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We study rapidly-rotating turbulent flows in a highly elongated domain using an asymp-
totic expansion at simultaneously large rotation rate Ω = O(1/ε) and domain height
H = O(1/ε), ε � 1 . We solve the resulting equations using an extensive set of direct
numerical simulations for different parameter regimes. As a parameter λ ∝ Ω/H is
increased beyond a threshold λc, a transition is observed from a state without an inverse
energy cascade to a state with an inverse energy cascade. For large Reynolds number and
large horizontal box size, we provide evidence for criticality of the transition in terms of
the large-scale energy dissipation rate and estimate a critical exponent close to unity.
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1. Introduction

Rotating fluid flows are commonly encountered in astrophysical and geophysical sys-
tems such as planetary and stellar interiors, planetary atmospheres and oceans (Pedlosky
2013), as well as in industrial processes involving rotating machinery. The fluid motions
in these systems are typically turbulent, i.e. the Reynolds number Re, which is defined as
the ratio between inertial and viscous forces, is large. At the same time the flow is affected
by the Coriolis force due to system rotation. The magnitude of the Coriolis acceleration
compared to the inertial acceleration is measured by the non-dimensional Rossby number
Ro = U/(Ω`), where Ω is the rotation rate and U and ` are typical velocity and
length scales of the flow. For Ro < ∞, the isotropy of classical three-dimensional (3-
D) turbulence is broken, since the rotation axis imposes a direction in space. When the
rotation rate is large, i.e. in the limit Ro→ 0, the rotation tends to suppress variations of
the motion along the axis of rotation and thus makes the flow quasi-two-dimensional, an
effect described by the Taylor-Proudman theorem (Hough 1897; Proudman 1916; Taylor
1917; Greenspan et al. 1968).

As is well known, the properties of turbulent cascades strongly depend on the dimension
of space. In homogeneous isotropic 3-D turbulence, energy injected at large scales is
transferred, by non-linear interactions, to small scales in a direct energy cascade (Frisch
1995). In the two-dimensional (2-D) Navier-Stokes equations both energy and enstrophy
are inviscid invariants and this fact constrains the energy transfer to be from small to large
scales in an inverse energy cascade (Boffetta & Ecke 2012). When Ro is lowered below
a certain threshold value Roc in a rotating turbulent flow, a transition is encountered
where the flow becomes quasi-2-D and an inverse cascade develops. In this state, part of
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the injected energy cascades to larger scales and another part to smaller scales, forming
what is referred to as a split or bidirectional cascade (Alexakis & Biferale 2018). In the
absence of effective large-scale damping, this inverse cascade can lead to the formation
of a condensate in which the energy is concentrated at the largest scale.

The formation of large-scale quasi-2-D structures in rotating flows has been observed
early on in experiments (Ibbetson & Tritton 1975; Hopfinger et al. 1982; Dickinson &
Long 1983) and numerical simulations (Bartello et al. 1994; Yeung & Zhou 1998; Godeferd
& Lollini 1999; Smith & Waleffe 1999). Since then, various investigations have focused
on different aspects of the quasi-2-D behaviour of rotating turbulence experimentally
(Baroud et al. 2002, 2003; Morize & Moisy 2006; Staplehurst et al. 2008; Van Bokhoven
et al. 2009; Duran-Matute et al. 2013; Yarom et al. 2013; Machicoane et al. 2016) and
numerically (Mininni et al. 2009; Thiele & Müller 2009; Favier et al. 2010; Mininni &
Pouquet 2010; Sen et al. 2012; Marino et al. 2013; Biferale et al. 2016; Valente & Dallas
2017; Buzzicotti et al. 2018a,b). In particular, recent experiments were able to investigate
the presence of the inverse cascade (Yarom & Sharon 2014; Campagne et al. 2014, 2015,
2016). The transition from forward-cascading to inverse-cascading rotating turbulence
was studied systematically using numerical simulations in (Smith et al. 1996; Deusebio
et al. 2014; Pestana & Hickel 2019), while the transition to a condensate regime was
studied in (Alexakis 2015; Yokoyama & Takaoka 2017; Seshasayanan & Alexakis 2018).

Similar transitions from a forward to an inverse cascade and to quasi-2-D motion
have also been observed in other systems like thin-layer turbulence (Celani et al. 2010;
Benavides & Alexakis 2017; Musacchio & Boffetta 2017; van Kan & Alexakis 2019;
Musacchio & Boffetta 2019; van Kan et al. 2019), stratified turbulence (Sozza et al.
2015), rotating and stratified flows (Marino et al. 2015), magneto-hydrodynamic systems
(Alexakis 2011; Seshasayanan et al. 2014; Seshasayanan & Alexakis 2016) and helically
constrained flows (Sahoo & Biferale 2015; Sahoo et al. 2017) among others (see the
articles by Alexakis & Biferale (2018) and Pouquet et al. (2019) for recent reviews).

