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Abstract

Cellular ceramic materials possess many favorable properties that allow to develop efficient modern-day high-
temperature thermal energy conversion systems and processes. The energy conversion within these porous
media is governed by tightly coupled conduction–radiation physics. To efficiently design and optimize these
systems, a comprehensive understanding of the conduction–radiation behavior within these materials becomes
important. In this study, by performing large-scale numerical experiments, we analyze the conduction–radiation
coupling characteristics within different (with respect to topology and porosity) SiC-based open-cell cellular
ceramics surrounded by fictitious vacuum up to temperatures of 1800 K. To induct minimal approximations,
our finite element simulations are based on a discrete-scale approach within which realistic discrete (pore-
level) representations of the cellular ceramics are used as numerical media. The results presented in this study
provide means to better understand the role of radiation in the coupled conduction–radiation physics within
the ceramic samples. A detailed comparison on effectiveness of energy conversion is established for SiC-based
full-scale cubic-cell, Kelvin-cell, and pseudo-random-cell ceramic structures which are at 80 % and 90 % porosity
each. In conclusion, among the different standalone and full-scale ceramic samples, the Kelvin-cell structures
at 90% porosity have proven to benefit the most from radiation coupling.

Keywords: Heat transfer, Conductive–radiative transfer, Open-cell cellular ceramics, Finite element analysis,
Discrete-scale approach

1. Introduction1

Open-cell cellular ceramics belong to a class of smart materials that are often used as a key element for2

designing high-temperature engineering systems. Thermal insulation systems [1], porous gas burners [2], volu-3

metric solar power receivers [3], solar thermochemical systems [4], hot gas filters [5], and heat exchangers [6],4

are few examples of such systems. Involvement of high-temperature physics implicates accurate prediction of5

heat transport as one of the primary factors for optimizing the global performance of these systems. As such,6

many researchers have focused on studying (numerically or experimentally) the behavior of open-cell cellular7

ceramics at high temperatures, especially at temperatures beyond 1200 K [7, 8, 9, 10]. Complementary to these8

researches, the current article focuses on analyzing coupled conductive–radiative heat transport of topologically9

different open-cell cellular ceramics up to 1800 K.10

By definition, open-cell cellular ceramics are porous materials composed of an interleaved network of liga-11

ments (the solid phase), which encompasses a void phase. Because of their intrinsic material properties, open-cell12

cellular ceramics offer many distinct advantages over other materials such as metals or polymers. They pos-13

sess: high strength-to-weight ratio, high specific surface area, good flow-mixing capacity, high thermal shock14

resistance, and high resistance to chemical corrosion [11]. These set of properties have made open-cell cellular15

ceramics an attractive choice for designing high-temperature compact systems, examples of which were provided16

in the preceding paragraph.17

To improve the performance of high-temperature systems based on open-cell cellular ceramics, understand-18

ing the detailed energy transport involved within such systems is important. The energy transport within most19

of these devices are due to the coupling between the two main individual modes of heat transfer, conduction20

and radiation [12]. Because of their microstructure (pore size, wall thickness...), these materials have a com-21

plex multiscale texture which actively attenuates thermal transfer via both conduction and radiation. Such a22

framework explains why engineers and researchers, interested in innovative design of open-cell cellular ceramics,23

use the time-consuming and expensive trial-and-error iterative design cycle. The reduction of this development24
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Nomenclature

Acronyms

FEM finite element method

HCE heat conduction equation

RTE radiative transfer equation

SiC silicon carbide

SUPG streamline upwind Petrov–Galerkin

Symbols

β extinction coefficient

n outward unit normal vector

sm discrete direction vector

x Cartesian space coordinates

Γ interface boundary

γ SUPG stabilizing coefficient

λ thermal conductivity

I vectorial radiative intensity

RR vectorial reflection operator

V vectorial finite element test function

E equation

Ω bounded domain

Ωh finite element mesh

φ porosity

ρ reflectivity

σ Lattice Boltzmann’s constant

ε emissivity

G radiative density

Im discrete radiative intensity

k number of nonlinear iterations

N conduction–radiation parameter

n refractive index

Nd number of discrete directions

Qr radiative heat flux

Sv volumetric surface

T temperature

T∂
s-v interface temperature

T∂
s,g+

hot Dirichlet temperature

T∂
s,g

−

cold Dirichlet temperature

v finite element test function

wm quadrature weight

x x-coordinate

y y-coordinate

z z-coordinate

Subscripts

D Dirichlet

eff effective

in input

R reflective

s solid

v void

time and consequently of the associated manufacturing cost motivates numerical modeling strategies aiming25

at accurate predictions of coupled conduction–radiation behavior of open-cell cellular ceramics. Additionally,26

for temperatures beyond 1200 K, numerical approaches are decisive for estimating the conduction–radiation27

coupling via the effective thermal conductivity [13]. This is because such temperatures are beyond the work-28

ing range of current-day experimental facilities (guarded hot-plate, transient plane source, transient hot-wire29

technique), often applied for the characterization of effective thermal conductivity [7, 8], or present hardly30

exploitable signals (laser flash technique) [14].31

To numerically study the conduction–radiation coupling behavior within porous media, and consequently in32

the open-cell cellular ceramics, two main approaches have been established: the continuum-scale approach and33

the discrete-scale approach. The continuum-scale approach consists in modeling the governing heat transfer34

equations within an equivalent continuous medium. The approach is often dubbed as the homogeneous phase35

approach [15]. As an input, it requires, beforehand, the knowledge of the effective thermophysical quantities36

(volume-averaged properties). These properties are either obtained from analytical/empirical relationships,37

or are computed [16, 17]. Given the volume-averaged properties, the computations are then carried out in38

representative elementary volumes, assuming thermal equilibrium between both solid and fluid phases. When39

thermal gradients exist, some authors have introduced a refined method called the multiphase approach that40

requires solving a set of two coupled radiative transfer equations [15, 16]. The reason that motivates the41

continuum-scale approach is its low computational cost, and that it avoids topological complexities of real-42

world porous problems. Undoubtedly, these methods can well predict the overall thermal transport behavior for43

the open-cell cellular ceramics. However, the calculation of the exact radiative fields or the exact temperature44

field within the volume of the open-cell cellular ceramics is beyond the capabilities of these methods. It may45

lead to misunderstanding the real role played by the solid network in terms of its radiative propagation.46

The second approach, the one used in this communication, is called the discrete-scale or the pore-scale47

approach. This kind of approach involves direct pore-scale simulations, while using realistic topological data48

(tomographic or virtually generated) of the ceramic skeletons [18, 19]. The generalized heat equation laws are49

applied at the microstructure level, i.e, within ligaments and pores. Appealingly, these methods can provide50

critical information concerning the conduction–radiation coupling behavior within the bulk of the ceramics.51

The method can also be used to identify the energy localization zones within the ceramics. Moreover, in [20],52

it was found that at high temperatures (> 1000 K), the discrete-scale approach yielded more accurate results53

than the continuum-scale approach. Currently, the method has been drawing considerable attention. However,54
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a major bottleneck of this approach is its computational requirements.55

