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Abstract. Ranking problems are difficult to solve due to their combi-
natorial nature. One way to solve this issue is to adopt a decomposition
scheme, splitting the initial difficult problem in many simpler problems.
The predictions obtained from these simplified settings must then be
combined into one single output, possibly resolving inconsistencies be-
tween the outputs. In this paper, we consider such an approach for the
label ranking problem, where in addition we allow the predictive model
to produce cautious inferences in the form of sets of rankings when it
lacks information to produce reliable, precise predictions. More specifi-
cally, we propose to combine a rank-wise decomposition, in which every
sub-problem becomes an ordinal classification one, with a constraint sat-
isfaction problem (CSP) approach to verify the consistency of the pre-
dictions. Our experimental results indicate that our approach produces
predictions with appropriately balanced reliability and precision, while
remaining competitive with classical, precise approaches.

Keywords: Label ranking problem · Constraint satisfaction · Imprecise
probabilities.

1 Introduction

In recent years, machine learning problems with structured outputs received
an increasing interest. These problems appear in a variety of fields, including
biology [33], image analysis [23], natural language treatment [5], and so on.

In this paper, we look at label ranking (LR), where one has to learn a map-
ping from instances to rankings (strict total order) defined over a finite, usually
limited number of labels. Most solutions to this problem reduce its initial com-
plexity, either by fitting a probabilistic model (Mallows, Plackett-Luce [7]) with
few parameters, or through a decomposition scheme. For example, ranking by
pairwise comparison (RPC) [24] transforms the initial problem into binary prob-
lems. Constraint classification and log-linear models [13], as well as SVM-based
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methods [30] learn, for each label, a (linear) utility function from which the rank-
ing is deduced. Those latter approaches are close to other proposals [18] that
perform a label-wise decomposition.

In ranking problems, it may also be interesting [9,18] to predict partial rather
than complete rankings, abstaining to make a precise prediction in presence of
too little information. Such predictions can be seen as extensions of the reject
option [4] or of partial predictions [11]. They can prevent harmful decisions
based on incorrect predictions, and have been applied for different decomposi-
tion schemes, be it pairwise [10] or label-wise [18], always producing cautious
predictions in the form of partial order relations.

In this paper, we propose a new label ranking method, called LR-CSP, based
on a label-wise decomposition where each sub-problem intends to predict a set
of ranks. More precisely, we propose to learn for each label an imprecise ordinal
regression model of its rank [19], and use these models to infer a set of possible
ranks. To do this, we use imprecise probabilistic (IP) approaches are well tai-
lored to make partial predictions [11] and represent potential lack of knowledge,
by describing our uncertainty by means of a convex set of probability distribu-
tions P [31] rather than by a classical single precise probability distribution P.
An interesting point of our method, whose principle can be used with any set
of probabilities, is that it does not require any modification of the underlying
learning imprecise classifier, as long as the classifier can produce lower and upper
bounds [P , P ] over binary classification problems.

We then use CSP techniques on the set of resulting predictions to check
whether the prediction outputs are consistent with a global ranking (i.e. that
each label can be assigned a different rank).

Section 2 introduces the problem and our notations. Section 3 shows how
ranks can be predicted from imprecise probabilistic models and presents the
proposed inference method based on robust optimization techniques. Section 4
discusses related work. Finally, Section 5 is devoted to experimental evaluation
showing that our approach does reach a higher accuracy by allowing for partial
outputs, and remains quite competitive with alternative approaches to the same
learning problem.

2 Problem setting

Multi-class problems consist in associating an instance x coming from an input
space X to a single label of the output space Λ= {λ1, . . . , λk} representing the
possible classes. In label ranking, an instance x is no longer associated to a
unique label of Λ but to an order relation1 �x over Λ× Λ, or equivalently to a
complete ranking over the labels in Λ. Hence, the output space is the set L(Λ)
of complete rankings of Λ that contains |L(Λ)|=k! elements (i.e., the set of all
permutations). Table 1 illustrates a label ranking data set example with k=3.

