we only represent
the positive phase velocities (those referred as c1 and c2). Note that
in the case of potassium nitrate the characteristic length is
assumed to be zero, which gives a completely different behaviour
compared to when Lc – 0. We can observe on panel (a) the fre-
quency band gap predicted for Lc ¼ 0 which does not appear for
bridgmanite. We observe, as expected from Eq. (4.13), that there
exists an indetermination at x ¼ xr , meaning that there is no
micropolar wave propagation at x ¼ xr . The acoustic mode shows
only real phase velocity values for the entire frequency range. Its
behaviour is almost linear with frequency unlike the optic mode
# which varies significantly. This means that the acoustic mode
is almost frequency independent and the optic mode shows only
real velocity values for x > xr . Imaginary values of the phase
velocities are not related to dissipation effects but to localization
phenomena1 (Grekova et al. (2009)). Also note that even if one of
the phase speeds ðc1; c2Þ is zero, it does not imply that there is no
wave propagation since both speeds are coupled (see Eq. 4.14). We
now look at the same equations but plotting the frequency x as a
function of wavenumber k, as presented in Fig. 5. It illustrates
micropolar and conventional dispersion curves obtained for potas-
sium nitrate and bridgmanite crystals. We observe that the acoustic
modes computed with the conventional and micropolar models are
the same. However, as observed in laboratory experiments, the
micro-rotational mode (optic mode) occurs at much higher frequen-
cies, evidencing the presence of a frequency band gap between the
acoustic u and optic # modes in the case of potassium nitrate
(Fig. 4 panel a) and which becomes only a frequency singularity in
the general case, as for bridgmanite (Fig. 4 panel b).

We thus show that unlike the conventional linear elastic wave
propagation, in the case of the shear micropolar wave propagation
(Eq. (2.2)) dispersion effects, frequency band gaps (Abreu et al.,
2016) and cutoff frequencies can be predicted. Both phenomena
have been observed in Raman spectroscopy experiments con-
ducted on MgSiO3 silicate perovskite (Durben and Wolf, 1992;
Hirai et al., 2011; Ghose et al., 1994). However, because the optic
modes are at much higher frequencies compared to the acoustic
modes, their existence has been often considered as a second-
gradient elastic effect. We show in this study that it is possible
to account for these effects by applying the micropolar
theory, and the measurement of the observed cutoff frequency
xr can provide constraints on the Cosserat couple modulus and
yield more insights into the micropolar elastic properties in real
materials.

We thus now propose to use the measured cut-off frequencies
for bridgmanite at various pressures and temperatures in order to
derive the Cosserat couple modulus for the same range of tem-
peratures and pressures which will enable us to apply micropolar
theory to deep Earth-like material. To do so, we use the critical
frequency xr values found in Bukowinski et al. (1996) and
Parlinski and Kawazoe (2000) to determine the behaviour of the
Cosserat couple modulus lc of bridgmanite as a function of tem-
perature and pressure. For the calculations of the Cosserat couple
modulus lc , we assume constant density of q ¼ 5331:98 kg/m3

and a characteristic length of Lc ¼ 1:643 Å. The Cosserat modulus
is computed applying Eq. (2.3) and the results are displayed in
Fig. 6. It appears that for a fixed temperature, the Cosserat couple
modulus lc increases with pressure (Fig. 6 left), and that for a
fixed pressure, the Cosserat couple modulus lc decreases with
temperature (Fig. 6 right). We actually expect this pressure–tem-
perature behaviour since at higher temperatures and lower pres-
sures the molecules vibrate more energetically, making the
material easier to deform and so leading to lower Cosserat couple
moduli. We can also observe that the difference in the values of
the Cosserat couple modulus for pressures between 120 GPa
and 150 GPa is small. This justifies the fact that in our simulations
we keep the values of Cosserat couple modulus at 150 GPa com-
pared to the value of the shear modulus. We finally provide a cat-
alogue in Table 3 of the values of the Cosserat couple modulus lc

shown in Fig. 6.



Fig. 4. Real and imaginary parts of the two phase velocities c1; c2 in (a) potassium nitrate and (b) bridgmanite.

Fig. 5. Dispersion curves predicted by the micropolar model for the elastic constants given in Table 1 for potassium nitrate (a), and bridgmanite (br2) (b). The frequency at
which the transverse optic modes occur is xr , different in both cases and given in Table 1.

Fig. 6. Cosserat couple modulus lc predicted for bridgmanite in the Pm3m structure at zero temperature as a function of pressure (left) and in the Pbnm structure at 50 GPa
as a function of temperature (right). The two points on the right graphic correspond to Cosserat values computed using the critical frequencies reported at 25 Gpa by Durben
and Wolf (1992) and at 65 GPa reported by Chopelas, 1996. The Cosserat couple modulus is found assuming g 
 qL2c and the critical frequency xr found in Parlinski and
Kawazoe (2000) (left) and Bukowinski et al. (1996) (right).
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Table 3
Values of the Cosserat couple modulus lc as a function of pressure at ambient
conditions (T = 0) and as a function of temperature at 50 GPa.