While the existence of a transition from forward to inverse energy cascade is well-
established in many systems, including rotating turbulence, its detailed properties remain
poorly understood in most cases. Turbulent flows involve non-vanishing energy fluxes
and thus are out-of-equilibrium phenomena (Goldenfeld & Shih 2017). While in the case
of the laminar-turbulence transition in shear flows a connection with non-equilibrium
statistical physics has been established by placing the problem in the directed percolation
universality class (Pomeau 1986; Manneville 2009), in particular for plane Couette flow
(Lemoult et al. 2016; Chantry et al. 2017) and pipe flow (Moxey & Barkley 2010), such
a general theoretical link has yet to be found for the non-equilibrium transition from
forward to inverse energy cascade. However, previous numerical studies have successfully
analysed special cases. For instance in the case of thin-layer turbulence, Benavides &
Alexakis (2017) were able to provide strong evidence for criticality of the inverse energy
transfer rate as a function of a control parameter related to box height at the transition
to an inverse cascade. The term criticality is used here to describe situations where an
order parameter (e.g. the rate of inverse energy transfer) changes from zero to non-
zero at a critical value of a control parameter (e.g. box height, Ro). When the limit of
infinite horizontal box size and Re →∞ is taken this change can be either discontinuous
(1st order) or continuous with discontinuous (first/second/higher) derivative (2nd order)
at the critical point, (for a more detailed discussion, see (Alexakis & Biferale 2018)).
Knowing whether the transition to an inverse cascade in a turbulent flow is critical
or smooth is important, in particular since this information is paramount for further
investigations. For instance, in a critical transition, two separated phases exist and
one may meaningfully speak of the phase diagram of the system. This is particularly
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interesting in situations with many parameters, such as rotating stratified turbulence in
finite domains. Furthermore, near the critical points there are critical exponents to be
measured, for which a comparison with theoretical predictions seems possible.

In the case of rotating turbulence in a layer of thickness H (after the limit of infinite
horizontal box size L and Re is taken) there are two control parameters left as a function
of which the system can display criticality: the ratio h = H/`in (where here `in is taken to
be the forcing length scale) and Ro. If criticality is present, then this 2-D space (h,Ro)
will be split into two regions, in one of which an inverse cascade is observed, but no
inverse cascade in the other. The two regions are separated by a critical line given by
hc(Ro) that needs to be determined. For large Ro (weak rotation), the problem reduces
to that of the non-rotating layer and therefore limRo→∞ hc(Ro) = h∗c > 0, where h∗c is
the critical value of h for the non-rotating layer (Celani et al. 2010; Benavides & Alexakis
2017; van Kan & Alexakis 2019). For small Ro, the scaling of hc with Ro is not known.
Deusebio et al. (2014) investigated this problem and showed evidence for a continuous
transition, with hc increasing as Ro was decreased but could not reach small enough Ro
to determine a scaling of hc with Ro. In (Alexakis & Biferale 2018) it was argued that the
scaling hc ∝ 1/Ro should be followed, but so far no evidence numerical or experimental
exists to suppurt or dismiss this conjecture. This is what we address in this work by
studying the simultaneous limit of asymptotically small Ro and large domain height.

The remainder of this paper is structured as follows. In section 2 we discuss the
theoretical background of this study, in section 3, we introduce the set-up of our numerical
simulations and define the quantities to be measured. In section 4, we describe the results
of the direct numerical solutions (DNS) we performed and finally in section 5, we draw
our conclusions and discuss remaining open problems.

2. Theoretical Background

2.1. Quasi-two-dimensionalisation and wave turbulence

In this section we discuss the theoretical results underpinning the present study. A
fundamental property of rotating flows is the fact that they support inertial wave motions,
whose restoring force is the Coriolis force (Greenspan et al. 1968). Inertial waves have
the peculiar anisotropic dispersion relation

ωsk(k) = 2skΩk‖/k, (2.1)

where sk = ±1,Ω is the rotation rate, k‖ is the component of k along the rotation axis and
k = |k|. Similarly, we define k⊥ as the magnitude of the component of k perpendicular to
the rotation axis. In the remainder of this article, parallel and perpendicular will always
refer to the rotation axis. Inertial waves in fast-rotating turbulence are important for
understanding the direction of the energy cascade, as will be discussed below. The form
of (2.1) shows that motions which are invariant along the axis of rotation, i.e. which
are 2-D with three components (2D3C), have zero frequency and are thus unaffected by
rotation. This allows decomposing the flow into two components, the 2D3D modes which
are not directly affected by rotation, forming the slow manifold, and the remaining 3-D
modes which are affected by the rotation, forming the fast manifold (Buzzicotti et al.
2018b). In the limit Ro → 0, it can be shown that only resonant interactions remain
present (Waleffe 1993; Chen et al. 2005). Resonant interactions are those interactions
between wavenumber triads (k,p,q) satisfying

k + p + q = 0, (2.2)

ωsk(k) + ωsp(p) + ωsq(q) = 0, (2.3)
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where ωsk(k), ωsp(p) and ωsq(q) are given by (2.1). When only resonant interactions are
present in the system, it can further be shown that any triad including modes from both
the fast and slow manifolds leads to zero net energy exchange between the two manifolds.
Thus, with only resonant interactions, the slow and fast manifolds evolve independently
from each other without exchanging energy, and there is inverse energy transfer in the
perpendicular components of the slow manifold. This decoupling may lead to an inverse
energy cascade for the quasi-2-D part of the flow. In fact, it can be proven that for finite
Reynolds number Re ≡ U`/ν (where ν is viscosity, U is r.m.s. velocity and ` is a forcing
length scale) and finite H, the flow will become exactly 2-D as Ro→ 0 (Gallet 2015).