We can identify a ranking �x with a permutation σx on {1, . . . , k} such that
σx(i) < σx(j) iff λi �x λj , as they are in one-to-one correspondence. σx(i) is the

1 A complete, transitive, and asymmetric relation.
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Table 1. An example of label ranking data set D

X1 X2 X3 X4 Y

107.1 25 Blue 60 λ1 � λ3 � λ2

-50 10 Red 40 λ2 � λ3 � λ1

200.6 30 Blue 58 λ2 � λ1 � λ3

107.1 5 Green 33 λ1 � λ2 � λ3

. . . . . . . . . . . . . . .

rank of label i in the order relation �x. As there is a one-to-one correspondence
between permutations and complete rankings, we use the terms interchangeably.

Example 1. Consider the set Λ = {λ1, λ2, λ3} and the observation λ3 � λ1 � λ2,
then we have σx(1) = 2, σx(2) = 3, σx(3) = 1.

The usual objective in label ranking is to use the training instances D =
{(xi, yi) | i = 1, . . . , n} with xi ∈ X , yi ∈ L(Λ) to learn a predictor, or a ranker
h : X → L(Λ). While in theory this problem can be transformed into a multi-
class problem where each ranking is a separate class, this is in practice undoable,
as the number of classes would increase factorially with k. The most usual means
to solve this issue is either to decompose the problem into many simpler ones,
or to fit a parametric probability distribution over the ranks [7]. In this paper,
we shall focus on a label-wise decomposition of the problem.

This rapid increase of |L(Λ)| also means that getting reliable, precise predic-
tions of ranks is in practice very difficult as k increases. Hence it may be useful
to allow the ranker to return partial but reliable predictions.

3 Label-wise decomposition: learning and predicting

This section details how we propose to reduce the initial ranking problem in
a set of k label-wise problems, that we can then solve separately. The idea
is the following: since a complete observation corresponds to each label being
associated to a unique rank, we can learn a probabilistic model pi : K → [0, 1]
with K = {1, 2, . . . , k} and where pij := pi(j) is interpreted as the probability
P (σ(i) = j) that label λi has rank j. Note that

∑
j pij = 1.

A first step is to decompose the original data set D into k data sets Dj =
{(xi, σxi

(j)) | i = 1, . . . , n}, j = 1, . . . , k. The decomposition is illustrated by
Fig. 1. Estimating the probabilities pij for a label λi then comes down to solve
an ordinal regression problem [27]. In such problems, the rank associated to a
label is the one minimizing the expected cost Eij of assigning label λi to rank j,
that depends on pij and a distance D : K ×K → R between ranks as follows:

Eij =
∑k

`=1
D(j, k)pik. (1)

Common choices for the distances are the L1 and L2 norms, corresponding to

D1(j, k) = |j − k| and D2(j, k) = (j − k)2. (2)
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Other choices include for instance the pinball loss [29], that penalizes asym-
metrically giving a higher or a lower rank than the actual one. An interest of
those in the imprecise setting we will adopt next is that it produces predictions
in the form of intervals, i.e., in the sense that {1, 3} cannot be a prediction
but {1, 2, 3} can. In this paper, we will focus on the L1 loss, as it is the most
commonly considered in ordinal classification problems 2.

D
X1 X2 X3 X4 Y

107.1 25 Blue 60 λ1 � λ3 � λ2

−50 10 Red 40 λ2 � λ3 � λ1

200.6 30 Blue 58 λ2 � λ1 � λ3

107.1 5 Green 33 λ1 � λ2 � λ3

. . . . . . . . . . . . . . .

D1

X1 X2 X3 X4 Y
107.1 25 Blue 60 1
−50 10 Red 40 3
200.6 30 Blue 58 2
107.1 5 Green 33 1
. . . . . . . . . . . . . . .

D2

X1 X2 X3 X4 Y
107.1 25 Blue 60 3
−50 10 Red 40 1
200.6 30 Blue 58 1
107.1 5 Green 33 2
. . . . . . . . . . . . . . .

D3

X1 X2 X3 X4 Y
107.1 25 Blue 60 2
−50 10 Red 40 2
200.6 30 Blue 58 3
107.1 5 Green 33 3
. . . . . . . . . . . .

