
HAL Id: hal-02944696
https://hal.science/hal-02944696

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation-based dynamic traffic assignment:
Meta-heuristic solution methods with parallel computing

Mostafa Ameli, Jean-Patrick Lebacque, Ludovic Leclercq

To cite this version:
Mostafa Ameli, Jean-Patrick Lebacque, Ludovic Leclercq. Simulation-based dynamic traffic assign-
ment: Meta-heuristic solution methods with parallel computing. Computer-aided civil and infrastruc-
ture engineering, 2020, 35 (10), pp1047-1062. �10.1111/mice.12577�. �hal-02944696�

https://hal.science/hal-02944696
https://hal.archives-ouvertes.fr

DOI: 10.1111/mice.12577

O R I G I N A L A R T I C L E

Simulation-based dynamic traffic assignment: Meta-heuristic
solution methods with parallel computing

Mostafa Ameli1,2 Jean-Patrick Lebacque1 Ludovic Leclercq2

1Univ. Gustave Eiffel, Paris, France

2Univ. Gustave Eiffel, ENTPE, Lyon, France

Correspondence
Ludovic Leclercq, 3 Rue Maurice Audin,

69518 Vaulx-en-Velin cedex, France.

Email: ludovic.leclercq@univ-eiffel.fr

Funding information
European Research Council, Grant/Award

Number: 646592

Abstract
The aim of this study is to solve the large-scale dynamic traffic assignment (DTA)

model using a simulation-based framework, which is computationally a challenging

problem. Many studies have been performed on developing an efficient algorithm

to solve DTA. Most of the existing algorithms are based on path-swapping descent

direction methods. From the computational standpoint, the main drawback of these

methods is that they cannot be parallelized. This is because the existing algorithms

need to know the results of the last iteration to determine the next best path flow for the

next iteration. Thus, their performance depends on the single initial or intermediate

solution, which means they exploit a solution that satisfies the equilibrium conditions

more than explore the solution space for the optimal solution. More specifically, the

goal of this study is to overcome the drawbacks of serial algorithms by using meta-

heuristic algorithms known to be parallelizable and that have never been applied to

the simulation-based DTA problem. This study proposes two new solution methods:

a new extension of the simulated annealing and an adapted genetic algorithm. With

parallel simulation, the algorithm runs more simulations in comparison with existing

methods, but the algorithm explores the solution space better and therefore obtains

better solutions in terms of closeness to the optimal solution and computation time

compared to classical methods.

1 INTRODUCTION

Simulation-based dynamic traffic assignment (DTA) is an
effective tool for analyzing transportation systems for both
operational and planning purposes (Schreiter, Wageningen-
Kessels, Yuan, Van Lint, & Hoogendoorn, 2012). The aim of
simulation-based DTA is to calculate the dynamic path flow
distribution for all the origin–destination (OD) pairs in the
traffic network depending on one equilibrium rule (Yang, Bal-
akrishna, Morgan, & Slavin, 2017). The well-known equilib-
rium rule is user equilibrium (UE), wherein all users experi-
ence minimum travel time (Wardrop, 1952). The simulation-
based DTA contains two procedures: (i) a simulation-based

© 2020 Computer-Aided Civil and Infrastructure Engineering

dynamic network loading (DNL) model to calculate experi-
enced path travel times by considering the traffic dynamics
for a given path flow pattern; and (ii) an algorithm for finding
the UE solution (Marcotte & Nguyen, 1998). Here, we focus
on the second procedure.

The mathematical foundations of the DTA problem are
recalled in Friesz and Han (2019). Finding an equilibrium
through simulation (when no closed-form analytical solution
is available) typically involves a solution scheme that relies
on an iterative procedure. Much research has shown that the
DTA problem can be represented as a fixed-point problem (Y.
Wang, Szeto, Han, & Friesz, 2018). To solve the fixed-point
problem, a path-swapping descent direction method is used to

Comput Aided Civ Inf. 2020;1–16. wileyonlinelibrary.com/journal/mice 1

2 AMELI ET AL.

reassign a fraction of the users at each step (Sheffi, 1985).
The reassignment process is monitored to check whether the
solution is improved or not. In other words, the algorithm
reassigns the share of the users who have chosen a nonop-
timal path to a more efficient alternative at each iteration of
the equilibrium calculation (Levin, Boyles, & Nezamuddin,
2014). The foundation of all iterative algorithms is based on
starting from the initial solution and updating the path flow
distribution for iteration 𝑖 using the following formula (Friesz,
2010):

𝑧𝑖 = (1 − 𝛽𝑖)𝑧𝑖−1 + 𝛽𝑖𝑓 [𝑧𝑖−1] (1)

where 𝑧𝑖 is the path flow distribution of the iteration 𝑖, 𝑓 [𝑧𝑖] is
the descent direction, and 𝛽𝑖 is the step (descent) size of iter-
ation 𝑖 for the fixed-point algorithm. At each iteration, Equa-
tion 1 reassigns the users to move the traffic network toward
the UE. Based on the review papers of Szeto and Lo (2006)
and Y. Wang et al. (2018), almost all of the solution methods
for DTA models used Equation 1 to find the network equi-
librium. Many works can be found in the literature dedicated
to finding the best 𝛽𝑖 and 𝑓 [𝑧𝑖] analytically or heuristically to
improve the efficiency of the algorithms (see, e.g., Akamatsu,
2001; Alisoltani, Leclercq, Zargayouna, & Krug, 2019; Bar-
Gera, 2002; Drissi-Kaïtouni & Hameda-Benchekroun, 1992;
Dial, 2006; Galligari & Sciandrone, 2017; Gentile, 2016;
Mehrabipour, Hajibabai, & Hajbabaie, 2019; Nguyen &
Dupuis, 1984; Perederieieva, Ehrgott, Raith, & Wang, 2015;
Seshadri & Srinivasan, 2017; Raadsen, Bliemer, & Bell,
2019; Xie, Nie, & Liu, 2018). Generally, first, we find the
cheapest path (e.g., using Dijkstra’s algorithm) at the begin-
ning of each iteration according to the current travel times and
shift a portion of the demand to the (newly) shortest path,
which is called reassignment process. The optimal portion
of demand to shift can be determined analytically when the
cost function is link additive and strictly concave (Sancho,
Ibáñez Marí, & Bugeda, 2015). Although in practice, reas-
signment is often based on heuristics. The reason to resort
to heuristics is based on the fact that the simulator needs
to know the path flow distribution to predict the travel time
accurately whereas the DTA process requires this informa-
tion to estimate the path flow distribution (Bekhor, Toledo,
& Reznikova, 2009). However, it is not possible to guaran-
tee that fixed point algorithms converge toward the optimal
solution (Ben-Akiva, Gao, Wei, & Wen, 2012) and there is no
exact method for determining the step size (𝛽𝑖) (Levin, Pool,
Owens, Juri, & Waller, 2014; Szeto & Lo, 2005). All the algo-
rithms based on Equation 1 mainly have two drawbacks when
equilibrium is sought for large-scale networks:

1. The calculation should be done sequentially: the algo-
rithms need to know the last iteration results to determine
the next best path flow for the next iteration. Therefore, all

the steps are in series because we need information (travel
time) from the last simulation run.

2. The reassignment decision is taken only at the OD level
and independently at each step: the algorithms do not con-
sider the effect of shared links between OD path sets in
the reassignment process. Intersections between OD flows
are only taken into account when running the simulation
to derive travel time.

To highlight these drawbacks, let us consider the method
of successive average (MSA) by Robbins and Monro (1951).
The MSA algorithm is the classical method to solve the
traffic assignment problem (Nagel & Flötteröd, 2016) and
widely used in theory and application for DTA problems
(Mounce & Carey, 2015). The 𝑓 [𝑧𝑖−1] of the MSA algorithm
in Equation 1 is extracted from the auxiliary path assignments
obtained by the all-or-nothing procedure (𝑦𝑖), that is, every-
one is placed on the shortest path and 𝛽𝑖 =

1
𝑖+1 . Equation 2

presents the swapping formula of MSA algorithm.