On the other hand, in the limit of infinite domain height H, very small values of k‖ are
possible, such that quasi-resonant triads, for which (2.3) is only satisfied to O(Ro), can
transfer energy between the slow and fast manifolds. Thus the inverse energy transfer
in the slow manifold may be suppressed by interaction with quasi-resonant 3-D modes.
Asymptotically, for infinite domains and k‖/k⊥ � 1, wave turbulence theory predicts a
forward energy cascade and an associated anisotropic energy spectrum (Galtier 2003).

There are thus two mechanisms at play in the energy transport: the dynamics of the
slow manifold transferring energy to the large scales and the 3-D interactions transferring
energy to the small scales. Which of these two processes dominates depends on the

two non-dimensional parameters, the Rossby number Ro = ε
1/3
in /(`

2/3
in Ω), based on the

velocity scale (εin`in)1/3 and the length scale `in, and the ratio h = H/`in. The main
criterion is whether or not 2-D modes are isolated from 3-D modes due to fast rotation.
The coupling of 2-D and 3-D motions will be strong enough to stop the inverse cascade
if the fast modes closest to the slow manifold (k‖ ∼ H−1, k⊥ ∼ `−1in ) are ‘slow’ enough
to interact with the 2-D slow manifold. This implies that their wave frequency ω =
2Ωk‖/k⊥ ∼ 2Ω`in/H is of the same order as the non-linear inverse time scale τ−1nl ∼
ε
1/3
in `

−2/3
in . This leads to the following prediction for the critical height Hc, where the

transition takes place,

hc =
Hc

`in
∝ Ωε−1/3in `

2/3
in = Ro−1. (2.4)

Importantly, the predicted critical rotation rate and height are linearly proportional. The
criterion (2.4) suggests that the non-dimensional control parameter of the transition in
the limit of large h and small Ro is given by

λ =
1

h× Ro
=
`
5/3
in Ω

ε
1/3
in H

. (2.5)

2.2. Multiscale expansion

In the present paper, we will explore the regime of simultaneously large h and small
Ro. Brute-force simulations at very small Ro are costly since very small time steps are
required to resolve the fast waves of interest. Rather, we exploit an asymptotic expansion
first introduced in (Julien et al. 1998), which allows to test the prediction (2.4) and to
investigate the properties of the transition to a split cascade. The expansion is based on
the Navier-Stokes equation including the Coriolis force and proceeds in the simultaneous
limit of H = Ĥ/ε and Ω = Ω̂/ε with Ω̂, Ĥ = O(1) and ε → 0 (such that λ = const. =
O(1) according to 2.5), keeping the horizontal extent L of the domain fixed at order
one, as depicted in figure 1. Note that height and rotation rate are proportional to each
other, as in (2.4). By changing the prefactors Ĥ, Ω̂, we can place ourselves above or
below the critical line predicted by (2.4). In the following we drop the hats for simplicity.
The method of multiple scales or a heuristic derivation (see appendix A) can be used to
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obtain a set of asymptotically reduced equations for the parallel components of velocity
u‖ and vorticity ω‖,

∂tu‖ + u⊥ · ∇⊥u‖ +2Ω∇‖∇−2⊥ ω‖ = ν∇2
⊥u‖ + f‖, (2.6)

∂tω‖ + u⊥ · ∇⊥ω‖ −2Ω∇‖u‖ = ν∇2
⊥ω‖ + fω, (2.7)

with time t, velocity u and rescaled rotation rate Ω. The gradients ∇‖,∇⊥ stand,
respectively, for the derivative with respect to a slow parallel coordinate ∇‖ = ê‖ · ∇,
and for the horizontal gradients ∇⊥ = ∇ − ê‖ · ∇ where ê‖ = Ω/Ω. The velocity u is
written in terms of u‖ = ê‖ · u and u⊥ = u − ê‖u‖. The perpendicular components u⊥
are divergence-free to leading order ∇⊥ · u⊥ = 0, which permits us to write them in
terms of a stream function u⊥ = ê‖ × ∇ψ where ψ is such that ω‖ = ∇2

⊥ψ and ω‖ is
the vertical vorticity. The forcing f is written in terms of f‖ = ê‖ · f and f⊥ = f − ê‖f‖,
moreover we define fω = (∇ × f) · ê‖. In the following, f is chosen to be stochastic
and, for simplicity, two-dimensional (invariant along the parallel direction), thus directly
forcing the slow manifold. Furthermore f is filtered in Fourier space so that it is confined

Figure 1. The long
rapidly-rotating box domain.

within a ring of wavenumbers centered on kf ≡ 1/`in.
It is delta correlated in time, leading to a fixed mean
energy injection rate 〈u‖f‖〉 = 〈f⊥ · u⊥〉 = εin/2 ⇒
〈f · u〉 = εin, where 〈·〉 denotes an ensemble average
over infinitely many realisations. A similar 2-D forcing has
been widely used in previous studies on the transition
toward an inverse cascade, such as (Smith et al. 1996;
Celani et al. 2010; Deusebio et al. 2014). We use random
initial conditions whose small energy is spread out over a
range of wavenumbers. Variants of the asymptotic equations
(2.6, 2.7) have been extensively used in the past, in
particular for studying rotating turbulence (Nazarenko &
Schekochihin 2011) and rapidly rotating convection (adding
energy equation) (Sprague et al. 2006; Julien et al. 2012b,a;
Rubio et al. 2014; Grooms et al. 2010), as well as dynamos
driven by rapidly rotating convection (adding the energy
and MHD induction equations) (Calkins et al. 2015).