Fig. 1. Label-wise decomposition of rankings

3.1 Probability set model

Precise estimates for pi issued from the finite data set Dk may be unreliable,
especially if these estimates rely on little, noisy or incomplete data. Rather than
relying on precise estimates in all cases, we propose to consider an imprecise
probabilistic model, that is, to consider for each label λi a polytope (a convex
set) Pi of possible probabilities. In our setting, a particularly interesting model
are imprecise cumulative distributions [15], as they naturally encode the ordinal
nature of rankings, and are a common choice in the precise setting [22]. They
consist in providing bounds

[
P (A`), P (A`)

]
on events A` = {1, . . . , `} and to

consider the resulting set

Pi =

{
pi : P i(A`) ≤

∑`

j=1
pij ≤ P i(A`),

∑
j∈K

pij = 1

}
. (3)

We will denote by F ij = P i(Aj) and F ij = P i(Aj) the given bounds. Table 2
provides an example of a cumulative distribution that could be obtained in a
ranking problem where k = 5 and for a label λi. For other kinds of sets Pi we
could consider, see [17].

Table 2. Imprecise cumulative distribution for λi

Rank j 1 2 3 4 5

F ij 0.15 0.55 0.70 0.95 1
F ij 0.10 0.30 0.45 0.80 1

2 The approach easily adapts to the other losses.
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This approach requires to learn k different models, one for each label. This is
to be compared with the RPC [24] approach, in which k(k−1)/2 models (one for
each pair of labels) have to be learned. There is therefore a clear computational
advantage for the current approach when k increases. It should also be noted
that the two approaches rely on different models: while the label-wise decompo-
sition uses learning methods issued from ordinal regression problems, the RPC
approach usually uses learning methods issued from binary classification.

3.2 Rank-wise inferences

The classical means to compare two ranks as possible predictions, given the
probability pi, is to say that rank ` is preferable to rank m (denoted ` � m) iff∑k

j=1
D1(j,m)pij ≥

∑k

j=1
D1(j, `)pij (4)

That is if the expected cost (loss) of predicting m is higher than the expected
cost of predicting `. The final prediction is then the rank that is not dominated
or preferred to any other (with typically a random choice when there is some
indifference between the top ranks).

When precise probabilities pi are replaced by probability sets Pi, a classical
extension3 of this rule is to consider that rank ` is preferable to rank m iff it is
so for every probability in Pi, that is if

infpi∈Pi

∑k

j=1
(D1(j,m)−D1(j, `))pij (5)

is positive. Note that under this definition we may have simultaneously m 6� `
and ` 6� m, therefore there may be multiple undominated, incomparable ranks,
in which case the final prediction is a set-valued one.

In general, obtaining the set of predicted values requires to solve Equation (5)
at most a quadratic number of times (corresponding to each pairwise compar-
ison). However, it has been shown [16, Prop. 1] that when considering D1 as
a cost function, the set of predicted values corresponds to the set of possible
medians within Pi, which is straightforward to compute if one uses the gener-
alized p-box [15] as an uncertainty model. Namely, if F i, F i are the cumulative
distributions for label λi, then the predicted ranks under D1 cost are

R̂i =
{
j ∈ K : F i(j−1) ≤ 0.5 ≤ F ij , F i(0) = 0

}
, (6)

a set that is always non-empty and straightforward to obtain. Looking back at
Table 2, our prediction would have been R̂ = {2, 3, 4}, as these are the three
possible median values.

As for the RPC approach (and its cautious versions [9]), the label-wise de-
composition requires to aggregate all decomposed models into a single (partial)
prediction. Indeed, focusing only on decomposed models Pi, nothing forbids to
predict the same rank for multiple labels. In the next section, we discuss cautious
predictions in the form of sets of ranks, as well as how to resolve inconsistencies.