𝑧𝑖 =
(

𝑖

𝑖 + 1

)
𝑧𝑖−1 + 1

𝑖 + 1
𝑦𝑖 (2)

Consequently, in iteration 𝑖, the MSA algorithm tries to
improve the path flow distribution by swapping a fraction 1

𝑖+1
of users to the shortest path(s) from each nonshortest path.
Then, one simulation is launched based on the updated path
flow distribution. We have to wait until the simulation run is
finished to know the new link travel times and adjust the path
flow distribution to be tested in the next iteration accordingly.
This is the serial process of the MSA algorithm, which limits
the solution space exploration and computational process.

Moreover, the MSA algorithm performs the reassignment
process for each OD independently without considering that
some OD pairs are connected because they share certain links
and nodes. For instance, if we have a set of shared links
between two OD pairs that are heavily congested, the algo-
rithm will reduce the flow of the paths containing these shared
links for all the OD pairs whereas reducing only the flow
of a few OD pairs would have been sufficient. Therefore,
we may trigger a high compensation of heavily congested
paths. The MSA algorithm not only makes no provision to
take into account the correlations between the OD assignment
and the travel time, but also there is no accurate definition
for 𝑓 [𝑧𝑖−1] to consider this effect (Flötteröd, 2018). In addi-
tion, the performance of all algorithms based on Equation 1
depends on the choice of the initial solution, which can slow
down the algorithm or limits the exploration of the solution
space. Particularly in large scale, there is a risk of being stuck
at nonoptimal solutions. Note that there is no robust approach
to choose the initial solution (Ameli, Lebacque, & Leclercq,
2017). Therefore, using stochastic algorithms, for example,
meta-heuristics, can overcome this drawback.

AMELI ET AL. 3

All the works in the literature have the aforementioned
limitations and perform the calculation in series. In this
article, we explore a completely new area for overcoming
the drawbacks of serial algorithms using meta-heuristic
algorithms. Meta-heuristic algorithms are known to be par-
allelizable (Fonseca & Fleming, 1995). Traffic simulation,
particularly micro-simulation, can be viewed as a complex
system for which meta-heuristic algorithms are expected to be
well-adapted because they are stochastic methods designed
to search the solution space of complex and computationally
costly problems (Yun & Park, 2006). We can better explore
the solution space and will also run several simulations
in parallel for certain path flow assumptions and take the
decision on what the next exploration of the solution space
should be. This overcomes not only the first drawback but
also makes the algorithm capable of starting the optimization
with different starting points at the same time. Note that the
parallelization approach can also allow us to use distributed
computation to improve the solver computation time (CT).
Moreover, a new layer of optimization is added to the algo-
rithm to take into account the correlations between OD pairs
through shared links. Note that parallelization has been well
investigated in other procedures of the problem, for example,
traffic simulation (Barceló et al., 1998; Rickert & Nagel,
2001), calibration (Jiang, 2004; Lin, Valsaraj, & Waller,
2011), and shortest path calculation (Attanasi, Silvestri,
Meschini, & Gentile, 2015; Idri, Oukarfi, Boulmakoul, &
Zeitouni, 2017). However, in this study, we focus on applying
and validating parallelization to UE path flow calculation
process for large-scale simulation-based DTA problems.

The meta-heuristic algorithms are mainly applied to mathe-
matical models that are very complex in nature and quite diffi-
cult to solve. They are usually employed in approaches where
first-order derivatives are challenging to obtain, and the result
may depend on the selection of an initial point (Stathopoulos
& Tsekeris, 2004). This is certainly the case for large-scale
traffic assignment problems, where each simulation to cal-
culate the objective function(s) is costly. It means calculat-
ing first-order derivatives are costly as well. Therefore, with a
large-scale simulation-based framework, we use the simulator
as a black-box to calculate the objective function, making it
necessary to run trials for optimization, for example, the MSA
algorithm is a trial-and-error process with the descent method.
To the best of our knowledge, no study in the literature has yet
applied a meta-heuristic algorithm directly to find the UE for
simulation-based DTA models. This may be because it is dif-
ficult to handle the variables which in this case are path flows.

Meta-heuristic algorithms can be classified into two cat-
egories: single solution and population based (Talbi, 2009).
The single solution methods start with an initial solution and
apply a process to improve the candidate solution to achieve
the best solution by following a trajectory in the solutions
space. The second class is population based; the purpose of

the methods of this class is to improve a set of solutions (pop-
ulation) by applying a specific process. This study proposes
two new solution methods based on two categories of meta-
heuristic algorithms.

The meta-heuristic algorithms are different in searching
approaches. For instance, in the single-solution category,
some of them are inspired by nature (Siddique & Adeli,
2015b), for example, Water Drop Algorithm (Siddique &
Adeli, 2014b) and Bacteria-Foraging Algorithm (J. Wang,
Zhong, Adeli, Wang, & Liu, 2018), and some of them are
inspired by physics (Siddique & Adeli, 2016b), for example,
Spiral Dynamics Algorithm (Siddique & Adeli, 2014a) and
Gravitational Search Algorithm (Siddique & Adeli, 2016a).
Here, we employ the Simulated Annealing (SA) algorithm
from the single-solution category inspired by physics. SA is
well-known for its efficient application in different engineer-
ing fields and is often used when the solution space is dis-
crete (Siddique & Adeli, 2016c). The major advantage of SA
over other methods is the ability to avoid becoming trapped in
local optima (Dekkers & Aarts, 1991). The SA algorithm uses
a random search that accepts not only changes that improve
the current solution but sometimes some may not to better
explore the solution space (Busetti, 2003). In this study, a new
extension of the SA method is designed and applied to the
DTA problem.

In population-based algorithms category, there are differ-
ent searching approaches, for example, Harmony search (Sid-
dique & Adeli, 2015a) and genetic algorithm (GA) Holland
(1992). Here, we choose GA because it is robust and dealt
successfully with a wide range of difficult problems (Busetti,
2007). The main advantage of GA is the ability for global
searching and exploration of the solution space. Also, it can
combine with the local search method to increase exploita-
tion. An adaptive GA is developed, in this study, to solve the
trip-based network equilibrium problem.

Both meta-heuristic algorithms are generally developed to
solve traffic assignments with parallel computation to con-
sider more than one path flow distribution per iteration. It
is possible that with a stochastic approach, more simulations
must be run to explore the solution space compared to descent
methods. However, with parallel simulation, the algorithm
can counterbalance the number of simulation runs by finally
reaching the optimum more quickly. Also, at the end of the
optimization process, it is expected to achieve better solu-
tions in terms of quality and closeness to the optimal solution
because the algorithm explores the solution space more com-
pletely and more efficiently. Note that this study is focused
on simulation-based DTA, and the design of meta-heuristic
algorithms does not refer to analytical DTA models.

The next section, Section 2, presents a discussion on the
mathematical conditions for UE solutions. It also presents
the two indicators we use to assess algorithmic performance.
The simulation-based framework and two meta-heuristic

4 AMELI ET AL.

algorithms are presented in Section 3. The simulator and the
numerical experiments are presented in Section 4. The results
obtained are discussed in Section 5. Finally, we present con-
cluding remarks and introduce the future directions of the
work in Section 6.