The equations (2.6) and (2.7) are closely related to well-
known models in geophysical fluid dynamics. In particular,

since the leading-order horizontal velocity is in geostrophic balance, the model bears a
resemblance to the classical quasi-geostrophic approximation. Indeed, equations (2.6, 2.7)
have been referred to as generalized quasi-geostrophic equations (Julien et al. 2006).

A great advantage of the reduced equations over the Navier-Stokes equations is that
while Ω and H are large in the original equation, they are of order one in the reduced
equations, permitting much more efficient numerical integration. Importantly, equations
(2.6) and (2.7) retain inertial waves with the correct dispersion relation, but only those
with order-one frequencies. We perform direct numerical simulations (DNS) of (2.6) and
(2.7) to show that, as predicted by the theory outlined above, there is indeed a transition
from a direct to an inverse energy cascade in this extreme parameter regime.

3. Numerical set-up and methodology

In this section, we describe the numerical set-up used in the present study. We solve
equations (2.6) and (2.7) numerically in a triply periodic domain of dimensions 2πL ×
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2πL×2πH with modified dissipative terms. After nondimensionalising horizontal length
scales based on `in, parallel length scales based on H and time based on the (eddy
turnover) time scale τf = (`2in/εin)1/3 imposed by the forcing, we obtain the following
PDEs to be solved,

D⊥t u‖+ 2λ∇‖∇−2⊥ ω⊥ = − (−∇2
⊥)nu‖

Reν
−

(−∇2
‖)
mu‖

Reµ
−

uls‖

Reα
+ f‖, (3.1)

D⊥t ω‖− 2λ∇‖u‖ = − (−∇2
⊥)nω‖

Reν
−

(−∇2
‖)
mω‖

Reµ
−

ωls‖

Reα
+ fω, (3.2)

in the triply periodic domain of dimensions 2πΛ × 2πΛ × 2π with Λ = L/`in. Note
that the information about the parallel dimension is now contained in the parameter λ.
Here D⊥t = ∂t + u⊥ · ∇⊥. The right-hand side of eqs. (3.1,3.2) expresses the dissipation
terms and the forcing. For a field g we define gls =

∑
k,k⊥62 ĝ(k) exp(ik · x), in terms

of the Fourier transform ĝ(k) of g with k ∈ N3. The large-scale friction terms involving
uls‖ and ωls‖ have been added to prevent the formation of a condensate at small wave

numbers. The term proportional to ∇2m
‖ (·) suppresses exceedingly large parallel wave-

numbers which are expected not to interact significantly with the slow manifold, thereby
reducing the required resolution in the parallel direction and the computational cost. In
all simulations n = 4 and m = 2 was used. The resulting equations (3.1,3.2) explicitly
contain four non-dimensional parameters, in addition to Λ stemming from the boundary
conditions. There are three different Reynolds numbers based on the three dissipation

mechanisms Reν = ε
1/3
in `2n−2/3/νn, Reµ = ε

1/3
in `2m−2/3/µm and Reα = ε

1/3
in /(`2/3α),

where νn is the hyperviscosity acting on large k⊥, µm is the hyperviscosity acting on lare
k‖ and α is the large-scale friction coefficient. Finally, there is the parameter λ defined in
equation (2.5). In the present framework, we are interested in monitoring the amplitude
of the inverse cascade as a function of the parameter λ in the limit of large Reν , Reµ, Reα
and large Λ.

Before we describe the simulations performed for this work, we define a few quantities
of interest which we will use in the following. The 2-D energy spectrum is defined as

E(k⊥, k‖) =
1

2

∑
p⊥

k⊥−
1
2
6p⊥<k⊥+1

2

( |ω̂‖(p⊥, k‖)|2
p2⊥

+ |û‖(p⊥, k‖)|2
)
, (3.3)

where hats denote Fourier transforms. The 1-D energy spectrum is obtained from (3.3)
by summation over k‖,

E(k⊥) =
∑
k‖

E(k⊥, k‖) ≡ E⊥(k⊥) + E‖(k⊥), (3.4)

where E⊥ contains all terms involving ω̂‖ and E‖ contains all terms involving û‖. The
2-D dissipation spectrum is defined as

D(k⊥, k‖) =
∑
p⊥

k⊥−
1
2
6p⊥<k⊥+1

2

[(
νnp

2n
⊥ + µmk

2m
‖

)( |ω̂‖(p⊥, k‖)|2
p2⊥

+ |û‖(p⊥, k‖)|2
)]

.