3 Also, known as maximality criterion [31].
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3.3 Global inferences

Once we have retrieved the different set-valued predictions of ranks for each
label, two important questions remain:

1. Are those predictions consistent with the constraint that each label should
receive a distinct rank?

2. If so, can we reduce the obtained predictions by integrating the aforemen-
tioned constraint?

Example 2. To illustrate the issue, let us consider the case where we have four
labels λ1, λ2, λ3, λ4. Then the following predictions

R̂1 = {1, 2}, R̂2 = {1, 2}, R̂3 = {1, 2}, R̂4 = {3, 4}

are inconsistent, simply because labels λ1, λ2, λ3 cannot be given simultaneously
a different rank (note that pair-wisely, they are not conflicting). On the contrary,
the following predictions

R̂1 = {1, 2}, R̂2 = {1, 2, 3}, R̂3 = {2}, R̂4 = {1, 2, 3, 4}

are consistent, and could also be reduced to the unique ranking

R̂′1 = {1}, R̂′2 = {3}, R̂′3 = {2}, R̂′4 = {4},

as the strong constraint R̂3 = {2} propagates to all other predictions by removing
λ2 from them, which results in a new strong constraint R̂∗1 = {1} that also
propagates to all other predictions. This redundancy elimination is repeated as
new strong constraints emerge until we get the unique ranking above.

Such a problem is well known in Constraint Programming [12], where it
corresponds to the alldifferent constraint. In the case where all rank predictions
are intervals, that is a prediction R̂i contains all values between min R̂i and
max R̂i, efficient algorithms using the fact that one can concentrate on bounds
alone exist, that we can use to speed up computations [28].

4 Discussion of related approaches

As said in the introduction, one of our main goals in this paper is to introduce
a label ranking method that allows the ranker to partially abstain when it has
insufficient information, therefore producing a corresponding set of possible rank-
ings. We discuss here the usefulness of such rank-wise partial prediction (mainly
w.r.t. approaches producing partial orders), as well as some related works.
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4.1 Partial orders vs imprecise ranks

Most existing methods [10,9] that propose to make set-valued or cautious pre-
dictions in ranking problems consider partial orders as their final predictions,
that is pairwise relations �x that are transitive and asymmetric, but no longer
necessarily complete. To do so, they often rely on decomposition approaches
estimating preferences between each pairs of labels [24].

However, while a complete order can be equivalently described by the relation
�x or by the rank associated to each label, this is no longer true when one
considers partial predictions. Indeed, consider for instance the case where the
set of rankings over three labels {λ1, λ2, λ3} we would like to predict is S =
{λ1 � λ2 � λ3, λ1 ≺ λ2 ≺ λ3}, which could correspond to an instance where λ2

is a good compromise, and where the population is quite divided about λ1 and
λ3 that represent more extreme options.

While the set S can be efficiently and exactly represented by providing sets
of ranks for each item, none of the information it contains can be retained in a
partial order. Indeed, the prediction R̂1 = {1, 3}, R̂2 = {2}, R̂3 = {1, 3} perfectly
represents S, while representing it by a partial order would result in the empty
relation (since for all pairs i, j, we have λi � λj and λj � λi in the set S).

We could find an example that would disadvantage a rank-wise cautious
prediction over one using partial orders, as one representation is not more general
than the other4. Yet, our small example shows that considering both approaches
makes sense, as one cannot encapsulate the other, and vice-versa.

4.2 Score-based approaches

In a recent literature survey [30], we can see that there are many score-based
approaches, already been studied and compared in [24], such as constraint clas-
sification, log-linear models, etc. Such approaches learn, from the samples, a
function hj for each label λj that will predict a strength hj(x

∗) for a new in-
stance. Labels are then ranked accordingly to their predicted strengths.

We will consider a typical example of such approaches, based on SVM, that
we will call SVM label ranking (SVM-LR). Vembu and Gärtner [30] show that
the SVM method [20] solving multi-label problems can be straightforwardly
generalized to a label ranking problem. In contrast to our approach where each
model is learned separately, SVM-LR fits all the functions at once, even if at
prediction time they are evaluated independently. While this may account for
label dependencies, this comes at a computational cost since we have to solve a
quadratic optimization problem (i.e. the dual problem introduced in [20]) whose
scale increases rapidly as the number of training samples and labels grows.

