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Abstract. Threshold Signatures allow n parties to share the power of is-
suing digital signatures so that any coalition of size at least t+1 can sign,
whereas groups of t or less players cannot. Over the last few years many
schemes addressed the question of realizing efficient threshold variants
for the specific case of EC-DSA signatures. In this paper we present new
solutions to the problem that aim at reducing the overall bandwidth con-
sumption. Our main contribution is a new variant of the Gennaro and
Goldfeder protocol from ACM CCS 2018 that avoids all the required
range proofs, while retaining provable security against malicious adver-
saries in the dishonest majority setting. Our experiments show that – for
all levels of security – our signing protocol reduces the bandwidth con-
sumption of best previously known secure protocols for factors varying
between 4.4 and 9, while key generation is consistently two times less
expensive. Furthermore compared to these same protocols, our signature
generation is faster for 192-bits of security and beyond.

1 Introduction

A threshold signature scheme allows n, mutually mistrusting, users to share the
capability of signing documents under a common public key. The threshold t < n
typically indicates that any subset of at least t + 1 users can collaborate in or-
der to issue a valid signature. On the other hand, no coalition of t or less users
can do so. Moreover, if an attacker corrupts up to t users this does not leak
any information on the underlying secret key. This latter property is very use-
ful in practice as it significantly reduces the loss induced by a security break in.
The study of threshold signatures (and more generally of threshold cryptography
[Des88,DF90,GJKR96b,SG98,Sho00,Boy86,CH89,MR04]) attracted significant in-
terest from the early 1990s to the early 2000s. Over the last few years, threshold
signatures and, in particular, threshold EC-DSA signatures raised renewed in-
terest. This mainly comes from the fact that EC-DSA is the signature scheme
adopted in Bitcoin and other cryptocurrencies. Indeed, a secure, flexible and
efficient protocol for threshold EC-DSA signatures can be very effective against
the theft of Bitcoins. Protecting EC-DSA signing keys is equivalent to securing
Bitcoin: instead of storing a signing key in one single location one could share
it among several servers so that none of them knows it in full and a quorum is



needed to produce new signatures. This also means that an attacker should be
able to break in into more than t servers to get anything meaningful.

Notice that, in order for a secure solution to be of any use in the cryp-
tocurrency world, efficiency and flexibility are of fundamental importance. Here
flexibility mainly refers to the possibility of arbitrarily setting the threshold. Ef-
ficiency, on the other hand, takes into account both the computational costs and
the bandwidth consumption induced by the protocol.

Before the advent of cryptocurrencies, known solutions to the problem fell
short either in terms of flexibility or in terms of efficiency (or both). The state
of the art was the work of Gennaro et al. [GJKR96a] where to implement a
threshold of t servers one needed to share the key among a total of at least
n = 2t + 1 servers, thus making n-out-of-n sharings impossible (i.e. sharings
where all parties are required to participate to the signing process). This was later
addressed by Mackenzie and Reiter [MR01] for the specific two party setting (i.e.
where t = 1 and n = 2) but the proposed protocol heavily relies on inefficient zero
knowledge proofs, thus making the resulting protocol of little practical interest.

Over the last few years, improved solutions have been proposed both for
the two party [Lin17,DKLs18,CCL+19] and for the more general t-out-of-n case
[GGN16,GG18,LN18,DKLs19]). Focusing on the latter case, all these solutions
still have drawbacks either in terms of bandwidth costs (e.g. [DKLs19] and
[LN18] for their OT implementation), somewhat heavy setup ([GGN16]) or un-
derlying assumptions ([GG18]).

Our contribution. In this paper we present new techniques to realize efficient
threshold variants of the EC-DSA signature scheme. Our resulting protocols are
particularly efficient in terms of bandwidth consumption and, as several recent
works (e.g. [GG18]) allow to consider any threshold t such that n ≥ t+ 1.

Our main contribution is a new variant of the Gennaro and Goldfeder proto-
col [GG18] that manages to avoid all the required range proofs, while retaining
comparable overall (computational) efficiency.

To better explain our contribution let us briefly describe how (basic) EC-DSA
works. The public key is an elliptic curve point Q and the signing key is x, where
Q← xP , and P is a generator of the group of points of the elliptic curve of prime
order q. To sign a message m one first hashes it using some hash function H and
then proceeds as follows. Choose a random k ∈ Z/qZ and compute R = k−1P .
Letting r ← rx mod q – where R = (rx, ry) – set s← k(H(m) + rx) mod q. The
signature is the pair (r, s).

The difficulty when trying to devise a threshold variant of this scheme comes
from the fact that one has to compute both R = k−1P and a multiplication of the
two secret values k, x. In [GG18] Gennaro and Goldfeder address this as follows.
Starting from two secrets a = a1 + · · ·+ an, b = b1 + · · ·+ bn additively shared
among the parties (i.e. Pi holds ai and bi), players compute ab =

∑
i,j aibj by

computing additive shares of each aibj . This can be achieved via a simple two
party protocol, originally proposed by Gilboa [Gil99] in the setting of two party
RSA key generation, which parties execute in a pairwise way. Slightly more in de-
tail, this latter protocol relies on linearly homomorphic encryption and Gennaro
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and Goldfeder implement it using Paillier’s cryptosystem as underlying building
block. This choice, however, becomes problematic when dealing with malicious
adversaries, as Paillier plaintexts live in (Z/NZ) (for N large composite) whereas
EC-DSA signatures live in Z/qZ (q prime). To avoid inconsistencies, one then
needs to choose N significantly larger than q, so that no wrap arounds occur
during the execution of the whole protocol. To prevent malicious behavior, this
also induces the need of expensive range proofs, i.e. when sending Enc(xi) a
player also needs to prove that xi is small enough.

To fix this, one might be tempted to resort to the hash proof systems based
technique recently proposed by Castagnos et al. [CCL+19]. This methodology
allows an efficient instantiation from class groups of imaginary quadratic fields
that, in turn, builds upon the Castagnos and Laguillaumie [CL15] homomorphic
encryption scheme. One key feature of this scheme and its variants (CL from
now on) is that they allow instantiations where the message space is Z/qZ and
this q can be the same large prime used in EC-DSA signatures. Unfortunately,
however, this feature comes at the cost of loosing surjectivity. More precisely,
and differently than Paillier, CL is not surjective in the ciphertext space and
the set of valid CL ciphertexts is not even efficiently recognizable. Even worse,
known techniques to prove the validity of a CL ciphertext are rather inefficient
as they all use binary challenges. This means that to get soundness error 2−t

the proof needs to be repeated t times.

Back to our threshold EC-DSA setting, naively switching from Paillier to
CL, only means trading inefficient range proofs with inefficient proofs of validity
for ciphertexts!

In this paper, we develop new techniques that address exactly this issue. As a
first contribution we develop new efficient protocols to prove CL ciphertexts are
well formed. This result is quite general and can have useful applications even
beyond the specific threshold setting considered in this paper (and indeed can be
used to improve the efficiency of the recent two party protocol from [CCL+19]).

Next, we revisit the Gennaro and Goldfeder protocol and propose a new
CL-based EC-DSA variant where the aforementioned multiplication step can be
done efficiently and without resorting to range proofs.

Our constructions rely on two recently introduced assumptions on class groups.
Informally, given a group Ĝ the first one states that it is hard to find low order
elements in Ĝ (low order assumption) while the latter assumes that it is hard

to find roots of random elements in Ĝ (strong root assumption). Both these
assumptions are believed to hold in class groups of imaginary quadratic fields
([BH01,DF02,BBHM02,Lip12]) and were recently used in, e.g. [BBF18,Pie19,Wes19].

From a technical perspective, resorting to these assumptions allows us to dra-
matically improve the efficiency of the (zero knowledge) arguments of knowledge
needed by our protocols. Informally this can be explained as follows. In the class
group setting, the order of the group Ĝ is unknown (to all parties, even to those
who set up the parameters). This is typically a bad thing when doing arguments
of knowledge as, unless one restricts to binary challenges, it is not immediate
how to argue the extractability of the witness.
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In our proofs, we manage to prove that, no matter how big the challenge
space is, either one can extract the witness or one can find a root for some given
(random) element of the group, thus violating the strong root assumption. Our
argument is actually more convoluted than that as, for technical reasons that
won’t be discussed here, we still need to make sure that no undetected low order
elements are maliciously injected in the protocols (e.g. to extract unauthorized
information). This is where the low order assumption comes into play and allows
us to avoid hard to handle corner cases in our proofs. Challenges also arise from
the fact that in order to reduce to the hardness of finding roots, our reduction
should output eth roots where e is not a power of two, since, as observed in
concluding remarks of [CCL+19], computing square roots or finding elements of
order 2 can be done efficiently in class groups knowing the factorization of the
discriminant (which is public in our case).

We also provide in Section 5 a zero knowledge proof of knowledge (without
computational assumptions) for groups of unknown order in order to improve
our setup. That proof can also be of independent interest and actually improves
the key generation of [CCL+19] for two party EC-DSA.

Efficiency comparisons. We compare the speed and communication costs of
our protocol to those of the scheme by Gennaro and Goldfeder [GG18] and that
of Lindell et al. [LN18] for the standard NIST curves P-256, P-384 and P-521,
corresponding to levels of security 128, 192 and 256. For the encryption scheme,
we start with a 112 bit security, as in their implementations, but also study the
case where its level of security matches that of the elliptic curves. Our compar-
isons show that for all security levels our signing protocol reduces the bandwidth
consumption of best previously known secure protocols for factors varying be-
tween 4.4 and 9, while key generation is consistently two times less expensive.
Moreover, we even outperform (for all security levels) the stripped down imple-
mentation of [GG18] where a number of range proofs are omitted. We believe
this to be an important aspect of our schemes. Indeed, as Gennaro and Goldfeder
themselves point out in [GG18], omitting these proofs leaks information on the
shared signing key. While they conjecture that this information is limited enough
for the protocol to remain secure, no formal analysis is provided.

In terms of timings, though for standard levels of security (112 and 128) our
signing protocol is up to four times slower than that of [LN18], for higher levels
of security the trend is inverted, such that for 256-bit security we are twice as
fast as all other secure schemes considered5.

2 Preliminaries

Notations. For a distribution D, we write d ←↩ D to refer to d being sampled

from D and b
$←− B if b is sampled uniformly in the set B. In an interactive

protocol IP, between parties P1, . . . , Pn for some integer n > 1, we denote by

5 But still twice as slow as the stripped down [GG18] protocol
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IP〈x1; . . . ;xn〉 → 〈y1; . . . ; yn〉 the joint execution of parties {Pi}i∈[n] in the proto-
col, with respective inputs xi, and where Pi’s private output at the end of the exe-
cution is yi. If all parties receive the same output y we write IP〈x1; . . . ;xn〉 → 〈y〉.
A (P)PT algo stands for an algorithm running in (probabilistic) polynomial time
w.r.t. the length of its inputs.

2.1 Tools

Zero-knowledge proofs. A zero-knowledge proof of knowledge (ZKPoK) system
for a binary relation R is an interactive protocol (P, V ) between two proba-
bilistic algorithms: a prover P and a PT verifier V . Informally P , detaining a
witness w for a given statement x s.t. (x,w) ∈ R, must convince V that it is
true without revealing anything other to V . In a zero-knowledge argument of
knowledge (ZKAoK), the proof provided by P is computationally sound (P is
also a PT algorithm). Formal definitions for computationally convincing proofs
of knowledge are provided in the next paragraph. We use the notation intro-
duced by Camenisch-Stadler [CS97], which conveniently expresses the goals of a
ZKP (resp. ZKA) scheme:

ZKPoKx{(w) : (x,w) ∈ R} and ZKAoKx{(w) : (x,w) ∈ R}.

Computationally convincing proofs of knowledge. We here provide some termi-
nology and definitions relating to computationally convincing proofs of knowl-
edge (or arguments of knowledge) as defined in [DF02]. Consider a relation gen-
erator algorithm R, that takes as input 1λ and outputs the description of a
binary relation R. A prover is a machine P who gets R as an input, outputs a
statement x and finally conducts the interactive proof with a verifier V using R, x
as common input. From P , define a machine Pview which starts in the state P is
in after having seen view view and having produced x. Pview then conducts the
protocol with V following P ’s algorithm. The view view contains all inputs, mes-
sages exchanged and random coins so in particular x is determined by view. We
note εview,P P ’s probability to make V accept, conditioned on view. The knowl-
edge error function κ(λ) is the probability that P can make V accept without
knowing a witness w s.t. (x,w) ∈ R (for a security parameter λ). An extractor is
a machine M that gets R and a statement x as an input, has black-box access to
Pview for some view consistent with x and computes a witness w s.t. (x,w) ∈ R.

Definition 1. For some given cheating P ∗, extractor M and polynomial p(), M
fails on view view if εview,P > κ(λ), and the expected running time of M using

P ∗view as oracle, is greater than p(λ)
εview,P∗−κ(λ)

.

Definition 2. Let R be a probabilistic polynomial time relation generator, and
consider a protocol (P, V ), a knowledge extractor M , polynomial p() and knowl-
edge error function κ(λ) be given. Consider the following experiment with input
λ: R := R(1λ), x := P ∗(R) which defines view view. The advantage of P ∗, de-
noted Advκ,M,p(P

∗, λ), is the probability (taken over the random coins of R, P ∗)
that M fails on the view generated by this experiment.
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Definition 3. Let R be a PPT relation generator. (P, V ) is a computationally
convincing proof of knowledge for R, with knowledge error κ(), failure probability
ν() and time bound t(), if the following hold:
Completeness: The honest prover P receives R← R(1λ), produces (x,w) ∈ R,
sends x to V and finally conducts the protocol with V , who accepts with over-
whelming probability in λ.
Soundness: There exists a polynomial p() and an extractor M , s.t. for all
provers P ∗ running in time at most t(λ), Advκ,M,p(P

∗, λ) ≤ ν(λ).

Threshold secret sharing. A (t, n) threshold secret sharing scheme allows to
divide a secret s into shares s1, . . . , sn, amongst a group of n participants, in
such a way that knowledge of any t + 1 or more shares allows to compute s;
whereas knowledge of any t or less shares reveals no information about s.

Feldman verifiable secret sharing. A verifiable secret sharing (VSS) protocol
allows to share a secret between n parties P1, . . . , Pn in a verifiable way. Specifi-
cally, it can be used by a party to share a secret with the other ones. Feldmann’s
VSS [Fel87] relies on Shamir’s secret sharing scheme [Sha79], but the former
gives additional information allowing to check the sharing is done correctly.

Let G be a group of order q, g a generator of G, and suppose that one of the
players, that we call P , wants to share a secret σ ∈ Z/qZ with the other ones.
To share the secret, it does the following steps:

1. P generates a random polynomial p ∈ Z/qZ[x] of degree t and with σ as free
term. The polynomial is then

p(x) = atx
t + at−1x

t−1 + . . .+ a2x
2 + a1x+ σ mod q,

where σ = p(0) mod q. The shares of σ are σi = p(i) mod q.
2. P sends σi to Pi, for all i.
3. P publishes auxiliary information that other players can use to check the

shares are consistent and define a unique secret: {vi = gai ∈ G}i∈[t] and
v0 = gσ ∈ G.

Each party can check its own share is consistent by verifying if the following
condition holds:

gσi =

t∏
j=0

vi
j

j ∈ G

If one of the checks fails, then the protocol terminates. Furthermore, the only
information that the Feldman’s VSS leaks about the secret σ is v0 = gσ.