In general, the continuum-scale approach remains popular for characterizing the conduction–radiation be-56

havior of open-cell cellular ceramics. Moreover, for the sake of easiness, the conductive and the radiative57

contributions are determined separately [18], in a decoupled fashion. One of the simplest ways for performing58

the radiative calculation is by incorporating the Rosseland diffusion approximation, which assumes that the59

porous medium can be considered optically thick [12, 13, 21, 22]. Although this approximation allows a qual-60

itative description of the prominent role of radiation when temperature rises, in many cases, the values can61

be ill-predicted when compared with experimental data [13, 18]. In fact, summing the conduction and radia-62

tion heat fluxes neglects the coupling effects, and such a simple addition is only applicable for weakly coupled63

conduction–radiation physics, i.e., at low temperatures.64

Alternatively to this simplified superimposing, a more robust approach involves simultaneously considering65

the divergence both of the conductive and radiative fluxes. Such an approach becomes mandatory for obtaining66

feasible and reliable solutions. Consequently, in this case, one ends up solving a system of highly nonlinear67

equations that are tightly coupled. Chen et al. [13] used the spherical harmonics P1 approximations to solve the68

radiative heat transfer and the system of equations was finite differenced. Mendes et al. [7] combined the discrete69

transfer method for the determination of the radiative intensity needed afterwards for estimating the divergence70

of the radiative flux and the finite volume method for the calculation of the coupled conduction–radiation heat71

flux. Coquard et al. [14] used the finite volume method for the energy equation and the discrete ordinates method72

for the radiative transfer equation to approximate the coupled conductive–radiative physics, within the laser flash73

method. These numerical methods lead to satisfactory predictions of the temperature (globally), but, once again,74

since continuous scales were used, the prior accurate determination of both the effective thermal conductivity75

and of the thermal radiative properties was required. According to the choice of the methods (analytical76

versus numerical) for computing these effective quantities, some discrepancies can be found [18, 23], therefore77

raising some questions on the accuracy of the continuum-scale approach. Furthermore, the calculation of the78

exact temperature fields within the volume of the cellular ceramics is beyond the capabilities of these methods79

whereas this information is crucial for understating the local behavior of other physical properties at high80

temperatures. Supporting this statement, for standalone radiation physics, in [24] it was shown that the use of81

realistic tomographic representations for the open-cell porous materials yields results closer to the experimental82

measurements. It was also recently underlined in [25, 26] that the real microstructure ligament geometries83

influence at large the radiative physics for the open-cell porous materials. Also, theoretical developments based84

on upscaling approaches for coupled heat transfer [27], emphasize on the precise prediction of local-scale energy85

transport which is possible by using discrete-scale approach.86

The previous paragraph explains why the coupling between conduction and radiation directly within the 3D87

detailed geometries of the cellular ceramics is investigated [19, 28, 29]. These numerical advances are clearly88

driven by the increasing access to X-ray tomography experiments for determining the precised topology of real-89

world materials, and/or to the virtual generation of 3D realistic digitized images. For cellular ceramics, the90

typical size of cells arranged within these porous materials (∼ 0.5–2 mm) corresponds to the available spatial91

resolution of laboratory-scale tomographic setups (∼ 5–20 ➭m). This makes it easy to digitize real-world repre-92

sentative elementary volumes of materials, and perform uncoupled conductive and radiative numerical analysis93

on these volumes [23, 30]. However, when conjugate heat transfers are being investigated, the present-day nu-94

merical approaches are limited to 3D images with modest volumes. This is due to important computational cost95

required to reproduce the underlying heat transfers [18, 10]. Detailing and solving accurately discrete problems96

on these complex geometries requires meshes with large number of elements.97

In this study we solve and analyze the conduction–radiation coupling (under vacuum) within discrete-scale98

ceramic samples operating at temperatures ranging from 1200 K to 1800 K. The finite element method is99

used to solve the underlying partial differential equations of the conduction–radiation physics. We focus our100

effort on SiC-based macroporous samples, this semiconducting material being intensively studied for designing101

high-temperature systems [31, 8, 32, 29]. Our deterministic simulations are based on tightly coupled vectorial102

FE for solving the radiation physics and Galerkin FE for solving the conduction physics. Our vectorial FE103

solver [33, 34] was previously developed only for handling the radiation physics within participating media. In104

this article, we extend its capabilities to solve conduction–radiation physics efficiently.105

The rest of the paper is as follows. Section 2 details the model of coupled conduction and radiation physics106

within cellular ceramics that are of interest to this study. Section 3 introduces the main numerical strategies,107

the variational forms, the implemented algorithm, and the parallel domain decomposition strategy. With the108

aim of understanding and characterizing conduction–radiation coupling within open-cell cellular ceramics, in109

section 4, we perform extensive numerical experiments on topologically different cellular ceramic materials. A110

detailed discussion on the behavior of these different porous ceramic samples is also included. The paper then111

ends with concluding remarks in section 5.112
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2. Model of coupled conduction and radiation113

For the global energy transfer within a SiC-based open-cell cellular ceramic at high temperature, both114

conduction and radiation take place consequently within its solid and void phases. On one hand, the opaque115

solid phase (SiC ligament network) is subjected to heat conduction driven by large temperature gradients116

and restricted radiative sources on its boundaries. On the other hand, the transparent void phase around and117

inbetween the solid SiC ligaments is subjected to radiation. The coupling process between the two phases occurs118

in the vicinity of their shared boundary. Opaque materials allow for implementing such coupling conditions as119

all radiation received by the borders of an opaque medium travels negligible distances within the volume before120

being absorbed. This certainly is the case for SiC ligaments (microstructures), the material considered in this121

article, as shown in [25].122

Before further describing the mathematical model that governs the conduction–radiation physics within123

the open-cell ceramics, let us denote the open bounded set Ωs ⊂ R
3 (resp. Ωv ⊂ R

3) representing the solid124

(resp. void) phase domain. The solid (resp. void) phase boundary is denoted ∂Ωs (resp. ∂Ωv). The solid–void125

interface is denoted Γ = ∂Ωs ∩ ∂Ωv. Also, let ns (resp. nv) denote the outward unit vector normal to the solid126

(resp. void) phase.127

In this article, the conduction physics within the open-cell ceramics is solved using the steady-state heat128

conduction equation (HCE), which we denote EHCE. The conduction problem then consists in searching for a129

scalar-valued function T : Ωs 7→ R such that:130

EHCE = −∇ · λ∇T = 0 ∀x ∈ Ωs ⊂ R
3, (1)

where T denotes the material temperature at spatial location x = (x, y, z) and λ denotes the homogeneous131

thermal conductivity of the material. Note that since the conduction–radiation coupling source term is restricted132

to the surfaces of the SiC ligament network, there is no source term is this equation.133

We further use the steady-state discrete ordinates radiative transfer equations [35] for solving the radiation134

physics involved, by semi-discretizing the integro-differential radiative transfer equation. From here on, this135

semi-discretized radiative transfer equation set will be referenced as RTE. The radiative problem then consists136

in searching for Nd scalar-valued functions {Im}Nd

m=1 : Ωv 7→ R that satisfy a set of Nd coupled equations,137

ERTE = {sm · ∇Im = 0}Nd

m=1 ∀x ∈ Ωv ⊂ R
3, (2)

where Nd is the total number of discrete directions (ordinates), Im is the mth discrete radiative intensity, and138

sm is the mth discrete direction vector. One could refer to [36, 37] for detailed explanations on the radiative139

transfer equation (RTE), and to [38, 39] for the conditions applied on diverse boundaries. For the coupled140

conduction–radiation physics, we impose the following boundary conditions.141

• A Dirichlet condition for EHCE is prescribed at both ends of the solid phase (the subscript ‘D’ stands for142

‘Dirichlet’):143

T = T ∂
s,g

−

on ∂Ωs,D,− ⊂ Γ; ∂Ωs,D,− = {x ∈ ∂Ωs, x < δ +min
Ωs

x
′},

T = T ∂
s,g+ on ∂Ωs,D,+ ⊂ Γ; ∂Ωs,D,+ = {x ∈ ∂Ωs, x < −δ +max

Ωs
x
′}.