2 PROBLEM STATEMENT

DNL is the combination of DTA with a traffic simulator
that calculates network states and travel times (Yu, Ma, &
Zhang, 2008). In other words, DTA models depend on a net-
work performance module, which is called DNL. The DNL
operator usually is not available in closed form because it
severely complicates equilibrium calculation (Ngoduy, 2011;
Song, Han, Wang, Friesz, & Del Castillo, 2017). Depend-
ing on the kind of simulator used to perform the network
loading and determine travel times, the demand from origins
to destinations can either be expressed as continuous flow
or units of vehicles. The flow-based approach usually cor-
responds to dynamic macroscopic models, whereas the trip-
based approach is widely implemented in microscopic models
(Ramadurai & Ukkusuri, 2011). The latter approach is cer-
tainly more realistic for reproducing traffic flows but it is also
more challenging when deriving UE because OD flow should
always correspond to integer numbers during the convergence
process (Jordan, Foytik, Collins, & Robinson, 2017). The trip-
based approach is used in this study to address the real large-
scale DTA problem. In this section, we present the conditions
of dynamic UE for the DTA model and the indicators used to
determine the proximity of solutions to UE in the simulation-
based framework.

2.1 Dynamic UE condition
Consider a network 𝐺(𝑁, 𝐴) with a finite set of nodes 𝑁 and
a finite set of directed links 𝐴. The demand is given and time
dependent for each OD pair. The period of interest (planning
horizon) of duration 𝐻 is discretized into a set of small time
intervals indexed by 𝜏. In an interval of 𝜏, the traffic condi-
tions are assumed constant for the DTA, that is, travel times
are averaged at the path level over each time interval. There-
fore, all the time-dependent variables of the model are indexed
by 𝜏. To simplify the equations, we present the model for each
departure time interval of 𝜏. In Table 1, we introduce the nota-
tions of all the symbols and variables used in this article.

According to the definition, we have:

̂𝑇 𝑇 𝑝 =

∑
𝑡𝑟∈𝑇 𝑟𝑝 𝑇 𝑇𝑡𝑟,𝑝

𝜋𝑝
; ∀𝑝 ∈ 𝑃𝑤 (3)

̂𝑇 𝑇
∗
𝑤
=

∑
𝑡𝑟∈𝑇 𝑟𝑝∗ 𝑇𝑇𝑡𝑟,𝑝∗

𝜋𝑝∗
; ∀𝑝∗ ∈ 𝑃 ∗

𝑤
(4)

T A B L E 1 Nomenclature used in this article

𝑊 OD pairs, subset of origin × destination nodes, 𝑊 ⊂ 𝑁 ×𝑁

𝑃𝑤 Set of paths for 𝑤

𝑃 ∗
𝑤

Set of shortest (i.e., minimum travel time) paths for 𝑤

𝑤 Index of origin–destination (OD) pair, 𝑤 ∈ 𝑊

𝐷𝑤 Total demand for 𝑤 pair

𝑇 𝑟𝑤 List of trips that travel for 𝑤

𝑇 𝑟𝑝 List of trips that travel for 𝑤 on path 𝑝, 𝑇 𝑟𝑝 ⊂ 𝑇 𝑟𝑤

𝑝 Index of path, 𝑝 ∈ 𝑃𝑤

𝑝∗ Index of shortest path, 𝑝∗ ∈ 𝑃 ∗
𝑤

𝑡𝑟 Index of trip, 𝑡𝑟 ∈ 𝑇 𝑟𝑤

𝜋𝑤 Cardinality of a set 𝑇 𝑟𝑤: number of users traveling for 𝑤

𝜋𝑝 Cardinality of a set 𝑇 𝑟𝑝: number of users on path 𝑝

𝑇 𝑇𝑡𝑟,𝑝 Experienced travel time of trip 𝑡𝑟 on path 𝑝

𝑇 𝑇 ∗
𝑤

Minimum experienced travel time for 𝑤

̂𝑇𝑇 𝑝 Mean travel time of trips on path 𝑝

̂𝑇 𝑇
∗
𝑤

Mean travel time of trips on shortest path(s) of OD pair 𝑤

The network UE conditions with predefined travel demand
and the users’ departure times are (Peeta & Ziliaskopoulos,
2001):

⎧⎪⎪⎨⎪⎪⎩
̂𝑇 𝑇 𝑝 − ̂𝑇 𝑇

∗
𝑤
≥ 0; ∀𝑤 ∈ 𝑊 , 𝑝 ∈ 𝑃𝑤

𝜋𝑝

(
̂𝑇 𝑇 𝑝 − ̂𝑇 𝑇

∗
𝑤

)
= 0; ∀𝑤 ∈ 𝑊 , 𝑝 ∈ 𝑃𝑤

𝜋𝑝 ≥ 0; ∀𝑝 ∈ 𝑃𝑤

(5)

Lu, Mahmassani, and Zhou (2009) reformulated the problem
as a nonlinear problem to minimize the gap function. The gap
function is defined as the gap between the average path travel
time and the average shortest path travel time. Therefore, the
solution to this fixed-point problem is equivalent to finding
the solution to the following variational inequality:∑

𝑤∈𝑊

∑
𝑝∈𝑃𝑤

𝑇 𝑇𝑤, 𝑝
∗[𝜋𝑤 − 𝜋𝑝∗

]
≥ 0 (6)

where 𝜋𝑝∗ is the optimal number of trips on path 𝑝 and
𝜋𝑤, 𝜋𝑝∗ ∈ satisfy the equilibrium. denotes the flow con-
straints based on 𝐷𝑤.

As mentioned before, finding the optimal solution for a
large-scale DTA problem is hard to achieve, so indicators are
required to measure the distance between the solutions and the
optimal UE.

2.2 Convergence quality
According to Equation 5, the UE situation is equivalent to
the network state where there is no delay for travelers when
compared to the minimum possible travel time for each OD
pair. Using this characterization, we introduce a first quality

AMELI ET AL. 5

indicator for solutions, the average delay of each user (Janson,
1991):

𝐴𝐺𝑎𝑝 =

∑
𝑤∈𝑊

∑
𝑝∈𝑃 (𝑤)

∑
𝑡𝑟∈𝑇 𝑟𝑝

(
𝑇𝑇𝑡𝑟,𝑝 − 𝑇𝑇 ∗

𝑡𝑟,𝑤

)
∑

𝑤∈𝑊
𝜋𝑤

(7)

The 𝐴𝐺𝑎𝑝 is zero for the perfect UE path flow distribution,
so any optimization algorithm should minimize 𝐴𝐺𝑎𝑝. Recall
that trip-based DNL attempts to assign particle-discretized
time-dependent origin/destination flows in a dynamic network
equilibrium framework (Jayakrishnan & Rindt, 1999). The
absolute UE situation means all trips perceive no delay, which
is almost impossible to be reached in the real world. There-
fore, the UE solution in the trip-based approach means each
traveler perceives minimum possible delay with respect to the
network dynamics and demand profile (Sbayti, Lu, & Mah-
massani, 2007). By this definition, the convergence means the
process of minimizing users delay.

A second indicator is Violation. The Violation indicator is
calculated based on the definition of “user in violation” and
“OD in violation.” If the gap between user experienced travel
time and shortest path travel time is bigger than the propor-
tion 𝜖 of the shortest path travel time, the user is in violation.
Then, the OD violation for an OD 𝑤 is defined when there is
more than a ratio 𝜖′ of the users on 𝑤 in violation. Finally, the
Violation indicator is the share of ODs, which are in viola-
tion. The perfect UE means Violation= 0 with 𝜖 = 𝜖′ = 0. In
this study, the values of 𝜖 and 𝜖′ are fixed at 10% based on the
study of Ameli, Lebacque, and Leclercq (2020) to evaluate
the quality of the solution from a perspective different from
𝐴𝐺𝑎𝑝. Please note that the Violation indicator is not used in
the convergence test. We calculate it afterward to assess the
performance of algorithms.