(3.5)
The large-scale energy dissipation rate is given by:

εα = α
∑

k,|k⊥|62

|û(k)|2 (3.6)
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Set A B C
Reν 3.1× 103 4.9× 105 4.9× 105

Λ 32 32 64
resolution 5122 × nz 10242 × nz 10242 × nz

# runs 16 9 9
# τeddy 22000 2500 7000

Table 1. Summary of the different simulations performed, where the resolution nz in the parallel
direction is varied between 128 and 512 in order to ensure well-resolved simulations. For each
column, ”# runs” different values of λ, as defined in (2.5), were investigated and #τeddy gives

the number of eddy turnover times τf = ε
−1/3
in `2/3 simulated for each set of runs.

that measures the rate energy cascades inversely to the largest scales of the system.
Finally, the spectral energy flux in the perpendicular direction through a cylinder of
radius k⊥ in Fourier space is defined as

Π(k⊥) =
〈
(u⊥)

<
k⊥
· [(u⊥ · ∇)u⊥]

〉
, (3.7)

where u = (u⊥,u‖), u⊥ = ê‖ ×∇ψ and

(u⊥)
<
k⊥

=
∑

p
p⊥<k⊥

û⊥(p) exp(ip · x). (3.8)

The code used to solve equations (3.1, 3.2) is based on the Geophysical High-order
Suite for Turbulence, using pseudo-spectral methods including 2/3 aliasing to solve for
the flow in the triply periodic domain, (see Mininni et al. 2011). We performed three
sets of experiments, one at resolution 5122 × nz (set A) and two at 10242 × nz (sets B
and C), where the resolution nz in the parallel direction is varied depending on λ from
128 to 512 to ensure well-resolvedness at minimum computational cost. We choose either
Λ = 32 (sets A and B) or Λ = 64 (set C). The parameters νn and µm are chosen for every
simulation so that the run is well-resolved at large k‖, k⊥. This is checked by verifying
that the maximum dissipation is captured within the interior of the 2-D dissipation
spectrum (3.5). The coefficient α was chosen so that that the 1-D spectrum (3.4) does
not have a maximum at k = 1 (i.e. no condensate is formed). In each of the three sets
of experiments, we keep Λ and Reν fixed and vary λ from small (slow rotation) to large
(fast rotation). A summary is given in table 1.

In all simulations, we monitor the 1-D and 2-D energy spectra (3.4, 3.3) as well as the
large-scale dissipation rate (3.6). Simulations are continued until a steady state is reached
where the large-scale dissipation rate and the energy spectrum are statistically steady,
with the 1-D energy spectrum not having its maximum at k = 1. Note that in such a
steady-state situation εin = εα + εν,µ, where εν,µ =

∑
kD(k⊥, k‖) is the dissipation rate

due to hyperviscosity in the parallel and perpendicular directions, dominantly occurring
at small scales. Monitoring εα thus gives the amount of energy transferred inversely up
to the largest scales k = 1, 2 and allows to measure the strength of the inverse cascade.
Despite the fact that we solve asymptotically reduced equations, which allows larger time
steps, the required simulation time was non-negligible, since convergence to the steady
state was slow in some cases. In total, more than 30000 forcing-scale-based eddy turnover
times τf = ε−1/3`2/3 were simulated, amounting to around two million CPU hours of
computation time.
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Figure 2. Large-scale dissipation rates as defined by (3.6) in steady state from sets A, B and C
for different values of λ. Error bars correspond to standard deviation in steady state. The black
dashed line is a linear fit based on set C. Right: all values of λ, Left: zoom close to λ = λc.

4. Results from direct numerical simulations

In this section, we present the results of the direct numerical simulations obtained
in steady state. The central goal of this work is to determine the properties of the
transition from a strictly forward cascade to a state that there is also an inverse cascade.
The amplitude of the inverse cascade is given by the large-scale dissipation rate εα that
measures the rate at which energy is transferred to the large scales. In the presence of
an inverse cascade, εα converges to a finite value in the limit of Λ,Reα, Reµ, Reν → ∞
while it converges to zero in the absence of an inverse cascade. In Figure 2 we show εα
(time averaged at steady-state) as a function of the parameter λ from all simulations.
One observes a transition from εα/εin ≈ 0 to finite values at λ = λc ≈ 0.03. At λ < λc
no inverse cascade is present and a vanishingly small amount energy reaches the scales
k⊥ = 1, 2, where the large-scale dissipation acts. However, for λ > λc an inverse cascade
develops, whose strength increases monotonically with λ− λc, leading to non-zero large-
scale dissipation. Comparing the curves obtained from sets A, B (Reν increased) and C
(Reν and horizontal box size Λ increased), one observes that the transition appears to
become sharper with increasing Reynolds number and box size, and remains at the same
point. This indicates that the transition is likely to be critical and continuous, having a
discontinuous 1st derivative at λc in the limit Reν , Λ→∞. Considering only the highest
Reν and Λ, i.e. set C only, we estimate from figure 2 that εα ∝ (λ − λc)γ with γ ≈ 1
from a fit close to onset, within our uncertainties. However, this estimate of the critical
exponent is not definitive and a larger number of simulations and parameter values are
needed to ascertain its precise value with higher confidence.

