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Critical transition in fast-rotating turbulence within highly elongated domains

We study rapidly-rotating turbulent flows in a highly elongated domain using an asymptotic expansion at simultaneously large rotation rate Ω = O(1/ ) and domain height

1 . We solve the resulting equations using an extensive set of direct numerical simulations for different parameter regimes. As a parameter λ ∝ Ω/H is increased beyond a threshold λ c , a transition is observed from a state without an inverse energy cascade to a state with an inverse energy cascade. For large Reynolds number and large horizontal box size, we provide evidence for criticality of the transition in terms of the large-scale energy dissipation rate and estimate a critical exponent close to unity.

Introduction

Rotating fluid flows are commonly encountered in astrophysical and geophysical systems such as planetary and stellar interiors, planetary atmospheres and oceans [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF], as well as in industrial processes involving rotating machinery. The fluid motions in these systems are typically turbulent, i.e. the Reynolds number Re, which is defined as the ratio between inertial and viscous forces, is large. At the same time the flow is affected by the Coriolis force due to system rotation. The magnitude of the Coriolis acceleration compared to the inertial acceleration is measured by the non-dimensional Rossby number Ro = U/(Ω ), where Ω is the rotation rate and U and are typical velocity and length scales of the flow. For Ro < ∞, the isotropy of classical three-dimensional (3-D) turbulence is broken, since the rotation axis imposes a direction in space. When the rotation rate is large, i.e. in the limit Ro → 0, the rotation tends to suppress variations of the motion along the axis of rotation and thus makes the flow quasi-two-dimensional, an effect described by the Taylor-Proudman theorem [START_REF] Hough | on the application of harmonic analysis to the dynamical theory of the tides.-part i. on laplace's "oscillations of the first species" and the dynamics of ocean currents[END_REF][START_REF] Proudman | On the motion of solids in a liquid possessing vorticity[END_REF][START_REF] Taylor | Motion of solids in fluids when the flow is not irrotational[END_REF][START_REF] Greenspan | The theory of rotating fluids[END_REF].

As is well known, the properties of turbulent cascades strongly depend on the dimension of space. In homogeneous isotropic 3-D turbulence, energy injected at large scales is transferred, by non-linear interactions, to small scales in a direct energy cascade [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]. In the two-dimensional (2-D) Navier-Stokes equations both energy and enstrophy are inviscid invariants and this fact constrains the energy transfer to be from small to large scales in an inverse energy cascade [START_REF] Boffetta | Two-dimensional turbulence[END_REF]. When Ro is lowered below a certain threshold value Ro c in a rotating turbulent flow, a transition is encountered where the flow becomes quasi-2-D and an inverse cascade develops. In this state, part of the injected energy cascades to larger scales and another part to smaller scales, forming what is referred to as a split or bidirectional cascade [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]). In the absence of effective large-scale damping, this inverse cascade can lead to the formation of a condensate in which the energy is concentrated at the largest scale.

The formation of large-scale quasi-2-D structures in rotating flows has been observed early on in experiments [START_REF] Ibbetson | Experiments on turbulence in a rotating fluid[END_REF][START_REF] Hopfinger | Turbulence and waves in a rotating tank[END_REF][START_REF] Dickinson | Oscillating-grid turbulence including effects of rotation[END_REF]) and numerical simulations [START_REF] Bartello | Coherent structures in rotating threedimensional turbulence[END_REF][START_REF] Yeung | Numerical study of rotating turbulence with external forcing[END_REF][START_REF] Godeferd | Direct numerical simulations of turbulence with confinement and rotation[END_REF][START_REF] Smith | Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence[END_REF]. Since then, various investigations have focused on different aspects of the quasi-2-D behaviour of rotating turbulence experimentally [START_REF] Baroud | Anomalous self-similarity in a turbulent rapidly rotating fluid[END_REF][START_REF] Baroud | Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows[END_REF][START_REF] Morize | Energy decay of rotating turbulence with confinement effects[END_REF][START_REF] Staplehurst | Structure formation in homogeneous freely decaying rotating turbulence[END_REF][START_REF] Van Bokhoven | Experiments on rapidly rotating turbulent flows[END_REF][START_REF] Duran-Matute | Turbulence and columnar vortex formation through inertial-wave focusing[END_REF][START_REF] Yarom | Experimental quantification of inverse energy cascade in deep rotating turbulence[END_REF][START_REF] Machicoane | Twodimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid[END_REF]) and numerically [START_REF] Mininni | Scale interactions and scaling laws in rotating flows at moderate rossby numbers and large reynolds numbers[END_REF][START_REF] Thiele | Structure and decay of rotating homogeneous turbulence[END_REF][START_REF] Favier | On space and time correlations of isotropic and rotating turbulence[END_REF][START_REF] Mininni | Rotating helical turbulence. i. global evolution and spectral behavior[END_REF][START_REF] Sen | Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence[END_REF][START_REF] Marino | Inverse cascades in rotating stratified turbulence: fast growth of large scales[END_REF][START_REF] Biferale | Coherent structures and extreme events in rotating multiphase turbulent flows[END_REF][START_REF] Valente | Spectral imbalance in the inertial range dynamics of decaying rotating turbulence[END_REF]Buzzicotti et al. 2018a,b). In particular, recent experiments were able to investigate the presence of the inverse cascade [START_REF] Yarom | Experimental observation of steady inertial wave turbulence in deep rotating flows[END_REF][START_REF] Campagne | Direct and inverse energy cascades in a forced rotating turbulence experiment[END_REF][START_REF] Campagne | Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment[END_REF][START_REF] Campagne | Turbulent drag in a rotating frame[END_REF]. The transition from forward-cascading to inverse-cascading rotating turbulence was studied systematically using numerical simulations in [START_REF] Smith | Crossover from two-to three-dimensional turbulence[END_REF][START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF][START_REF] Pestana | Regime transition in the energy cascade of rotating turbulence[END_REF], while the transition to a condensate regime was studied in [START_REF] Alexakis | Rotating taylor-green flow[END_REF][START_REF] Yokoyama | Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence[END_REF][START_REF] Seshasayanan | Condensates in rotating turbulent flows[END_REF].