3 METHODOLOGY

Determining the UE path flow distribution requires two
main steps: (i) identifying the time-dependent feasible paths
between ODs and (ii) finding the optimal path flow with
respect to demand and network dynamics. The first step refers
to solving a time-dependent shortest path algorithm, which is
a computationally expensive process in a large-scale network
(Srinivasan, Riazi, Norris, Das, & Bhowmick, 2018). This
study aims to address the second step. Therefore, we choose
a framework from the literature which expresses the solution
algorithm in two loops: the outer loop to find the shortest path
and the inner loop to find the optimal path flow distribution
(Lu et al., 2009). The main advantage of this framework is
that it attempts to find the UE path flow distribution with a
minimum number of running a time-dependent shortest path
algorithm. The authors performed a comprehensive study on

F I G U R E 1 Solution algorithm for trip-based dynamic network

equilibrium

this framework and proposed an extension to improve the two
loops framework (Ameli et al., 2020). Figure 1 presents the
optimization framework of this study. Please note that short-
est path means a path with minimum travel time. Here, we
focus on the inner loop, wherein the reassignment process is
embedded. The green box in Figure 1 presents the classical
inner loop structure. For the details of outer loop steps (Steps
1 to 4), readers can refer to Ameli et al. (2020).

The inner loop process starts with a single initial solution,
which is generated in Step 5. Note that in each outer loop itera-
tion, a fixed path set is provided by the outer loop for each OD
pair that makes the subproblem for inner loop iterations. The
optimization algorithm updates the path assignment based on
the current state of the network (Step 6). The reassignment
process is executed based on the swapping algorithm (Equa-
tion 1 in the classic approach), and a new path flow pattern
is generated to be sent to the simulator to calculate the expe-
rienced travel time. Then, one simulation runs in Step 7, and
the shortest path or paths is/are identified from the fixed path
set, which comes from the outer loop, based on the simulation
results in Step 8. The solution quality indicators are calculated
in Step 9. Step 10 checks the convergence. The inner loop con-
verges if the 𝐴𝐺𝑎𝑝 is unchanged or if the maximum number
of iterations is reached. If the process has not converged, Step

6 AMELI ET AL.

11 keeps track of the best solution obtained by current inner
loop iterations; otherwise, the final solution is checked by Step
12 to ensure that it is the best solution based on 𝐴𝐺𝑎𝑝. If the
last iteration solution is the best, the inner loop is finished;
otherwise, we run one more simulation for the best solution
from Step 11. As mentioned before, the optimization process
is executed in series. The meta-heuristic algorithms redesign
the inner loop structure.

Before presenting the meta-heuristic algorithms, we
present the three most common swapping algorithms in the
literature for a large-scale DTA problem. They are consid-
ered in this study as benchmarks for demonstrating the effi-
ciency of the new meta-heuristic algorithms. The swapping
algorithm is embedded in Step 6. The first algorithm is MSA
(introduced in Section 1 and Equation 2), which is the most
common algorithm used in the literature (Foytik, Jordan, &
Robinson, 2017). The second method is an extension of the
MSA algorithm by Sbayti et al. (2007), called MSA rank-
ing (MSAR). The MSAR algorithm ranks the users by the
experienced travel time then swaps a quantity 1

𝑖+1𝐷𝑤 of trav-
elers with the longest experienced travel time to the short-
est(s) path. The design of the third method is based on the
expected travel time reduction. This algorithm is called gap-
based algorithm in this study. Lu et al. (2009) showed numeri-
cally that the gap-based algorithm obtains a better solution for
UE than the MSA algorithm for the large-scale network. The
gap-based algorithm uses the same formula as Equation 1 and

same 𝑓 [𝑧𝑖−1] as MSA algorithm with 𝛽𝑖 = 𝜌𝑖
̂𝑇 𝑇 𝑝− ̂𝑇 𝑇

∗
𝑤

̂𝑇 𝑇 𝑝

, where

𝜌𝑖 is the step size of the gap-based algorithm.

𝑧𝑖 =

(
1 − 𝜌𝑖

̂𝑇 𝑇 𝑝 − ̂𝑇 𝑇
∗
𝑤

̂𝑇 𝑇 𝑝

)
𝑧𝑖−1 +

(
𝜌𝑖

̂𝑇 𝑇 𝑝 − ̂𝑇 𝑇
∗
𝑤

̂𝑇 𝑇 𝑝

)
𝑦𝑖 (8)

𝜌𝑖 =

{ 𝑖

𝑖+1 ; if 𝑖 = 0

1; o.w.
(9)

In addition, the gap-based algorithm uses the Bernoulli trial
for each user based on 𝛽𝑖 to decide to swap or not accord-
ing to the result of the trial (Verbas, Mahmassani, & Hyland,
2015). We will now present the implementation of the meta-
heuristic algorithms.

3.1 SA method
The SA algorithm is inspired by annealing in metallurgy. The
basic SA algorithm is presented in Kirkpatrick, Gelatt, and
Vecchi (1983). This study redesigns and adapts the classic SA
to a simulation-based traffic assignment. Figure 2 presents the
SA algorithm of this study.

The algorithm starts with an initial solution generated ran-
domly, that is, users choose their path from the OD path set
randomly. For solution 𝑆, the total gap 𝑇𝐺𝑎𝑝(𝑠) between the

users’ travel time and the shortest path travel time (Equa-
tion 10) is considered as the energy of the solution. A set of
neighbor solution is generated with respect to the current one
based on the temperature (𝑇) of the current iteration. A neigh-
bor solution is defined as a candidate to replace the current
solution. The current phase of the iteration depends on the
temperature of the process. Inspired by the physics of mat-
ter, this study distinguishes three different methods to gener-
ate a neighbor solution, gas, liquid, and solid; these methods
represent the states of matter in nature. When the tempera-
ture is high (𝑇 > 𝛼 where 𝛼 denotes the boiling temperature),
the gas method is applied. When running the SA algorithm,
by decreasing the temperature, the algorithm enters the liquid
phase (𝛼 > 𝑇 > 𝛼′ where 𝛼′ denotes the melting temperature)
and then the liquid method is applied. When the temperature
is quite low (𝑇 < 𝛼′), the solid method is applied.

𝑇𝐺𝑎𝑝(𝑠) =
∑
𝑤∈𝑊

∑
𝑝∈𝑃𝑤

∑
𝑡𝑟∈𝑇 𝑟𝑝

(𝑇𝑇𝑡𝑟,𝑝 − 𝑇𝑇 ∗
𝑡𝑟,𝑤

) (10)

In the gas phase, we explore the solution space without lim-
itation of any step size (𝛽𝑖). Therefore, the candidates for the
neighbor solution correspond to a random path flow distribu-
tion with respect to the demand value for each OD pair (fea-
sible OD-assignment). In other words, all users choose ran-
domly their path from the path set (determined by outer loop).
The gas method generates one solution as a neighbor. In the
liquid phase, we target the exploration of the solutions space
randomly and also apply step size methods. First, we apply
a randomizing process on the current solution and obtain the
first neighbor solution. Then, we optimize it by applying the
MSA to obtain the second solution and the gap-based method
to obtain the third solution. The liquid method generates three
candidates. In the solid phase, we execute the same process
as in the liquid phase but without randomization. This means
the two solutions are generated based on the current solution
(Figure 2).

Afterwards, the algorithm runs parallel simulations (a max-
imum of three simulations) to update the network based on
new different path flows obtained from the previous step. For
a new solution or solutions 𝑠′, the total gap 𝑇𝐺𝑎𝑝(𝑠′) is calcu-
lated and corresponds to the energy of the solution (𝐸) com-
pared to the current solution 𝑠.

The last step consists in making a decision on accepting
one of the best new solutions based on 𝑇𝐺𝑎𝑝 compared to the
current solution of the algorithm. The acceptance decision is
made by the Bernoulli trial.