The left panel of figure 3 shows the energy flux in steady state for four values of λ from
set A, namely (a) λ = 0.0031, (b) λ = 0.00279, (c) λ = 0.062 and (d) λ = 0.155. Cases
(a) and (b) correspond to λ < λc, while for cases (c) and (d) λ > λc. All simulations
present a significant forward energy flux for k > kf . For k � kf the energy flux vanishes
for the small-λ cases (a) & (b) (small rotation rates, tall boxes). Some inverse flux is
observed for these cases, which is however confined to around k ≈ kf/2. By contrast, a
non-vanishing inverse energy flux extending up to k⊥ = 1 is observed for the larger λ
cases (c) & (d) (higher rotation rate, shallower box) that display an inverse cascade.

The right panel of 3 shows the corresponding 1-D spectra for the same four values of
λ as in the left panel of the same figure. In cases (c) and (d), that display an inverse
cascade, the spectrum is maximum at small wave numbers k⊥ ' 2. The reason why
the spectrum does not peak at the smallest wavenumber k = 1 is the damping by the
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Figure 3. Energy flux in the perpendicular direction as a function of perpendicular
wavenumber for four different values of λ from set A.
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Figure 4. Steady-state 2-D energy spectra as defined in (3.3) from set A for λ = 0.0279 (left)
and λ = 0.155 (right). Color bar logarithmic with base 10.

large-scale friction. In cases (a) and (b), the spectrum has two local maxima, one at the
forcing scale k⊥ = kf and another one near k⊥ = kf/2. This implies that there is transfer
of energy to scales twice as large as the forcing scale. This, however, does not indicate
an inverse cascade as this secondary peak remains close to the forcing scale and does not
move further up to larger scales.

The 2-D spectra associated with cases (b) and (d) are presented in figure 4. They
show that the secondary maximum observed in the 1-D energy spectra at k⊥ ≈ kf/2
for (b) stems from contributions at k‖ > 0. For λ > λc, the inverse energy cascade of
the 2-D manifold leads to a maximum at k‖ = 0, at small k⊥. Finally figure 5 shows
the 1-D spectra from cases (b) and (d) decomposed to their horizontal E⊥(k⊥) and
parallel E‖(k⊥) components. They show that perpendicular motions dominate for all
wavenumbers k < kf in the case of an inverse cascade and also close to the secondary
maximum at kf/2 for the flows that do not display an inverse cascade. At large k > kf
the two spectra are of the same order with E‖(k⊥) > E⊥(k⊥).

The peak observed in the 1-D spectrum at k ≈ kf/2 is for the flows that do not display
an inverse cascade is unexpected and deserves some further discussion. First we should
note that this is not the first time a similar feature is observed. In Buzzicotti et al.
(2018b), where simulations of rotating turbulence were performed, artificially excluding
the k‖ = 0 plane in Fourier space showed a similar maximum. More recently such a
maximum was also observed in simulations of rotating turbulence in elongated domains
Clark Di Leoni et al. (2020). Since this is the statistically steady state of the system
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and energy does not cascade further upscale, this inverse transfer does not stem from a
turbulent inverse cascade, which would continue up to the largest scales, as it does for
λ < λc. We have also verified that starting from initial conditions obtained from a run
with λ > λc and decreasing λ to a value below λc resulted, at long times, in a state
with no inverse cascade. Rather, one may suspect an instability mechanism involving the
forcing-scale flow. Indeed, considering a single homochiral wavenumber triad comprising
one large-amplitude mode k = (kf , 0, 0) at the forcing scale and the two small-amplitude
modes at p,q, one finds that the modes with q⊥ ≈ kf/2, and |q‖| < kf/λ are unstable (see
appendix B). Interestingly, (Buzzicotti et al. 2018b) also found homochiral interactions
to be responsible for the inverse energy transfer in their simulations. This instability
can explain in part the transfer of energy to the kf/2 modes. We note however that the
maximum growth occurs at q‖ = 0 for the triad (see appendix B), which is not where
the maximum is observed in the 2-D spectra shown in figure 4.

In figure 6 we also show the 2-D energy dissipation spectra for the same cases as in
figure 4. The dissipation spectra demonstrate the well-resolvedness of the simulations:
the maximum dissipation is within the simulation domain and not at the maximum
wavenumbers (in the parallel or perpendicular direction). It is worth noting that most
of the dissipation is occurring at large k⊥ and not at large k‖. The artificial hyper-
viscosity used for the parallel wavenumbers in the simulations thus plays a minor role in
dissipating energy. This is reassuring because in the asymptotic expansion (eqs. 2.6,2.7)
only the perpendicular wavenumbers participate in the dissipation. It is also worth noting
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Figure 7. Visualisation of the flow in terms of vorticity ω‖ at λ = 0.027 . λc (left) and
λ = 0.23 > λc (right). Positive vorticity in red, negative in blue, the edges have been coloured
blue for better visualisation. For λ > λc, on the sides of the domain one can see elongated
structures along the parallel direction, while the on top of the domain well-separated vortices
are seen. For λ < λc, these elongated structures are absent. Furthermore, the flow for λ > λc is
characterised by larger perpendicular scales than the flow at λ < λc.

that for case (b) (λ = 0.0279) a higher resolution in the parallel direction was required
than for case (d) (λ = 0.155). This is because the small-λ flows are more efficient at
generating small scales in the parallel direction, while such generation is suppressed in
large-λ flows by rotation.