Similar transitions from a forward to an inverse cascade and to quasi-2-D motion have also been observed in other systems like thin-layer turbulence [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF][START_REF] Musacchio | Split energy cascade in turbulent thin fluid layers[END_REF]van Kan & Alexakis 2019;[START_REF] Musacchio | Condensate in quasi-two-dimensional turbulence[END_REF]van Kan et al. 2019), stratified turbulence [START_REF] Sozza | Dimensional transition of energy cascades in stably stratified forced thin fluid layers[END_REF], rotating and stratified flows [START_REF] Marino | Resolving the paradox of oceanic large-scale balance and small-scale mixing[END_REF], magneto-hydrodynamic systems [START_REF] Alexakis | Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field[END_REF][START_REF] Seshasayanan | On the edge of an inverse cascade[END_REF][START_REF] Seshasayanan | Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow[END_REF]) and helically constrained flows [START_REF] Sahoo | Disentangling the triadic interactions in navier-stokes equations[END_REF][START_REF] Sahoo | Discontinuous transition from direct to inverse cascade in three-dimensional turbulence[END_REF] among others (see the articles by [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF] and [START_REF] Pouquet | Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review[END_REF] for recent reviews).

While the existence of a transition from forward to inverse energy cascade is wellestablished in many systems, including rotating turbulence, its detailed properties remain poorly understood in most cases. Turbulent flows involve non-vanishing energy fluxes and thus are out-of-equilibrium phenomena [START_REF] Goldenfeld | Turbulence as a problem in non-equilibrium statistical mechanics[END_REF]. While in the case of the laminar-turbulence transition in shear flows a connection with non-equilibrium statistical physics has been established by placing the problem in the directed percolation universality class [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF][START_REF] Manneville | Spatiotemporal perspective on the decay of turbulence in wall-bounded flows[END_REF], in particular for plane Couette flow [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in couette flow[END_REF][START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]) and pipe flow [START_REF] Moxey | Distinct large-scale turbulent-laminar states in transitional pipe flow[END_REF], such a general theoretical link has yet to be found for the non-equilibrium transition from forward to inverse energy cascade. However, previous numerical studies have successfully analysed special cases. For instance in the case of thin-layer turbulence, [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] were able to provide strong evidence for criticality of the inverse energy transfer rate as a function of a control parameter related to box height at the transition to an inverse cascade. The term criticality is used here to describe situations where an order parameter (e.g. the rate of inverse energy transfer) changes from zero to nonzero at a critical value of a control parameter (e.g. box height, Ro). When the limit of infinite horizontal box size and Re → ∞ is taken this change can be either discontinuous (1st order) or continuous with discontinuous (first/second/higher) derivative (2nd order) at the critical point, (for a more detailed discussion, see [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]). Knowing whether the transition to an inverse cascade in a turbulent flow is critical or smooth is important, in particular since this information is paramount for further investigations. For instance, in a critical transition, two separated phases exist and one may meaningfully speak of the phase diagram of the system. This is particularly interesting in situations with many parameters, such as rotating stratified turbulence in finite domains. Furthermore, near the critical points there are critical exponents to be measured, for which a comparison with theoretical predictions seems possible.

In the case of rotating turbulence in a layer of thickness H (after the limit of infinite horizontal box size L and Re is taken) there are two control parameters left as a function of which the system can display criticality: the ratio h = H/ in (where here in is taken to be the forcing length scale) and Ro. If criticality is present, then this 2-D space (h, Ro) will be split into two regions, in one of which an inverse cascade is observed, but no inverse cascade in the other. The two regions are separated by a critical line given by h c (Ro) that needs to be determined. For large Ro (weak rotation), the problem reduces to that of the non-rotating layer and therefore lim Ro→∞ h c (Ro) = h * c > 0, where h * c is the critical value of h for the non-rotating layer [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]van Kan & Alexakis 2019). For small Ro, the scaling of h c with Ro is not known. [START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF] investigated this problem and showed evidence for a continuous transition, with h c increasing as Ro was decreased but could not reach small enough Ro to determine a scaling of h c with Ro. In [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF] it was argued that the scaling h c ∝ 1/Ro should be followed, but so far no evidence numerical or experimental exists to suppurt or dismiss this conjecture. This is what we address in this work by studying the simultaneous limit of asymptotically small Ro and large domain height.

The remainder of this paper is structured as follows. In section 2 we discuss the theoretical background of this study, in section 3, we introduce the set-up of our numerical simulations and define the quantities to be measured. In section 4, we describe the results of the direct numerical solutions (DNS) we performed and finally in section 5, we draw our conclusions and discuss remaining open problems.