Pressure [GPa] at T¼ 0 lc ½GPa� Temperature [K] at 50 GPa lc ½GPa�
30.006 0.000 0.000 2.224
34.145 0.019 96.812 2.165
38.283 0.069 193.624 2.120
42.422 0.144 290.436 2.088
46.561 0.238 387.247 2.056
50.699 0.344 484.059 2.021
54.838 0.452 580.871 1.980
58.977 0.555 677.683 1.934
63.116 0.648 774.495 1.889
67.254 0.736 871.307 1.842
71.393 0.819 968.119 1.797
75.532 0.898 1064.931 1.754
79.670 0.973 1161.742 1.711
83.809 1.046 1258.554 1.663
87.948 1.118 1355.366 1.610
92.086 1.190 1452.178 1.554
96.225 1.260 1548.990 1.497
100.364 1.326 1645.802 1.440
104.503 1.391 1742.614 1.380
108.641 1.454 1839.426 1.313
112.780 1.516 1936.237 1.242
116.919 1.579 2033.049 1.177
121.057 1.644 2129.861 1.112
125.196 1.708 2226.673 1.032
129.335 1.773 2323.485 0.943
133.474 1.838 2420.297 0.846
137.612 1.902 2517.109 0.738
141.751 1.966 2613.920 0.604
145.890 2.029 2710.732 0.423
150.028 2.092 2807.544 0.000
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5. Discussions and concluding remarks

Until today the main applications of micropolar theory in seis-
mic studies have been related to the modelling the elastic response
of granular medium (Twiss et al., 1993; Schwartz and Johnson,
1984; Mouraille et al., 2006; Hiraiwa et al., 2016; Merkel and
Luding, 2017; Merkel et al., 2011) or to better describe brittle
deformation at crustal scale (Kissel and Laj, 2012; Luyendyk
et al., 1980; Wells and Heller, 1988). In particular, it has been
shown that it plays a key role in rupture processes at plate tecton-
ics scale (Twiss, 2009; Twiss et al., 1993; Gade and Raghukanth,
2016; Teisseyre et al., 2006). This comes from the incapability of
the linear elastic theory to provide a complete continuum descrip-
tion of distributed brittle deformation (Twiss et al., 1993). It is thus
believed that the correct finding and physical interpretation of
elastic constants in micro-continuum theories can help to better
understand plate tectonic processes, and should for instance be
taken into account for studying the initiation of plate tectonics
(Bercovici and Ricard, 2014; Bercovici and Ricard, 2012). However,
the detailed effects of micropolar media on seismic wave propaga-
tion at seismic periods, 
 1s, and large scales, greater than 100 km,
have not yet been reported; this is mainly due to the lack of
micropolar elastic constants of deep mantle materials necessary
to implement the micropolar theory.

We have focused on the description of the wave propagation
including micro rotational effects for the potassium nitrate KNO3

and perovskite crystal structures at ultrasonic frequencies. Using
micropolar elastic constants found in the literature for potassium
nitrate (Eringen, 1999) and computed for bridgmanite using mea-
surements of laboratory observations from Hemley et al. (1987),
Karki et al. (2000), Durben and Wolf (1992), Chopelas (1996),
Williams et al. (1987) and Shim et al. (2007), we have performed
numerical simulations using the Finite-Difference method and
compared the micropolar behaviour with respect to the conven-
tional linear elastic behaviour. For the high frequencies used here,
micropolar wave propagation predicts faster displacement waves
with respect to the linear elastic model and a reduction in ampli-
tude, similar to attenuation effects observed in the Earth (e.g.
Romanowicz and Mitchell, 2007). These marked differences
between linear elastic and micropolar theories should now be care-
fully explored when considering a larger body such as the Earth.

We show that micropolar theory offers the opportunity to relate
acoustic and optic modes with the cutoff frequency observed in
Raman spectroscopy experiments (Eringen, 1999). Utilizing data
obtained from various experiments that have observed the optic
modes in bridgmanite (Hemley et al., 1987; Karki et al., 2000;
Durben and Wolf, 1992; Chopelas, 1996; Williams et al., 1987;
Shim et al., 2007), we were able to compute Cosserat couple mod-
ulus lc for bridgmanite at various pressures and temperatures,
providing thus a catalogue of possible values that can be used in
future work to simulate micropolar motions in deep Earth’s
mantle-like materials and to test the influence of micro-
rotational motions on the seismic wavefield.