(3)

In this relationship, δ is a sufficiently small positive user-defined parameter so that the Dirichlet condition144

is applied on a boundary of sufficiently large enough area, i.e. |∂Ωs,D,±| > ǫ. T ∂
s,g+ and T ∂

s,g+ are the given145

hot and cold Dirichlet temperatures, respectively.146

• EHCE is additionally supplied with the flux exchange (Neumann) condition, which takes into account the147

outgoing and the incoming radiation for the solid phase:148

−λ∇T · ns = ε

Nd∑

m=1

Imwm |sm · nv|✶[Γ∩sm·nv>0] − ε σ n2
v

(
T ∂
s-v

)4
on ∂Ωs\∂Ωs,D,±. (4)

In this equation, T ∂
s-v represents the solid–void interface temperature, ε denotes the emissivity of the149

material, σ denotes the Stefan–Boltzmann’s constant, nv is the refraction index of the solid–void interface,150

wm is the quadrature weight such that wm = 4π/Nd, and ✶ denotes the Heaviside step function which151

results in zero or one depending on the considered Boolean operation, i.e., ✶[Γ∩sm·nv>0] equals to one152

if and only if Γ ∩ sm · nv > 0 and zero elsewhere. In this equation, the first term in the right-hand153

side denotes the incoming radiation flux (due to integration between the ligaments), and the second term154

denotes the emission loss.155

• For the void phase in which ERTE is solved, the temperature on the boundary of the solid medium comes156

into play as the initial boundary condition (the subscript ‘in’ stands for ‘input’):157

{Im,in}
Nd

m=1 =
1

π
σ ε n2

v

(
T ∂
s-v

)4
on Γ, sm · nv < 0. (5)
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This type of boundary condition is often called a diffused boundary condition.158

• The specular reflection boundary condition is also prescribed for ERTE (the subscript ‘R’ stands for159

‘reflective’):160

{Im,R}
Nd

m=1 = {ρ

Nd∑

j=1

δm,j(nv)Ij✶[Γ∩sj ·nv>0]}
Nd

m=1 on Γ, (6)

where, ρ denotes the surface reflectivity, ρ = (1− ε), and δm,j denotes the partition ratio coefficient. For161

details on δm,j see [40].162

• The vacuum boundary condition is also applied to the void phase. All the six outer boundaries, which163

form in fact the virtual bounding box of the ceramic, are considered radiatively cold. As such, radiation164

can pass on to the surroundings.165

Dirichlet
condition (HCE)

+

prescribed inflow

& reflection (RTE)

Neumann
condition (HCE)

+

prescribed inflow

& reflection (RTE)

Dirichlet
condition (HCE)

+

prescribed inflow

& reflection (RTE)

one of the

six vacuum
borders (RTE)

(a) different boundary conditions (b) void and solid phase meshes

Figure 1: boundary conditions and meshes for a standalone Kelvin cell.

For a standalone Kelvin cell, the various boundaries on which these conditions act are presented in fig. 1a.166

3. Finite elements model167

The coupled conduction–radiation physics is governed by the steady-state heat equation (1) and the steady-168

state discrete ordinates radiative transfer equation (2). Dirichlet boundary conditions eq. (3), along with flux169

conditions eq. (4) are applied to the heat conduction problem. Eventually, the Nd inflow conditions eq. (5) are170

applied to the radiation problem.171

Before proceeding further, let us introduce Ωh
s (resp. Ωh

v) as the finite element mesh of the solid (resp. void)172

phases, cf. fig. 1b. For the sake of visualization, we present a coarse solid mesh Ωh
s (in gray) for a Kelvin cell173

surrounded by a clipped void phase mesh Ωh
v (in red). It should be noted that the two meshes are conforming at174

the solid–void interface. This facilitates interpolation of different variables between both finite element spaces175

defined on each mesh.176

Finite element modeling is used to solve EHCE. The variational form of the heat conduction problem, E
h
HCE,177

consists in searching T ∈ H1
g (Ω

h
s ) such that:178

E
h
HCE =

∫

Ωh
s

λ∇T · ∇v dx−

∫

∂Ωh
s

(
ε

Nd∑

m=1

Imwm |sm · nv|✶[Γ∩sm·nv>0]

)
v dx

+

∫

∂Ωh
s

(
σ ε n2

s T
(
T̂ ∂
s-v

)3)
v dx = 0 ∀v ∈ H1(Ωh

s ).

(7)

Here, T ∂
s-v is the interface temperature, H1

g (Ω
h
s ) is a subspace of H1(Ωh

s ) with functions that satisfy Dirichlet179

conditions eq. (3).180

The heat conduction problem E
h
HCE has been linearized by including the third-order term

(
T̂ ∂
s-v

)3
, with T̂ ∂

s-v181

assumed to be a known quantity when solving E
h
HCE. The second term in eq. (7) is the radiation gain, and the182

final term is the emission loss.183
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Finite elements are also used to solve ERTE within the void phase. More precisely, using a vectorial finite184

element space, whose advantages over traditional spaces are pointed out in [33, 41], it is possible to precondition185

and solve the discretized equation efficiently [42].186

To do so, let the vectorial radiative intensity I gather the set of Nd unknown components of the radiative187

intensity in all prescribed discrete directions, such that I = (I1, I2, . . . , INd
). In the same fashion, let the vector188

of directions S = (s1, s2, . . . , sNd
). Further, let the vectorial test function V be a vector of Nd test functions,189

such that V = (v1, v2, . . . , vNd
), with each vm being defined in a Sobolev space H1(Ωh

v), so that the vectorial190

test function is in the vectorial finite element space H
1(Ωh

v) = H1(Ωh
v)×H1(Ωh

v)× · · · ×H1(Ωh
v). With the use191

of vectorial finite elements, the resulting variational form is then a single equation, while the use of scalar finite192

element schemes results in Nd equations. The corresponding vectorial FE variational problem, E
h
RTE, consists193

in searching I ∈ H
1(Ωh

v) such that:194

E
h
RTE =

∫

Ωh
v

(S · ∇V)
⊤
(γS · ∇I− I) dx+

∫

Γh

(
(RR : S · nv : I)

⊤
V

)
dx

+

∫

Γh

(
1

π
σ ε n2

v

(
T̂ ∂
s-v

)4 ((
S · nv : ✶[S·nv<0]

)⊤
V

))
dx = 0 ∀V ∈ H

1(Ωh
v).