Commitments. An equivocable commitment scheme allows a sender S to commit
to a message m s.t. S’s message is perfectly hidden; in the opening phase – where
S reveals m and an opening value d(m) to R – S is computationally bound to
the committed message. Consequently the scheme allows for a trapdoor which
allows to open a commitment to arbitrary messages (this is called equivocating
the commitment). The trapdoor should be hard to compute efficiently.
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Formally a (non-interactive) equivocable commitment scheme consists of four
PPT algorithms: (1) Setup(1λ) → (pp, tk) which outputs public parameters pp
and associated secret trapdoor key tk; (2) Com(m, r) → [c(m), d(m)] which on
input a message m and random coins r, outputs the commitment c(m) and
an opening value d(m) (if S refuses to open a commitment d(m) = ⊥); (3)
Open(c, d) → m or ⊥ which on input a commitment c and an opening value d,

outputs either a message m or an error symbol ⊥; (4) Equiv(tk,m, r,m′) → d̂
which – if tk is a trapdoor key for pp – allows to open commitments c(m) to arbi-
trary values m′. Precisely, for any messages m and m′, any Setup(1λ)→ (pp, tk),

let Com(m, r)→ [c(m), d(m)] and Equiv(tk,m, r,m′)→ d̂ then Open(c(m), d̂)→
m′; and s.t. opening fake and real commitments is indistinguishable. We will use
equivocable commitments with the following properties:
Correctness: for all message m and randomness r, if [c(m), d(m)]← Com(m, r),
one has m← Open(c(m), d(m)).
Perfect hiding: for every message pair m,m′ the distributions of the resulting
commitments are statistically close.
Computational binding: for any PPT algorithm A, the probability that A out-
puts (c, d0, d1) s.t. Open(c, d0) → m0; Open(c, d1) → m1; m0 6= ⊥; m1 6= ⊥ and
m0 6= m1 is negligible in the security parameter.
Concurrent non-malleability: a commitment scheme is non-malleable [DDN00]
if no PPT adversary A can “maul” a commitment to a value m into a commit-
ment to a related valuem. The notion of a concurrent non-malleable commitment
[DDN00,PR05] further requires non-malleability to hold even if A receives many
commitments and can itself produce many commitments.

2.2 The elliptic curve digital signature algorithm

Elliptic curve digital signature algorithm. EC-DSA is the elliptic curve analogue
of the Digital Signature Algoritm (DSA). It was put forth by Vanstone [Van92]
and accepted as ISO, ANSI, IEEE and FIPS standards. It works in a group
(G,+) of prime order q (of say µ bits) of points of an elliptic curve over a finite
field, generated by P and consists of the following algorithms.

KeyGen(G, q, P )→ (x,Q) where x
$←− Z/qZ is the secret signing key and Q :=

xP is the public verification key.

Sign(x,m)→ (r, s) where r and s are computed as follows:

1. Compute m′: the µ leftmost bits of SHA256(m) where m is to be signed.

2. Sample k
$←− (Z/qZ)∗ and compute R := k−1P ; denote R = (rx, ry) and

let r := rx mod q. If r = 0 choose another k.

3. Compute s := k · (m′ + r · x) mod q.

Verif(Q,m, (r, s))→ {0, 1} indicating whether or not the signature is accepted.

The standard security notion required of digital signature schemes is that of
existential unforgeability under chosen message attacks (eu-cma) [GMR88].
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Definition 4 (Existential unforgeability [GMR88]). Consider a digital sig-
nature scheme S = (KeyGen,Sign,Verif), and a PPT algorithm A, which is given
as input a verification key vk output by KeyGen(1λ)→ (sk, vk) and oracle access
to the signing algorithm Sign(sk, .) to whom it can (adaptively) request signatures
on messages of its choice. Let M be the set of queried messages. S is existentially
unforgeable if for any such A, the probability Adveu-cma

S,A that A produces a valid
signature on a message m /∈M is a negligible function of λ.

(t, n)-threshold EC-DSA. For a threshold t and a number of parties n > t,
threshold EC-DSA consists of the following interactive protocols:

IKeyGen〈(G, q, P ); . . . ; (G, q, P )〉 → 〈(x1, Q); . . . ; (xn, Q)〉 s.t. KeyGen(G, q, P )→
(x,Q) where the values x1, . . . , xn constitute a (t, n) threshold secret sharing
of the signing key x.

ISign〈(x1,m); . . . ; (xn,m)〉 → 〈(r, s)〉 or 〈⊥〉 where ⊥ is the error output, signi-
fying the parties may abort the protocol, and Sign(x,m)→ (r, s).

The verification algorithm is non interactive and identical to that of EC-DSA.
Following [GJKR96b], we present a game-based definition of security analo-

gous to eu-cma: threshold unforgeability under chosen message attacks (tu-cma).

Definition 5 (Threshold signature unforgeability [GJKR96b]). Consider
a (t, n)-threshold signature scheme IS = (IKeyGen, ISign,Verif), and a PPT algo-
rithm A, having corrupted at most t players, and which is given the view of the
protocols IKeyGen and ISign on input messages of its choice (chosen adaptively)
as well as signatures on those messages. Let M be the set of aforementioned
messages. IS is unforgeable if for any such A, the probability Advtu-cma

IS,A that A

can produce a signature on a message m /∈M is a negligible function of λ.

2.3 Building blocks from Class Groups

An instantiation of the CL framework. Castagnos and Laguillaumie introduced
the framework of a group with an easy discrete logarithm (Dlog) subgroup in
[CL15], which was later enhanced in [CLT18,CCL+19] and gave concrete instan-
tiation from class groups of quadratic fields. Some background on class groups of
quadratic fields in cryptography can be found in [BH01] and in [CL15, Appx. B].

We briefly sketch the instantiation given in [CCL+19, Sec. 4.1] and the re-
sulting group generator Gen that we will use in this paper. The interested reader
can refer to [CL15,CCL+19] for concrete details.

Given a prime q consider another random prime q̃, the fundamental dis-
criminant ∆K = −qq̃ and the associated class group C(∆K). By choosing q̃ s.t.
qq̃ ≡ −1 (mod 4) and (q/q̃) = −1, we have that the 2−Sylow subgroup of C(∆K)
has order 2. The size of q̃ is chosen s.t. computing the class number h(∆K) takes
time 2λ. We then consider the suborder of discriminant ∆q = −q2∆K . Then,

we denote (Ĝ, ·) the finite abelian subgroup of squares of C(∆q), which corre-

sponds to the odd part. It is possible to check efficiently if an element is in Ĝ
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(cf. [Lag80]). One can exhibit a subgroup F generated by f ∈ Ĝ where f is
represented by an ideal of norm q2. This subgroup has order q and there exists a
deterministic PT algorithm for the discrete logarithm (Dlog) problem in F (cf.

[CL15, Proposition C – 1]). Then we build deterministically a q−th power of Ĝ
by lifting the class of an ideal of discriminant ∆K above the smallest splitting
prime. In the following, we will denote ĝq this deterministic generator. We will
then consider an element gq constructed as a random power of ĝq. This slightly
changes the construction of [CCL+19], in order to make a reduction to a strong
root problem for the soundness of the argument of knowledge of Subsection 3.1.
One can compute an upper bound s̃ for the order of ĝq, using an upper bound

of h(∆K). For this, one can use the fact that h(∆K) < 1
π log |∆K |

√
|∆K |, or

obtain a slightly better bound from the analytic class number formula.

For our application the prime q will have at least 256 bits, in that case q is
prime to h(∆K) except with negligible probability. Therefore q will be prime to
the order of ĝq which is a divisor of h(∆K).

Notation. We denote Gen the algorithm that on input a security parameter λ
and a prime q, outputs (s̃, f, ĝq, Ĝ, F ) defined as above. We also denote Solve
the deterministic PT algorithm that solves the Dlog problem in F . This pair
of algorithms is an instance of the framework of a group with an easy Dlog
subgroup (cf. [CCL+19, Definition 4]). For a random power gq of ĝq we will
denote Gq the subgroup generated by gq, g = gqf and G the subgroup generated

by g. We further denote Ĝq the subgroup consisting of all q-th powers in Ĝ,
and it’s order ŝ. It holds that Ĝ is the direct product of Ĝq and F . We denote
$ := ŝd the group exponent of Ĝq, i.e. the least common multiple of the orders of
its elements. Clearly, the order of any element in Gq divides $. In the following
the distribution D from which exponents are sampled is chosen to be close to
uniform mod q · s̃, where s̃ is an upper bound for ŝ. This means that exponents
sampled from D follow a distribution close to uniform mod q, and mod any
divisor of ŝ. In particular mod $.

Hard subgroup membership assumption. We recall the definition of the HSM
problem for an output (s̃, f, ĝq, Ĝ, F ) of Gen. For a random power gq of ĝq the
HSM assumption states it is hard to distinguish the elements of Gq in G. As a
result this HSM assumption is closely related to Paillier’s DCR assumption, they
are essentially the same assumption in different groups, hence there is no direct
reduction between them. HSM was first used by [CLT18] within class groups,
though cryptography based on class groups is now well established, and is seeing
renewed interest (e.g. [CIL17,CLT18,BBBF18,Wes19,CCL+19]).

Definition 6 (HSM assumption). For (s̃, f, ĝq, Ĝ, F ) an output of Gen, gq a
random power of ĝq and g := gqf , we denote D (resp. Dq) a distribution over
the integers s.t. the distribution {gx, x←↩ D} (resp. {ĝxq , x←↩ Dq}) is at distance

less than 2−λ from the uniform distribution in 〈g〉 (resp. in 〈ĝq〉). Let A be an
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adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ) :=

∣∣∣∣2 · Pr
[
b = b? : (s̃, f, ĝq, Ĝ, F )← Gen(1λ, q), t←↩ Dq, gq = ĝtq,

x←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx

′

q ,

b? ←A(q, s̃, f, ĝq, gq, Ĝ, F, Zb,Solve(.))
]
− 1

∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time
algorithm A, AdvHSMA (λ) is negligible.

Remark that compared to previous works, we modify slightly the assumption by
considering a random element gq instead of using the deterministic element ĝq.

A linearly homomorphic encryption scheme. We recall the linearly homomorphic
encryption scheme of [CLT18] whose ind-cpa-security relies on the HSM assump-
tion. The scheme somewhat generalises Camenisch and Shoup’s approach in
[CS03]. This scheme is the basis of the threshold EC-DSA protocol of Sec. 3.

We use the output of Gen(1λ, q) and as in Def. 6, we set gq = ĝtq for t ←↩
Dq. The public parameters of the scheme are pp := (s̃, f, ĝq, gq, Ĝ, F, q). To

instantiate Dq, we set Ã ≥ s̃ · q · 240 s.t. {grq , r ←↩ [Ã]} is at distance less than
2−40 from the uniform distribution in Gq. Conversely to the original scheme of
[CLT18], we do not sample secret keys from Dq. This is due to the way we use the
encryption scheme in the signature protocol of Section 3. For security to hold,
we need secret keys to be sampled from a distribution D s.t. {(gqf)r, r ←↩ D}
is at distance less than 2−λ of the uniform distribution in G = F × Gq. The
plaintext space is Z/qZ. The scheme is depicted in Fig. 1.

Theorem 1 ([CLT18]). The CL scheme described in Fig. 1 is semantically
secure under chosen plaintext attacks (ind-cpa) under the HSM assumption.

Algo. KeyGen(pp)

1. Pick sk←↩ D and pk := gskq
2. Return (pk, sk)

Algo. Enc(pk,m)

1. Pick r ←↩ [Ã]
2. Return (grq , f

mpkr)

Algo. Dec(sk, (c1, c2))

1. Compute M = c2/c
sk
1

2. Return Solve(M)

Fig. 1: Description of the CL encryption scheme

The following lemma from [CCL+19] ensures that, in the CL encryption scheme,
the distribution followed by the secret keys remains statistically close to uniform
mod q even if their value is fixed mod $. The proof can be found in [CCL+19].

Lemma 1. Let D be a distribution which is δ-close to U(Z/ŝqZ). For any x ∈
G\Gq, π ← fγ ∈ F where γ

$←− Z/qZ and k ←↩ D, the distributions D1 :=
{x, (k mod $), π · xk} and D2 := {x, (k mod $), xk} are 2δ-close.

10



We will refer to the above property as the smoothness of the CL scheme, as
defined in the following definition. This is somewhat an abuse of denotation, since
smoothness usually refers to the projective hash family underlying an encryption
scheme (see [CS02]).

Definition 7 (Smoothness). The CL encryption scheme of Fig 1 is said to be
δs-smooth if the distribution D from which secret keys are sampled is δ-close to
U(Z/ŝqZ), where δs = 2δ.

Finally, we define the notion of invalid ciphertexts as these will be useful in
our security proofs.

Definition 8. A ciphertext is said to be invalid if it is of the form (u, e) :=
(u, uskfm) where u ∈ G\Gq. Note that one can compute such a ciphertext us-
ing the secret key sk, but not the public key pk; that the decryption algorithm
applied to (u, e) with secret key sk recovers m; and that an invalid ciphertext is
indistinguishable of a valid one under the hardness of HSM.

2.4 Algorithmic assumptions

We here provide further definitions for the algorithmic assumptions on which
the security of our protocol relies. As in [CCL+19], we need the HSM assump-
tion guaranteeing the ind-cpa-security of the linearly homomorphic encryption
scheme. We also use two additional assumptions: one which states that it is
hard to find low order elements in the group Ĝ, and one which states that it
is hard to find roots in Ĝ of random elements of the subgroup 〈ĝq〉. These as-
sumptions allow us to significantly improve the efficiency of the ZKAoK needed
in our protocol. Indeed, as the order of the group we work in is unknown, we
cannot (unless challenges are binary as done in [CCL+19]) immediately extract
the witness from two answers corresponding to two different challenges of a given
statement. However we show in the ZKAoK of Sec. 3.1 that whatever the chal-
lenge space, if one cannot extract the witness, then one can break at least one of
these two assumptions. Consequently these assumptions allow us to significantly
increase the challenge space of our proofs, and reduce the number of rounds
in the protocol to achieve a satisfying soundness, which yields an improvement
both in terms of bandwidth and of computational complexity.

Using such assumptions in the context of generalized Schnorr Proofs in groups
of unknown order is not novel (cf. e.g. [DF02,CKY09]). We adapt these tech-
niques for our specific subgroups of a class group of an imaginary quadratic field,
and state them with respect to Gen.

Definition 9 (Low order assumption). Consider a security parameter λ ∈
N, and γ ∈ N. The γ-low order problem (LOPγ) is (t(λ), εLO(λ))-secure for Gen
if, given the output of Gen, no algorithm A running in time ≤ t(λ) can output

a γ-low order element in Ĝ with probability greater than εLO(λ). More precisely,

εLO(λ) := Pr[µd = 1, 1 6= µ ∈ Ĝ, 1 < d < γ :

(s̃, f, ĝq, Ĝ, F )
$←− Gen(1λ, q); (µ, d)

$←−A(s̃, f, ĝq, Ĝ, F )].

11



The γ-low order assumption holds if t = poly(λ), and εLO is negligible in λ.