Theoretical Background

Quasi-two-dimensionalisation and wave turbulence

In this section we discuss the theoretical results underpinning the present study. A fundamental property of rotating flows is the fact that they support inertial wave motions, whose restoring force is the Coriolis force [START_REF] Greenspan | The theory of rotating fluids[END_REF]). Inertial waves have the peculiar anisotropic dispersion relation

ω s k (k) = 2s k Ωk /k, (2.1) 
where s k = ±1, Ω is the rotation rate, k is the component of k along the rotation axis and k = |k|. Similarly, we define k ⊥ as the magnitude of the component of k perpendicular to the rotation axis. In the remainder of this article, parallel and perpendicular will always refer to the rotation axis. Inertial waves in fast-rotating turbulence are important for understanding the direction of the energy cascade, as will be discussed below. The form of (2.1) shows that motions which are invariant along the axis of rotation, i.e. which are 2-D with three components (2D3C), have zero frequency and are thus unaffected by rotation. This allows decomposing the flow into two components, the 2D3D modes which are not directly affected by rotation, forming the slow manifold, and the remaining 3-D modes which are affected by the rotation, forming the fast manifold (Buzzicotti et al. 2018b). In the limit Ro → 0, it can be shown that only resonant interactions remain present [START_REF] Waleffe | Inertial transfers in the helical decomposition[END_REF][START_REF] Chen | Resonant interactions in rotating homogeneous three-dimensional turbulence[END_REF]. Resonant interactions are those interactions between wavenumber triads (k, p, q) satisfying k + p + q = 0, (2.2)

ω s k (k) + ω sp (p) + ω sq (q) = 0, (2.3)
where ω s k (k), ω sp (p) and ω sq (q) are given by (2.1). When only resonant interactions are present in the system, it can further be shown that any triad including modes from both the fast and slow manifolds leads to zero net energy exchange between the two manifolds. Thus, with only resonant interactions, the slow and fast manifolds evolve independently from each other without exchanging energy, and there is inverse energy transfer in the perpendicular components of the slow manifold. This decoupling may lead to an inverse energy cascade for the quasi-2-D part of the flow. In fact, it can be proven that for finite Reynolds number Re ≡ U /ν (where ν is viscosity, U is r.m.s. velocity and is a forcing length scale) and finite H, the flow will become exactly 2-D as Ro → 0 [START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-reynolds-number flows[END_REF].

On the other hand, in the limit of infinite domain height H, very small values of k are possible, such that quasi-resonant triads, for which (2.3) is only satisfied to O(Ro), can transfer energy between the slow and fast manifolds. Thus the inverse energy transfer in the slow manifold may be suppressed by interaction with quasi-resonant 3-D modes. Asymptotically, for infinite domains and k /k ⊥ 1, wave turbulence theory predicts a forward energy cascade and an associated anisotropic energy spectrum [START_REF] Galtier | Weak inertial-wave turbulence theory[END_REF].

There are thus two mechanisms at play in the energy transport: the dynamics of the slow manifold transferring energy to the large scales and the 3-D interactions transferring energy to the small scales. Which of these two processes dominates depends on the two non-dimensional parameters, the Rossby number Ro =

1/3 in /( 2/3
in Ω), based on the velocity scale ( in in ) 1/3 and the length scale in , and the ratio h = H/ in . The main criterion is whether or not 2-D modes are isolated from 3-D modes due to fast rotation. The coupling of 2-D and 3-D motions will be strong enough to stop the inverse cascade if the fast modes closest to the slow manifold

(k ∼ H -1 , k ⊥ ∼ -1
in ) are 'slow' enough to interact with the 2-D slow manifold. This implies that their wave frequency ω = 2Ωk /k ⊥ ∼ 2Ω in /H is of the same order as the non-linear inverse time scale τ

-1 nl ∼ 1/3 in -2/3 in
. This leads to the following prediction for the critical height H c , where the transition takes place,

h c = H c in ∝ Ω -1/3 in 2/3 in = Ro -1 . (2.4)
Importantly, the predicted critical rotation rate and height are linearly proportional. The criterion (2.4) suggests that the non-dimensional control parameter of the transition in the limit of large h and small Ro is given by

λ = 1 h × Ro = 5/3 in Ω 1/3 in H .
(2.5)

Multiscale expansion

In the present paper, we will explore the regime of simultaneously large h and small Ro. Brute-force simulations at very small Ro are costly since very small time steps are required to resolve the fast waves of interest. Rather, we exploit an asymptotic expansion first introduced in [START_REF] Julien | A new class of equations for rotationally constrained flows[END_REF], which allows to test the prediction (2.4) and to investigate the properties of the transition to a split cascade. The expansion is based on the Navier-Stokes equation including the Coriolis force and proceeds in the simultaneous limit of H = Ĥ/ and Ω = Ω/ with Ω, Ĥ = O(1) and → 0 (such that λ = const. = O(1) according to 2.5), keeping the horizontal extent L of the domain fixed at order one, as depicted in figure 1. Note that height and rotation rate are proportional to each other, as in (2.4). By changing the prefactors Ĥ, Ω, we can place ourselves above or below the critical line predicted by (2.4). In the following we drop the hats for simplicity. The method of multiple scales or a heuristic derivation (see appendix A) can be used to obtain a set of asymptotically reduced equations for the parallel components of velocity u and vorticity ω , 