(8)

In this equation, γ : Ωh
v 7→ R

+ is the SUPG (Streamline Upwind Petrov–Galerkin) [43] stabilizing param-195

eter chosen according to recommendations provided in [44]. T̂ ∂
s-v is the known interface temperature. RR196

denotes the specular reflection operator (table) which is constructed from the knowledge of ρ(nv, ns,nv, sm)197

and δ(nv, ns,nv, sm) that denote the solid–void interface reflectivity and partition ratio coefficient, respectively.198

These are parameters based on the partition ratio method proposed in [40]. In eq. (8), we also introduced the199

following notations, A⊤
B =

∑
i AiBi and (A : B)i = AiBi, for the sake of conciseness.200

The first integral of E
h
RTE deals with the transport of radiation within the bulk of the medium, the second201

integral deals with the physics of specular reflection on the shared solid–void interface, and the last integral202

(surface emission) is the influx boundary condition (diffused boundary condition).203

The full steady-state problem gathering eqs. (7) and (8) is nonlinear. As such, in this study, starting from204

an initial guess, the two problems are solved successively one after the other, in a staggered fashion until the205

convergence is reached.206

Algorithm 1 schematically presents the iterative algorithm to solve the conduction–radiation physics within207

the SiC structures. Lines 1 to 3 represent the initial setup phase of our algorithm which is done once. For the208

nonlinear solver (lines 4 to 13), a L∞ norm test is used in terms of the change in the solution between iterates,209

with a tolerance ǫ = 10−2. Similar stopping criteria for the nonlinear iterations have also been suggested210

in [45, 38].211

Input: geometries Ωs and Ωv, physical parameters: λ, ε, nv . . . , and numerical parameters: ǫ, γ,Nd, δ . . .

1 Build the interpolation operator Pv
s : ∂Ωs 7→ ∂Ωv such that T (x ∈ ∂Ωv) = Pv

s T (x ∈ ∂Ωs)
2 Build the reverse interpolation operator Ps

v : ∂Ωv 7→ ∂Ωs

3 Initialize {Im}
Nd
m=1 and T̂ ∂

s-v to zero
4 repeat

5 Solve EHCE with given boundary conditions eqs. (3) and (4)  T (x ∈ Ωs)

6 Extract the solution on the boundary T ∂
s = T (x ∈ Γ)

7 if ‖T ∂
s − T̂ ∂

s-v‖∞ < ǫ then return T (x ∈ Ωs), {Im(x ∈ Ωv)}
Nd
m=1

8 Update the solution on the boundary T̂ ∂
s-v = T ∂

s

9 Interpolate on the boundary with T ∂
v = Pv

s T
∂
s

10 Solve ERTE with given boundary conditions eqs. (5) and (6)  {Im(x ∈ Ωv)}
Nd
m=1

11 Extract the radiative flux φ∂
v(x ∈ Γ) = ε

∑
Nd
m=1 Imwm |sm · nv|✶[Γ∩sm·nv>0]

12 Interpolate on the boundary with φ∂
v = Ps

vφ
∂
v

13 until convergence

Algorithm 1: iterative algorithm for the coupled conduction–radiation modeling.

At this stage, the finite element formulations to solve the coupled conduction–radiation physics involve a212

scalar finite element problem eq. (7) (HCE) and a vectorial finite element problem eq. (8) (RTE). Overall, the213

coupled finite element model requires the solution of a problem with Nd+1 fields. A high value of Nd is needed214

if the geometry is complex and if the RTE is to be solved with high accuracy [25]. In this study, we have used215

Nd = 512 (second octahedral refinement), as such, the coupled finite element problem of conduction–radiation216

requires to solve a 513 field problem, with each field being defined at all spatial nodes.217

To do so in a distributed-memory parallelism context, the global mesh (void or solid) Ωh is partitioned into218

Np non-overlapping meshes {Ωh
i }

Np

i=1 (subdomains) using ParMETIS [46]. A subdomain is then assigned to219

a single MPI process, and the global matrices for the RTE and the HCE may be assembled in a distributed220
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fashion using eqs. (7) and (8), respectively. The open-source finite element kernel FreeFEM [47] is used for the221

local matrix assemblies. The open-source library PETSc [48] is used for the parallel matrix assemblies and for222

solving the linear systems.223

4. Numerical experiments224

In this section, we detail and discuss the results of discrete-scale numerical experiments performed on different225

SiC-based open-cell cellular ceramic structures and on the related standalone SiC cells. To study the pore-level226

characteristics of conduction–radiation coupling in tests 1A to 1D, we analyze the standalone cubic and Kelvin227

cells at 80% and 90% porosity each. Structurally, the cubic cells are 0.5 cm in length, and the Kelvin cells228

are 0.5 cm in diameter. These cells are constructed with ligaments that are ∼ 0.1 cm in diameter for the 80%229

porosity structures and ∼ 0.069 cm for the 90% porosity structures. To study the full-scale open-cell cellular230

ceramic structures, in tests 2A to 2F, we analyze the cubic, Kelvin, and pseudo-random structures at 80%231

and 90% porosity each. At this level, let us precise that the term “pseudo-random” means that the position232

in space of a cell is not totally random but affected by the spatial arrangement of the neighboring cells. For233

simplicity, we now only use the term random instead of pseudo-random. Structurally, the cubic- and Kelvin-cell234

ceramic samples are constructed by joining together 125 standalone cubic and Kelvin cells, i.e., 5 cells per spatial235

directions, 5× 5× 5 = 125. Thus, cubic- and Kelvin-cell ceramic samples (tests 2A, 2B, 2C, and 2D) at length236

2.5 cm are 5 times larger. The random-cell ceramic samples use the same length of 2.5 cm. The ligaments of237

all of these geometries (the standalone cells or the full-scale ceramics) are assumed to be made out of highly238

dense 6H-SiC sintered ceramic. For this material, we assume ε = 0.9 and λ = 0.3 Wcm−1 K−1. This λ is in fact239

an average thermal conductivity constructed from the high-temperature experimental data for monocrystalline240

6H-SiC, given in [49]. Overall, the description of all our tests is provided in table 1.241

Test Type Cell φ Sv k unknownsHCE unknownsRTE

1A standalone cubic 80 7.14 4 29,985 23,064,576
1B standalone cubic 90 5.39 5 18,248 25,138,176
1C standalone Kelvin 80 8.46 7 33,549 26,625,024
1D standalone Kelvin 90 5.91 9 20,629 29,829,632
2A full-scale cubic 80 4.44 6 267,544 231,302,656
2B full-scale cubic 90 3.51 7 201,787 263,202,304
2C full-scale Kelvin 80 6.77 8 388,020 338,101,760
2D full-scale Kelvin 90 5.24 9 374,928 517,838,848
2E full-scale random 80 4.94 7 587,203 389,615,616
2F full-scale random 90 4.13 10 449,117 414,130,176

Table 1: characteristics of the standalone SiC cell and the full-scale SiC ceramic numerical tests. For the mentioned properties read
φ in %, Sv in cm−1, k is total number of nonlinear iterations for solving the coupled conduction–radiation problem.