We now define a strong root assumption for class groups. This can be seen as
a generalisation of the strong RSA assumption. We specialise this assumption
for class groups where computing square roots is easy knowing the factorisation
of the discriminant, and tailor it to our needs by considering challenges in a
subgroup.

Definition 10 (Strong root assumption for Class Groups). Consider a
security parameter λ ∈ N, and let A be a probabilistic algorithm. We run Gen on
input (1λ, q) to get (s̃, f, ĝq, Ĝ, F ) and we give this output and a random Y ∈ 〈ĝq〉
as an input to A. We say that A solves the strong root problem for class groups
(SRP) if A outputs a positive integer e 6= 2k for all k and X ∈ Ĝ, s.t. Y = Xe. In
particular, the SRP is (t(λ), εSR(λ))-secure for Gen if any adversary A, running
in time ≤ t(λ), solves the SRP with probability at most εSR(λ).

On the hardness of these assumptions in class groups. For our applications, we
will use the strong root assumption and the low order assumption in the context
of class groups. These assumptions are not completely novel in this setting:
Damg̊ard and Fujisaki ([DF02]) explicitly consider variants of these assumptions
in this context. Then, Lipmaa used a strong root assumption in class groups
to build accumulators without trusted setup in [Lip12]. Recently, an interactive
variant of the strong root assumption was used, still in the context of class
groups, by Wesolowski to build verifiable delay functions without trusted setup.
Furthermore, the low order assumption is also used to implement Pietrzak’s
verifiable delay functions with class groups (see [BBF18,Pie19]). In the following,
we advocate the hardness of these assumptions in the context of class groups.

The root problem and its hardness was considered in [BH01,BBHM02] in the
context of class groups to design signature schemes. It is similar to the RSA
problem: the adversary is not allowed to choose the exponent e. These works
compare the hardness of this problem with the problem of computing the group
order and conclude that there is no better known method to compute a solution
to the root problem than to compute the order of the group.

The strong root assumption is a generalisation of the strong RSA assumption.
Again, the best known algorithm to solve this problem is to compute the order of
the group to be able to invert exponents. For strong RSA this means factoring the
modulus. For the strong root problem in class groups, this means computing the
class number, and best known algorithms for this problem have worst complexity
than those to factor integers.

Note that we have specialized this assumption for exponents e which are
not powers of 2: as mentioned in [CCL+19], one can compute square roots in
polynomial time in class groups of quadratic fields, knowing the factorisation of
the discriminant (which is public in our setting), cf. [Lag80].

Concerning the low order assumption, we need the γ−low order problem to
be hard in Ĝ, where γ can be up to 2128. Note that in our instantiation, the
discriminant is chosen such that the 2−Sylow subgroup is isomorphic to Z/2Z.

12



It is well known that the element of order 2 can be computed from the (known)
factorisation of ∆q. However, we work with the odd part, which is the group of
squares in this context, so we do not take this element into account.

Let us see that the proportion of such elements of low order is very low in
the odd part. From the Cohen Lenstra heuristics [CL84] the odd part of a class
group C(∆) of an imaginary quadratic field is cyclic with probability 97.75%.
In [HS06], extending the Cohen Lenstra heuristics, it is conjectured that the
probability an integer d divides the order h(∆) of C(∆) is less than:

1

d
+

1

d log d
.

As a consequence, if the odd part of C(∆) is cyclic then the expected number
of elements of order less than γ is less than

∑
d6γ

(
1

d
+

1

d log d

)
ϕ(d),

which can be bounded above by 2γ. For 128 bits of security, our class number
will have around 913 bits, so the proportion of elements of order less than 2128

is less than 2−784.

Moreover, if the odd part of the class group is non cyclic, it is very likely that
it is of the form Z/n1Z ⊕ Z/n2Z where n2|n1 and n2 is very small. Still from
the Cohen Lenstra heuristics, the probability that the p−rank (the number of
cyclic factors in the p−Sylow subgroup) of the odd part is equal to r is equal to

η∞(p)

pr2ηr(p)2
where ηr(p) =

r∏
k=1

(1− p−k).

If we have two cyclic factors, and p|n2, then the p−rank is 2. If p > 220 the
probability of having a p−rank equal to 2 is less than 2−80. Similarly, we cannot
have many small cyclic components: the 3−rank is 6 with probability less than
2−83. Actually, we know only 3 class groups of such 3 ranks [Que87].

There have been intense efforts on the construction of families of discrimi-
nants such that there exist elements of a given small order p or with a given
p−rank. However, these families are very sparse and will be reached by our gen-
eration algorithm of the discriminant only with negligible probability. The basic
idea of these constructions is to build a discriminant ∆ in order to obtain so-
lutions of a Diophantine equation that gives m and the representation of a non
principal ideal I of norm m such that Ip is principal, and I has order p in C(∆)
(see eg [Bue76] or [Bel04] for more references).

Solving such a norm equation for a fixed discriminant has been mentioned
as a starting point for an attack in [BBF18] combined with the Coppersmith’s
method, but no concrete advances on the problem have been proposed.
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3 Threshold EC-DSA protocol

We here provide a construction for (t, n)-threshold EC-DSA signing from the
CL framework. Security – which does not degrade with the number of signa-
tures queried by the adversary in the tu-cma game (cf. Def. 5) – relies on the
assumptions and tools introduced in Sec. 2. Throughout the article we consider
the group of points of an elliptic curve G of order q, generated by P .

As in many previous works on multiparty EC-DSA (e.g. [MR01,Lin17,GG18]),
we use a linearly homomorphic encryption scheme. This enables parties to per-
form operations collaboratively while keeping their inputs secret. Explicitly a
party Pi sends a ciphertext encrypting its secret share (under its own public
key) to party Pj , Pj then performs homomorphic operations on this ciphertext
(using its own secret share), and sends the resulting ciphertext back to Pi –
intuitively Pi should learn nothing more about the operations performed by Pj
than that revealed by decrypting the ciphertext it receives. To ensure this, Pi
must prove to Pj that the ciphertext it first sent is ‘well formed’. To this end
in Sec. 3.1, we provide an efficient zero-knowledge argument of knowledge of
the plaintext and of the randomness used to compute a CL ciphertext (defined
in Sec. 2.3). This ZKAoK is essential to secure our protocol against malicious
adversaries. Next, in Sec. 3.2 we explain how parties interactively set up the
public parameters of the CL encryption scheme, so that the assumptions under-
lying the ZKAoK hold. Though – for clarity – we describe this interactive set
up as a separate protocol, it can be done in parallel to the IKeyGen protocol of
threshold EC-DSA, thereby only increasing by one the number of rounds of the
threshold signing protocol. Finally, in Sec. 3.3 we present our (t, n)-threshold
EC-DSA signing protocol, whose security will be demonstrated in Sec. 4.

3.1 ZKAoK ensuring a CL ciphertext is well formed

Consider a prover P having computed an encryption of a ∈ Z/qZ with random-

ness r
$←− [Ã], i.e. c := (c1, c2) with c1 := grq , c2 := pkrfa. We present a zero

knowledge argument of knowledge for the following relation:

REnc := {(pk, c); (a, r) | pk ∈ Ĝ; r ∈ [ÃC(240+2)]; a ∈ Z/qZ; c1 = grq∧c2 = pkrfa}.

The interactive protocol is given in Fig. 2. We denote C the challenge set, and
C := |C|. The only constraint on C is that the C-low order assumption holds.

Theorem 2. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting ε :=
max(εSR(λ), εLO(λ)), then the interactive protocol of Fig. 2 is a computation-
ally convincing proof of knowledge for REnc with knowledge error κ(λ), time
bound t(λ) and failure probability ν(λ), where ν(λ) = 8ε, t(λ) < t′(λ)/448 and
κ(λ) = max(4/C, 448t(λ)/t′(λ)). If r ∈ [s̃ · 240] (it is so when the prover is
honest), the protocol is honest verifier statistical zero-knowledge.
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Setup:

1. (s̃, f, ĝq, Ĝ, F )← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t
$←− [Ã] and let gq := ĝtq.

Prover ((pk, c), a ∈ Z/qZ; r ∈ [Ã]) Verifier ((pk, c))

r1
$←− [240ÃC]

r2
$←− Z/qZ

t1 := gr1q

t2 := pkr1fr2
t1,t2−−−−−−−−−−−−−−→

k
$←− C

k←−−−−−−−−−−−−
u1 := r1 + kr ∈ Z

u2 := r2 + ka ∈ Z/qZ
u1,u2−−−−−−−−−−−−−−−→ Check u1 ∈ [ÃC(240 + 1)]

and u2 ∈ Z/qZ

and gu1
q = t1c

k
1

and pku1fu2 = t2(c2)k

Fig. 2: Zero-knowledge argument of knowledge for REnc.

Proof. We prove the properties of soundness, completeness and (honest verifier)
zero-knowledge.
Soundness.Let us analyse to what extent the protocol of Fig. 2 satisfies the
notion of soundness defined in Def. 3, in particular for which knowledge error
functions κ() is the definition satisfied. Accordingly, let κ() be any knowledge
error function, such that κ(λ) ≥ 4/C for all λ. We then must define an extrac-
tor M . Let a PT prover P ∗ be given and let view be any view P ∗ may have
after having produced (pk, c). Now, it can be shown that since there are C dif-
ferent challenges, then if εview,P > κ(λ) ≥ 4/C, standard rewinding techniques
allow us to obtain in expected PT a situation where, for given (t1, t2), P ∗ has
correctly answered two different values k and k′. We call u1, u2 and u′1, u

′
2 the

corresponding answers, so we get:

– gu1
q = t1 · ck1 and g

u′1
q = t1 · ck

′

1 s.t. g
u1−u′1
q = ck−k

′

1 ,

– pku1fu2 = t2 · ck2 and pku
′
1fu

′
2 = t2 · ck

′

2 s.t. pku1−u′1fu2−u′2 = ck−k
′

2 .

Since k 6= k′ and q is prime, with overwhelming probability (1 − 1/q) it holds
that k − k′ is invertible mod q. In the following we assume this is the case6.

Let Rewind be a (probabilistic) procedure that creates k, k′, u1, u2, u
′
1, u
′
2 in

this way. A concrete algorithm for Rewind is given in [DF02, Appendix A]. It
runs in expected time 56/εview,P , counting the time to do the protocol once with
P ∗ as one step.

6 In fact in our application C < q, so this holds with probability 1.
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Assume without loss of generality that k > k′ and suppose that (k − k′)
divides (u1 − u′1) in Z. We denote:

ν1 := g
(u1−u′1)/(k−k

′)
q c−11 and ν2 := pk(u1−u′1)/(k−k

′)f (u2−u′2)/(k−k
′)c−12 .

Suppose that ν1 = ν2 = 1. Moreover, V ′s check on the size of u1, u
′
1 implies that

(u1 − u′1)/(k− k′) is in the required interval. One can now easily verify that P ∗

knows ((pk, c); ((u2− u′2)/(k− k′) mod q, (u1− u′1)/(k− k′))) ∈ REnc, and from
such values k, k′, u1, u2, u

′
1, u
′
2 one can thus extract a witness for the statement.

A set of values k, k′, u1, u2, u
′
1, u
′
2 is said to be bad if k − k′ divides u1 − u′1

but ν1 6= 1 or ν2 6= 1 or if k − k′ does not divide u1 − u′1. The extractor M
simply repeats calling Rewind (for this same (pk, c)) until it gets a set of good
values. We will analyse knowledge soundness with this M and the polynomial
p(λ) from the definition set to the constant of 112. We start with a lemma that
gives an exact bound on the security.

Lemma 2. Let R, (P, V ), κ(), M and p() be as defined above. Given any prover
P ∗, there exists an algorithm A(P ∗) that solves either the strong root problem for

class groups with input (Ĝ, Ĝq, gq), or the low order problem in Ĝ with probability
Advκ,M,p(P

∗, λ)/8, and runs in time 448 · tP∗(k)/κ(λ) where tP∗(k) denotes the
running time of P ∗.

Proof. A does the following: receive (s̃, f, ĝq, Ĝ, F, gq) as an input and accord-

ingly set the public parameters for the CL encryption scheme as: (s̃, f, ĝq, gq, Ĝ, F, q)

as described in Sec. 2.3. Send (s̃, f, ĝq, gq, Ĝ, F, q) to P ∗, and hope to get a set
of bad values. However, if Rewind runs more than 448/κ(λ) times with P ∗, we
abort and stop. If we obtained a set of bad values, we attempt to compute a
root of gq as described below.

Clearly A runs in time 448 · tP∗(k)/κ(λ). We now look at its’ success proba-

bility. Note that the distribution of (s̃, f, gq, Ĝ, G, F,G
q) that P ∗ receives here is

exactly the same as in a real execution of the protocol. Hence the probability of
producing a view for which M fails, is exactly Advκ,M,p(P

∗, λ). Note also that
given any view view where M fails, it must be the case that the values produced
by Rewind are bad with probability of at least 1/2. If this was not the case, then
M could expect to find a witness for (pk, c) after calling Rewind twice, which

takes expected time 112
εview,P∗

≤ p(λ)
εview,P∗−κ(λ)

which would contradict the fact M

fails on view. So let E be the event that M fails on view and Rewind has returned
a set of bad values.

Claim. Given that E occurs, we can solve the root problem with probability p∗

of at least 1/2.

To see this, recall that Rewind returns k, k′, u1, u2, u
′
1, u
′
2 s.t. g

u1−u′1
q = ck−k

′

1

and pku1−u′1fu2−u′2 = ck−k
′

2 .
If (k−k′) divides (u1−u′1) then ν1 6= 1 or ν2 6= 1 where ν1 and ν2 are defined

as above. Clearly νk−k
′

1 = νk−k
′

2 = 1. And since k − k′ < C, and one can check
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that ν1 and ν2 are elements of Ĝ (by checking that c1, pk, c2 are in Ĝ) this solves

the C-low order problem in Ĝ.

Now let us examine the case where (k − k′) does not divide (u1 − u′1). We
denote d := gcd(k − k′, u1 − u′1) and e := (k − k′)/d; and split in two cases:

Case 1: If e = 2m for some positive integer m (in which case solving the root problem
is easy). The goal will be to show that since P ∗ does not have control over
k, k′ this case happens with probability ≤ 1/2, given that E occurs. Hence
the Case 2 where we solve either the root problem of the low order problem
happens with large probability, given E. Indeed, observe that for e to be a
power of 2, it must hold that (k−k′) is a multiple of 2m, and in particular a
multiple of 2. However since k and k′ are chosen uniformly at random from
C by the honest V , with probability 1/2, (k − k′) is an odd integer.

Case 2: If e := (k−k′)/d is not a power of 2. We have d < |k−k′| < C. Choose γ and

δ s.t. γ(k − k′) + δ(u1 − u′1) = d. Then gdq = g
γ(k−k′)+δ(u1−u′1)
q = (gγq c

δ
1)k−k

′
.

Now let:

µ := (gγq c
δ
1)

(k−k′)
d g−1q .

Clearly µd = 1, so since d < C, if µ 6= 1, we again have a solution to the
C-low order problem in Ĝ. Now suppose that µ = 1. We can rewrite the
above as:

gq = (gγq c
δ
1)(k−k

′)/d,

which gives a solution for the SRP with input gq, which is e = (k−k′)/d and
X := gγq c

δ
1, s.t. gq = Xe, e > 1 and e is not a power of 2. The claim above

now follows.