𝐴𝑃𝑠 = 𝑃

(
𝑆′

accepted = 1
)
= 𝑒

−∇𝐸
𝑇 (11)

where 𝐴𝑃𝑠 denotes the probability of accepting solution
𝑠′, 𝑆′

accepted
denotes the binary decision variable and ∇𝐸 =

𝑇𝐺𝑎𝑝(𝑠′) − 𝑇𝐺𝑎𝑝(𝑠). If the solution 𝑠′ is accepted, the

AMELI ET AL. 7

F I G U R E 2 SA solution algorithm flowchart

current solution 𝑠 is replaced by 𝑠′. At the end of each iter-
ation, the temperature is decreased by the following formula:

𝑇 =
𝑇0

𝑙𝑛(𝑖 + 1)
(12)

where 𝑇0 denotes the initial temperature. It should be remem-
bered that 𝑖 denotes the iteration index. In this study, the start-
ing temperature is set to 𝑇0 = 3000 based on the recent study
of Franzin and Stützle (2019) about different components of
the SA algorithm. The quality of the solution is evaluated in
the convergence check step, which is similar to Step 10 in
Figure 1.

The SA algorithm considers more than one solution per
iteration in the liquid and solid phases. In addition, the explo-
ration and exploitation degrees are changed based on 𝑇 . The
algorithm explores more in the gas phase and liquid phase
when the temperature is high and exploits more in the solid
phase when the 𝑇 is low.

3.2 GA
The GA was first proposed by Holland (1992); it is inspired
by natural genetic variation and natural selection; selec-

F I G U R E 3 Solution structure in the GA case

tion, crossover, and mutation are the main operators of this
approach. In the GA, we use the terms chromosomes and
genes to refer to the different segments of an individual. In our
implementation for the GA, we consider our solution and the
𝑇𝐺𝑎𝑝 as an individual (DNA) with a fitness value, our ODs
assignment as chromosomes, and the path flows as the genes.
Figure 3 illustrates the solution structure for GA. A gene is
identified by a path (𝑝) and contains the path flow value (𝜋𝑝).
A chromosome is the OD assignment, identified by 𝑤, which
contains the genes of all the corresponding paths (𝑝 ∈ 𝑃𝑤).

8 AMELI ET AL.

F I G U R E 4 GA solution algorithm flowchart

A DNA is the full set of chromosomes that constitutes one
individual solution. Finally, the set of individuals constitutes
a population. Based on this definition, we can apply the GA
operators to the DTA solution.

Figure 4 presents the application of GA to the DTA prob-
lem. The GA process starts by generating the initial popula-
tion (initial set of individuals). In this study, we generate a
random population. To avoid the GA algorithm from getting
trapped in local optimum, this study designs a two-layered
GA process to search the solution space by changing the path
flows in the inner GA and take into account the correlations
between OD pairs by considering a different combination of
OD assignment in GA operators. In other words, the classi-
cal fixed-point algorithms plus a random method is applied in
the inner GA, and the GA operators in one upper level gener-
ate different combinations of OD assignments to improve the
population. All new solutions generated by GA process are
evaluated by parallel simulations and added to the population
to improve the population in each iteration. The steps of GA
applied to traffic assignment are as follows:

• Selection: we use a random selection based on the crossover
rate (𝐶𝑟) and population size (𝑃𝑆) to compute the number
of selected solutions for the crossover process:

𝑆𝑆 = 𝑃𝑆 × 𝐶𝑟 (13)

• Crossover: we apply a nonuniform crossover by using a bit-
vector mask method (Maini, Mehrotra, Mohan, & Ranka,

1994). We select two different solutions (parents) from the
set of selected solutions; we apply the crossover between
each pair of solutions. As a result, we will have new
solutions; the two new solutions will have a part of each
parent.

• Mutation: we apply the mutation operator for a set of
selected solutions; by replacing one OD assignment (chro-
mosome) of the solution by another chromosome from
another solution, this operator aims to increase the qual-
ity of the worst solution. The possibility of the mutation for
one chromosome is calculated based on the quality of the
chromosome:

𝑀𝑃𝑤 =
𝑇𝐺𝑎𝑝𝑤(𝑠)
𝑇𝐺𝑎𝑝(𝑠)

(14)

where 𝑇𝐺𝑎𝑝𝑤(𝑠) denotes the total gap of the OD assign-
ment 𝑤 in solution 𝑠.

• Parallel simulation: all the new solutions obtained from the
previous steps are simulated in parallel to calculate the fit-
ness function, which is the 𝑇𝐺𝑎𝑝 in this study.

• Replacement: after applying the different GA operators and
parallel simulation, the size of the evaluated population set
is increased. To keep it as a fixed value (𝑃𝑆), we apply
the selection operator, and we keep the best solutions as a
replacement strategy.

• Convergence check: the algorithm converges when the
maximum number of iterations is reached, or when the

AMELI ET AL. 9

algorithm tends to stagnation. To check the stagnation, we
use a “stagnation factor (𝑆𝐹)” indicator: when 𝑆𝐹 tends to
zero, our process tends to stagnation, which means the qual-
ity of the population solution has not changed. The stagna-
tion factor is presented as follows:

𝑆𝐹 = 1 −
𝑇𝐺𝑎𝑝𝑖

Max

𝑇𝐺𝑎𝑝
(𝑖−1)
Max

(15)

where 𝑇𝐺𝑎𝑝𝑖
Max

denotes the total gap of the worst qual-
ity DNA (high 𝑇𝐺𝑎𝑝) in the population of iteration 𝑖.
If the algorithm does not converge, the iteration index is
increased, and the inner layer of GA is applied to search
the solution space by gene modifications inside the chro-
mosomes of the selected solutions.

• GA Inner: as mentioned before, the initial population, selec-
tion, crossover, mutation, and replacement are the basics of
GA. In this study, we extend the GA by adding a new oper-
ator, called “GA Inner.” The purpose of this operator is to
create diversity in the current population (diversity inside
the OD assignment). This approach is applied using three
different methods: the MSA, the gap-based methods, and
the adaptive random method.

– Adaptive random method: the foundation of this
method is based on the GA. We consider the selection
and crossover operators for this method.

(a) Selection: select a set of solutions from the main
population. The worst solutions that have a large
𝑇𝐺𝑎𝑝 are selected because the aim of this selec-
tion is to increase the quality of the population by
improving the solutions. The number of selected
solutions are determined by Equation 13.

(b) Inner Crossover: We consider the OD assign-
ment (Chromosome) as an individual and the
flow of each path (Gen) as a chromosome to
apply the crossover in the same way as in the
previous layer of the optimizer. By applying
the crossover, we risk having a nonfeasible OD
assignment with respect to the demand con-
straint.To solve this problem, we use the follow-
ing process to keep only the feasible solutions:

Step 1: put zero for the flow of the worst path
(𝑤𝑝), which has the maximum travel time.

Step 2: apply the crossover on the other paths of
the current OD.

Step 3: compute 𝑅, the difference between total
flow of the current chromosome and the
demand level of OD pair 𝑤:

𝑅 =
∑
𝑖≠𝑤𝑝

𝜋𝑖 −𝐷𝑤 (16)

If 𝑅 ≤ 0 then we put the rest of the flow
on the worst path (𝑋𝑤𝑜 = 𝑅); otherwise we
reject this chromosome because it makes the
generated solution infeasible.

– The MSA assignment method and gap-based method
(introduced in Section 3) are also applied to the chro-
mosomes of the selected solutions in GA inner.

• The new solutions are injected into the main population and
the algorithm iterates while GA converges.

Note that based on the early study of Srinivas and Patnaik
(1994), we set the crossover rate set to𝐶𝑟 = 0.5, and the muta-
tion rate is fixed to 0.4. The 𝑃𝑆 is set to 10 individuals in this
study. Note that in both algorithms, the feasibility of the new
path flow distribution is guaranteed, and each solution is eval-
uated by simulation in parallel process independently.