More precisely, the score functions hj(x
∗) = 〈wj | x∗〉 are scalar products

between a weight vector wj and x∗. If αijq are coefficients that represent the

4 In the sense that the family of subsets of ranking representable by one is not included
in the other.



8 Y-C. Carranza-Alarcon et al.

existence of either the preference λq �xi
λj or λj �xi

λq of the instance xi, wj

can be obtained from the dual problem in [20, §5] as follows:

wj =
1

2

n∑
i=1

 ∑
(j,q)∈Ei

αijq −
∑

(p,j)∈Ei

αipj

xi (7)

where αipq are the weighted target values to optimize into the dual problem. Ei
contains all preferences, i.e.{(p, q)∈Ei⇐⇒ λp�λq}, of the training instance xi.

It may seem at first that such approaches, once made imprecise, could be
closer to ours. Indeed, the obtained models hi after training also provide label-
wise information. However, if we were to turn these method imprecise and obtain
imprecise scores [hi, hi], the most natural way to build a partial prediction would
be to consider that λi � λj when hi > hj , that is when the score of λi would
certainly be higher than the one of λj . Such a partial prediction would be an
interval order and would again not encompass the same family of subsets of
rankings, as it would constitute a restricted setting compared to the one allowing
for prediction any partial order.

5 Experiments

This section describes our experiments made to test if our approach is (1) com-
petitive with existing ones and if (2) the partial predictions indeed provide more
reliable inferences by abstaining on badly predicted ranks.

5.1 Data sets

The data sets used in the experiments come from the UCI machine learning
repository [21] and the Statlog collection [25]. They are synthetic label ranking
data sets built either from classification or regression problems. From each origi-
nal data set, a transformed data set (xi, yi) with complete rankings was obtained
by following the procedure described in [8]. A summary of the data sets used
in the experiments is given in Table 3. We perform 10×10-fold cross-validation
procedure on all the data sets (c.f. Table 3).

5.2 Completeness/correctness trade-off

To answer the question whether our method correctly identifies on which label
it is desirable to abstain or to deliver a set of possible rankings, it is necessary to
measure two aspects: how accurate and how precise the predictions are. Indeed,
a good balance should be sought between informativeness and reliability of the
predictions. For this reason, and similarly to what was proposed in the pairwise
setting [9], we use a completeness and a correctness measure to assess the quality
of the predictions. Given the prediction R̂ = {R̂i, i = 1, . . . , k}, we propose as
the completeness (CP) and correctness (CR) measure

CP (R̂) =
k2 −

∑k
i=1 |R̂i|

k2 − k
and CR(R̂) = 1−

∑k
i=1 minr̂i∈R̂i

|r̂i − ri|
0.5k2

(8)
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Table 3. Experimental data sets

# Data set Type #Inst #Attributes #Labels

a authorship classification 841 70 4
b bodyfat regression 252 7 7
c calhousing regression 20640 4 4
d cpu-small regression 8192 6 5
e fried regression 40768 9 5
f glass classification 214 9 6
g housing regression 506 6 6
h iris classification 150 4 3
i pendigits classification 10992 16 10
j segment classification 2310 18 7
k stock regression 950 5 5
l vehicle classification 846 18 4
m vowel classification 528 10 11
n wine classification 178 13 3

where CP is null if all R̂i contains the k possible ranks and has value one if all R̂i
are reduced to singletons, whilst CR is equivalent to the Spearman Footrule when
having a precise observation. Note that classical evaluation measures [36] used
in an IP setting cannot be straightforwardly applied here, as they only extend
the 0/1 loss and are not consistent with Spearman Footrule, and adapting cost-
sensitive extensions [34] to the ranking setting would require some development.

5.3 Our approach

As mentioned in Section 3, our proposal is to fit an imprecise ordinal regres-
sion model for every label-wise decomposition Di, in which the lower and upper
bounds of the cumulative distribution [F i, F i] must be estimated in order to
predict the set of rankings (Eq. 6) of an unlabeled instance x∗. In that regard,
we propose to use an extension of Frank and Hall [22] method to imprecise
probabilities, already studied in detail in [19].