∂ t u + u ⊥ • ∇ ⊥ u +2Ω∇ ∇ -2 ⊥ ω = ν∇ 2 ⊥ u + f , (2.6) ∂ t ω + u ⊥ • ∇ ⊥ ω -2Ω∇ u = ν∇ 2 ⊥ ω + f ω , ( 2 
⊥ = f -ê f , moreover we define f ω = (∇ × f ) • ê .
In the following, f is chosen to be stochastic and, for simplicity, two-dimensional (invariant along the parallel direction), thus directly forcing the slow manifold. Furthermore f is filtered in Fourier space so that it is confined within a ring of wavenumbers centered on

k f ≡ 1/ in . It is delta correlated in time, leading to a fixed mean energy injection rate u f = f ⊥ • u ⊥ = in /2 ⇒ f • u = in ,
where • denotes an ensemble average over infinitely many realisations. A similar 2-D forcing has been widely used in previous studies on the transition toward an inverse cascade, such as [START_REF] Smith | Crossover from two-to three-dimensional turbulence[END_REF][START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF]. We use random initial conditions whose small energy is spread out over a range of wavenumbers. Variants of the asymptotic equations (2.6, 2.7) have been extensively used in the past, in particular for studying rotating turbulence [START_REF] Nazarenko | Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture[END_REF]) and rapidly rotating convection (adding energy equation) [START_REF] Sprague | Numerical simulation of an asymptotically reduced system for rotationally constrained convection[END_REF]Julien et al. 2012b,a;[START_REF] Rubio | Upscale energy transfer in three-dimensional rapidly rotating turbulent convection[END_REF][START_REF] Grooms | Model of convective taylor columns in rotating rayleigh-bénard convection[END_REF], as well as dynamos driven by rapidly rotating convection (adding the energy and MHD induction equations) [START_REF] Calkins | A multiscale dynamo model driven by quasi-geostrophic convection[END_REF].

The equations (2.6) and (2.7) are closely related to wellknown models in geophysical fluid dynamics. In particular, since the leading-order horizontal velocity is in geostrophic balance, the model bears a resemblance to the classical quasi-geostrophic approximation. Indeed, equations (2.6, 2.7) have been referred to as generalized quasi-geostrophic equations [START_REF] Julien | Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows[END_REF].

A great advantage of the reduced equations over the Navier-Stokes equations is that while Ω and H are large in the original equation, they are of order one in the reduced equations, permitting much more efficient numerical integration. Importantly, equations (2.6) and (2.7) retain inertial waves with the correct dispersion relation, but only those with order-one frequencies. We perform direct numerical simulations (DNS) of (2.6) and (2.7) to show that, as predicted by the theory outlined above, there is indeed a transition from a direct to an inverse energy cascade in this extreme parameter regime.

Numerical set-up and methodology

In this section, we describe the numerical set-up used in the present study. We solve equations (2.6) and (2.7) numerically in a triply periodic domain of dimensions 2πL × 2πL × 2πH with modified dissipative terms. After nondimensionalising horizontal length scales based on in , parallel length scales based on H and time based on the (eddy turnover) time scale τ f = ( 2 in / in ) 1/3 imposed by the forcing, we obtain the following PDEs to be solved,

D ⊥ t u + 2λ∇ ∇ -2 ⊥ ω ⊥ = - (-∇ 2 ⊥ ) n u Re ν - (-∇ 2 ) m u Re µ - u ls Re α + f , (3.1) D ⊥ t ω -2λ∇ u = - (-∇ 2 ⊥ ) n ω Re ν - (-∇ 2 ) m ω Re µ - ω ls Re α + f ω , (3.2)
in the triply periodic domain of dimensions 2πΛ × 2πΛ × 2π with Λ = L/ in . Note that the information about the parallel dimension is now contained in the parameter λ.

Here

D ⊥ t = ∂ t + u ⊥ • ∇ ⊥ .
The right-hand side of eqs. (3.1,3.2) expresses the dissipation terms and the forcing. For a field g we define g ls = k,k ⊥ 2 ĝ(k) exp(ik • x), in terms of the Fourier transform ĝ(k) of g with k ∈ N 3 . The large-scale friction terms involving u ls and ω ls have been added to prevent the formation of a condensate at small wave numbers. The term proportional to ∇ 2m (•) suppresses exceedingly large parallel wavenumbers which are expected not to interact significantly with the slow manifold, thereby reducing the required resolution in the parallel direction and the computational cost. In all simulations n = 4 and m = 2 was used. The resulting equations (3.1,3.2) explicitly contain four non-dimensional parameters, in addition to Λ stemming from the boundary conditions. There are three different Reynolds numbers based on the three dissipation mechanisms Re

ν = 1/3 in 2n-2/3 /ν n , Re µ = 1/3 in 2m-2/3 /µ m and Re α = 1/3 in /( 2/3 α),
where ν n is the hyperviscosity acting on large k ⊥ , µ m is the hyperviscosity acting on lare k and α is the large-scale friction coefficient. Finally, there is the parameter λ defined in equation (2.5). In the present framework, we are interested in monitoring the amplitude of the inverse cascade as a function of the parameter λ in the limit of large Re ν , Re µ , Re α and large Λ.