As shown here, the micropolar theory offers the opportunity of
describing the elastic dynamics of atoms in a crystal. The dynamic
characteristic of a crystal depends on the crystal’s structure and the
binding between the atoms. It is the atom’s dynamics and arrange-
ment that controls macroscopic effect on seismic wave propaga-
tion. For instance, as stated before, the dynamics of the SiO6

octahedral at very high frequencies can change the crystal’s struc-
ture. This lattice dynamics may induce phase transitions (Cowley,
1964). Further 3D numerical experiments are needed to study
whether the observed micropolar motions lead to permanent
changes in the crystal structure of bridgmanite that will be related
to changes in seismic wave speeds and attenuation effects and can
be observed and analysed.

Not only attenuation effects may be due to micropolar motions
(Romeo, 2015): it has be shown by Cordier et al. (2014) that using a
general description of deformation processes including rotational
defects can help to predict slip systems in olivine. Hence, the
micropolar theory in combination with calibrated laboratory stud-
ies, can thus help to better constrain the lattice dynamics and
deformation styles in the lower mantle.

It is possible to change scales from micro to macro-scale effects
usingmicropolarmedia through the characteristic length Lc param-
eter. For our purposes of wave propagation at the crystal scale, we
assumed a very small characteristic length scale, of the order of
atomic distances. However, if investigating the effect of micropolar
motions at meso- to macro-scale, one has to re-consider this char-
acteristic scale-length. For this one has to compute, using Eq. (2.3)
and Eq. (2.4), the obtained xr range for a range of characteristic
length Lc. Taking the values of Cosserat couple modulus and shear
modulus given Table 1, last row (br2), we obtain Fig. 7. Since linear
elasticity theory provides reasonable results for simulating wave
propagation andmatching waveforms, travel times and amplitudes
of seismic waves for teleseismic studies, we do not expect xr to be
in the seismic period band for teleseismicwaves of 1–100 s. Exclud-
ing these values yields an upper bound for the characteristic length
that should be smaller than 200 km for the lower mantle. Several
structures in the lower mantle are of the order of 200 km length,
however, the most likely effect would be at the grain size level.
Recently (Solomatov et al., 2008) propose that grain sizes in the
lower mantle are of the order of 1 mm to 1 m, which is well below
our upper bound. Heterogeneity, such as ultra-low velocity zones
(Thorne and Garnero, 2004), which could be due to a certain degree
of melt (Hier-Majumder, 2014; Liu et al., 2016), is unlikely to be
affected by micropolar motions, as they would not rotate indepen-
dently of the surrounding mantle.

http://dx.doi.org/10.1016/j.pepi.2017.04.006


Fig. 7. Obtained optic mode periods (1=xr) in bridgmanite in lower mantle
conditions as a function of characteristic length Lc . Excluding periods in the seismic
frequency band yields a constraint on Lc that must be smaller than 
200 km.
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There is hope in the future to compare simulations of wave
propagation in micropolar media with seismological data such as
rotational records provided by the emerging technology of rota-
tional sensors (Yin et al., 2016; Gade and Raghukanth, 2016;
Suryanto et al., 2006; Schreiber et al., 2006; Bernauer et al.,
2009; Ferreira and Igel, 2009; Wassermann et al., 2009; Igel
et al., 2007, 2005). It has already been shown that in the near-
field, rotational ground motions are much larger compared to what
is expected from the classical linear elasticity (Lee et al., 2009).
Only the combination of seismological data with numerical simu-
lations will help us to answer the question whether micropolar
theory can better explain travel times (e.g. Thorne et al., 2013;
Garnero and Helmberger, 1993; Zaroli et al., 2010) and/or attenu-
ation anomalies observed by seismologists in the Earth (Durek and
Ekström, 1996; Widmer et al., 1991; Lawrence and Wysession,
2006; Hwang and Ritsema, 2011; Durand et al., 2013).

Finally, this study arrives to the question of how extrapolating
the measurements of elastic parameters made in laboratory exper-
iments at crystal scale (micro) to our length scales in seismology
(macro). As mentioned above, linear elastic theory does describe
the wave propagation on a global scale well but amplitude and tra-
vel time effects are observed in our small-scale modelling of
micropolar media. Those effects are indeed present in minerals
(Takei et al., 2011) and the measurements of wave propagation
on those small-scale experiments have not been easily be related
to the Earth, as a simple scaling from the microscopic scale (min-
eral) to the macroscopic scale (Earth). Further, detailed numerical
experiments are needed and have to be compared with laboratory
experiments to understand scaling between those effects.
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Appendix A. Closest isotropic micropolar tensor