Frank and Hall’s method takes advantage of k ordered label values by trans-
forming the original k-label ordinal problem to k−1 binary classification sub-
problems. Each estimates of the probability5 Pi(A`) := Fi(`) whereA` = {1, . . . , `} ⊆
K and the mapping Fi : K → [0, 1] can be seen as a discrete cumulative distri-
bution. We simply propose to make these estimates imprecise and to use bounds

P i(Aj) := F i(j) and P i(Aj) := F i(j)

which is indeed a generalized p-box model [15], as defined in Equation (3).
To estimate these bounds, we use the naive credal classifier (NCC)6[35],

which extends the classical naive Bayes classifier (NBC), as a base classifier.
This classifier imprecision level is controlled through a hyper-parameter s ∈ R.

5 For readability, we here drop the condition of a new instance in all probabilities, i.e.
Pi(A`) := Pi(A`|x∗).

6 Bearing in mind that they can be replaced by any other imprecise classifiers, see [2,6].
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Indeed, the higher s, the wider the intervals [P i(Aj), P i(Aj)]. For s = 0, we
retrieve the classical NBC with precise predictions, and for s>>> 0, the NCC
model will make vacuous predictions (i.e. all rankings for every label).

However, the imprecision induced by a peculiar value of s differs from a data
set to another (as show the values in Figure 2), and it is essential to have an
adaptive way to quickly obtain two values:

– the value smin corresponding to the value with an average completeness close
to 1, making the corresponding classifier close to a precise one. This value is
the one we will use to compare our approach to standard, precise ones;

– the value smax corresponding to the value with an average correctness close
to 1, and for which the made predictions are almost always right. The corre-
sponding completeness gives an idea of how much we should abstain to get
strong guarantees on the prediction, hence of how “hard” is a given data set.

To find those values, we proceed with the following idea: we start from an
initial interval of values [s, s], and from target intervals [CP,CP ] and [CR,CR],
typically [0.95, 1] of average completeness and correctness. Note that in case of
inconsistent predictions, R̂i = ∅ and the completeness is higher than 1 (in such
case, we consider CR = 0). For smin, we will typically start from s = 0 (for which
CP > 1) and will consider a value s large enough for which CP < 0.95 (e.g.,
starting from s = 2 as advised in [32] and doubling s iteratively until CP < 0.95,
as when s increases completeness decreases and correctness increases in average).
We then proceed by dichotomy to find a value smin for which average predictions
are within interval [CP,CP ]. We proceed similarly for smax.

With smin and smax found, a last issue to solve is how to get intermediate
values of s ∈ [smin, smax] in order to get an adaptive evolution of complete-
ness/correctness, as in Figure 2. This is done through a simple procedure: first,
we start by calculating the completeness/correctness for the middle value be-
tween smin and smax, that is for (smin + smax)/2. We then compute the distance
between all the pairs of completeness/correctness values obtained for consecutive
s values, and add a new s point in the middle between the two points with the
biggest Euclidean distance. We repeat the process until we get the number of s
values requested, for which we provide completeness/correctness values.

(a) Glass data set (b) Stock data set (c) Calhousing data set

Fig. 2. Evolution of the hyper-parameter s on glass, stock and calhousing data sets.

The Figure 2 shows that the boundary values of the hyper-parameter of
imprecision s actually significantly depend on the data set. Our approach enables
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us to find the proper “optimal” value smin for each data set, which can be small
(as in glass where smin = 1) or big (as in calhousing where smin = 160).

Figure 2 is already sufficient to show that our abstention method is working
as expected, as indeed correctness increases quickly when we allow abstention,
that is when completeness decreases. Figure 2(a) shows that for some data sets,
one can have an almost perfect correctness while not being totally vacuous (as
correctness of almost 1 is reached for a completeness slightly below 0.5, for a
value s = 4), while this may not be the case for other more difficult data sets
such as calhousing, for which one has to choose a trade-off between completeness
and correctness to avoid fully vacuous predictions. Yet, for all data sets (only
three being shown for lack of space), we witness a regular increase of correctness.

5.4 Comparison with other methods

A remaining question is to know whether our approach is competitive with other
state-of-art approaches. To do this, we compare the results obtained on test data
sets (in a 10x10 fold cross validation) between the results we obtain for s = smin

and several methods. Those results are indeed the closest we can get to precise
predictions in our setting. The methods to which we compare ourselves are the
following:

– The ranking by pairwise comparisons (RPC), as implemented in [3];
– The Label ranking tree (LRT [8]), that adopt a local non-decomposed scheme;
– The SVM-LR approach that we already described in Section 4.2.