4 NUMERICAL EXPERIMENTS

In this section, we present the dynamic simulator and the case
study, which corresponds to a large-scale traffic network of
this study.

4.1 Dynamic simulator
In this work, we use Symuvia (Symuvia is an open source sim-
ulator: https://github.com/Ifsttar/Open-SymuVia) as a trip-
based simulator for calculating the necessary variables, in par-
ticular, the experienced travel times of all travelers. Symuvia
is a microscopic simulator based on the Lagrangian resolution
of the LWR (Lighthill Whitham Richards) model (Leclercq,
Chevallier, & Laval, 2008), which is the conservation law with
respect to traffic density. We set the simulation time-step to 1
second and collect the link traffic information (travel times)
every 1 minute. The users’ routes are determined by the DTA
model and the rolling horizon technique (Mahmassani, 2001)
which determine the path flow distribution based on a pre-
diction period of 20 minutes and an assignment period of 15
minutes (Mahmassani, 1998).

4.2 Case study
For the large-scale test case, the real network of Lyon 6e +
Villeurbanne (Figure 5) is considered. This network has 1,883
nodes, 3,383 links, 94 origins, 227 destinations.

The network is loaded with 47,341 travelers of all ODs
with given departure times to represent the two morn-
ing peak hours of the network between 7:30 to 9:30. The
demand profile comes from the study of Krug, Burianne, and
Leclercq (2019). Figure 6a presents the demand profile of the
numerical experiment. To show a quick and synthetic

https://github.com/Ifsttar/OpenSymuVia

10 AMELI ET AL.

F I G U R E 5 Lyon 6e + Villeurbanne: Mapping data ©Google

2019 and the traffic network used by Symuvia

F I G U R E 6 The demand scenario of Lyon 6e + Villeurbanne

overview of the network state, we plot time and evolution
of the mean speed over the full network in Figure 6b. First,
the mean speed curve decreases from 16.9 m/s and the traf-
fic states remain undersaturated when demand is light, in this
case from 7:30 to 8:10. Afterwards, travel production, which
is equivalent to the total travel distance for a given period
of time, stabilizes whereas the accumulation (or total travel
time) continues to increase. Therefore, the decrease of the

mean speed slowdown. This corresponds to the saturation
level occurring from 8:10 to 8:35. The increase in mean speed
shows that the network starts to exit the saturation level at the
end of the simulation period and slowly returns to the under-
saturation level from 8:35 to 9:30.

5 RESULTS

In this section, the results of the implementation and applica-
tion of SA and GA to the simulation-based DTA problem for
the large-scale test case are presented in view to comparing
them with the MSA, MSAR, and gap-based algorithms. The
MSA algorithm is chosen as a reference algorithm. MSAR and
gap-based are chosen as the best algorithms for large-scale
networks based on several studies in the literature such as
Sbayti et al. (2007), Lu et al. (2009), Levin, Pool et al. (2014),
Verbas, Mahmassani, and Hyland (2016), and our comprehen-
sive benchmark on simulation-based DTA solution methods
(Ameli et al., 2020). All the experiments are first initiated by
the first outer loop with the all-or-nothing assignment algo-
rithm (see Step 1 in Figure 1). To compare the performance
of the algorithms, we use the same outer loop component with
different methods in the inner loop.

In this study, we impose a limit on the maximum num-
ber of iterations and compare the final solutions obtained by
the different algorithms. This is to restrict the computational
cost. Each classical algorithm is run for 10 outer loops. This
means that users have to finally choose from a minimum of
11 paths (the first path comes from Step 1) for each OD pair.
For SA and GA, to avoid blocking the random methods with
a small number of paths per OD, we start the first outer loop
with the K-shortest path algorithm (𝐾 = 3) and continue in
the same way as the other methods with one shortest path
per outer loop iteration. This means the maximum number of
outer loops for meta-heuristic algorithms is 8 to keep the total
number of minimum paths at 11. In addition, the CT of the
time-dependant k-shortest path algorithm at each assignment
period is much higher than a single shortest path discovery
process in the considered large-scale network. The extra CT
for meta-heuristic algorithms is approximately equivalent to
having two less outer loop iterations than classical algorithms
in our test case. The inner loop runs for a maximum of 20
iterations (𝑖𝑚𝑎𝑥 = 20) for all the algorithms. With a 15-minute
assignment interval, we will then have a maximum of 1,600
simulations for the classical methods. With the meta-heuristic
algorithms, the maximum can be exceeded as some simula-
tions will run in parallel.

The aim of the experiment performed on the Lyon 6e +
Villeurbanne network is to examine the convergence pattern
and validate the solutions for a large-scale network case. Thus,
the UE is calculated for the considered network five times with

AMELI ET AL. 11

F I G U R E 7 Convergence patterns of the outer loop iterations

the following algorithms: MSA, MSAR, gap-based, SA, and
GA. The 𝐴𝐺𝑎𝑝 indicator is used to evaluate the quality of the
solution. Figure 7 presents the convergence pattern for the five
algorithms. Figure 7a presents the convergence pattern of the
first four outer loop iterations. Figure 7b shows the conver-
gence patterns of all the algorithms from outer loop 4 to the
end of the optimization process, and magnifies the difference
between the convergence patterns of the algorithms. Note that
each algorithm is terminated once the maximum number of
outer loops is reached. Another possibility, which does not
occur here, is that convergence is reached when the solution
is not changed in two consecutive outer loops or no new short-
est path is found for all the ODs.

In Figure 7, the convergence pattern and the final result of
MSA and gap-based algorithms are close, but MSAR dom-
inates both algorithms easily from the first outer loop. Note
that the better performances of the MSAR have a cost. Each
inner loop iteration takes longer because of the sorting of
users by the experienced travel time for each OD. MSAR
algorithm converges faster than SA and GA at the first outer
loop, but it is dominated by both meta-heuristic algorithms
after the fourth outer loop. Both meta-heuristic algorithms
produce better convergence patterns than the classical algo-
rithms. Note that in GA, the best DNA of the population is

sent to the outer loop. Therefore, the convergence pattern of
GA is always decreasing compared to the other methods.

The results for the performance indicators of all the algo-
rithms are presented in Table 2. As expected, the numbers
of total simulations for SA and GA are larger than those of
the classical methods around 320%, despite the fact that the
CTs are significantly lower than those of the classical meth-
ods because of the parallel simulation framework. Moreover,
the solutions obtained by the meta-heuristic algorithms are
significantly closer to the optimal UE than those of the clas-
sical methods. The 𝐴𝐺𝑎𝑝 of the GA solution is better than
that of the classical method, indeed it is 76% better than the
MSA algorithm. The SA algorithm manages to reduce the UE
𝐴𝐺𝑎𝑝 of the MSAR method by more than 54%, the MSAR
method being the best classical method compared to the MSA
and gap-based methods. The Violation indicator also shows
that GA and SA work much better than the MSA and gap-
based methods (reduction of 82%) and even better than the
MSAR method as they reduce the violation by one third of its
value (−6%). In addition, the meta-heuristic algorithms dom-
inate the others regarding the percentage of incomplete trips.
The incomplete trips denote the share of travelers who could
not finish their trip by the end of the simulation in the final
path flow distribution of each algorithm. A lower number of
incomplete trips means a lower total travel time spent in the
system over the simulation period. The SA algorithm finds the
closest solution to UE (minimum 𝐴𝐺𝑎𝑝) in this study. More-
over, the final solution of SA has the best value for other qual-
ity indicators (Violation and Incomplete travelers) in Table 2.