All the tests (1A to 1D and 2A to 2F) were performed twice, once with the standalone conduction physics242

and once with the coupled conduction–radiation physics. For the standalone conduction simulations, EHCE was243

solved by using Dirichlet boundary conditions T ∂
s,g+ = 1800 K and T ∂

s,g
−

= 1200 K, on the hot and cold borders,244

respectively, see eq. (3), and with a null exchange flux everywhere else. For the coupled conduction–radiation245

simulations, EHCE and ERTE are solved in a coupled way according to the procedure explained in section 3.246

For the boundary conditions, the same Dirichlet conditions are used, plus Neumann conditions from eq. (4) for247

EHCE. For ERTE, the boundary conditions given in eqs. (5) and (6) are applied. Next, as a numerical choice in248

the discretization of the RTE, the number of discrete ordinates, Nd, has been chosen equal to 512.249

To analyze the behavior of the upcoming numerical experiments, we introduce the following quantities.250

• Radiative heat flux on the solid–void interface:

Q+
r (x ∈ Γh) =

Nd∑

m=1

Im(x)wm |sm · nv(x)|✶[Γh∩sm·nv>0].

Here, wm is the quadrature weight such that wm = 4π/Nd. Q
+
r (x ∈ Γh) defines the net amount of radiative251

heat flux entering the solid interface along the direction of its normal vector ns = −nv. Q
+
r (x ∈ Γh) can252

be used as a metric for the absorbing quality of a structure.253

• Total absorbed radiation on the ligament surface:

qΓh =

∫

Γh

Q+
r (x) dx.

This quantity measures the overall power of the sample to absorb incoming radiation.254
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• Radiative density in the void phase:

G(x ∈ Ωh
v) =

Nd∑

m=1

Im(x)wm.

Here, G(x ∈ Ωv) defines the total radiative energy (photon concentration) at a given point x in Ωh
v .255

• z-averaged temperature T z, i.e, mean temperature for a given xy-plane located at z = ẑ:

T z(x ∈ Ωh
s , z = ẑ) =

∫
Ωh

s
T (x)✶[z=ẑ] dx∫
Ωh

s
✶[z=ẑ] dx

.

This quantity is the plane-averaged scalar temperature that is often used in the cellular ceramics literature256

to assess the thermal behavior of porous media.257

• Volumetric surface of the structure:

Sv =

∫
Γh dx∫

Ωh
s

dx+
∫
Ωh

v
dx

.

This quantity measures the surface area of ligaments per unit of volume. Sv is often directly linked to258

volume-averaged properties of porous materials, like the effective extinction coefficient βeff or the effective259

thermal conductivity λeff, cf. [50].260

4.1. Setup261

Topology generation. The primary challenge in discrete-scale simulations of open-cell cellular ceramic ma-262

terials is detailing their complex topologies. To tackle the problem of topology generation for these ceramics,263

which is inherent of deterministic methods like the FEM, we have used an in-house virtual material genera-264

tor genMat1 [32]. Based on the marching cubes [51], genMat is able to generate topologies of various porous265

materials with standalone cells and open-cell cellular ceramics.266

The topologies of the standalone SiC cells used in tests 1A to 1D and the topologies of the full-scale SiC-based267

ceramics used in tests 2A to 2F are presented in fig. 2 and fig. 3 respectively. As mentioned, the standalone268

cells are 0.5 cm in size, while the full-scale ceramic samples are 2.5 cm.269

Meshing. The voxel-based surface meshes from genMat contain millions of surface nodes, as is the case for270

most X-ray micro-tomography surface meshes. Being voxel-based, these meshes are well suited for ray-tracing271

algorithms based on random walks. However, constructing Delaunay meshes from these surface meshes was272

not possible due to memory constraints. To deal with this problem, topology reconstruction through mesh273

adaption based on a tuned Hausdorff metric [52] was used. This operation is performed by the open-source274

library Mmg [53]. Finally, using the re-meshed surface topologies, the volumetric meshing is performed by275

another open-source package, Gmsh [54]. This involves creating two tetrahedral meshes for both the solid276

and the void phases. Additional details on the topology and the mesh generations are given in [55]. To277

motivate reproducibility of our results, the standalone ceramic cell meshes, among other data, are provided as278

supplementary resources to this paper.279

(a) cubic cell at φ = 90 % (b) cubic cell at φ = 80 % (c) Kelvin cell at φ = 90 % (d) Kelvin cell at φ = 80 %

Figure 2: standalone cell topologies.

Solver specifications. For solving ERTE, the Jacobi-preconditioned BiCGSTAB method is used, with a280

convergence tolerance on the relative residual set to 10−6. As specified earlier, in all test cases, Nd = 512281

discrete directions are used. The number of unknowns for the RTE linear systems is given in the last column282

of table 1. For solving EHCE, an exact LU factorization is computed by MUMPS [56] (interfaced with PETSc).283

1genMat: a C++ and Qt based software developed collaboratively by LTeN & IUSTI, CNRS laboratories, France.
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More advanced preconditioners could have been used, like multigrid methods, but the number of unknowns for284

this field, reported in the 7th column of table 1, is rather small. For all test cases, only few nonlinear iterations285

are needed to reach convergence, as can be seen from the 6th column of table 1.286

(a) cubic cells at φ = 90 % (b) Kelvin cells at φ = 90 %
(c) random cells at φ = 90 %

(d) cubic cells at φ = 80 % (e) Kelvin cells at φ = 80 %
(f) random cells at φ = 80 %

Figure 3: full-scale ceramic topologies.

LIGER, a cluster hosted at ICI, Centrale Nantes, France, was used to perform the numerical simulations.287

100 MPI processes were used to solve the standalone cell simulations (tests 1A to 1D) and 1,000 MPI processes288

were used to solve the full-scale ceramic simulations (tests 2A to 2F). These problems are solved in few minutes289

for each case.290

The largest simulation of this study (90 % porosity Kelvin-cell ceramic structure) consists in solving a system291

of 0.52 billion unknowns for the radiation coupled to a system of 0.37 million unknowns for the conduction.292

For this test case, it took 9 iterations for the nonlinear solver to converge. This emphasizes the role of efficient293

solution techniques for discrete-scale conduction–radiation simulations.294

Note that our radiation solver has been validated thoroughly using the method of manufactured solutions [33,295

34], and against other deterministic or Monte-Carlo benchmark results [41]. In particular, we verified that our296

solver is able to produce accurate radiative heat fluxes on surfaces. Besides these validation tests, in [41], we297

verified our conduction–radiation solver against experimental results provided in [14]. For this test, thermograms298

from the laser flash method applied to different metallic open-cell foams were analyzed and compared up to299

T = 673 K. We showed that our solver predict well the experimental temperatures with relative errors between300