Summarizing, we therefore have that for every view view where M fails, run-
ning Rewind will fail to solve either the strong root problem or the low order
problem with probability at most 1 − p∗/2 ≤ 3/4. The expected number of ex-
ecutions of P ∗ needed to run Rewind is at most 56/εview,P∗ ≤ 56/κ(λ). Thus
Rewind is allowed to run for at least 8 times its expected running time, and so
by the Markov rule it will run for longer with probability at most 1/8. Since the
probability that view is bad in the first place is Advκ,M,p(P

∗, λ), the success prob-
ability of A(P ∗) is Advκ,M,p(P

∗, λ) · (1− 1/8− (1−p∗/2)) ≥ Advκ,M,p(P
∗, λ)/8.

This finishes the proof.

Completeness. If P knows r ∈ [Ã] and a ∈ Z/qZ s.t. (pk, c); (a, r) ∈ REnc, and
both parties follow the protocol, one has u1 ∈ [ÃC(240 + 1)] and u2 ∈ Z/qZ;
pku1fu2 = pkr1+k·rfr2+k·a = pkr1fr2(pkrfa)k = t2c

k
2 ; and gu1

q = gr1+k·rq = t1c
k
1 .

Honest verifier zero-knowledge. Given pk, c = (c1, c2) a simulator can sample

k
$←− [C[, u1

$←− [ÃC(240 + 1)] and u2
$←− Z/qZ, compute t2 := pku1fu2c−k2 and

t1 := gu1
q c−k1 such that the transcript (pk, c, t2, t1, k, u1, u2) is indistinguishable

from a transcript produced by a real execution of the protocol.
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3.2 Interactive set up for the CL encryption scheme

Generating a random generator gq. In order to use the above ZKAoK it must

hold that gq is a random element of the subgroup 〈ĝq〉 where (s̃, f, ĝq, Ĝ, F ) ←
Gen(1λ, q). Precisely if a malicious prover P ∗ could break the soundness of the
ZKAoK, an adversary S trying to break the SRP, given input a random gq,
should be able to feed this input to P ∗, and use P ∗ to solve it’s own challenge.
Consequently, as the ZKAoK will be used peer-to-peer by all parties in the
threshold EC-DSA protocol, they will collaboratively generate – in the interac-
tive IKeyGen – the public parameters (s̃, f, ĝq, Ĝ, F ), and a common gq which
is random to each party. We call this interactive sub-protocol ISetup, since it
allows parties to collaboratively set up the public parameters for the CL encryp-
tion scheme. All parties then use this gq to compute their public keys and as a
basis for the CL encryption scheme. As explained in Sec. 2.3 the generation of
(s̃, f, ĝq, Ĝ, F ) is deterministic from a pair of primes q̃ and q, we overload the

notation (s̃, f, ĝq, Ĝ, F )← Gen(q̃, q) to refer to this deterministic set up. We first
define the functionality computed by ISetup, running in two steps.

Definition 11. For a number of parties n, ISetup consists of the following in-
teractive protocols:

Step 1 〈k; . . . ; k〉 → 〈q̃〉 or 〈⊥〉 where ⊥ is the error output, signifying the par-
ties may abort the protocol, and q̃ is a random k bit prime.

Step 2 〈(q̃, q); . . . ; (q̃, q)〉 → 〈(s̃, f, ĝq, Ĝ, F, gq, t1); . . . ; (s̃, f, ĝq, Ĝ, F, gq, tn)〉 or 〈⊥〉
where (s̃, f, ĝq, Ĝ, F ) ← Gen(q̃, q), and values t1, . . . , tn ∈ [240s̃] constitute
additive shares of t such that gq = ĝtq.

For n parties to collaboratively run ISetup, they proceed as depicted in Fig 3,
performing the following steps:
Step 1 — Generation of random public prime q̃ of bit-size k.

1. Each Pi samples a random ri
$←− {0, 1}k, computes (ci, di) ← Com(ri) and

broadcasts ci.
2. After receiving {cj}j 6=i, each Pi broadcasts di thus revealing ri.
3. All players compute the common output q̃ := next-prime(

⊕n
j=1 rj).

Step 2 — Generation of gq.

1. From q̃, (and the order of the elliptic curve q) all parties can use the deter-
ministic set up of [CL15,CCL+19] which sets a generator ĝq.

2. Next each player Pi performs the following steps:

(a) Sample a random ti
$←− [240s̃]; compute gi := ĝtiq ; (c̃i, d̃i)← Com(gi), and

broadcast c̃i.
(b) Receive {c̃j}j 6=i. Broadcast d̃i thus revealing gi.
(c) Perform a ZKPOK of ti such that gi = ĝtiq .7 If a proof fails, abort.

3. Each party computes gq :=
∏n
j=1 gj = ĝ

∑
tj

q , and has output (s̃, f, ĝq, Ĝ, F, gq, ti).
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Pi ISetup(k) All players {Pj}j 6=i
ri

$←− {0, 1}k

[ci, di]← Com(ri)
ci====⇒
di====⇒ ri ← Open(ci, di)

q̃ := next-prime(
⊕n

j=1 rj)

Compute ĝq from q, q̃

ti
$←− [240s̃] and gi ← ĝtiq

(c̃i, d̃i)← Com(gi)
c̃i====⇒
d̃i====⇒ gi ← Open(c̃i, d̃i)

πi := ZKPoKgi{(ti) : gi = ĝtiq }
πi←−−−−→ if a proof fails abort

gq ←
∏n
j=1 ĝ

tj
q =

∏n
j=1 gj

Fig. 3: Threshold CL setup used in IKeyGen

Theorem 3 states the security of the interactive protocol ISetup of Fig. 3.

Theorem 3. If the commitment scheme is non-malleable and equivocal; and the
proofs πi are zero knowledge proofs of knowledge of discrete logarithm in 〈ĝq〉,
then the protocol of Fig. 3 securely computes ISetup with abort, in the presence of
a malicious adversary corrupting any t < n parties, with point-to-point channels.

Proof. We here demonstrate that for each execution of ISetup (cf. Fig. 3), which
interactively sets the public parameters of the CL framework, our reduction for
the strong root problem can program the outputs q̃ and gq if the reduction
controls at least one uncorrupted player.

Indeed consider an adversary S for the SRP for generator Gen. S gets as input
a description of (s̃, f, ĝq, Ĝ, F ) output by Gen(1λ, q), which includes q̃ and the
order of the elliptic curve q, and a random element Y ∈ 〈ĝq〉. S must simulate
Step 1 so that all players output the same q̃ as S received in the description of G.
Next S must simulate Step 2 so that each player Pi outputs s̃, f, ĝq, Ĝ, F, gq = Y
– of which S must find a root – and some ti ∈ [s̃ · 240]. We describe S simulating
P1 against all the other (potentially corrupted) parties, since all parties play
symmetric roles, this is without loss of generality.

Simulating step 1 — Generation of q̃.

1. S samples r1
$←− {0, 1}k, computes (c1, d1) := Com(r1) and broadcasts c1.

2. S broadcasts d1, revealing r1, and receives {rj}j>1.
3. S samples r′1 uniformly at random in {0, 1}k, subject to the condition q̃ =

next prime(r′1 ⊕
⊕n

j=2 rj). Then S computes an equivocated decommitment
d′1 which opens to r′1, rewinds the adversary to 2 and broadcasts d′1 instead
of d1.

4. All players compute the common output q̃ := next prime(r′1 ⊕
⊕n

j=2 rj).

7 This can be done as in [CCL+19] (without relying on the strong root assumption).
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Simulating step 2 — Generation of Y = gq.

1. From q̃ and q all parties use the deterministic set up of [CCL+19] to set
generator ĝq.

2. S (simulating P1) does the following:

(a) Sample t1
$←− [240s̃]; compute g1 := ĝt1q ; (c̃1, d̃1) = Com(g1), and broad-

cast c̃1.

(b) Receive {c̃j}j 6=1. Broadcast d̃1 thus revealing g1.

(c) Perform a ZKPOK for π1 := ZKPoKg1{(t1) : g1 = ĝt1q }.
(d) Receive {c̃j}j 6=1, recover gj ← Open(c̃j , d̃j) for each j.

(e) Let h :=
∏n
j=2 gj . Compute g′1 := Y ·h−1 and an equivocated decommit-

ment d′ which opens to g′1, rewind the adversary to 2. (b) and broadcast
d′ instead of d̃1. In 2. (b) simulates the ZKPoK.

3. If all the proofs are correct, the protocol goes along with gq := g′1h = Y .

Lemma 3. If the commitment scheme is non-malleable and equivocal; and the
proofs πi are zero knowledge proofs of knowledge then a simulated execution of
steps 1 and 2 above is – from the view of (potentially corrupted) parties P2, . . . , Pn
– indistinguishable from a real execution. Moreover when the simulation – on
input (G, gq), where G is computed deterministically from a prime q̃ – does not
abort, all parties output q̃ in step 1, and gq in step 2.

Proof. Step 1 The only difference between real and simulated protocols is the
way r1 is computed. In the simulation S does not know r1, but it chooses a
r′1 such that q̃ = next prime(r′1 ⊕

⊕n
j=2 rj). Let R =

⊕n
j=2 rj and Hq = {x ∈

{0, 1}k : prev-prime(q̃) ≤ x⊕R ≤ q̃−1} be the set of all the elements x such that
q̃ = next prime(x ⊕ R). Since r1 belongs to the set Hq, and it has been chosen
uniformly at random, as long as r′1 is chosen uniformly at random in the same
set, the real and simulated executions are indistinguishable.
Step 2 The only difference is in point 2.(e), where the simulator computes g′1
instead of using g1. Since g1 and Y · h−1 follow the same distribution, real and
simulated executions are indistinguishable.

Moreover, we observe that the simulation can fail in three points: in step 1 if
someone refuses to decommit after rewinding and in step 2, if some πi fails or if
someone refuses to decommit after rewinding. Since the commitment scheme is
non-malleable and equivocal, in Step 1 the simulator can rewind and equivocate
the commitment to r1, and if there are not aborts, all parties decommit to their
correct values. As a consequence, all parties output q̃ at the end of Step 1. In step
2, all parties compute the correct ĝq using q̃ from the deterministic setup of CL,
if not there is an abort caused by the soundness of the proof πi corresponding
to the corrupted Pi. Finally, if no abort has occurred, in step 2, point e), the
simulator can equivocate the decommitment to g1 and all parties decommit to
the correct values thanks to the non-malleability of the scheme. If no party
refuses to decommit after rewinding, the protocol ends with gq = Y (and q̃ from
step 1). ut
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Remark 1. The randomness of q̃ is not crucial to the security of the EC-DSA pro-
tocol: conversely to RSA prime factors, here q̃ is public. However traditionally,
class group based crypto uses random discriminants; we provide a distributed
version of the setup of [CL15] in which the prime q̃ is random. In our ISetup
algorithm, the output of next-prime is biased. To patch this, for the same com-
plexity, parties could jointly generate a seed for a prime pseudo-random generator
to generate q̃; such a source of randomness would be sufficient in this context.

3.3 Resulting threshold EC-DSA protocol

We now describe the overall protocol. Participants run on input (G, q, P ) used
by the EC-DSA signature scheme. In Fig. 4, and in phases 1, 3, 4, 5 of Fig. 5,
all players perform the same operations (on their respective inputs) w.r.t. all
other parties, so we only describe the actions of some party Pi. In particular
if Pi broadcasts some value vi, implicitly Pi receives vj broadcast by Pj for all
j ∈ [n], j 6= i. Broadcasts from Pi to all other players are denoted by double
arrows, whereas peer-to-peer communications are denoted by single arrows.

On the other hand, Phase 2 of Fig. 5 is performed by all pairs of players
{(Pi, Pj)}i 6=j . Each player will thus perform (n− 1) times the set of instructions
on the left (performed by Pi on the figure) and (n− 1) times those on the right
hand side of the figure (performed by Pj).

Key generation. We assume that prior to the interactive key generation pro-
tocol IKeyGen, all parties run the ISetup protocol of Sec. 3.2 s.t. they output
a common random generator gq. Each party uses this gq to generate its’ CL
encryption key pair, and to verify the ZKAoK in the ISign protocol. Although
IKeyGen and ISetup are here described as two separate protocols, they can be ran
in parallel. Consequently, in practice the number of rounds in IKeyGen increases
by 1 broadcast per party if the ZK proofs are made non interactive, and by 2
broadcasts if it is performed interactively between players.
The IKeyGen protocol (also depicted in Fig 4) proceeds as follows:

1. Each Pi samples a random ui
$←− Z/qZ; computes [kgci, kgdi] ← Com(uiP )

and generates a pair of keys (ski, pki) for the CL encryption scheme. Each
Pi broadcasts (pki, kgci).

2. Each Pi broadcasts kgdi. Let Qi ← Open(kgci, kgdi). Party Pi performs a
(t, n) Feldman-VSS of ui, with Qi as the free term in the exponent. The
EC-DSA public key is set to Q =

∑n
i=1Qi. Each player adds the private

shares received during the n Feldman VSS protocols. The resulting values
xi are a (t, n) Shamir’s secret sharing of the secret signing key x. Observe
that all parties know {Xi := xi · P}i∈[n].

3. Each Pi proves in ZK that he knows xi using Schnorr’s protocol [Sch91].

Signing. The signature generation protocol runs on input m and the output of
the IKeyGen protocol of Fig 4. We denote S ⊆ [n] the subset of players which
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Pi IKeyGen(G, P, q) All players {Pj}j 6=i
ui

$←− Z/qZ
[kgci, kgdi]← Com(uiP )

(ski, pki)← CL.KeyGen(1λ)
pki and kgci=======⇒

kgdi==⇒
Perform (t, n)-VSS share of ui: Qi ← Open(kgci, kgdi)

pi(X) = ui +
∑t
k=1 ai,kX

k mod q s.t. Qi = uiP
Denote {σi,j := pi(j)}j∈[n] Q =

∑n
i=1Qi

and {Vi,k := ai,kP}k∈[t]
Send σi,j to Pj−−−−−−−−−−→
{Vi,k}k∈[t]
=======⇒

{σk,i}k are additive shares of xi :=
∑
k∈[n] pk(i)

where {xi}i∈[n] are (t, n) Shamir shares of x.

πkg,i := ZKPoKXi{(xi) : Xi = xiP}
πkg,i←−→

Fig. 4: Threshold Key Generation

collaborate to signm. Assuming |S| = t one can convert the (t, n) shares {xi}i∈[n]
of x into (t, t) shares {wi}i∈S of x using the appropriate Lagrangian coefficients.
Since the Xi = xi · P and Lagrangian coefficients are public values, all parties
can compute {Wi := wiP}i∈S . We here describe the steps of the algorithm. A
global view of the interactions is also provided in Fig. 5.

Phase 1: Each party Pi samples ki, γi
$←− Z/qZ and ri

$←− [Ã] uniformly at random.
It computes cki ← Enc(pki, ki; ri), a ZKAoK πi that the ciphertext is well
formed, and [ci, di]← Com(γiP ). Each Pi broadcasts (ci, cki , πi).