The elastic constants for potassium nitrate KNO3 given in
Eringen (1999) are recalled in Table 4 (see Eringen, 1999 page
160). In order to make comparison with the conventional linear
elastic model, we compute the isotropic approximation to the
orthorhombic crystal structure given in Eringen (1999) (and
recalled in Table 4). Following the definition of the non-
symmetric micropolar force stress tensor r (2.1) in general aniso-
tropic media, we can write

rij ¼
X3
k¼1

X3
l¼1

Cijkl ekl with i; j 2 f1;2;3g; ðA:17Þ

were C is the fourth order tensor of elastic constants and e the non-
symmetric second order micropolar strain tensor (2.1). We can
express (A.17) in a matrix form as follows

r11

r22

r33

r23

r13

r12

r32

r31

r21

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

C1111 C1122 C1133 C1123 C1113 C1112 C1132 C1131 C1121

C2211 C2222 C2233 C2223 C2213 C2212 C2232 C2231 C2221

C3311 C3322 C3333 C3323 C3313 C3312 C3332 C3331 C3321

C2311 C2322 C2333 C2323 C2313 C2312 C2332 C2331 C2321

C1311 C1322 C1333 C1323 C1313 C1312 C1332 C1331 C1321

C1211 C1222 C1233 C1223 C1213 C1212 C1232 C1231 C1221

C3211 C3222 C3233 C3223 C3213 C3212 C3232 C3231 C3221

C3111 C3122 C3133 C3123 C3113 C3112 C3132 C3131 C3121

C2111 C2122 C2133 C2123 C2113 C2112 C2132 C2131 C2121

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

e11
e22
e33
e23
e13
e12
e32
e31
e21

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

ðA:18Þ

In isotropic media we can write the non-symmetric micropolar
force stress tensor as follows

rij ¼ k
X3
k¼1

dij ekk þ ðlþ lcÞeij þ ðl� lcÞeji; ðA:19Þ

where k;l and lc are the conventional Lamé parameters and the
Cosserat couple modulus, respectively. We can write in matrix
notation the following (see Zheng and Spencer, 1993)

r11

r22

r33

r23

r13

r12

r32

r31

r21

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

kþ 2l k k 0 0 0 0 0 0
k kþ 2l k 0 0 0 0 0 0
k k kþ 2l 0 0 0 0 0 0
0 0 0 lþ lc 0 0 l� lc 0 0
0 0 0 0 lþ lc 0 0 l� lc 0
0 0 0 0 0 lþ lc 0 0 l� lc

0 0 0 l� lc 0 0 lþ lc 0 0
0 0 0 0 l� lc 0 0 lþ lc 0
0 0 0 0 0 l� lc 0 0 lþ lc

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

e11
e22
e33
e23
e13
e12
e32
e31
e21

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

ðA:20Þ

In order to find the closest isotropic elasticity tensor to the
orthotropic tensor given in Table 4, several different measures
can be applied (e.g. Gazis et al., 1963; Bos and Slawinski, 2015).
We perform a least squares inversion which leads to the following
analytical solutions for the equivalent 1-D isotropic l and lc

values
Þ.

C1212
N
m2

h i
C2112

N
m2

h i
lL2c ½N� vp

m
s

� �
vs

m
s

� �
0:68� 1010 0:71� 1010 0 6207.206 4472.136
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l ¼ C1221 þ C1212 þ C2121 þ C2112

4
¼ 7:175GPa and lc

¼ C1212 þ C2121 � C1221 � C2112

4
¼ 0:025GPa: ðA:21Þ

The Cosserat ratio is given by rlc ;l ¼ lc=l ¼ 0:00349.

Appendix B. Finite-difference discretization

The finite-difference (FD) scheme considered in this study is a
simple conventional second-order scheme in time and space
ðOðDt2;Dx2ÞÞ, which may be readily written from the micropolar
equations of motion (2.2) as follows

q
utþDt
x � 2ut

x þ ut�Dt
x

Dt2
¼ ðlþ lcÞ

ut
xþDx � 2ut

x þ ut
x�Dx

Dx2

� 2lc

#t
xþDx � #t

x�Dx
2Dx

þ f ðxs; tÞ þ OðDt2;Dx2Þ;

g
#tþDt
x � 2#t

x þ #t�Dt
x

Dt2
¼ lL2c

#t
xþDx � 2#t

x þ #t
x�Dx

Dx2
þ 2lc

ut
xþDx � ut

x�Dx

2Dx
� 4lc #

t
x þ OðDt2;Dx2Þ;

where f is the source time functions applied over the displacement
u field. The Ricker source used in the numerical experiments is
given by the following expression

f ðxs; tÞ ¼ dðx� xsÞ ð1� 2f 20ðt � t0Þ2Þe�f 20ðt�t0Þ2 ; ðB:23Þ
where d is the Dirac delta function, t0 the time delay and f 0 the
dominant frequency.
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