Before we describe the simulations performed for this work, we define a few quantities of interest which we will use in the following. The 2-D energy spectrum is defined as

E(k ⊥ , k ) = 1 2 p ⊥ k ⊥ -1 2 p ⊥ <k ⊥ + 1 2 |ω (p ⊥ , k )| 2 p 2 ⊥ + |û (p ⊥ , k )| 2 , (3.3)
where hats denote Fourier transforms. The 1-D energy spectrum is obtained from (3.3) by summation over k ,

E(k ⊥ ) = k E(k ⊥ , k ) ≡ E ⊥ (k ⊥ ) + E (k ⊥ ), (3.4)
where E ⊥ contains all terms involving ω and E contains all terms involving û . The 2-D dissipation spectrum is defined as

D(k ⊥ , k ) = p ⊥ k ⊥ -1 2 p ⊥ <k ⊥ + 1 2 ν n p 2n ⊥ + µ m k 2m |ω (p ⊥ , k )| 2 p 2 ⊥ + |û (p ⊥ , k )| 2 .
(3.5) The large-scale energy dissipation rate is given by:

α = α k,|k ⊥ | 2 |û(k)| 2 (3.6) Set A B C Reν
3.1 × 10 3 4.9 × 10 5 4.9 × 10 5 Λ 32 32 64 resolution 512 2 × nz 1024 2 × nz 1024 2 × nz # runs 16 9 9 # τ eddy 22000 2500 7000

Table 1. Summary of the different simulations performed, where the resolution nz in the parallel direction is varied between 128 and 512 in order to ensure well-resolved simulations. For each column, "# runs" different values of λ, as defined in (2.5), were investigated and #τ eddy gives the number of eddy turnover times τ f = -1/3 in 2/3 simulated for each set of runs.

that measures the rate energy cascades inversely to the largest scales of the system. Finally, the spectral energy flux in the perpendicular direction through a cylinder of radius k ⊥ in Fourier space is defined as

Π(k ⊥ ) = (u ⊥ ) < k ⊥ • [(u ⊥ • ∇)u ⊥ ] , (3.7) 
where u = (u ⊥ , u ), u ⊥ = ê × ∇ψ and

(u ⊥ ) < k ⊥ = p p ⊥ <k ⊥ û⊥ (p) exp(ip • x).
(3.8)

The code used to solve equations (3.1, 3.2) is based on the Geophysical High-order Suite for Turbulence, using pseudo-spectral methods including 2/3 aliasing to solve for the flow in the triply periodic domain, (see [START_REF] Mininni | A hybrid mpi-openmp scheme for scalable parallel pseudospectral computations for fluid turbulence[END_REF]. We performed three sets of experiments, one at resolution 512 2 × n z (set A) and two at 1024 2 × n z (sets B and C), where the resolution n z in the parallel direction is varied depending on λ from 128 to 512 to ensure well-resolvedness at minimum computational cost. We choose either Λ = 32 (sets A and B) or Λ = 64 (set C). The parameters ν n and µ m are chosen for every simulation so that the run is well-resolved at large k , k ⊥ . This is checked by verifying that the maximum dissipation is captured within the interior of the 2-D dissipation spectrum (3.5). The coefficient α was chosen so that that the 1-D spectrum (3.4) does not have a maximum at k = 1 (i.e. no condensate is formed). In each of the three sets of experiments, we keep Λ and Re ν fixed and vary λ from small (slow rotation) to large (fast rotation). A summary is given in table 1.

In all simulations, we monitor the 1-D and 2-D energy spectra (3.4, 3.3) as well as the large-scale dissipation rate (3.6). Simulations are continued until a steady state is reached where the large-scale dissipation rate and the energy spectrum are statistically steady, with the 1-D energy spectrum not having its maximum at k = 1. Note that in such a steady-state situation in = α + ν,µ , where ν,µ = k D(k ⊥ , k ) is the dissipation rate due to hyperviscosity in the parallel and perpendicular directions, dominantly occurring at small scales. Monitoring α thus gives the amount of energy transferred inversely up to the largest scales k = 1, 2 and allows to measure the strength of the inverse cascade. Despite the fact that we solve asymptotically reduced equations, which allows larger time steps, the required simulation time was non-negligible, since convergence to the steady state was slow in some cases. In total, more than 30000 forcing-scale-based eddy turnover times τ f = -1/3 2/3 were simulated, amounting to around two million CPU hours of computation time. 