Phase 2: Intuition: denoting k :=
∑
i∈S ki and γ :=

∑
i∈S γi it holds that kγ =∑

i,j∈S kjγi and kx =
∑
i,j∈S kjwi. The aim of Phase 2 is to convert the

multiplicative shares kj and γi of (kjγi) (resp. kj and wi of (kjwi)) into ad-
ditive shares αj,i+βj,i = kjγi (resp. µj,i+νj,i = kjwi). Phase 2 is performed
peer-to-peer between each pair {(Pi, Pj)}i6=j, s.t. at the end of the phase, Pi
knows {αi,j , βj,i, µi,j , νj,i}j∈S,j 6=i.
Each peer-to-peer interaction proceeds as follows:

(a) Pi samples βj,i, νj,i
$←− Z/qZ, and computes Bj,i := νj,i · P . It uses the

homomorphic properties of the encryption scheme and the ciphertext
ckj broadcast by Pj in Phase 1 to compute ckjγi and ckjwi : encryptions
under pkj of kjγi − βj,i and kjwi − νj,i respectively.

(b) Pi sends (ckjγi , ckjwi , Bj,i) to Pj , who decrypts both ciphertexts to re-
cover respectively αj,i and µj,i.

(c) Since Wi is public, Pj verifies that Pi used the same share wi as that
used to compute the public key Q by checking µj,i ·P +Bj,i. If the check
fails, Pj aborts.

Pi computes δi := kiγi+
∑
j 6=i(αi,j +βj,i) and σi := kiwi+

∑
j 6=i(µi,j +νj,i).

Phase 3: Each Pi broadcasts δi. All players compute δ :=
∑
i∈S δi.
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Pi Phase 1 All players {Pj}j 6=i
ki, γi

$←− Z/qZ

ri
$←− [Ã]

cki ← Enc(pki, ki; ri)

[ci, di]← Com(γiP )
ci,cki===⇒ if a proof fails, abort

πi := ZKAoKpki,cki
{(ki, ri) : ((pki, cki); (ki, ri)) ∈ REnc}

πi←−−−−→
Pi Phase 2 Pj

βj,i, νj,i
$←− Z/qZ

Bj,i := νj,i · P
cβj,i ← Enc(pkj ,−βj,i)
cνj,i ← Enc(pkj ,−νj,i)

ckjγi ← EvalAdd(EvalScal(ckj , γi), cβj,i)

ckjwi ← EvalAdd(EvalScal(ckj , wi), cνj,i)
ckjγi

,ckjwi
,Bj,i

−−−−−−−−−−−→
αj,i ← Dec(skj , ckjγi)
µj,i ← Dec(skj , ckjwi)

If µj,i · P +Bj,i 6= kj ·Wi then abort

δi := kiγi +
∑
j 6=i(αi,j + βj,i)

σi := kiwi +
∑
j 6=i(µi,j + νj,i)

Pi Phase 3 All players {Pj}j 6=i
δi====⇒ δ =

∑
i∈S δi = kγ

Pi Phase 4 All players {Pj}j 6=i
di====⇒ Γi := Open(ci, di)= γiP

πγi := ZKPoKΓi{(γi) : Γi = γiP}
πγi←−−−−→ if a proof fails, abort

R := δ−1(
∑
i∈S Γi) and r := H ′(R)

Pi Phase 5 All players {Pj}j 6=i
si := mki + rσi

`i, ρi
$←− Z/qZ

Vi := siR+ `iP and Ai := ρiP

[̂ci, d̂i]← Com(Vi, Ai)
ĉi====⇒

π̂i := ZKPoK(Vi,Ai){(si, `i, ρi) : Vi = siR+ `iP ∧Ai = ρiP}
d̂i====⇒
π̂i←−−−−→ if a proof fails, abort

V := −mP − rQ+
∑
i∈S Vi

Ui := ρiV and Ti := `iA and A :=
∑
i∈S Ai

[c̃i, d̃i]← Com(Ui, Ti)
c̃i====⇒
d̃i====⇒ if

∑
i∈S Ti 6=

∑
i∈S Ui then abort.

si====⇒ s :=
∑
i∈S si,

if (r, s) is not a valid signature, abort,
else return (r, s).

Fig. 5: Threshold signature protocol
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Phase 4: (a) Each Pi broadcasts di which decommits to Γi.
(b) Each Pi proves knowledge of γi s.t. Γi = γiP . All players compute R :=

δ−1(
∑
i∈S Γi) = k−1 · P and r := H ′(R) ∈ Z/qZ.

Phase 5: (a) Each Pi computes si = kim + σir, samples `i, ρi
$←− Z/qZ uniformly at

random, computes Vi := siR+`iP ;Ai := ρiP ; and [̂ci, d̂i]← Com(Vi, Ai).
Each Pi broadcasts ĉi.

(b) Each party Pi decommits by broadcasting d̂i along with a NIZKPoK of
(si, `i, ρi) s.t. (Vi = siR + `iP ) ∧ (Ai = ρiP ). It checks all the proofs it
gets from other parties. If a proof fails Pi aborts.

(c) All parties compute V := −mP − rQ +
∑
i∈S Vi, A :=

∑
i∈S Ai. Each

party Pi computes Ui := ρiV , Ti := `iA and the commitment [c̃i, d̃i] ←
Com(Ui, Ti). It then broadcasts c̃i.

(d) Each Pi decommits to (Ui, Ti) by broadcasting d̃i.
(e) All players check

∑
i∈S Ti =

∑
i∈S Ai. If the check fails they abort.

(f) Each Pi broadcasts si s.t. all players can compute s :=
∑
i∈S si. They

check that (r, s) is a valid EC-DSA signature, if so, they output (r, s),
otherwise they abort the protocol.

4 Security

The security proof is a reduction to the unforgeability of standard EC-DSA. We
demonstrate that if there exists a PPT algorithm A which breaks the threshold
EC-DSA protocol of Fig. 4 and 5, then we can construct a forger F which
uses A to break the unforgeability of standard EC-DSA. To this end F must
simulate the environment of A, so that A’s view of its interactions with F are
indistinguishable from A’s view in a real execution of the protocol. Precisely,
we show that if an adversary A corrupts {Pj}j>1, one can construct a forger
F simulating P1 s.t. the output distribution of F is indistinguishable from A’s
view in an interaction with an honest party P1 (all players play symmetric roles
in the protocol so it is sufficient to provide a simulation for P1). F gets as input
an EC-DSA public key Q, and has access to a signing oracle for messages of its
choice. After this query phase, F must output a forgery, i.e. a signature σ for a
message m of its choice, which it did not receive from the oracle.

4.1 Simulating the key generation protocol

On input a public key Q := x · P , the forger F must set up in its simulation
with A this same public key Q (w/o knowing x). This will allow F to subse-
quently simulate interactively signing messages with A, using the output of its’
(standard) EC-DSA signing oracle.

The main differences with the proof of [GG18] arise from the fact F knows
it’s own decryption key sk1, but does not extract that of other players. As in
[CCL+19], the encryption scheme we use results from hash proof systems, whose
security is statistical, thus the fact F uses its’ secret key does not compromise
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security, and we can still reduce the security of the protocol to the smoothness of
the CL scheme. However as we do not prove knowledge of secret keys associated
to public keys in the key generation protocol, F can not extract the decryption
keys of corrupted players. The simulation is described below.

Simulating P1 in IKeyGen
1. F receives a public key Q from it’s EC-DSA challenger.
2. Repeat the following steps (by rewinding A) until A sends correct decom-

mitments for P2, . . . , Pn on both iterations.
3. F selects a random value u1 ∈ Z/qZ, computes [kgc1, kgd1] ← Com(u1P )

and broadcasts kgc1. F receives {kgcj}j∈[n],j 6=1.
4. F broadcasts kgd1 and receives {kgdj}j∈[n],j 6=1. For i ∈ [n], let Qi ←

Open(kgci, kgdi) be the revealed commitment value of each party. Each
player performs a (t, n) Feldman-VSS of the value Qi, with Qi as the free
term in the exponent.

5. F samples a CL encryption key pair (pk1, sk1)
$←− KeyGen(1λ).

6. F broadcasts pk1 and receives the public keys {pkj}j∈[n],j 6=1.
7. F rewinds A to the decommitment step and

– equivocates P1’s commitment to k̂gd so that the committed value re-
vealed is now Q̂1 := Q−

∑n
j=2Qj .

– simulates the Feldman-VSS with free term Q̂1.
8. A will broadcast the decommitments {k̂gdj}j∈[n],j 6=1. Let {Q̂j}j=2...n be the

committed value revealed by A at this point (this could be ⊥ if A refuses
to decommit).

9. All players compute the public signing key Q̂ :=
∑n
i=1 Q̂i. If any Qi = ⊥ in

the previous step, then Q̂ := ⊥.
10. Each player Pi adds the private shares it received during the n Feldman VSS

protocols to obtain xi (such that the xi are a (t, n) Shamir’s secret sharing
of the secret key x =

∑
i ui). Note that due to the free term in the exponent,

the values Xi := xi · P are public.
11. F simulates the ZKPoK that it knows x1 corresponding to X1, and for j ∈

[n], j 6= 1, F receives from A a Schnorr ZKPoK of xj such that Xj := xj ·P .
F can extract the values {xj}j∈[n],j 6=1 from these ZKPoK.

4.2 Simulating the signature generation

On input m, F must simulate the interactive signature protocol from A’s view.
We define k̃i := Dec(ski, cki), which F can extract from the proofs Π, and

k̃ :=
∑
i∈S k̃i. Let k ∈ Z/qZ denote the value s.t. R := k−1 ·P in Phase 4 of the

signing protocol. Notice that if any of the players mess up the computation of
R by revealing wrong shares δi, we may have k 6= k̃ mod q. As in [GG18], we
distinguish two types of executions of the protocol: an execution where k̃ = k
mod q is said to be semi-correct, whereas an execution where k̃ 6= k mod q is
non semi-correct. Both executions will be simulated differently. At the end of
Phase 4, when both simulations diverge, F knows k and k̃, so it can detect if it
is in a semi-correct execution or not and chose how to simulate P1.
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We point out that F does not know the secret share w1 of x associated with
P1, but it knows the shares {wj}j∈S,j 6=1 of all the other players. Indeed F can
compute these from the values {xj}j∈[n],j 6=1 extracted during key generation. It
also knows W1 = w1 · P from the key generation protocol. Moreover F knows
the encryption keys {pkj}j∈S of all players, and it’s own decryption key sk1.

In the following simulation F aborts whenever A refuses to decommit any of
the committed values, fails a ZK proof, or if the signature (r, s) does not verify.

Simulating P1 in ISign

Phase 1: As in a real execution, F samples k1, γ1
$←− Z/qZ and r1

$←− [Ã] uni-
formly at random. It computes ck1 ← Enc(pk1, k1; r1), the associated ZKAoK
Π1, and [c1, d1] ← Com(γ1P ). It broadcasts (c1, ck1 , Π1) before receiving
{cj , ckj , Πj}j∈S,j 6=1 from A. F checks the proofs are valid and extracts the

encrypted values {kj}j∈S,j 6=1 from which it computes k̃ :=
∑
i∈S ki.

Phase 2: (a) For j ∈ S, j 6= 1, F computes βj,1, ckjγ1 as in a real execution of the
protocol, however since it only knows W1 = w1P (but not w1), it samples

a random µj,1
$←− Z/qZ and sets ckjw1

← Enc(pkj , µj,1), and Bj,1 :=
kj ·W1 − µj,1 · P . F then sends (ckjγ1 , ckjw1

, Bj,1) to Pj .
(b) When it receives (ck1γi , ck1wj , B1,j) from Pj , it decrypts as in a real

execution of the protocol to obtain α1,j and µ1,j

(c) F verifies that µ1,jP + B1,j = k1Wj . If so, since F also knows k1 and
wj , it computes ν1,j = k1wj − µ1,j mod q

F computes δ1 := k1γ1+
∑
k 6=1 α1,k+

∑
k 6=1 βk,1. However F cannot compute

σ1 since it does not know w1, but it can compute∑
i>1

σi =
∑
i>1

(kiwi +
∑
j 6=i

µi,j + νj,i) =
∑
i>1

∑
j 6=i

(µi,j + νj,i) +
∑
i>1

kiwi

=
∑
i>1

(µi,1 + ν1,i) +
∑

i>1;j>1

kiwj

since it knows all the values {kj}j∈S , {wj}j∈S,j 6=1, it chooses the random
values µi,1 and it can compute all of the shares ν1,j = k1wj − µ1,j mod q.

Phase 3: F broadcasts δ1 and receives all the {δj}j∈S,j 6=1 from A. Let δ :=
∑
i∈S δi.

Phase 4: (a) F broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j 6=1

which decommit to {Γj}j∈S,j>1.
(b) F proves knowledge of γ1 s.t. Γ1 = γ1P , and for j ∈ S, j 6= 1, receives the

PoK of γj s.t. Γj = γjP . F extracts {γj}j∈S,j 6=1 from which it computes
γ :=

∑
i∈S γi mod q and k := δ · γ−1 mod q.

(c) If k = k̃ mod q (semi-correct execution), F proceeds as follows:
– F requests a signature (r, s) for m from its EC-DSA signing oracle.
– F computes R := s−1(m · P + r · Q) ∈ G (note that r = H ′(R) ∈

Z/qZ).
– F rewinds A to the decommitment step at Phase 4. (a) and equiv-

ocates P1’s commitment to open to Γ̂1 := δ · R −
∑
i>1 Γi. It also

simulates the proof of knowledge of γ̂1 s.t. Γ̂1 = γ̂1P . Note that
δ−1(Γ̂1 +

∑
i>1 Γi) = R.
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Phase 5: Now F knows
∑
j∈S,j 6=1 sj held by A since sj = kjm+ σjr.

• F computes s1 held by P1 as s1 := s−
∑
j∈S,j 6=1 sj .

• F continues the steps of Phase 5 as in a real execution.
(d) Else k 6= k̃ mod q (non-semi-correct), and F proceeds as follows:

– F computes R := δ−1(
∑
i∈S Γi) = k · P and r := H ′(R) ∈ Z/qZ.

– Phase 5: F does the following

• sample a random s̃1
$←− Zq.

• sample `1, ρ1
$←− Z/qZ, compute V1 := s1R + `1P ; A1 := ρ1P ;

[̂c1, d̂1]← Com(V1, A1) and send ĉ1 to A.

• receive {ĉj}j 6=1 and decommit by broadcasting d̂1. Prove knowl-
edge of (s1, `1, ρ1) s.t. (V1 = s1R+ `1P ) ∧ (A1 = ρ1P ).

• For j ∈ S, j 6= 1, F receive d̂j and the ZKPoK of (sj , `j , ρj) s.t.
Vj = sjR+ `jP ∧Aj = ρjP .

• Compute V := −mP − rQ+
∑
i∈S Vi, A :=

∑
i∈S A1, T1 := `1A

and sample a random U1
$←− G.

• Compute [c̃1, d̃1]← Com(U1, T1) and send c̃1 to A. Upon receiv-
ing {c̃j}j 6=1 from A, broadcast d̃1 and receive the {d̃j}j 6=1.

• Now since
∑
i∈S T1 6=

∑
i∈S U1 both A and F abort.

The simulation of a semi-correct execution

Lemma 4. Assuming the strong root assumption and the C-low order assump-
tion hold for Gen; the CL encryption scheme is δs-smooth ; and the commitment
scheme is non-malleable and equivocable; then on input m the simulation either
outputs a valid signature (r, s) or aborts, and is computationally indistinguishable
from a semi-correct real execution.