2 % and 5 %.301

4.2. Results and discussions302

The coupled conduction–radiation temperature fields for the 90 % porosity SiC cubic- and Kelvin-cell samples303

are presented in fig. 4a. Based on the location from the hot Dirichlet boundary ∂Ωh
s,g+ , the temperature within304

the cell ligaments quasi-linearly decreases from 1800 K to 1200 K. To investigate the heat flow characteristics,305

in fig. 4b, we present a heatline visualization from the coupled conduction–radiation simulations of the 90 %306

porosity standalone cubic- and Kelvin-cell structures (tests 1B and 1D). This represents the net heat flow as307

it passes through the SiC ligaments. A heatline is similar to a streamline, except that it visualizes the net308

energy flow caused due to heat transfer situations, c.f. [57, 58]. Heatlines, here, are constructed by numerical309

integration (performed in ParaView [59]) of the heat flux vector (−λ dT/ dx,−λ dT/ dy,−λ dT/ dz)⊤. Heat310

energy flows through four distinct, but symmetric due to geometry, paths via the four central ligaments of the311
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cubic cell. For the Kelvin cell, due to its topology, a heatline bifurcation happens in the central region. Heatlines312

for the 80 % porosity standalone cell structures (tests 1A and 1C not shown here) had similar characteristics.313

(a) temperature field visualization

heatline
bifurcation

straight
heatlines

Dirichlet
(hot)

Dirichlet
(cold)

(b) heatline visualization
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]

Figure 4: coupled conduction–radiation simulation results for the standalone SiC cubic and Kelvin cells at 90 % porosity.

Visualization of the radiative heat flux fields Q+
r (x ∈ Γh) for the 90 % porosity standalone SiC cells is314

presented in fig. 5. For the cubic cell in fig. 5a, the inner corners of the cells near the hot border receive the315

maximum radiative heat flux, max(Q+
r (x ∈ Γh)) = 1.69 Wcm−2. We can observe how the inner faces of the SiC316

cubic-cell ligaments receive the higher amount of radiation, while the outer parts remain comparatively cold.317

The high radiative heat fluxes on the inner faces of the ligaments are due to the radiation energy interaction318

inbetween the ligaments. Indeed, due to the high-temperature radiation, energy is emitted by a ligament in319

different directions. Depending on its path, it either encounters a neighboring ligament (radiation interaction) or320

escapes directly to the surrounding via one of the six vacuum boundaries. Concerning the radiation interaction,321

a part of the energy, proportional to ε, gets absorbed by the ligament while the other part is reflected to322

other directions. A similar scenario exists for the SiC Kelvin cell, see fig. 5b. However, for this case, the323

maximum radiative heat flux max(Q+
r (x ∈ Γh)) = 2 Wcm−2 is higher than for the SiC cubic cell. Similar324

results were observed for the 80 % porosity SiC cubic- and Kelvin-cell structures. The Kelvin cell has a higher325

max(Q+
r (x ∈ Γh)) than the cubic cell. It was also observed that more radiative heat flux is injected into the326

Kelvin cell than into the cubic cell. The SiC Kelvin cell has a more absorbing structure than the SiC cubic327

cell. From the Kirchhoff’s principle, the Kelvin cell has a more emitting structure than the cubic cell. By this328

discussion, one could also say that, at a particular porosity (90 % or 80 %), the radiation plays a more prominent329

role in the SiC Kelvin-cell structures than in the SiC cubic-cell structures. Overall, the SiC Kelvin-cell structure330

maximizes the radiation gains compared to the SiC cubic-cell structure.331

0 1.69

Flux Q+
r [W cm−2]

(a) cubic cell

0 2.85

Flux Q+
r [W cm−2]

(b) Kelvin cell

Figure 5: radiative heat flux on clipped surfaces of 90 % porosity standalone SiC cells.

Radiation densities G(x ∈ Ωh
v) for 90 % porosity standalone SiC cubic and Kelvin cells are displayed in fig. 6.332

It clearly shows that the radiation energy diffusion is greater in the SiC Kelvin cell than in the SiC cubic cell.333

First, the Kelvin cell has a higher value of Sv, see table 1. As a result, more energy is being emitted to the void334
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region leading to more radiation interaction between the ligaments. Second, the Kelvin cell has a greater surface,335

so there is more possibility for photons to be reflected and propagated further in the void region and ultimately336

interact with other ligaments. Eventually, the inner void region of the cubic cell has a greater volume. Thus,337

the greater area for effective radiation within the Kelvin cell increases the probability of interaction between338

the ligaments. Consequently, we observe the absorbing power qΓh of the 90 % (resp. 80 %) porosity standalone339

SiC Kelvin cell is 2.4 (resp. 1.4) times higher than that of the cubic cell, see table 2. These results complement340

the conclusion from the last paragraph that the standalone SiC Kelvin cell maximizes radiation gains compared341

to the standalone SiC cubic cell.342

1,200 1,800

Temperature T [K]

0.43 9.35

Density G [W cm−2]

(a) cubic cell

0.5 10.09

Density G [W cm−2]

(b) Kelvin cell

Figure 6: combined solution field visualization for the 90 % porosity standalone SiC cells: temperature field visualized for the solid
part and radiative density field visualized for the orthogonal void cross-sections.

An analysis of conduction–radiation coupling effects within SiC cells is given in fig. 7 using T z. In these343

plots, dotted lines represent data acquired from conduction simulations while solid lines represent data from344

coupled conduction–radiation simulations. T z increases almost linearly from 1200 K to 1800 K in both Kelvin345

and cubic cells. The different profiles of T z for both cell is the direct effect of their ligament arrangements.346

The value of T z, for all ordinates z, is higher for the conduction–radiation than for the conduction only (except347

where the Dirichlet boundary conditions are imposed). This is a direct implication of the addition of radiation348

energy due to coupling.349

0 0.15 0.25 0.35 0.5
1,200

1,400

1,600

1,800

z [cm]

T
z
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]

Dirichlet
border

Dirichlet
border

0 0.15 0.25 0.35 0.5

z [cm]

conduction φ = 90 % conduction–radiation φ = 90 %

conduction φ = 80 % conduction–radiation φ = 80 %

Dirichlet
border

Dirichlet
border

Figure 7: T z for conduction and conduction–radiation simulations for the standalone SiC cubic (left) and Kelvin (right) cells.
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To quantify the effect of the coupling, we also plot the difference in T z, denoted ∆T z, in fig. 8. The plots350

show that:351

• T z for all topologies is under-predicted if radiation is not considered. This suggests a tight coupling of352

conduction and radiation, at least for the 80 % and 90 % porosities and for the used temperature range;353

• T z varies the most in the central region of cells (∆T z has a parabolic profile). This variation is greater354

in the Kelvin cell than in the cubic cell. Particularly, the 90 % (resp. 80 %) porosity Kelvin cell has a355

maximum increase of T z of 46 K (resp. 30 K);356

• both 80 % and 90 % porosity cubic-cell simulations performed with conduction–radiation physics led to a357

parabolic-like increase in T z over the conduction alone physics. However, the porosity change did not show358

any effect in the magnitude of T z. A maximum variation of ∼ ±2 K was observed. This insensitivity of the359

standalone SiC cubic-cell to porosity change (from 80 % to 90 %) suggests that the porosity change within360

such structures does not allow an increase in conduction–radiation transfer. Contrarily, the conduction–361

radiation behavior within standalone SiC Kelvin-cells is sensitive to porosity change (from 80 % to 90 %).362

A 44 % relative increase in max(∆T z) was observed for the 90 % porosity standalone Kelvin-cell compared363

to the 80 % porosity standalone Kelvin-cell.364

0 0.15 0.25 0.35 0.5
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Figure 8: ∆T z for the standalone SiC cubic (left) and Kelvin (right) cells.