Results from direct numerical simulations

In this section, we present the results of the direct numerical simulations obtained in steady state. The central goal of this work is to determine the properties of the transition from a strictly forward cascade to a state that there is also an inverse cascade. The amplitude of the inverse cascade is given by the large-scale dissipation rate α that measures the rate at which energy is transferred to the large scales. In the presence of an inverse cascade, α converges to a finite value in the limit of Λ, Re α , Re µ , Re ν → ∞ while it converges to zero in the absence of an inverse cascade. In Figure 2 we show α (time averaged at steady-state) as a function of the parameter λ from all simulations. One observes a transition from α / in ≈ 0 to finite values at λ = λ c ≈ 0.03. At λ < λ c no inverse cascade is present and a vanishingly small amount energy reaches the scales k ⊥ = 1, 2, where the large-scale dissipation acts. However, for λ > λ c an inverse cascade develops, whose strength increases monotonically with λλ c , leading to non-zero largescale dissipation. Comparing the curves obtained from sets A, B (Re ν increased) and C (Re ν and horizontal box size Λ increased), one observes that the transition appears to become sharper with increasing Reynolds number and box size, and remains at the same point. This indicates that the transition is likely to be critical and continuous, having a discontinuous 1st derivative at λ c in the limit Re ν , Λ → ∞. Considering only the highest Re ν and Λ, i.e. set C only, we estimate from figure 2 that α ∝ (λλ c ) γ with γ ≈ 1 from a fit close to onset, within our uncertainties. However, this estimate of the critical exponent is not definitive and a larger number of simulations and parameter values are needed to ascertain its precise value with higher confidence.
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Figure 3. Energy flux in the perpendicular direction as a function of perpendicular wavenumber for four different values of λ from set A. large-scale friction. In cases (a) and (b), the spectrum has two local maxima, one at the forcing scale k ⊥ = k f and another one near k ⊥ = k f /2. This implies that there is transfer of energy to scales twice as large as the forcing scale. This, however, does not indicate an inverse cascade as this secondary peak remains close to the forcing scale and does not move further up to larger scales. The 2-D spectra associated with cases (b) and (d) are presented in figure 4. They show that the secondary maximum observed in the 1-D energy spectra at k ⊥ ≈ k f /2 for (b) stems from contributions at k > 0. For λ > λ c , the inverse energy cascade of the 2-D manifold leads to a maximum at k = 0, at small k ⊥ . Finally figure 5 shows the 1-D spectra from cases (b) and (d) decomposed to their horizontal E ⊥ (k ⊥ ) and parallel E (k ⊥ ) components. They show that perpendicular motions dominate for all wavenumbers k < k f in the case of an inverse cascade and also close to the secondary maximum at k f /2 for the flows that do not display an inverse cascade. At large k > k f the two spectra are of the same order with E (k ⊥ ) > E ⊥ (k ⊥ ).

The peak observed in the 1-D spectrum at k ≈ k f /2 is for the flows that do not display an inverse cascade is unexpected and deserves some further discussion. First we should note that this is not the first time a similar feature is observed. In Buzzicotti et al. (2018b), where simulations of rotating turbulence were performed, artificially excluding the k = 0 plane in Fourier space showed a similar maximum. More recently such a maximum was also observed in simulations of rotating turbulence in elongated domains Clark Di [START_REF] Di Leoni | Energy transfer in turbulence under rotation[END_REF]. Since this is the statistically steady state of the system
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Figure 5. Left: Decomposition of spectrum at λ = 0.0279 into contributions E ⊥ from perpendicular motions and E from parallel motions. Right: same as left for λ = 0.155. and energy does not cascade further upscale, this inverse transfer does not stem from a turbulent inverse cascade, which would continue up to the largest scales, as it does for λ < λ c . We have also verified that starting from initial conditions obtained from a run with λ > λ c and decreasing λ to a value below λ c resulted, at long times, in a state with no inverse cascade. Rather, one may suspect an instability mechanism involving the forcing-scale flow. Indeed, considering a single homochiral wavenumber triad comprising one large-amplitude mode k = (k f , 0, 0) at the forcing scale and the two small-amplitude modes at p, q, one finds that the modes with q ⊥ ≈ k f /2, and |q | < k f /λ are unstable (see appendix B). Interestingly, (Buzzicotti et al. 2018b) also found homochiral interactions to be responsible for the inverse energy transfer in their simulations. This instability can explain in part the transfer of energy to the k f /2 modes. We note however that the maximum growth occurs at q = 0 for the triad (see appendix B), which is not where the maximum is observed in the 2-D spectra shown in figure 4.

In figure 6 we also show the 2-D energy dissipation spectra for the same cases as in figure 4. The dissipation spectra demonstrate the well-resolvedness of the simulations: the maximum dissipation is within the simulation domain and not at the maximum wavenumbers (in the parallel or perpendicular direction). It is worth noting that most of the dissipation is occurring at large k ⊥ and not at large k . The artificial hyperviscosity used for the parallel wavenumbers in the simulations thus plays a minor role in dissipating energy. This is reassuring because in the asymptotic expansion (eqs. 2.6,2.7) only the perpendicular wavenumbers participate in the dissipation. It is also worth noting that for case (b) (λ = 0.0279) a higher resolution in the parallel direction was required than for case (d) (λ = 0.155). This is because the small-λ flows are more efficient at generating small scales in the parallel direction, while such generation is suppressed in large-λ flows by rotation.

Finally, figure 7 shows a visualisation of the flow in terms of vorticity ω at λ = 0.027 λ c (left) and λ = 0.23 > λ c (right). For λ > λ c , columnar vortices are clearly visible which are approximately invariant along the axis of rotation. In the perpendicular direction these vortices are visibly of larger scale and organised in clusters. For λ < λ c , no such anisotropic organisation of the flow can be observed.