Proof. The differences between the real and simulated views are the following:

1. F does not know w1. So for j > 1 it cannot compute ckjw1
as in a real

execution of the protocol. However under the strong root and C-low order
assumption in Ĝ, F can extract kj from proof Πj in Phase 1. It then samples
a random µj,1 ∈ Z/qZ, computes Bj,1 := kj ·W1 − µj,1 · P , and ckjw1

←
Enc(pkj , µj,1). The resulting view of A is identical to an honestly generated
one since both in real and simulated executions µj,1 is uniformly distributed
in Z/qZ, whileBj,1 follows the uniform distribution in G and passes the check
Bj,1+µj,1·P = kj ·W1 performed by A. Moreover ckj was proven to be a valid
ciphertext, so ciphertexts computed using homomorphic operations over ckj
and fresh ciphertexts computed with pkj follow identical distributions from
A’s view.

2. F computes Γ̂1 := δ ·R−
∑
i>1 Γi, and equivocates its commitment c1 s.t. d1

decommits to Γ̂1. Let us denote γ̂1 ∈ Z/qZ the value s.t. Γ̂1 = γ̂1P , where
γ̂1 is unknown to F, but the forger can simulate the ZKPoK of γ̂1.
Let us further denote k̂ ∈ Z/qZ the randomness (unknown to F) used by

its’ signing oracle to produce (r, s). It holds that δ = k̂(γ̂1 +
∑
j∈S,j>1 γj).
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Finally, let us denote k̂1 := k̂ −
∑
j∈S,j>1 kj .

Since δ was made public in Phase 3, by decommiting to Γ̂1 = γ̂1P instead
of Γ1 = γ1P , F is implicitly using k̂1 6= k1, even though A received an
encryption of k1 in Phase 1. However, from the smoothness of the CL scheme,
and the hardness of the HSM problem, this change is unnoticeable to A.

Claim. If the CL encryption scheme is δs-smooth and the HSM problem is
δHSM-hard, then no probabilistic polynomial time adversary A – interacting
with F – can notice the value of k1 in the computation of R being replaced
by the (implicit) value k̂ with probability greater than 2δHSM + 3/q + 4δs.

Proof. To see this consider the following sequence of games. We denote Ei
the probability A outputs 1 in Gamei.
Game0 to Game1. F uses the secret key sk1 instead of the public key pk1 and
r1 to compute ck1 ← (u1, u

sk1
1 fk1) where u1 = gr1q . Both games are perfectly

indistinguishable from A’s view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. In Game2 one replaces the first element of ck1 (in Game1
this is u1 ∈ Gq) with ũ1 ∈ G\Gq. There exists a unique r1 ∈ Z/sZ and
b1 ∈ Z/qZ such that ũ1 = gr1q f

b1 . And ck1 = (ũ1, ũ
sk1
1 fk1). Under the δHSM-

hardness of HSM both games are indistinguishable:

|Pr[E2]− Pr[E1]| 6 δHSM.

Game2 to Game3. In Game3 the points Q = x · P and R = k̂−1 · P come
from the EC-DSA oracle, while in Game2 they are computed as in the real
protocol. As a result, the value k1 encrypted in ck1 is unrelated to k̂. Let us

denote k̂1 := k̂−
∑
j>1 kj , this is the value that – if used by F instead of k1

– would lead to the joint computation of R = k̂−1P .
To demonstrate that Game2 and Game3 are indistinguishable from A’s view,
we start by considering a fixed ŝk1 ∈ Z satisfying the following equations:{

ŝk1 ≡ sk1 mod $,

ŝk1 ≡ sk1 + b1
−1(k1 − k̂1) mod q,

where $ is the group exponent of Ĝ (cf. Section 2.3), such that the order s of
gq divides $. Note that the smoothness of the CL encryption scheme ensures

that such a ŝk1 exists (it is not necessarily unique). We can now see that in

Game3, ck1 is an invalid encryption of both k̂1 and of k1, for respective secret

keys ŝk1 and sk1, but for the same public key pk1, indeed:

ck1 = (ũ1, ũ
sk1
1 fk1) = (gr1q f

b1 , (gr1q f
b1)sk1 · fk1)

= (gr1q f
b1 , pkr11 f

ŝk1·b1+k̂1) = (ũ1, ũ
ŝk1
1 f k̂1).
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Adversary A receives the point Q, the encryption key pk1 = gsk1q , and ck1
from F (at this point A view is identical to that in Game2). Now A corrupt-
ing Pj computes ck1γj which we denote cα = (uα, eα), and ck1wj which we
denote cµ = (uµ, eµ). A then sends cα and cµ to F. The difference between
Game2 and Game3 appears now in how F attempts to decrypt cα and cµ. In

Game2 it would have used ŝk1, whereas in Game3 it uses sk1.

Notation. We denote α (resp. µ) the random variable obtained by decrypting
cα (resp. cµ) (received in Game3) with decryption key sk1; we denote α′ (resp.
µ′) the random variable obtained by decrypting cα (resp. cµ) (received in

Game3) with decryption key ŝk1; we introduce a hypothetical Game3
′, which

is exactly as Game3, only one decrypts cα (resp. cµ) (received in Game3) with

decryption key ŝk1, thus obtaining α′ (resp. µ′). Moreover in Game 3′ the

check performed on the curve is ‘If µ′ · P +B1,j 6= k̂1 ·Wj then abort’.

Observation. The view of A in Game2 and in Game3
′ is identical. By demon-

strating that the probability A’s view differs when F uses α, µ in Game3
from when it uses α′, µ′ in Game3

′ is negligible, we can conclude that A

cannot distinguish Game2 and Game3 except with negligible probability.
The smoothness of the CL encryption scheme tells us that given pk1, which
fixes (sk1 mod s), the value of (sk1 mod q) remains δ-close to the uniform
distribution modulo q. In particular this ensures that A’s view of α and α′

are δ-close. Indeed, A receives an invalid encryption of k1, which information
theoretically masks k1. At this point A’s view of k1 is that of a random
variable δ-close to the uniform distribution modulo q. A then computes cα
which it sends to F. Finally A receives either (a one way function of) k1,
or (a one way function of) some random value which is unrelated to k1, and
must decide which it received.
For µ and µ′, the indistinguishability of A’s view of both random variables
is a little more delicate, since A gets additional information from the check
on the curve performed by F, namely in Game3 if µ ·P +B1,j 6= k1 ·Wj the
simulator aborts. We call the output of this check test. And in Game3

′, if
µ′ ·P +B1,j 6= k̂1 ·Wj the simulator aborts. We call the output of this check
test′. Notice that if test = test′, both games are δs-close from A’s view (the
only change is in the ciphertext ck1). Let us bound the probability p that
test 6= test′. This will allow us to conclude that

|Pr[E3]− Pr[E2]| ≤ p + δs.

Let us consider the ciphertext cµ = (uµ, eµ) ∈ Ĝ× Ĝ sent by A. There exist

unique zµ ∈ Ĝq, yµ ∈ F such that uµ = zµyµ. Moreover there exists a unique
bµ ∈ Z/qZ such that yµ = f bµ .

Since sk1 = ŝk1 mod $, µ =⊥ if and only if µ′ =⊥, and this occurs when

eµ · z−sk1µ = eµ · z−ŝk1µ /∈ F . In this case Game3 is identical to Game3
′ from

A’s view (F aborts in both cases). We hereafter assume decryption does not
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fail, which allows us to adopt the following notation eµ = zsk1µ fhµ = z ŝk1µ fhµ

with hµ ∈ Z/qZ. We thus have:

µ := logf

(
eµ

usk1µ

)
,

= hµ − bµsk1 mod q

and µ′ := logf

(
eµ

uŝk1µ

)
.

= hµ − bµŝk1 mod q
Thus we have

µ− µ′ ≡ bµ(ŝk1 − sk1) ≡ bµb1−1(k1 − k̂1) mod q.

We consider three cases:
(a) µ = µ′ mod q. This may happen for two reasons:

i. If k1 ≡ k̂1 mod q, then Game2 and Game3 are identical.
ii. Else bµ = 0 mod q, i.e. cµ is a valid ciphertext. Since we ruled

out k1 ≡ k̂1 mod q in the previous case, if test=true, necessarily
test’=false, and vis versa. Both cases being symmetric, we consider
the case test=true. From A’s view, before outputting cµ the only
fixed information relative to k1 is that contained ck1 = (gr1q f

b1 ,

(gr1q f
b1)sk1fk1). This fixes π0 := b1 · sk1 + k1 mod q. However from

A’s view, given pk1, the random variable sk1 follows a distribution
δs-close to U(Z/qZ). Thus k1 also follows a distribution δs-close to

U(Z/qZ). Now suppose A returns cµ = (zµ, z
sk1
µ fµ) where zµ ∈ Ĝq.

If test = true, then µ ·P +B1,j = k1Wj , and A has fixed the correct
value of k1, this occurs with probability 6 1/q + δs.

(b) µ 6≡ µ′ mod q but µ − µ′ = wj(k1 − k̂1) mod q, i.e. bµ = wjb1 mod q.
This results in F aborting on µ′ in Game2 if and only if F aborts on µ in
Game3. This occurs if the adversary performs homomorphic operations
on ck1 , and the difference between the random variables is that expected
by F. Indeed:

µ = k1wj − ν1,j ⇔ µ′ + wj(k1 − k̂1) = k1wj − ν1,j ⇔ µ′ = k̂1wj − ν1,j .

(c) (µ 6≡ µ′ mod q) and (µ−µ′ 6≡ wj(k1− k̂1) mod q). We here consider three
sub-cases:

i. Either test = test′ = false; this results in identical views for A.
ii. Either test′ = true; this means that:

µ′ = k̂1wj − ν1,j mod q.

Now since µ− µ′ 6= wj(k1 − k̂1) mod q necessarily test = false. Con-
sequently if this event occurs, A’s view differs. Let us prove that in-
formation theoretically, this can not happen with probability greater
than 1/q+δs. For clarity, we first recall the expression of ck1 received
by A:

ck1 = (gr1q f
b1 , pkr11 f

ŝk1b1+k̂1)

30



where b1 6= 0 mod q. We also recall the expression of cµ, sent by A

to F. Since cµ decrypts to µ′ with decryption key ŝk1, we can write:

cµ = (zµf
bµ , z ŝk1µ fµ

′+bµ ŝk1).

Let us denote π0 := ŝk1b1 + k̂1 mod q and π1 := µ′ + bµŝk1. For this

case to occur, it must hold that µ′ = k̂1wj − ν1,j mod q, so

π1 = k̂1wj − ν1,j + bµŝk1 mod q.

Substituting ŝk1 for (π0 − k̂1)b−11 yields:

π1 = k̂1wj − ν1,j + bµb
−1
1 (π0 − k̂1) mod q

⇔ π1 + ν1,j − bµb−11 π0 = k̂1(wj − bµb−11 ) mod q

As we dealt with bµ = wjb1 mod q in case (b), here wj − bµb−11 is
invertible mod q so we can write:

k̂1 = (π1 + ν1,j − bµb−11 π0)(wj − bµb−11 )−1 mod q (1)

where π0, b1 are fixed by ck1 ; π1, bµ are fixed by cµ; wj is fixed by Wj ;
and ν1,j is fixed by B1,j . So given A’s view and A’s output (B1,j and
cµ), all the terms on the right hand side of Eq. 1 are fixed. However,
given pk1, ck1 and Wj (which is all the relevant information A gets
prior to outputting cµ), the δs-smoothness of the projective hash

family ensures that k̂1 follows a distribution δs-close to U(Z/qZ). If
the current case occurs, Eq. 1 must hold, thus from being given a
view where k̂1 follows a distribution δs-close to U(Z/qZ), A succeeds
in fixing this random variable to be the exact value used by F. This
occurs with probability 6 1/q + δs.

iii. Else test = true; this means that µ = k1wj − ν1,j mod q. Since (µ−
µ′ 6= wj(k1 − k̂1) mod q) necessarily test′ fails, and A’s view differs.
Reasoning as in the previous case, but setting π0 := sk1b1+k1 mod q
and π1 := µ + bµsk1, one demonstrates that this case occurs with
probability 6 1/q + δs.

Combining the above, we get that test′ 6= test if and only if we are in case
(a) ii. (c) ii. or (c) iii., which occurs with probability 6 3(1/q + δs). Thus:

|Pr[E3]− Pr[E2]| 6 3/q + 4δs.

Game3 to Game4. In Game4, the first element u1 of ck1 is once again sampled
in Gq. Both games are indistinguishable under the hardness of HSM and:

|Pr[E4]− Pr[E3]| ≤ δHSM.

Game4 to Game5. In Game5 F uses the public key pk1 to encrypt k1. The
change here is exactly that between Game0 and Game1, both games are per-
fectly indistinguishable, and:

|Pr[E5]− Pr[E4]| = 0.
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Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E6]− Pr[E0]| ≤ 2δHSM + 3/q + 4δ,

which concludes the proof of the claim.

3. We now tackle the third and last difference between the real and simulated
executions of the signature protocol. Justifying that this difference is unno-
ticeable to the adversary will allow us to conclude the proof of Lemma 4.
Notice that F does not know σ1, and thus cannot compute s1 as in a real ex-
ecution. Instead it computes s1 = s−

∑
j∈S,j 6=1 sj = s−

∑
j∈S,j 6=1(kjm+σjr)

where (implicitly) s = k̂(m+ rx). So s1 = k̂1m+ r(k̂x−
∑
j∈S,j 6=1 σj), and

F is implicitly setting σ̂1 := k̂x−
∑
j∈S,j 6=1 σj s.t. k̂x = σ̂1 +

∑
j∈S,j 6=1 σj .

We note that, since the real execution is semi correct, the correct shares
of k for the adversary are the ki that the simulator knows and R = k̂P =
(k̂1 +

∑
j∈S,j 6=1 kj). Therefore the value s1 computed by F is consistent with

a correct share for P1 for a valid signature (r, s), which makes Phase 5 in-
distinguishable from the real execution to the adversary.
In particular, observe that if none of the parties aborted during Phase 2,
the output shares are correct. So if A here uses the values {σj}j∈S,j>1 as
computed in a real execution of the protocol, it expects the signature gen-
eration protocol to output a valid signature. And indeed with F’s choice of
σ̂1 and k̂1, the protocol will terminate, outputting the valid signature (r, s)
it received from its signing oracle. Conversely, if A attempts to cheat in
Phase 5 by using a different set of σj ’s than those prescribed by the proto-
col, the check

∑
i∈S Ti =

∑
i∈S Ui will fail, and all parties abort, as in a real

execution of the protocol.

4.3 Non semi-correct executions

Lemma 5. Assuming the strong root assumption and the C-low order assump-
tion hold for Gen; the DDH assumption holds in G; and the commitment scheme
is non-malleable and equivocable; then the simulation is computationally indis-
tinguishable from a non-semi-correct real execution.

Proof. We construct three games between the simulator F (running P1) and the
adversary A (running all other players). In G0, F runs the real protocol. The
only change between G0 and G1 is that in G1, F chooses U1 as a random group
element. In G2 the simulator F runs the simulation described in Sec. 4.2.
Indistinguishability of G0 and G1. We prove that if there exists an adversary
A0 distinguishing games G0 and G1, A0 can be used to break the DDH assump-
tion in Ĝ. Let Ã = a ·P , B̃ = b ·P , C̃ = c ·P be the DDH challenge where c = ab
or c is random in Zq. The DDH distinguisher F0 runs A0, simulating the key

generation phase s.t. Q = B̃. It does so by rewinding A0 in step 7 of the IKeyGen
simulation and changing the decommitment of P1 to Q1 := B̃ −

∑
j∈[n],j 6=1Qj .