In fig. 9, we display the temperatures on the ligament networks of the full-scale SiC ceramics at 90 % porosity.365

These temperatures were obtained from conduction–radiation simulations (tests 2B, 2D, and 2F). Based on the366

location from the hot Dirichlet boundary, the temperature quasi-linearly decreases from 1800 K to 1200 K.367

(a) cubic cells (b) Kelvin cells (c) random cells
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Figure 9: temperature fields for the 90 % porosity full-scale ceramic samples.

In fig. 10, heatlines for the 90 % full-scale ceramic samples are presented. Like for the standalone cells in368

fig. 4a, the heat flows from high to low temperatures imposed by the Dirichlet boundary conditions. Heatlines369
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are also used in fig. 11 to highlight the effect of conduction–radiation coupling or the lack thereof on heat370

transport. We used a truncated section of the 90 % porosity random-cell ceramic sample. Unlike in fig. 10,371

where heatlines originated from uniformly distributed point sources on a line, heatlines in fig. 11 originate from372

a single point source located at (0.5, 0.5, 2.5). The fig. 11 highlights two key aspects of the coupled conduction–373

radiation heat transport: heat flows through different paths and heat energy propagates further. Similar results374

were observed for the 80 % porosity random-cell ceramic sample.375

1,200 1,800

Temperature T [K]

(a) cubic cells (b) Kelvin cells (c) random cells

Figure 10: coupled conduction–radiation heatlines arising from a line source on the hot Dirichlet boundary for 90 % porosity
ceramic samples.
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Figure 11: conduction (green) and conduction–radiation (red) heatlines from a point source on the hot Dirichlet boundary for the
SiC random-cell ceramic sample at 90 % porosity.

Figures 12 to 14 display truncated views of the net radiative heat fluxes Q+
r (x ∈ Γh) on the surfaces of376

the 90 % porosity SiC cubic-, Kelvin-, and random-cell ceramic structures. Among the deterministic ceramic377

structures, i.e., with cubic and Kelvin cells, the latter has the highest max(Q+
r (x ∈ Γh)) = 0.29 Wcm−2. Like378

for standalone SiC cells, higher values of Q+
r (x ∈ Γh) are observed in the vicinity of the hot Dirichlet boundary379

and they decrease as one moves away from this boundary.380

standalone SiC cells full-scale SiC cellular ceramics
cubic cells Kelvin cells cubic cells Kelvin cells random cells

80 % 90 % 80 % 90 % 80 % 90 % 80 % 90 % 80 % 90 %

Lmax(∆Tz)
0.25 0.25 0.25 0.25 1.03 1.07 1.06 1.15 1.11 1.13

max(∆T z) 21.97 22.58 27.40 41.63 41.70 64.52 74.35 140.54 50.48 92.00
qΓh 0.37 0.41 0.52 0.99 2.87 3.98 5.29 7.57 4.09 5.03
βeff - - - - - - 3.13 1.78 1.92 0.96

Table 2: maximum change max(∆T z) in K, distance of max(∆T z) to the hot boundary Lmax(∆Tz)
in cm, effective extinction

coefficient βeff in cm−1, and total radiation energy absorbed qΓ in W, for the standalone cells and the full-scale ceramic structures.

In the same figures (figs. 12 to 14), we also present the radiative density profiles on two orthogonal void381

planes. Among the deterministic ceramic structures, the density distribution reaches its maximum in the382
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central regions, while it decreases towards the lateral faces. This lateral decrease in the radiative energy was383

not observed in the random-cell ceramic samples.384

In table 1 values of the volumetric surface Sv for the cubic-, Kelvin-, and random-cell ceramic samples are385

provided. These values suggest that among the three different ceramic topologies examined, the Kelvin-cell386

topology has a greater surface area to emit/absorb radiation. Compared to the 90 % (resp. 80 %) porosity387

cubic-cell ceramic, the Sv of the Kelvin-cell ceramic is 1.49 (resp. 1.52) times larger. Similarly, in comparison to388

the 90 % (resp. 80 %) porosity random-cell ceramic, the Sv of the Kelvin-cell ceramic is 1.26 (resp. 1.37) times389

larger. As a consequence, in table 2 we observe higher values of qΓh for the Kelvin-cell ceramic samples, in390

comparison to the cubic-cell or random-cell samples, suggesting higher absorbing capabilities of the Kelvin-cell391

ceramic samples. Precisely, the value of qΓh for the 90 % porosity Kelvin-cell ceramic sample is 1.9 (resp. 1.5)392

times more than that of the 90 % porosity cubic-cell (resp. random-cell) ceramic sample. At 80 % porosity,393

the value of qΓh for the Kelvin-cell ceramic sample is 1.8 (resp. 1.3) times more than that of the cubic-cell394

(resp. random-cell) ceramic sample.395

1,200 1,800

Temperature T [K]

0 0.15

Flux Q+
r [W cm−2]

3 · 10−2 0.61

Density G [W cm−2]

Figure 12: combined solution field visualization for the SiC cubic-cell ceramic sample at 90 % porosity. Right: temperature field
visualized for the solid part and radiative density field visualized for the orthogonal void cross-sections. Left: radiative heat flux
field visualized for the truncate solid phase boundary.

As for the standalone SiC cells, an analysis of conduction–radiation coupling effects within different ceramic396

samples is given in fig. 15 using T z. From these plots, observe that a porosity change from 90 % to 80 % has no397

effect when only conduction is considered. For the coupled conduction–radiation simulations, a porosity change398

from 90 % to 80 % has a clear effect on T z. As expected, due to higher probabilities of interactions of radiation399

between ligaments, T z is higher in the central region of the ceramics for the coupled simulations.400

To quantify the effect of the coupling, we also plot the difference in T z, denoted ∆T z, in fig. 16. The plots401

show that:402

• ∆T z for the 90 % porosity ceramic samples is overall higher than for the 80 % porosity ceramic samples.403

A similar qualitative observation could be derived from analyzing the volumetric surface data Sv provided404

in table 1. For instance, by using analytic laws dependent on Sv and φ proposed in [50] for the Kelvin-cell405

ceramic samples, βeff for the 80 % and 90 % porosities is equal to 3.13 cm−1 and 1.78 cm−1, respectively.406

This suggests that radiation propagates more in the 90 % porosity samples than in the 80 % porosity407

samples. The same observation holds for the random-cell ceramic samples, see table 2 for the values of408

βeff calculated according to the analytical formulations provided in [60];409

• with respect to the topology, the radiation is most effective within the Kelvin-cell ceramic samples as410

it reported the maximal increase in ∆T z, followed by the random-cell and then the cubic-cell ceramic411

samples;412
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Figure 13: combined solution field visualizations acquired from conduction–radiation simulation of the SiC Kelvin-cell ceramic
samples at 90 % porosity. Right: temperature field visualized for the solid part and radiative density field visualized for the
orthogonal void cross-sections. Left: radiative heat flux field visualized for the solid part boundary.