Conclusions

The results presented in the sections above indicate that in fast-rotating turbulence within elongated domains, the transition from a strictly forward cascade to a split cascade (where part of the energy cascades inversely) is controlled by the parameter λ given in (2.5). This result implies that if the limit of infinite domain height h → ∞ is taken for fixed Ro, then λ → 0 and energy cascades forward as weak turbulence theory predicts. On the other hand, if the limit Ro → 0 is taken for a fixed domain height, then λ → ∞ and an inverse cascade will be present. The fact that a transition to an inverse cascade is observed in the asymptotic limit h ∝ Ro -1 → ∞, which is considered here numerically, confirms the theoretical arguments presented in section 2. The phase space of rotating turbulence in the (h, 1/Ro) plane, based on the present results is as depicted in figure 8. In the limit of infinite Re and Λ two phases exist, one where there is only forward cascade and one where there is a split cascade. They are separated by a critical line h c (Ro) that approaches the non-rotating critical height h * c for Ro → ∞, while for small Ro, which is the limit examined in the present work, h c scales like h c = 1/(Roλ c ) with λ c 0.03. Our approach was based on asymptotic reduction, allowing us to reliably achieve the extreme parameter regimes required to test the theoretical predictions at comparatively moderate numerical cost. We stress, however, that a question of order of limit arises. By solving the asymptotically reduced equations and investigating increasing Re ν and Λ in that framework, we are taking limits in the order lim Reν→∞ i.e. first the low Rossby limit (with fixed λ) is taken and then the large Reynolds number limit and not vice versa, which would correspond to studying the (Ro,H) dependence of an already fully turbulent flow. A priori, the two limits do not necessarily commute and therefore it is important to additionally study turbulent flow within an elongated domain in the full rotating Navier-Stokes system and to compare with the results obtained here.

Our numerical evidence also suggests that this transition is continuous but not smooth. The inverse cascade starts at a critical value λ c with an almost linear dependence on the deviation from criticality α ∝ (λ-λ c ). Despite the simplicity of this behaviour, its origin is far from being understood. Similar scaling behavior has been found for the transition to the inverse energy cascade in thin-layer turbulence below a critical layer height H c [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]) and for the two-dimensional magnetohydrodynamic flow studied in [START_REF] Seshasayanan | Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow[END_REF][START_REF] Seshasayanan | On the edge of an inverse cascade[END_REF]. In both cases, a critical exponent close to unity is identified for the inverse energy transfer rate close to the transition. Future research should aim to provide an understanding of the origin of this estimated critical exponent. It should also verify which other turbulent fluid flows present criticality at the transition to the inversely cascading regime and whether their critical exponent is identical to or different from unity. Experimental investigations in such systems, where long-time averages can be performed, may prove invaluable in understanding this non-equilibrium phase transition.

Equations (A 7, A 8) are complemented by the geostrophic balance relation in the perpendicular direction, u ⊥ = ê × ∇ ⊥ ψ, which implies ω = ∇ 2 ⊥ ψ, making (A 7, A 8) two equations for the two unknowns u and ω . . Left: Maximum (maximised over q ) growth rate as a function of q ⊥ . The maximum is found for q ⊥ ≈ k f /2. Right: Maximum (maximised over q ⊥ ) growth rate as a function of Ωq with k f = 1. There is a monotonic decay with q .

  .7) with time t, velocity u and rescaled rotation rate Ω. The gradients ∇ , ∇ ⊥ stand, respectively, for the derivative with respect to a slow parallel coordinate ∇ = ê • ∇, and for the horizontal gradients ∇ ⊥ = ∇ê • ∇ where ê = Ω/Ω. The velocity u is written in terms of u = ê • u and u ⊥ = uê u . The perpendicular components u ⊥ are divergence-free to leading order ∇ ⊥ • u ⊥ = 0, which permits us to write them in terms of a stream function u ⊥ = ê × ∇ψ where ψ is such that ω = ∇ 2 ⊥ ψ and ω is the vertical vorticity. The forcing f is written in terms of f = ê • f and f
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 1 Figure 1. The long rapidly-rotating box domain.

Figure 2 .

 2 Figure 2. Large-scale dissipation rates as defined by (3.6) in steady state from sets A, B and C for different values of λ. Error bars correspond to standard deviation in steady state. The black dashed line is a linear fit based on set C. Right: all values of λ, Left: zoom close to λ = λc.

  shows the energy flux in steady state for four values of λ from set A, namely (a) λ = 0.0031, (b) λ = 0.00279, (c) λ = 0.062 and (d) λ = 0.155. Cases (a) and (b) correspond to λ < λ c , while for cases (c) and (d) λ > λ c . All simulations present a significant forward energy flux for k > k f . For k k f the energy flux vanishes for the small-λ cases (a) & (b) (small rotation rates, tall boxes). Some inverse flux is observed for these cases, which is however confined to around k ≈ k f /2. By contrast, a non-vanishing inverse energy flux extending up to k ⊥ = 1 is observed for the larger λ cases (c) & (d) (higher rotation rate, shallower box) that display an inverse cascade. The right panel of 3 shows the corresponding 1-D spectra for the same four values of λ as in the left panel of the same figure. In cases (c) and (d), that display an inverse cascade, the spectrum is maximum at small wave numbers k ⊥ 2. The reason why the spectrum does not peak at the smallest wavenumber k = 1 is the damping by the

Figure 4 .

 4 Figure 4. Steady-state 2-D energy spectra as defined in (3.3) from set A for λ = 0.0279 (left) and λ = 0.155 (right). Color bar logarithmic with base 10.

Figure 6 .

 6 Figure 6. Steady-state 2-D dissipation spectra from set A for λ = 0.0279 (left) and λ = 0.155 (right). Color bar logarithmic with base 10.