F0 also extracts the values {xj}j∈[n],j 6=1 chosen by A0 from the ZKPoK of step

32



11 of the IKeyGen simulation. Note that at this point Q = B̃ and F0 knows xi
and the decryption key sk1 matching pk1, but not b and therefore not x1.

Next F0 runs the signature generation protocol for a non-semi-correct execu-
tion. Recall that S ⊆ [n] denotes the subset of players collaborating in ISign. De-
noting t := |S|, the (t, n) shares {xi}i∈[n] are converted into (t, t) shares {wi}i∈S
as per the protocol. Thus b =

∑
i∈S wi where F0 knows {wj}j∈S,j 6=1 but not

w1. We denote wA :=
∑
j∈S,j 6=1 wj (which is known to F0) s.t. w1 = b−wA. F0

runs the protocol normally for Phases 1, 2, 3, 4. It extracts the values {γj}j∈S,j 6=1

from the proof of knowledge in Phase 4, and knows γ1 since it ran P1 normally.
Therefore F0 knows k such that R = k−1 ·P since k = (

∑
i γi)

−1δ mod q. It also
knows k1 (chosen normally according to the protocol) and {kj}j∈S,j 6=1 which it
can extract from the proofs in Phase 1.

Before moving to the simulation of Phase 5, let’s look at Phase 2 of the
protocol for the computation of the shares σi. We note that since F0 knows
sk1 it also knows all the shares µ1,j since it can decrypt the ciphertext ck1wj it
receives from Pj . However F0 does not know w1 therefore it sends the encryption
of a random µj,1 to Pj and sets (implicitly) νj,1 = kjw1 − µj,1. At the end the
share σ1 held by P1 is

σ1 = k1w1 +
∑

j∈S,j 6=1

(µ1,j + νj,1) = k̃w1 +
∑

j∈S,j 6=1

(µ1,j − µj,1) where k̃ =
∑
i∈S

ki.

Recall that since this is a non-semi-correct execution k̃ 6= k where R = k−1 · P .
Since w1 = b−wA we have σ1 = k̃b+µ1 where µ1 =

∑
j∈S,j 6=1(µ1,j−µj,1)− k̃wA

with µ1, k̃ known to F0. This allows F0 to compute the correct value σ1 · P =
k̃B̃ + µ1 · P and therefore the correct value of s1 ·R as:

s1 ·R = (k1m+ rσ1) ·R = k−1(k1m+ rσ1) · P

= k−1(k1m+ rµ1) · P + k−1(k̃r) · B̃ = µ̂1 · P + β̂1 · B̃

where µ̂1 = k−1(k1m+ rµ1) and β̂1 = k−1k̃r are known to F0.
In the simulation of Phase 5, F0 selects a random `1 and sets V1 := s1·R+`1·P,

A1 = ρ1 ·P = Ã = a ·P . It simulates the ZK proof (since it does not know ρ1 or
s1). It extracts si, `i, ρi from A0’s proofs s.t. Vi = si ·R+`i ·P = k−1si ·P +`i ·P
and Ai = ρi · P . Let sA =

∑
j∈S,j 6=1 k

−1sj . Note that, substituting the above
relations (and setting ` =

∑
i∈S `i), we have: V = −m · P − r · Q +

∑
i∈S Vi =

` · P + s1 ·R+ (sA −m) · P − r ·Q. Moreover Q = B̃ so −r ·Q = −r · B̃, and:

V = ` · P + µ̂1 · P + β̂1 · B̃ + (sA −m) · P − r · B̃ = (`+ θ) · P + κ · B̃

where F0 knows θ = µ̂1 + sA −m and κ = β̂1 − r. Note that for executions that
are not semi-correct κ 6= 0.

Next F0 computes T1 := `1 · A (correctly), but computes U1 as U1 := (` +
θ) · Ã + κ · C̃, using this U1 it continues as per the real protocol and aborts on
the check

∑
i∈S Ti =

∑
i∈S Ui.
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Observe that when C̃ = ab · P , by our choice of a = ρ1 and b = x, we have
that U1 = (` + θ)ρ1 · P + κ · ρ1B̃ = ρ1 · V as in Game G0. However when C̃ is
a random group element, U1 is uniformly distributed as in G1. Therefore under
the DDH assumption G0 and G1 are indistinguishable.
Indistinguishability of G1 and G2. In G2, F broadcasts a random Ṽ1 =
s̃1 · R + `1 · P . This is indistinguishable from the correct V1 = s1 · R + `1 · P
thanks to the mask `1 ·P which (under the DDH assumption) is computationally
indistinguishable from a random value, since the adversary only knows A1. To be
precise, let Ã = (a− δ) ·P, B̃ = b ·P and C̃ = ab ·P be the DDH challenge where
δ is either 0 or random in Zq. The simulator proceeds as in G0 (i.e. the regular

protocol) until Phase 5. In Phase 5 F0 broadcasts V1 = s̃1 ·R+ Ã and A1 = B̃.
It simulates the ZKPoK (it does not know `1 or ρ1), and extracts si, `i, ρi from
the adversary s.t. Vi = si ·R+ `i · P = k−1si · P + `i · P and Ai = ρi · P .

Next F0 samples a random U1 and sets T1 := C̃ +
∑
j∈S,j 6=1 ρj · Ã before

aborting. Note that when Ã = a · P , we implicitly set a = `1 and b = ρ1
and have V1 = s1 · R + `1 · P and T1 = `1 · A as in Game G1. However when
Ã = a·P−δ·P with a random δ, then this is equivalent to having V1 = s̃1·R+`1·P
and T1 = `1 ·A with a randomly distributed s̃1 as in Game G2. Therefore under
the DDH assumption G1 and G2 are indistinguishable.

4.4 Concluding the proof

As mentioned at the beginning of Sec. 4.2 the forger F simulating A’s environ-
ment can detect whether we are in a semi-correct-execution or not, i.e. whether
A decides to be malicious and terminate the protocol with an invalid signature.
Consequently F always knows how to simulate A’s view and all simulations are
indistinguishable of real executions of the protocol. Moreover if A, having cor-
rupted up to t parties in the threshold EC-DSA protocol, outputs a forgery, since
F set up with A the same public key Q as it received from its’ EC-DSA chal-
lenger, F can use this signature as its own forgery, thus breaking the existential
unforgeability of standard EC-DSA.

Denoting Advtu-cma
Π,A , A’s advantage in breaking the existential unforgeability

of our threshold protocol, and Adveu-cma
ecdsa,F the forger F’s advantage in break-

ing the existential unforgeability of standard EC-DSA, from Lemmas 4 and 5
it holds that if the DDH assumption holds in G; the strong root assumption
and the C-low order assumption hold for Gen; the CL encryption scheme is
ind-cpa-secure; and the commitment scheme is non-malleable and equivocable
then: |Adveu-cma

ecdsa,F − Advtu-cma
Π,A | ≤ negl(λ). Under the security of the EC-DSA sig-

nature scheme, Adveu-cma
ecdsa,F must be negligible, which implies that Advtu-cma

Π,A should
too, thus contradicting the assumption that A has non-negligible advantage of
forging a signature for our protocol. We can thus state the following theorem,
which captures the security of the protocol.

Theorem 4. Assuming standard EC-DSA is an existentially unforgeable signa-
ture scheme; the DDH assumption holds in G; the strong root assumption and
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the C-low order assumption hold for Gen; the CL encryption scheme is ind-cpa-
secure; and the commitment scheme is non-malleable and equivocable, then the
(t, n)-threshold EC-DSA protocol of Fig. 4 and 5 is an existentially unforgeable
threshold signature scheme.

5 Further improvements

5.1 An improved ZKPoK which kills low order elements.

We here provide a proof of knowledge of discrete logarithm in a group of un-
known order. Traditionally, if one wants to perform such a proof, the challenge
set must be binary, which implies expensive protocols as the proof must be re-
peated many times to achieve a satisfying (non computational) soundness error.
Here using what we call the lowest common multiple trick, we are able to signif-
icantly increase the challenge set, and thereby reduce the number of repetitions
required of the proof. We first present the resulting proof, before providing two
applications: one for the CL.ISetup protocol of Sec. 3.2, and another for the two
party EC-DSA protocol of [CCL+19]. Throughout this subsection we denote
y := lcm(1, 2, 3, . . . , 210).

The lowest common multiple trick. For a given statement h, the proof does not
actually prove knowledge of the Dlog of h, but rather of hy. Precisely, the protocol
of Fig. 6 is a zero knowledge proof of knowledge for the following relation:

Rlcm−DL := {(h, gq); z | hy = gzq}.

P (x, h := gxq ) public: gq V (h)

r
$←− [0, s̃ · 290]

t := grq
t−−−−−−−−−−−→

k
$←− {0, 1}10

k←−−−−−−−−−−−−
u := r + kx ∈ Z

u−−−−−−−−−−−−→
Check guq = t · hk

Fig. 6: ZKPoK of z s.t. hy = gzq where y = lcm(1, 2, 3, . . . , 210)

Correctness. If h = gxq , then guq = gr+kxq = grq · (gxq )k = t · hk and V accepts.
Special soundness. Suppose that for a committed value t, prover P ∗ can an-
swer correctly for two different challenges k1 and k2. We call u1 and u2 the
two answers. Let k := k1 − k2 and u := u1 − u2, then since gu1

q = t · hk1 and

gu2
q = t · hk2 , it holds that guq = hk. By the choice of the challenge set, y/k is

an integer and so (guq )y/k = (hk)y/k = hy. Denoting z := uy/k, P ∗ can compute
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z such that gzq = hy, so if P can convince V for two different challenge values,
then P ∗ can compute a z satisfying the relation.

Zero knowledge. Given h a simulator can sample k
$←− {0, 1}10 and u

$←−
[0, s̃ · (290 + k)], compute t := guq · h−k, such that distribution of the resulting
transcript (h, t, k, u) is statistically close to those produced by a real execution
of the protocol (this holds since an honest prover samples x from [s̃ · 240], the
challenge space is of size 210 and r is sampled from a set of size s̃ · 290, which
thus statistically hides kx).

Application to the CL interactive set up. In the ISetup protocol of Sec. 3.2, in
Step 2. 2. (c) each Pi computes πi := ZKPoKgi{(ti) : gi = ĝtiq }. In fact it suffices
for them to compute ZKPoKgi{(zi) : gyi = ĝziq }, where y := lcm(1, 2, 3, . . . , 210)
using the lcm trick. Then in Step 2. 3. all players compute gq := (

∏n
j=1 gj)

y. The
resulting gq has the required properties to be plugged into the IKeyGen protocol.
We use this modified interactive set up for our efficiency comparisons of Sec. 6.

Application to the [CCL+19] interactive key generation. Castagnos et al. re-
cently put forth a generic two party EC-DSA protocol from hash proof systems
[CCL+19]. They rely on a ZKPoK for the following relation:

RCL−DL := {(pk, (c1, c2), Q); (x, r) | c1 = grq ∧ c2 = fxpkr ∧Q = xP}.

The interactive proof they provide uses binary challenges, consequently in order
to achieve a satisfying soundness error of 2−λ, the proof must be repeated λ
times. Using the lcm trick one can divide by 10 this number of rounds, though
we obtain a ZKPoK for the following relation:

RCL−lcm := {(pk, (c1, c2), Q); (x, z) | cy1 = gzq ∧ c
y
2 = fx·ypkz ∧Q = xP}.

In their protocol this ZKPoK is computed by Alice, who sends this proof to Bob
s.t. he is convinced her ciphertext c = (c1, c2) is well formed. Bob then performs
some homomorphic operations on c and sends the result back to Alice. Now since
with the proof based on the lcm trick, Bob is only convinced that cy is a valid
ciphertext, Bob raises c to the power y before performing his homomorphic
operations8. When Alice decrypts she multiplies the decrypted value by y−1

mod q (this last step is much more efficient than Bob’s exponentiation).

Remark 2. The size of the challenge set C from which k is sampled determines
the number of times the protocol needs to be repeated in order to achieve a
reasonable soundness error. Consequently it is desirable to take C as large as
possible. However, at the end of the protocol, V is only convinced that hy is
well formed, where y = lcm(1, . . . , |C|). So if V wants to perform operations
on h which are returned to P , without risking leaking any information to P , V
must raise h to the power y before proceeding. When plugged into the [CCL+19]
two-party EC-DSA protocol this entails raising a ciphertext to the power y at

8 For correctness Bob also needs to multiply the signed message m′ by y mod q,
during the signature algorithm.
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the end of the key generation phase. So |C| must be chosen small enough for
this exponentiation to take reasonable time. Hence we set C := {0, 1}10, and
y = lcm(1, . . . , 210), which is a 1479 bits integer, so exponentiating to the power
y remains efficient. To achieve a soundness error of 2−λ the protocol must be
repeated λ/10 times.

5.2 Assuming a standardised group

If we assume a standardised set up process, which allowed to provide a descrip-
tion of Ĝ, of the subgroups F and Gq and of a random generator gq of Gq,
one could completely omit the interactive set up phase for the CL encryption
scheme and have all parties use the output of this standardised process. This
significantly improves the IKeyGen protocol, as mentionned in Sec. 6.

Furthermore, assuming such a set up, we can replace the most expensive
ZKPoK in [CCL+19] by an argument of knowledge using similar techniques to
those of Sec. 3.1, and relying on the strong root and low order assumptions in
Ĝ. We detail this improvement in the following paragraph.

Efficient ZKAoK for the [CCL+19] two party protocol. Castagnos et al. re-
cently put forth a generic two party EC-DSA protocol from hash proof systems
[CCL+19]. They rely on a ZKPoK for the following relation:

RCL−DL := {(pk, (c1, c2), Q); (x, r) | c1 = grq ∧ c2 = fxpkr ∧Q = xP}.

The interactive proof they provide for this relation uses binary challenges, con-
sequently in order to achieve a satisfying soundness error of 2−λ, the proof must
be repeated λ times.

Using similar techniques to those proposed in Sec. 3.1, and relying on the
strong root and low order assumptions in Ĝ, we describe in Fig. 7 a much more
efficient ZKAoK, which can be plugged into their overall protocol so as to further
improve its’ overall computational and communication costs.

We emphasise that in order for security of this proof to hold, gq must be
a random generator of Gq. Since the set up described in [CCL+19] outputs a
deterministic gq, in order to plug the following proof in their protocol, we need
to assume some standardised set up process as mentioned in 5.2. Theorem 5
states the security of the ZKAoK for RCL−DL.

Theorem 5. Let C be the challenge set for the interactive protocol of Fig. 7,
and C := |C|. If the strong root assumption is (t′(λ), εSR(λ))-secure for Gen,
and the C-low order assumption is (t′(λ), εLO(λ))-secure for Gen, denoting ε :=
max(εSR(λ), εLO(λ)), then the interactive protocol of Fig. 7 is a computationally
convincing proof of knowledge for RCL−DL with knowledge error κ, time bound
t and failure probability ν(λ), where ν(λ) = 8ε, t(λ) < t′(λ)/448 and κ(λ) =
max(4/C, 448t(λ)/t′(λ)). If r, x ∈ [s̃ · 240] (it is so when the prover is honest),
the protocol is honest verifier statistical zero-knowledge.
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Setup:

1. (s̃, f, ĝq, Ĝ, F )← Gen(1λ, q).