As the NCC deals with discrete attributes, we need to discretize continuous
attributes in z intervals before training 7. While z could be optimized, we use in
this paper only two arbitrarily chosen levels of discretization z=5 and z=6 (i.e.
LR-CSP-5 and LR-CSP-6 models) to compare our method against the others, for
simplicity and because our goal is only to show competitiveness of our approach.

As mentioned, we consider the comparison by picking the value smin. By
fixing this hyper-parameter regulating the imprecision level of our approach, we
then compare the correctness measure (8) with the Spearman Footrule loss ob-
tained for RCP and LRT methods, and implemented into existing software [3].
For the SVM-LR, of which we did not find an online implementation, we used
a Python package8, which solves a quadratic problem with known solvers [1] for
little data sets, or a Frank-Wolfe algorithm for bigger data sets. In fact, Frank-
Wolfe’s algorithm almost certainly guarantees the convergence to the global min-
imum for convex surfaces and to a local minimum for non-convex surfaces [26].

A last issue to solve is how to handle inconsistency predictions, ones in which
the alldifferent constraint would not find a precise or partial solution but an
empty one. Here, such predictions are ignored, and our results consider cor-
rectness and Spearman footrule on consistent solutions only, as dealing with
inconsistent predictions will be the object of future works.

7 Available in https://github.com/sdestercke/classifip.
8 Available in https://pypi.org/project/svm-label-ranking/

https://github.com/sdestercke/classifip
https://pypi.org/project/svm-label-ranking/
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5.5 Results

The average performances and their ranks in parentheses obtained in terms of the
correctness (CR) measure are shown in Table 4(a) and 4(b), with discretization
5 and 6 respectively applied to our proposal method LR-CSP.

Table 4. Average correctness accuracies (%) compared to LR-CSP-5 (left) and LR-
CSP-6 (right)

LR-CSP-5 LRT RPC SVM-LR

a 94.19± 1.31 (1) 91.49± 0.31 (3) 93.25± 0.25 (2) 64.75± 0.41 (4)
b 53.30± 3.81 (1) 41.56± 1.17 (4) 52.05± 0.42 (2) 52.56± 0.39 (3)
c 61.46± 0.92 (1) 58.33± 0.28 (2) 51.76± 0.01 (3) 38.48± 0.02 (4)
d 68.66± 0.63 (1) 60.96± 0.24 (3) 62.10± 0.04 (2) 47.08± 0.85 (4)
e 99.34± 0.07 (1) 91.29± 0.08 (3) 99.92± 0.01 (2) 84.19± 2.63 (4)
f 90.92± 3.48 (3) 91.75± 0.50 (1) 91.05± 0.18 (2) 87.16± 0.34 (4)
g 79.18± 1.98 (2) 84.55± 0.51 (1) 74.54± 0.15 (3) 69.54± 0.35 (4)
h 96.86± 3.72 (1) 96.77± 0.60 (2) 93.16± 0.56 (3) 88.39± 0.41 (4)
i 91.55± 0.24 (3) 95.15± 0.05 (1) 94.12± 0.01 (2) 58.66± 2.71 (4)
j 90.37± 0.46 (3) 96.19± 0.09 (1) 94.56± 0.02 (2) 66.39± 3.00 (4)
k 86.75± 1.59 (2) 91.46± 0.34 (1) 82.59± 0.06 (3) 74.49± 0.20 (4)
l 84.81± 2.13 (3) 88.07± 0.40 (2) 89.28± 0.17 (1) 82.30± 0.96 (4)
m 86.32± 2.34 (1) 85.36± 0.97 (2) 74.32± 0.06 (3) 66.60± 1.23 (4)
n 97.98± 2.89 (1) 91.75± 0.88 (4) 94.55± 0.62 (2) 94.53± 0.50 (3)

avg. 84.41± 1.83(1.72) 83.19± 0.46(2.14) 81.95± 0.18(2.28) 69.65± 1.00(3.86)