Finally, figure 7 shows a visualisation of the flow in terms of vorticity ω‖ at λ =
0.027 . λc (left) and λ = 0.23 > λc (right). For λ > λc, columnar vortices are clearly
visible which are approximately invariant along the axis of rotation. In the perpendicular
direction these vortices are visibly of larger scale and organised in clusters. For λ < λc,
no such anisotropic organisation of the flow can be observed.

5. Conclusions

The results presented in the sections above indicate that in fast-rotating turbulence
within elongated domains, the transition from a strictly forward cascade to a split cascade
(where part of the energy cascades inversely) is controlled by the parameter λ given in
(2.5). This result implies that if the limit of infinite domain height h → ∞ is taken for
fixed Ro, then λ → 0 and energy cascades forward as weak turbulence theory predicts.
On the other hand, if the limit Ro→ 0 is taken for a fixed domain height, then λ→∞
and an inverse cascade will be present. The fact that a transition to an inverse cascade is
observed in the asymptotic limit h ∝ Ro−1 → ∞, which is considered here numerically,
confirms the theoretical arguments presented in section 2. The phase space of rotating
turbulence in the (h, 1/Ro) plane, based on the present results is as depicted in figure 8.
In the limit of infinite Re and Λ two phases exist, one where there is only forward cascade
and one where there is a split cascade. They are separated by a critical line hc(Ro) that
approaches the non-rotating critical height h∗c for Ro→∞, while for small Ro, which is
the limit examined in the present work, hc scales like hc = 1/(Roλc) with λc ' 0.03.
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Figure 8. Phase space of rotating turbulence.

Our approach was based on asymptotic reduction, allowing us to reliably achieve the
extreme parameter regimes required to test the theoretical predictions at comparatively
moderate numerical cost. We stress, however, that a question of order of limit arises. By
solving the asymptotically reduced equations and investigating increasing Reν and Λ in
that framework, we are taking limits in the order

lim
Reν→∞
Λ→∞

(
lim

Ro→0
λ=cst.

εα(λ)

)
as opposed to lim

Ro→0
λ=cst.

 lim
Reν→∞
Λ→∞

εα(λ)

 (5.1)

i.e. first the low Rossby limit (with fixed λ) is taken and then the large Reynolds number
limit and not vice versa, which would correspond to studying the (Ro,H) dependence of
an already fully turbulent flow. A priori, the two limits do not necessarily commute and
therefore it is important to additionally study turbulent flow within an elongated domain
in the full rotating Navier-Stokes system and to compare with the results obtained here.

Our numerical evidence also suggests that this transition is continuous but not smooth.
The inverse cascade starts at a critical value λc with an almost linear dependence on the
deviation from criticality εα ∝ (λ−λc). Despite the simplicity of this behaviour, its origin
is far from being understood. Similar scaling behavior has been found for the transition
to the inverse energy cascade in thin-layer turbulence below a critical layer height Hc

(Benavides & Alexakis 2017) and for the two-dimensional magnetohydrodynamic flow
studied in (Seshasayanan & Alexakis 2016; Seshasayanan et al. 2014). In both cases,
a critical exponent close to unity is identified for the inverse energy transfer rate close
to the transition. Future research should aim to provide an understanding of the origin
of this estimated critical exponent. It should also verify which other turbulent fluid
flows present criticality at the transition to the inversely cascading regime and whether
their critical exponent is identical to or different from unity. Experimental investigations
in such systems, where long-time averages can be performed, may prove invaluable in
understanding this non-equilibrium phase transition.
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Appendix A. Heuristic derivation of the fast-rotating long box
equations

In this appendix we present a heuristic derivation of the reduced equations discussed in
the main text. A derivation based on the method of multiple scales is given in (Sprague
et al. 2006) for the Boussinesq equations, which reduces to our problem for vanishing
density variations. The Navier-Stokes equation for a constant-density fluid in a system
rotating at the constant rate Ω = Ωê‖ is

∂tu + u · ∇u + 2Ωê‖ × u = −∇p+ ν∇2u + f (A 1)

∇ · u = 0, (A 2)

where u = u‖+u⊥ is velocity with u‖ = (u · ê‖)ê‖ = u‖ê‖ (we will use the same notation
for all vectors), p is pressure (divided by the constant density ρ0) and f is the forcing.
We impose triply periodic boundary conditions, the forcing is assumed to be solenoidal
and to have zero average over the domain.
Eliminating pressure from (A 1) using the incompressible projection defined for an
arbitrary vector field F as P[F] ≡ −∇−2∇×∇×F = F−∇−2∇(∇ ·F), ∇2(∇−2f) = f ,
and considering the equations for parallel velocity u‖ and parallel vorticity ω‖ = ω · ê‖,
ω = ∇× u, gives

∂tu‖ + u · ∇u‖ −∇−2∇‖{∇ · (u · ∇u)}+ 2Ω∇−2(ê‖ · ∇)ω‖ =ν∇2u‖ + f‖ (A 3)

∂tω‖ + u · ∇ω‖ −(2Ωê‖ + ω) · ∇u‖ =ν∇2ω‖ + fω, (A 4)

where fω ≡ ê‖ · (∇× f). We consider the limit of simultaneously fast rotation rates and

large aspect ratios, Ω = Ω̂/ε and x = x⊥ + x̂‖/ε, where ε � 1 and all Ω̂, x⊥, x̂‖ are all
order one (omit hats from now on). The coordinate transformation implies∇ = ∇⊥+ε∇‖,
such that ∇2 = ∇2

⊥ + O(ε) and also ∇−2 = ∇−2⊥ + O(ε). Importantly, in this limit the
Coriolis terms in equations (A 3) and (A 4) are of order one since the largeness of the
rotation rate Ω/ε and the smallness of parallel derivatives ε∇‖ compensate each other.
The fact that only slow variations along the rotation axis are permitted derives from the
Taylor-Proudman theorem forbidding fast variations in the limit Ro→ 0.