2. Let Ã := s̃ · 240, sample t
$←− [Ã] and let gq := ĝtq.

Input : (r, x) and (pk, c1, c2, Q, P ) Input : (pk, c1, c2, Q, P )

r1
$←− [Ã · C · 240]

r2
$←− Z/qZ

t1 := gr1q
t2 := pkr1fr2

T := r2P
t1, t2, T−−−−−−−−−−−→ k

$←− C

k←−−−−−−−−−−−
u1 := r1 + k · r ∈ Z

u2 := r2 + k · x ∈ Z/qZ
u1, u2−−−−−−−−−−−→ Check u1 ∈ [ÃC(240 + 1)]; u2 ∈ Z/qZ

and gu1
q = t1 · (c1)k

and T + k ·Q = u2 · P
and pku1fu2 = t2 · (c2)k

Fig. 7: Zero-knowledge argument of knowledge for RCL−DL.

Proof. Completeness. If P knows r ∈ [Ã] and x ∈ Z/qZ s.t. (pk, (c1, c2), Q); (x, r) ∈
RCL−DL, and if both parties follow the protocol, one has u1 ∈ [ÃC(240 + 1)]
and u2 ∈ Z/qZ; pku1fu2 = pkr1+k·rfr2+k·x = pkr1fr2(pkrfx)k = t2 · (c2)k;
u2 · P = (r2 + k · x)P = T + k ·Q; and gu1

q = gr1+k·rq = t1 · (c1)k.
Honest verifier zero-knowledge. Given pk, c = (c1, c2) andQ a simulator can sam-

ple k
$←− [C[, u1

$←− [ÃC(240 + 1)] and u2
$←− Z/qZ, compute t1 := gu1

q · (c1)−k,

t2 := pku1 · fu2 · (c2)−k and T := u2 · P − k · Q such that the transcript
(t1, t2, T, k, u1, u2) is indistinguishable from a transcript produced by a real ex-
ecution of the protocol where V runs on input (pk, c1, c2, Q, P ).
Computational soundness. Let us analyse for which knowledge error functions
κ() the protocol of Fig. 7 satisfies the notion of soundness defined in Def. 3. Ac-
cordingly, let κ() be any knowledge error function, such that κ(λ) ≥ 4/C for all λ.
As in proof of thm. 2, consider a malicious prover P ∗. Since there are C different
challenges, if εview,P > κ(λ) ≥ 4/C, one can obtain in expected PT a situation
where, for given (t1, t2, T ), P ∗ has correctly answered two different challenges k
and k′. Let Rewind be a (probabilistic) procedure that creates k, k′, u1, u2, u

′
1, u
′
2

in this way. We call u1, u2 and u′1, u
′
2 the corresponding answers, so we get:

g
u1−u′1
q = (c1)k−k

′
; pku1−u′1fu2−u′2 = (c2)k−k

′
; and (u2 − u′2)P = (k − k′)Q.

Since k 6= k′ and q is prime, with overwhelming probability (1 − 1/q) it holds
that (k − k′) ∈ Z/qZ∗. In the following we assume this is the case9.

9 In fact in our application C < q, so this holds with probability 1.
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Assume without loss of generality that k > k′ and suppose that (k − k′)
divides (u1 − u′1) in Z. We denote:

ν1 := g
(u1−u′1)/(k−k

′)
q ·(c1)−1 and ν2 := pk(u1−u′1)/(k−k

′) ·f (u2−u′2)/(k−k
′) ·(c2)−1.

Suppose that ν1 = ν2 = 1. Moreover, V ′s check on the size of u1, u
′
1 implies that

(u1 − u′1)/(k− k′) is in the required interval. One can now easily verify that P ∗

knows ((pk, c, Q); ((u2−u′2)/(k− k′) mod q, (u1−u′1)/(k− k′))) ∈ RCL−DL, and
from k, k′, u1, u2, u

′
1, u
′
2 one can thus extract a witness for the statement.

A set of values k, k′, u1, u2, u
′
1, u
′
2 is said to be bad if k − k′ divides u1 − u′1

but ν1 6= 1 or ν2 6= 1 or if k−k′ does not divide u1−u′1. The extractor M simply
repeats calling Rewind (for this same (pk, c, Q)) until it gets a set of good values.
The analysis of the knowledge soundness with this M and the polynomial p(λ)
from the definition set to the constant of 112 proceeds exactly as in proof of
Thm. 2, such that there exists an algorithm A(P ∗) that solves either the strong

root problem for class groups with input (Ĝ, Ĝq, gq), or the low order problem in

Ĝ with probability Advκ,M,p(P
∗, λ)/8, and runs in time 448 · tP∗(k)/κ(λ) where

tP∗(k) denotes the running time of P ∗. The proof can finally be concluded as in
proof of Thm. 2.

Remark 3. In [CCL+19], when proving the security of the overall two party
EC-DSA protocol, the simulator must simulate the above proof of knowledge
without knowing (r, x), to a malicious adversary. Consequently to be used in
their protocol, the above ZKAoK must be secure against malicious adversaries.

In order to attain security against malicious verifiers V ∗, which may deviate
from the protocol, a simulator simulating P chooses a random kP ∈ C, computes
t1, t2 and T as in the proof of zero-knowledge against honest verifiers, and sends
them to V ∗, hoping that the challenge kV chosen by V ∗ will be s.t. kV = kP .
If so the simulated view of V ∗ is indistinguishable from V ∗’s view in a real
execution, if not S rewinds V ∗ and starts again until kV = kP . Consequently for
the simulation to run in polynomial time we cannot chose C arbitrarily big. In
practice one could take C := [240] and repeat the protocol λ/40 times to achieve
a satisfying soundness error of 2−λ. We emphasise that this is still considerably
better than the proof used in [CCL+19] for which C = {0, 1}.

6 Efficiency comparisons

In this section, we analyse the theoretical complexity of our protocol by count-
ing the number of exponentiations and communication of group elements. We
compare the communication cost of our protocol to that of [GG18,LN18] for
the standard NIST curves P-256, P-384 and P-521, corresponding to levels of
security 128, 192 and 256. For the encryption scheme, we start with a 112 bit
security, as in [GG18,LN18]’ implementations, but also study the case where its
level of security matches the security of the elliptic curves.

We chose to compare our work to best performing protocols using similar
construction techniques (from homomorphic encryption) which achieve the same
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functionality, i.e. (t, n)-threshold ECDSA for any t s.t. n ≥ t+1. We do not pro-
vide a comparison to [DKLs18,DKLs19] as they use OT which leads to protocols
with a much higher communication cost. Similarly, and as noted in [DKO+19] a
direct comparison to [DKO+19,SA19] is difficult as they rely on preprocessing to
achieve efficient signing, which is a level of optimisation we have not considered.
We don’t compare to [GGN16,BGG17] as [GG18] is already faster and cheaper
in terms of communication complexity.

The computed comm. cost is for our protocol as described in Sec. 3, and as
such is provably secure. Conversely the implementation which [GG18] provided
omits a number of range proofs present in their described protocol. Though this
substantially improves the efficiency of their scheme, they themselves note that
removing these proofs creates an attack which leaks information on the secret
signing key shared among the servers. They conjecture this information is limited
enough for the protocol to remain secure, however since no formal analysis is
performed, the resulting scheme is not proven secure. For a fair comparison
we estimate the comm. cost and timings of both their secure protocol and the
stripped down version. In terms of bandwidth we outperform even their stripped
down protocol.

In both protocols, when possible zero knowledge proofs are performed non
interactively, replacing the challenge by a hash value, whose size depends on the
security parameter λ. We note that our interactive set up for the CL encryption
scheme uses a ZKPoK where challenges are of size 10bits (using the lcm trick),
it must thus be repeated λ/10 times. We note however that the PoK of integer
factorization used in the key generation of [GG18] has similar issues.

For non-malleable equivocable commitments, we use a cryptographic hash
function H and define the commitment to x as h = H(x, r), for a uniformly
chosen r of length λ and assume that H behaves as a random oracle.

The comm. cost comparison is done by counting the number of bits that are
both sent and received by a given party throughout the protocol10. In terms
of timings, we count the number of exponentiations in the class group (for our
protocol), the bit size of the exponent, and multiply this by 3/2 of the cost of
a multiplication in the group. We compare this to an equivalent computation
for [GG18], where we count exponentiations modulo N and N2, the bit size of
the exponent, and multiply this by 3/2 of the cost of a multiplication modulo
N (resp. N2). We do not count exponentiations and multiplications over the
group of points of the elliptic curve as these are very cheap compared to the
aforementioned computations, furthermore both protocols essentially perform
identical operations on the curve.

The [LN18] protocol with Paillier encryption. We use the figures Lindell et al.
provide in [LN18, Tab. 1] to compare our protocol to theirs. We note that – to
their advantage – their key generation should include additional costs which are
not counted in our figures (e.g. local Paillier key generation, verification of the
ZKP of correctness of the Paillier key). The resulting costs are given in Tab.8a

10 Broadcasting one element is counted as sending one element.
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The [GG18] protocol with Paillier encryption. The main cost in their key gener-
ation protocol is the ZKPoK of integer factorization, which is instantiated using
[PS00, Thm. 8]. Precisely each prover commits to K values mod N , the challenge
lives mod B, the final opening is an element of size A, where, as prescribed by

Poupard and Stern, we take log(A) = log(N), log(B) = λ and K = λ+log(|N |)
log(C)

where C := 260 is chosen s.t. Floyd’s cycle-finding algorithm is efficient in a
space of size smaller than C. For their signature protocol, the cost of the ZK
Proofs used in the MtA protocol are counted using [GG18, Appendix A].

The results are summarized in Fig. 8b. Since the range proofs (omitted in the
stripped down version) only occur in the signing protocol, the timings and comm.
cost of their interactive key generation is identical in both settings, we thus only
provide these figures once. The comm. cost of each protocol is given in Bytes.
The columns correspond to the elliptic curve used for EC-DSA, the security
parameter λ in bits for the encryption scheme, the corresponding bit size of the
modulus N , the timings of one Paillier exponentiation, of the key generation and
of the signing phase and the total comm. in bytes for each interactive protocol.
Modulus sizes are set according to the NIST recommendations.

Our protocol with the CL encryption scheme. For key generation we take into
account the interactive key generation for the CL encryption scheme, which is
done in parallel with IKeyGen s.t. the number of rounds of IKeyGen increases by
only one broadcast per player. In IKeyGen, each party performs 2 class group
exponentiations of log(s̃) + 40 bits (where s̃ ≈

√
q · q̃), to compute generators

gi and public keys pki, and λ/10× n exponentiations of log(s̃) + 90 bits for the
proofs and checks in the ISetup sub-protocol.

Note that exponentiations in 〈f〉 are almost free. Signing uses 2 + 10t ex-
ponentiations of log(s̃) + 40 bits (for computing ciphertexts and homomorphic
operations), 2(t+ 1) of log(s̃) + 80 + λ (for the ZKAoK) and 2t exponentiations
of size q (for homomorphic scalar multiplication of ciphertexts).

The results for our protocols are summarized in Fig. 8c. The columns corre-
spond to the elliptic curve used for EC-DSA, the security parameter λ in bits for
the encryption scheme, the corresponding fundamental discriminant ∆K = −q · q̃
bit size, the timings of one class group exponentiation (for an exponent of λ+40
bits, i.e. that used for encryption), of the key generation and of the signing phase
and the total comm. in bytes for IKeyGen and ISign. The discriminant sizes are
chosen according to [BJS10].

Rounds. In terms of the number of rounds, we perform identically to [LN18]. Our
IKeyGen requires 5 rounds (only 4 assuming a standardised set up), compared to
4 in [GG18]. Our signing protocol requires 8 rounds as opposed to 9 in [GG18].

Comparison. Fig. 8 shows that the protocols of [LN18,GG18] are faster for both
key generation and signing for standard security levels for the encryption scheme
(112 and 128 bits of security) while our solution remains of the same order of
magnitude. However for high security levels, our signing protocol is fastest from
a 192-bits security level.
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Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)

P-256 112 2048 0.0023 > 52n+ 52 99t > 6 336(n− 1) 16 064t

P-256 128 3072 0.0048 > 162n+ 162 310t > 9 152(n− 1) 22 208t

P-384 192 7680 0.0186 > 1 571n+ 1571 3 000t > 22 176(n− 1) 51 744t

P-521 256 15360 0.0519 > 8 769n+ 8 769 16 741t > 43 672(n− 1) 99 845t

(a) [LN18]’s secure t out of n protocol.

Provably secure (with range proofs) Stripped down

Curve λ (bits) N (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes) ISign (ms) ISign (Bytes)

P-256 112 2048 0.0023 64n+ 7 140t 32(n+ t) + 9 990n− 64 23 308t+ 588 28t 4 932t+ 588

P-256 128 3072 0.0048 293n+ 22 428t 32(n+ t) + 21 392n− 64 33 568t+ 608 88t 7 008t+ 608

P-384 192 7680 0.0186 7 017n+ 214 4 071t 48(n+ t) + 128088n− 96 81 072t+ 912 857t 16 656t+ 912

P-521 256 15360 0.0519 77 725n+ 1196 22 528t 65(n+ t) + 503 591n− 130 159 391t+ 1 232 4783t 32 470t+ 1 231

(b) [GG18]’s t out of n protocol.

Curve λ (bits) ∆K (bits) Mult. (ms) IKeyGen (ms) ISign (ms) IKeyGen (Bytes) ISign (Bytes)

P-256 112 1348 0.029 366n+ 62 430t+ 137 32(n + t) + 2951n− 64 3670t + 1747

P-256 128 1827 0.038 744n+ 109 730t+ 237 32(n + t) + 4297n− 64 4455t + 2052

P-384 192 3598 0.077 4 145n+ 424 2780t + 903 48(n + t) + 10851n− 96 8022t + 3560

P-521 256 5971 0.137 16 432n+ 1 243 8011t + 2,608 65(n + t) + 22942n− 130 12576t + 5433

(c) Our secure t out of n protocol – With an interactive CL setup.

Fig. 8: Comparative sizes (in bits), timings (in ms) & comm. cost (in Bytes)

In terms of communications, our solution outperforms the other two protocols
for all levels of security, factors vary according to the number of users n and the
desired threshold t. In terms of rounds, both our protocols use the same number
of rounds as Lindell’s. For key generation we use one more than [GG18], whereas
for signing we use one less.

This situation can be explained by the following facts. Firstly with class
groups of quadratic fields we can use lower parameters than with Z/nZ (the
best algorithm against the discrete logarithm problem in class groups has com-
plexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)]) for factoring). However,
the group law is more complex in class groups, indeed exponentiations in class
groups are cheaper than those modulo N2 from the 192 bits level. So even if
removing range proofs allows us to drastically reduce the number of exponenti-
ations, our solution only takes less time from that level (while being of the same
order of magnitude below this level).

We note that assuming a standardized set up for CL (as mentioned in Sec. 5.2),
one would reduce the bandwidth consumption of IKeyGen by a factor varying
from 6 to 16 (for increasing levels of security). Moreover in terms of timings, the
only exponentiation in the class group would be each party computing its own
ciphertext, and so the only operations linear in the number of users n would be
on the curve (or integers modulo q), which are extremely efficient.
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