To evaluate the performance of the algorithms, the CT
should also be considered. The CTs of both meta-heuristic
algorithms are better than those of the classical methods.
In particular, it is significantly better than the MSA method
(Table 2). Note that each iteration for the MSAR method takes
longer than for the MSA method, but the MSAR method dom-
inates the MSA method at the end as it requires fewer itera-
tions than MSA. Note also that because of the network size,
the DTA process over the full simulation period requires con-
siderable computational resources, that is, about a week for
the classical methods (MSA, MSAR, gap-based). Therefore,
the computational improvement obtained by switching to the
meta-heuristic methods is huge; 36 hours (a day and a half)
for the SA algorithm and 67.5 hours (two and a half days) for
the GA when compared to the MSA algorithm. The GA can
take the most advantage of parallel computing as each DNA
can be run as a separate thread.

From the application standpoint, every simulation usually
needs one central processing unit (core) of the computer. The
classical algorithms are run in series, so they use one core
per iteration. The performance of SA is very good in terms
of solution quality, but the potential for parallelization is lim-
ited. Only the different exploration methods running in par-
allel can be assigned to different threads. The SA generates a

12 AMELI ET AL.

T A B L E 2 Solution quality and performance indicators (CT: computation time)

Indicator/
Method

Number of
simulations

Incomplete
travels (%) Violation

Final
𝑨𝑮𝒂𝒑

CT
(Hours)

Improvement to CT
compared to MSA

MAX number of
cores used

MSA 1,485 6,04% 35.34% 31.12 183.74 – 1

MSAR 1,145 5.48% 9.01% 11.19 175.41 4.54% 1

Gap-based 1,512 6.71% 22.70% 23.90 186.16 −6.13% 1

SA 2,317 5.07% 2.61% 5.05 147.86 14.85% 3

GA 9,242 5.26% 3.09% 7.27 116.10 21.48% 12

maximum of three new path flow patterns (in liquid method)
per iteration, which must be simulated at once. Therefore, we
use a maximum of three submethods and then three threads,
and finally three cores for the simulation process. For the GA
algorithm, according to 𝑃𝑆, 𝐶𝑟, and the mutation rate, we
will have a maximum of 20 new individuals (children) from
the GA-operators and the GA Inner. We limit the number of
cores to 12 because all the experiments are conducted on a
64-bit personal computer with 12 cores. If the number of new
individuals is bigger than 12, the algorithm executes in two
successive phases, the first 12 simulations in the first phase
and the remaining individuals in the second phase.

To analyze the behavior of the algorithms, the inner loop
convergence patterns of the algorithms are presented in Fig-
ure 8. As we are looking for the closest solution to perfect
UE (𝐴𝐺𝑎𝑝 = 0), the value of 𝐴𝐺𝑎𝑝 was not used as a stop-
ping criterion. Before analyzing the convergence pattern, we
explain why fluctuations exist in the convergence figures.
First, when the outer loop index is changed, a new shortest
path is added to the system, and the inner loop 𝐴𝐺𝑎𝑝 is calcu-
lated by considering the new shortest path, so 𝐴𝐺𝑎𝑝 increases
for the first inner loop and then decreases after executing the
inner loop iterations. The second reason is that the swapping
algorithm does not necessarily improve the 𝐴𝐺𝑎𝑝 at every
iteration. The outcome will be even worse when using trip-
based approaches because their discrete nature makes them
less stable. Thus, we expect more variations, especially when
the step size is fixed as in classical methods.

Figure 8a shows that MSA and gap-based algorithms are
dominated by MSAR. The convergence pattern of MSA
shows that by increasing the inner loop index, the flexibility
of the method for exploring the solution space is decreased.
The same scenario occurs for the gap-based method with one
major difference, which is the high searching flexibility at the
beginning of the process. This stems from the gap criterion
in the swapping formula. However, decreasing the step size
prevents the gap-based method from finding a better solution.
The MSAR algorithm also suffers from the step size, but with
ranking technique it is able to find a better solution than the
other classical algorithms. We keep the MSAR in Figure 8b
to compare it with meta-heuristic algorithms.

The SA algorithm has a regular variation behavior in
each outer loop, which corresponds to the three optimization

F I G U R E 8 Convergence patterns of the inner loop iterations

phases. The gas phase has no limitation for exploring the solu-
tion space; hence, we have high variations at the beginning
of the outer loop. Then, the variation is decreased in the liq-
uid phase and afterwards the SA algorithm looks for the local
optimum in the solid phase. This approach finds the best UE
solution in comparison with the other algorithms.

Two values represent the convergence pattern of the GA
algorithm in Figure 8b. The lower value (GA_Min) is the best
solution in the solution population of GA, and the other value
(GA_Max) represents the worst individual of the current pop-
ulation. The interval between two 𝐴𝐺𝑎𝑝 values shows the
range of the other individuals in the population. The initial

AMELI ET AL. 13

T A B L E 3 Solution quality and performance indicators [CT: Computation time]

Indicator/
Method

Number of
simulations

Incomplete
travels (%) Violation

Final
𝑨𝑮𝒂𝒑

CT
[Hours]

Improvement to CT
compared to MSA

MAX number of
cores used

MSA 80 6.34% 36.78% 35.67 19.44 – 1

MSAR 80 5.94% 13.06% 18.59 20.05 −3.14% 1

Gap-based 80 7.59% 25.61% 24.02 19.69 −1.29% 1

SA 157 5.27% 3.17% 5.54 16.87 13.22% 3

GA 688 5.67% 5.04% 7.63 15.66 19.46% 12

population at the beginning of each outer loop is generated
randomly, so the new shortest path attracts users before start-
ing the inner loop iterations. Note that the outer loop finds the
new shortest path and it has zero flow in the final solution of
the previous outer loop. Thus, the newly generated solutions
for the initial population decrease the variation of 𝐴𝐺𝑎𝑝 com-
pared to the other algorithms when starting a new outer loop.
During the inner loop, the quality of the best solution never
increases because the top 10 solutions are always kept. The
range of population 𝐴𝐺𝑎𝑝 is decreased until the process con-
verges. In GA, with two layers of optimization, we consider
a wide range of solutions at each iteration whereas the algo-
rithm has less focus on finding the local optimum. The par-
allel simulation framework helps GA to converge faster than
the other methods with minimum CT.

To evaluate the performance of the solution methods in
the absence of the path discovery procedure, we fixed the
path set for all ODs and rerun the optimization algorithms.
In other words, the optimization is started from a predefined
set of paths, which is also an option for simulation-based DTA
(Han, Eve, & Friesz, 2019). It means there is no outer loop in
the optimization process, and we directly iterate in the inner
loop for each assignment period. All the paths that are discov-
ered by the outer loop iterations in previous experiments are
selected, and then we rerun the simulation with this setting.
Table 3 presents the results of the solution algorithms with
predefined paths. The meta-heuristic algorithms also domi-
nate the classical algorithms starting from a predefined path
set. The quality of the solution (𝐴𝐺𝑎𝑝) is improved by SA,
70%, and GA, 59%, compared to the best classical method
(MSAR). Similar to previous experiments, the number of sim-
ulations for meta-heuristic algorithms is more than classical
methods. Still, we improve the CT, in addition to solution
quality, significantly by using the parallel approach (Table 3).

We have demonstrated the efficiency of the meta-heuristic
algorithms for the general problem. Note that the shortest path
calculation procedure plays an important role in the optimiza-
tion process. It is embedded in the outer loop in this frame-
work. As mentioned before, there are many studies in the lit-
erature about improving the calculation of the shortest path
in large-scale (see, e.g., Attanasi et al., 2015; Heywood et al.,
2019; Hribar, Taylor, & Boyce, 2001; Zhang, Yang, Jia, Wang,
& Chen, 2010). Those methods can be combined with our

meta-heuristic algorithms for path flow calculation to improve
the overall CT further.