Figure 7 .

 7 Figure 7. Visualisation of the flow in terms of vorticity ω at λ = 0.027 λc (left) and λ = 0.23 > λc (right).Positive vorticity in red, negative in blue, the edges have been coloured blue for better visualisation. For λ > λc, on the sides of the domain one can see elongated structures along the parallel direction, while the on top of the domain well-separated vortices are seen. For λ < λc, these elongated structures are absent. Furthermore, the flow for λ > λc is characterised by larger perpendicular scales than the flow at λ < λc.

Figure 8 .

 8 Figure 8. Phase space of rotating turbulence.

  Figure9. Left: Maximum (maximised over q ) growth rate as a function of q ⊥ . The maximum is found for q ⊥ ≈ k f /2. Right: Maximum (maximised over q ⊥ ) growth rate as a function of Ωq with k f = 1. There is a monotonic decay with q .
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Appendix A. Heuristic derivation of the fast-rotating long box equations

In this appendix we present a heuristic derivation of the reduced equations discussed in the main text. A derivation based on the method of multiple scales is given in [START_REF] Sprague | Numerical simulation of an asymptotically reduced system for rotationally constrained convection[END_REF]) for the Boussinesq equations, which reduces to our problem for vanishing density variations. The Navier-Stokes equation for a constant-density fluid in a system rotating at the constant rate Ω = Ωê is

where u = u + u ⊥ is velocity with u = (u • ê )ê = u ê (we will use the same notation for all vectors), p is pressure (divided by the constant density ρ 0 ) and f is the forcing. We impose triply periodic boundary conditions, the forcing is assumed to be solenoidal and to have zero average over the domain.

Eliminating pressure from (A 1) using the incompressible projection defined for an arbitrary vector field

and considering the equations for parallel velocity u and parallel vorticity ω = ω • ê , ω = ∇ × u, gives

where f ω ≡ ê • (∇ × f ). We consider the limit of simultaneously fast rotation rates and large aspect ratios, Ω = Ω/ and x = x ⊥ + x / , where 1 and all Ω, x ⊥ , x are all order one (omit hats from now on). The coordinate transformation implies

Importantly, in this limit the Coriolis terms in equations (A 3) and (A 4) are of order one since the largeness of the rotation rate Ω/ and the smallness of parallel derivatives ∇ compensate each other. The fact that only slow variations along the rotation axis are permitted derives from the Taylor-Proudman theorem forbidding fast variations in the limit Ro → 0.

Unlike in conventional quasi-geostrophy (in a thin layer), both perpendicular and parallel velocities, as well as their perpendicular derivatives, are assumed to be of order one. An important simplification arises from continuity,

This means that the leading-order perpendicular velocity is incompressible and admits a streamfunction:

Another simplification arises from the fact that

Finally, one finds that the vortex stretching term in the parallel vorticity equation vanishes to at leading order ω • ∇u = O( ). The above results yield the leading-order governing equations

Appendix B. Homochiral triad instability

For concreteness, choose ê = êz . The Fourier transformed governing equations (2.7,2.6) then read, in the absence of forcing or dissipation,

where we used u ≡ k ûk e -ik•x ≡ k ûk e -ik•x and similarly for ω = ∇ 2 h ψ, while expressing u ⊥ via ψ. Defining Z s k k = ûk + s k ωk k ⊥ , (B 1, B 2) may be rewritten entirely in terms of Z s k k . We consider a not necessarily resonant triad (k,p,q) with k = (k f , 0, 0), such that p x = -k fq x , p y = -q y , p z = -q z , choosing the forcing-scale mode

We take the modes at p and q to be of small amplitude, and perform a linear stability analysis of this configuration for the homochiral case s p = s q = 1 = s k (the other cases do not give relevant results). We thus determine the growth rate σ(q) of the two small-amplitude modes (p is uniquely determined by q).

The left panel of figure 9 shows that the maximum of σ occurs for q ⊥ ≈ k f /2, which points to a possible explanation of the maximum in the 1-D energy spectra found in figure 5 at λ < λ c . A more detailed analysis is required, however, since the right panel of figure 9 indicates that the maximum growth rate due to the triad instability is located at q = 0, whereas the DNS showed a spectral maximum at non-zero parallel wavenumber.

An interesting property of the growth rate obtained for the homochiral triad instability is that it vanishes above a certain threshold value of q * ∝ (H λ) -1 , with λ = (k f H) -1 (u 0 k f /Ω) -1 being the analogue, in the linear stability problem, of λ defined in eq. (2.5) for forced turbulence. For a given finite layer height 2πH, there is a minimum q min H = 1 by periodic boundary conditions. At small λ, q min will lie inside the range of unstable wavenumbers and thus the triad stability can occur. Increasing λ (e.g. by decreasing H), a point is reached where q min ceases to be unstable to the triad instability. This happens at λ = λc ≈ 0.35. This point is related to the critical transition studied in the present paper, since when the triad instability is absent, there is no more transfer from the large-amplitude 2-D mode to the 3-D modes. This is precisely the criterion we identified for the transition to occur. When decoupled form 3-D motions, the 2-D modes of the flow will transfer energy inversely. The fact that λc is different from λ c does not invalidate this, given the drastic reduction from the DNS to a single wavenumber triad.