1,200 1,800

Temperature T [K]

0 0.35

Flux Q+
r [W cm−2]

3 · 10−2 0.61

Density G [W cm−2]

Figure 14: combined solution field visualizations acquired from conduction–radiation simulation of the SiC random-cell ceramic
samples at 90 % porosity. Right: temperature field visualized for the solid part and radiative density field visualized for the
orthogonal void cross-sections. Left: radiative heat flux field visualized for the solid phase boundary.
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Figure 15: T z for conduction and conduction–radiation simulations for the cubic-cell (left), Kelvin-cell (middle), and random-cell
(right) ceramics.

• Table 2 shows for all simulations max(∆T z), as well as the ordinates Lmax(∆T z)
that maximizes the413

difference. It is the greatest for the 90 % porosity Kelvin-cell ceramic sample, max(∆T z) = 140 K. For all414

ceramic samples, the radiation propagation lengths increase when switching from 80 % to 90 % porosity415

samples.416
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Figure 16: ∆T z for the cubic-cell (left), Kelvin-cell (middle), and random-cell (right) ceramics.

It is also possible to discuss the conduction–radiation results observed for the random-cell ceramics by417

using the conduction-to-radiation parameter N = λeffβeff

/
(4σT 3

ref) [36], also referred as the Stark or the Planck418

number as defined by Howell et al. [37]. This parameter can be used if we consider that an upscaling approach419

may be applied with confidence [17, 60]. By using the analytical formulations proposed in [61] for the 80 %420

(resp. 90 %) porosity random-cell sample, λeff is equal to 0.02 (resp. 0.01) W cm−1 K−1. These λeff and βeff421

from table 2 lead to N equal to 0.29 (resp. 0.07). As found in the literature, for both porosities, N ≪ 10.422

This highlights again that radiation plays a more important role than conduction [36]. Because the number of423

nonlinear iterations, k in table 1, is higher for solving the conduction–radiation problem with the 90 % than424

with the 80 % porosity random-cell ceramic, the coupling is likely tighter. A similar phenomenon when dealing425

with decreasing values of N was observed in [62].426

To examine various properties and physical behaviors of macroporous cellular materials, the Kelvin cell–427

random cell analogy is often used to efficiently deal with multiphysics [63]. As such, Kelvin-cell structures are428

often used as representatives of random-cell structures, and numerical or experimental tests are performed on429

Kelvin-cell structures. To gauge the accuracy of such an assumption, we can apply here the same Kelvin-cell–430

random-cell analogy to our results from tests {2C,2E} and {2D,2F}. The analogy is true when only considering431

conduction, at least for our porosity range from 80 % to 90 %. Minor temperature variations (±9 K) are present432

when comparing results at a constant porosity, see left-hand side fig. 17. However, the coupled conduction–433

radiation simulations show greater variations in temperatures, so that the Kelvin-cell–random-cell analogy does434

not hold. Note that max(∆T z) for the 90 % porosity Kelvin-cell ceramic is 1.5 times higher that for the435

random-cell ceramic. It also suggests that the heating power of SiC Kelvin-cell ceramics is better than the one436

of random-cell ceramics within similar regimes (porosity and heating conditions).437
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Figure 17: T z for the conduction (left) and the coupled conduction–radiation (right) simulations for the full-scale SiC-based Kelvin-
and random-cell ceramics.

5. Conclusion438

In this paper, a finite element model was established to solve the coupled conduction–radiation physics within439

SiC-based open-cell cellular ceramics operating at temperatures ranging from 1200 K to 1800 K. In particular,440

the vectorial finite element model was used for approximating the radiation physics, i.e., solving the radiative441

transfer equation, which was nonlinearly coupled to the standard finite element model for approximating the442

conduction physics, i.e., solving the heat conduction equation. These models were assembled together using a443

finite element domain-specific language, FreeFEM, and then solved with PETSc.444

Specific numerical experiments were designed with the aim of highlighting the role of conduction–radiation445

coupling within the SiC-based open-cell cellular ceramic structures. More precisely, in these numerical experi-446

ments, the cubic-, Kelvin-, and random-cell cellular ceramic structures at both 80 % and 90 % porosities were447

investigated. Besides these full-scale simulations, the standalone cubic and Kelvin cells were also investigated.448

To ensure comprehensive physics-based simulations compared to the conventional continuum-scale ap-449

proaches that average the volumes, the geometries, and the properties, our numerical simulations were based450

on a discrete-scale approach involving realistic geometries with microstructure properties. Due to its important451

computational cost, the discrete-scale approach has mostly been used for modest mesh sizes when using deter-452

ministic radiation models. We presented results using detailed open-cell cellular ceramic geometries thanks to453

the efficient use of distributed-memory parallelism.454

Radiative transfer, that forms a dominant part of conduction–radiation energy exchange within the SiC455

ceramics, was analyzed by means of radiation density and radiation heat flux, and by calculating the total456

absorbed radiation by the ceramic ligaments. It was revealed that the Kelvin-cell topology is favorable for457

maximizing the radiation gains when compared to the cubic- and the random-cell topology.458

The data from our numerical experiments provides means for better understanding the role of radiation459

in coupled conduction–radiation physics within cellular ceramics. Our numerical data suggests that within460

the standalone or full-scale SiC structures operating at temperatures ranging from 1200 K to 1800 K, the461

radiation plays a dominant role. As such, it cannot be neglected while modeling such scenarios. Considering462

only conduction leads to an under prediction of the real temperature within the SiC cell ligaments. This effect463

was even more pronounced in the full-scale ceramics than in the standalone cells. To quantify the effect of the464

coupling, we compared the difference in mean temperatures.465

The numerical experiments also suggest that the Kelvin-cell ceramics are, indeed, good representatives466

of random-cell ceramics when only considering conduction. However, the same cannot be said for coupled467

conduction–radiation, for which there are important mean temperature differences between the Kelvin-cell468

ceramics and the random-cell ceramics. Our results are furthermore coherent with upscaling approaches based469

on the use of the Stark or the Planck number – which is also known as the conduction-to-radiation parameter.470

Changes in porosity had a considerable effect on the conduction–radiation coupling for all the SiC structures471

except the standalone SiC cubic cell. We observed that changing the porosity from 80 % to 90 % increased the472

radiative transfer, leading to a tighter coupling. As a side effect, the number of nonlinear iterations needed by473

our solver to reach convergence slightly increased.474

The role of convection within macroporous ceramics has yet to be determined. Also, extending our numerical475

experiments to quantify the effect of conduction–radiation in semi-transparent materials, which adds refractions476
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alongside reflections, remains a challenge. This numerical work could be extended to applied studies where477

cellular materials are used as host supports for conversion energy processes occurring at temperatures higher478

than 1000 K.479
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