Unlike in conventional quasi-geostrophy (in a thin layer), both perpendicular and
parallel velocities, as well as their perpendicular derivatives, are assumed to be of order
one. An important simplification arises from continuity,

∇ · u = ∇⊥ · u⊥ +O(ε) = 0. (A 5)

This means that the leading-order perpendicular velocity is incompressible and admits
a streamfunction: u⊥ = ê‖ ×∇⊥ψ, hence ω‖ = ∇2

⊥ψ. Another simplification arises from
the fact that

∇−2(ê‖ · ∇){∇ · (u · ∇u))} = O(ε)� u · ∇u‖ = u⊥ · ∇⊥u‖ +O(ε). (A 6)

Finally, one finds that the vortex stretching term in the parallel vorticity equation
vanishes to at leading order ω · ∇u‖ = O(ε). The above results yield the leading-order
governing equations

∂tu‖ + u⊥ · ∇⊥u‖ +∇−2⊥ (2Ω · ∇)ω⊥ = ν∇2
⊥u‖ + f‖, (A 7)

∂tω‖ + u⊥ · ∇⊥ω‖ −(2Ω · ∇)u‖ = ν∇2
⊥ω‖ + fω. (A 8)
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Equations (A 7, A 8) are complemented by the geostrophic balance relation in the
perpendicular direction, u⊥ = ê‖ × ∇⊥ψ, which implies ω‖ = ∇2

⊥ψ, making (A 7, A 8)
two equations for the two unknowns u‖ and ω‖.

Appendix B. Homochiral triad instability

For concreteness, choose ê‖ = êz. The Fourier transformed governing equations
(2.7,2.6) then read, in the absence of forcing or dissipation,

∂tûk − 2iΩ
k‖

k2⊥
ω̂k =−

∑
p+q+k=0

[pxqy − qxpy]
ω̂∗p
p2⊥
û∗q , (B 1)

∂tω̂k − 2iΩkzûk =−
∑

p+q+k=0

[pxqy − qxpy]
ω̂∗p
p2⊥
ω̂∗q , (B 2)

where we used u‖ ≡
∑

k ûke
−ik·x ≡ ∑k ûke

−ik·x and similarly for ω‖ = ∇2
hψ, while

expressing u⊥ via ψ. Defining Zskk = ûk + sk
ω̂k

k⊥
, (B 1, B 2) may be rewritten entirely in

terms of Zskk .
We consider a not necessarily resonant triad (k,p,q) with k = (kf , 0, 0), such that

px = −kf − qx, py = −qy, pz = −qz, choosing the forcing-scale mode Z+
k = u0, Z−k =

0 ⇔ ûk = u0(0,−i/2, 1/2), i.e. the positively helical flow u = u0(0, sin(kfx), cos(kfx)).
We take the modes at p and q to be of small amplitude, and perform a linear stability
analysis of this configuration for the homochiral case sp = sq = 1 = sk (the other
cases do not give relevant results). We thus determine the growth rate σ(q) of the two
small-amplitude modes (p is uniquely determined by q).

The left panel of figure 9 shows that the maximum of σ occurs for q⊥ ≈ kf/2, which
points to a possible explanation of the maximum in the 1-D energy spectra found in
figure 5 at λ < λc. A more detailed analysis is required, however, since the right panel of
figure 9 indicates that the maximum growth rate due to the triad instability is located at
q‖ = 0, whereas the DNS showed a spectral maximum at non-zero parallel wavenumber.

An interesting property of the growth rate obtained for the homochiral triad in-
stability is that it vanishes above a certain threshold value of q∗‖ ∝ (Hλ̃)−1, with

λ̃ = (kfH)−1(u0kf/Ω)−1 being the analogue, in the linear stability problem, of λ defined
in eq. (2.5) for forced turbulence. For a given finite layer height 2πH, there is a minimum
qmin‖ H = 1 by periodic boundary conditions. At small λ̃, qmin‖ will lie inside the range

of unstable wavenumbers and thus the triad stability can occur. Increasing λ̃ (e.g. by
decreasing H), a point is reached where qmin‖ ceases to be unstable to the triad instability.

This happens at λ̃ = λ̃c ≈ 0.35. This point is related to the critical transition studied
in the present paper, since when the triad instability is absent, there is no more transfer
from the large-amplitude 2-D mode to the 3-D modes. This is precisely the criterion we
identified for the transition to occur. When decoupled form 3-D motions, the 2-D modes
of the flow will transfer energy inversely. The fact that λ̃c is different from λc does not
invalidate this, given the drastic reduction from the DNS to a single wavenumber triad.
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