LR-CSP-6 LRT RPC SVM-LR

a 93.90± 0.69 (1) 91.53± 0.31 (3) 93.21± 0.23 (2) 64.42± 0.36 (4)
b 54.12± 3.73 (1) 41.70± 1.48 (4) 50.43± 0.39 (3) 51.10± 0.49 (2)
c 61.05± 0.80 (1) 58.37± 0.28 (2) 51.85± 0.02 (3) 38.45± 0.02 (4)
d 68.72± 1.42 (1) 60.76± 0.30 (3) 61.93± 0.04 (2) 46.71± 0.87 (4)
e 99.20± 0.07 (2) 91.26± 0.06 (3) 99.92± 0.01 (1) 84.18± 2.67 (4)
f 91.95± 2.90 (1) 91.59± 0.47 (2) 90.83± 0.24 (3) 85.68± 0.33 (4)
g 79.21± 3.37 (2) 85.09± 0.46 (1) 74.86± 0.16 (3) 70.16± 0.46 (4)
h 99.36± 1.28 (1) 97.16± 0.55 (2) 92.75± 0.58 (3) 87.39± 0.37 (4)
i 91.31± 0.14 (3) 95.14± 0.05 (1) 94.12± 0.01 (2) 58.75± 2.71 (4)
j 91.20± 0.85 (3) 96.11± 0.10 (1) 94.52± 0.03 (2) 66.25± 3.05 (4)
k 88.63± 1.53 (2) 91.64± 0.27 (1) 82.23± 0.08 (3) 75.20± 0.17 (4)
l 85.29± 1.91 (3) 88.03± 0.44 (2) 89.24± 0.14 (1) 81.93± 1.00 (4)
m 88.23± 1.00 (1) 84.40± 0.62 (2) 72.88± 0.06 (3) 65.41± 1.21 (4)
n 98.20± 1.19 (1) 91.80± 0.87 (4) 94.58± 0.61 (2) 94.56± 0.50 (3)

avg. 85.03± 1.49(1.64) 83.18± 0.45(2.21) 81.67± 0.19(2.36) 69.30± 1.02(3.79)

A Friedman test [14] on the ranks yields p-values of 0.00006176 and 0.0001097
for LR-CSP-5 and LR-CSP-6, respectively, thus strongly suggesting performance
differences between the algorithms. The Nemenyi post-hoc test (see Table 5)
further indicates that LR-CSP-5 (and LR-CSP-6) is significantly better than
SVM-LR. Our approach also remains competitive with LRT and RPC.

Finally, recall that our method is also quite fast to compute, thanks to the
simultaneous use of decomposition (requiring to build k classifiers), and of prob-
ability sets and loss functions offering computational advantages that make the
prediction step very efficient. Also, thanks to the fact that our predictions are
intervals, i.e. sets of ranks without holes in them, we can use very efficient algo-
rithms to treat the alldifferent constraints [28].

Note also that our proposal discretized at z=6 intervals gets more accurate
predictions (and also indicate a little drop in the p-value of all comparisons
of Table 5) what can suggest us that an optimal value of ẑ may improve the
prediction performance (all that remains, of course, hypothetical).

Table 5. Nemenyi post-hoc test: null hypothesis H0 and p-value

# H0 LRT RPC SVM-LR

1 LR-CSP-5 = 0.8161 0.6452 0.000066
2 LR-CSP-6 = 0.6450 0.4600 0.000066

6 Conclusion and perspectives

In this paper, we have proposed a method to make partial predictions in label
ranking, using a label-wise decomposition as well as a new kind of partial pre-
dictions in terms of possible ranks. The experiments on synthetic data sets show
that our proposed model (LR-CSP) produces reliable and cautious predictions
and performs close to or even outperforms the existing alternative models.
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This is quite encouraging, as we left a lot of room for optimization, e.g., in
the base classifiers or in the discretization. However, while our method extends
straightforwardly to partially observed rankings in training data when those are
top-k rankings (considering for instance the rank of all remaining labels as k+1),
it may be trickier to apply it to pairwise rankings, another popular way to get
such data. Some of our future works will focus on that.
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