6 CONCLUSION

This article focused on finding the UE solution for a
simulation-based DTA problem. This problem is computa-
tionally challenging for large-scale networks. Much research
has been performed to propose efficient algorithms. Most of
the works done have been based on fixed-point algorithms
and iterate in series to improve the current solution. First, this
study highlighted the drawbacks of serial algorithms. Second,
for the first time, parallelized meta-heuristic approaches were
applied to solve the network equilibrium problem. Two new
meta-heuristic algorithms were proposed to overcome the dis-
advantages of the serial algorithms: the first derived from the
SA framework and the second from that of GA.

The SA algorithm has three layers of optimization for
searching the solution space. The algorithm starts in the gas
phase and searched the feasible solution space without limi-
tations. Then, the temperature of the algorithm is decreased
and the search space is narrowed by shifting the optimiza-
tion process from the gas phase to the liquid phase and then
to the solid phase (Figure 2). In the GA framework, a new
layer in the optimization process has been added to account for
correlations between OD assignments (Figure 4). Moreover,
GA considers a set of solutions instead of a single solution at
every iteration. Both algorithms were implemented using par-
allel computing for calculating the UE in the DTA model. The
new algorithms were applied to the real large-scale network of
Lyon6e + Villeurbanne in a simulation-based DTA model for
a time period of 2 hours. To compare the SA and GA with
existing methods, we have considered three algorithms from
the classical approach in the literature: the MSA algorithm,
which is one of the commonest solution algorithms imple-
mented in the field of DTA, and two recent extensions of the
MSA algorithm for simulation-based DTA, namely, MSAR
and gap-based algorithms.

The results show that meta-heuristic algorithms dominate
classical methods. They provide wide coverage when explor-
ing the solution space. Hence, they find a better solution in
terms of closeness to the optimal UE solution. The SA has

14 AMELI ET AL.

provided the best solution, which was significantly better than
the best solution obtained by the classical methods (MSAR).
The parallel simulation framework helped the meta-heuristic
algorithms to run more simulations compared to serial algo-
rithms and speeded up the exploration process by more than
37%, meaning that we could obtain the solutions about 3 days
in advance.

This study has introduced a new branch of optimization
algorithms for simulation-based DTA models. There-
fore, designing other types of meta-heuristic algorithms
is certainly a very promising direction of research when
attempting to overcome the curse of dimensionality related
to large-scale DTA problems. Here, we introduced the first
parallel computation framework to solve DTA problems. It
is also interesting to investigate other effective parallel and
distributed algorithms or computing platforms to improve the
CT of large-scale problems. Integrating this approach with
the path discovery and simulation steps can be an interesting
research direction.

ACKNOWLEDGMENTS

This project is supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (Grant agreement No 646592-
MAGnUM project).

R E F E R E N C E S

Akamatsu, T. (2001). An efficient algorithm for dynamic traffic equilib-
rium assignment with queues. Transportation Science, 35(4), 389–
404.

Alisoltani, N., Leclercq, L., Zargayouna, M., & Krug, J. (2019). Optimal
fleet management for real-time ride-sharing service considering net-
work congestion. In The 98th annual meeting of the Transportation
Research Board. Washington, DC.

Ameli, M., Lebacque, J.-P., & Leclercq, L. (2017). Multi-attribute, multi-
class, trip-based, multi-modal traffic network equilibrium model. The
12th Conference on Traffic and Granular Flow (TGF).

Ameli, M., Lebacque, J.-P., & Leclercq, L. (2020). Cross-comparison of
convergence algorithms to solve trip-based dynamic traffic assign-
ment problems. Computer-Aided Civil and Infrastructure Engineer-
ing, 35(3), 219–240.

Attanasi, A., Silvestri, E., Meschini, P., & Gentile, G. (2015). Real world
applications using parallel computing techniques in dynamic traffic
assignment and shortest path search. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems. IEEE, pp. 316–
321.

Bar-Gera, H. (2002). Origin-based algorithm for the traffic assignment
problem. Transportation Science, 36(4), 398–417.

Barceló, J., Ferrer, J., García, D., Grau, R., Forian, M., Chabini, I., &
Le Saux, E. (1998). Microscopic traffic simulation for ATT systems
analysis. A parallel computing version. 25th Anniversary of CRT, 1–
16.

Bekhor, S., Toledo, T., & Reznikova, L. (2009). A path-based algorithm
for the cross-nested logit stochastic user equilibrium traffic assign-

ment. Computer-Aided Civil and Infrastructure Engineering, 24(1),
15–25.

Ben-Akiva, M. E., Gao, S., Wei, Z., & Wen, Y. (2012). A dynamic traffic
assignment model for highly congested urban networks. Transporta-
tion Research Part C: Emerging Technologies, 24, 62–82.

Busetti, F. (2003). Simulated annealing overview. Retrieved from
www.geocities.com/francorbusetti/saweb.pdf, 4.

Busetti, F. (2007). Genetic Algorithms Overview. http://www.scribd.
com/doc/396655/Genetic-Algorithm-Overview (30 August 2008)

Dekkers, A., & Aarts, E. (1991). Global optimization and simulated
annealing. Mathematical Programming, 50(1–3), 367–393.

Dial, R. B. (2006). A path-based user-equilibrium traffic assignment
algorithm that obviates path storage and enumeration. Transporta-
tion Research Part B: Methodological, 40(10), 917–936.

Drissi-Kaïtouni, O., & Hameda-Benchekroun, A. (1992). A dynamic
traffic assignment model and a solution algorithm. Transportation
Science, 26(2), 119–128.

Flötteröd, G. (2018). DTA simulation with reduced number of iterations.
In Swedish national transport conference. Göteborg, Sweden, Octo-
ber 16, 2018.

Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary
algorithms in multiobjective optimization. Evolutionary Computa-
tion, 3(1), 1–16.

Foytik, P., Jordan, C., & Robinson, R. M. (2017). Exploring simulation
based dynamic traffic assignment with a large-scale microscopic traf-
fic simulation model. In Proceedings of the 50th Annual Simulation
Symposium, page 11. Society for Computer Simulation International.

Franzin, A., & Stützle, T. (2019). Revisiting simulated annealing: A
component-based analysis. Computers & Operations Research, 104,
191–206.

Friesz, T. L. (2010). Dynamic optimization and differential games, vol.
135, New York: Springer Science & Business Media.

Friesz, T. L., & Han, K. (2019). The mathematical foundations of
dynamic user equilibrium. Transportation Research Part B: Method-
ological, 126, 309–328.

Galligari, A., & Sciandrone, M. (2017). A convergent and fast path equi-
libration algorithm for the traffic assignment problem. Optimization
Methods and Software, 33(2), 354–371.

Gentile, G. (2016). Solving a dynamic user equilibrium model based
on splitting rates with gradient projection algorithms. Transportation
Research Part B: Methodological, 92, 120–147.

Han, K., Eve, G., & Friesz, T. L. (2019). Computing dynamic user equi-
libria on large-scale networks with software implementation. Net-
works and Spatial Economics, 19(3), 869–902.

Heywood, P., Maddock, S., Bradley, R., Swain, D., Wright, I., Mawson,
M., … Richmond, P. (2019). A data-parallel many-source shortest-
path algorithm to accelerate macroscopic transport network assign-
ment. Transportation Research Part C: Emerging Technologies, 104,
332–347.

Holland, J. H. (1992). Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and arti-
ficial intelligence. Cambridge, MA: MIT Press.

Hribar, M. R., Taylor, V. E., & Boyce, D. E. (2001). Implementing par-
allel shortest path for parallel transportation applications. Parallel
Computing, 27(12), 1537–1568.

Idri, A., Oukarfi, M., Boulmakoul, A., & Zeitouni, K. (2017). Design and
implementation issues of a time-dependent shortest path algorithm
for multimodal transportation network. In TD-LSG@ PKDD/ECML,
32–43.

http://www.geocities.com/francorbusetti/saweb.pdf
http://www.scribd.com/doc/396655/Genetic-Algorithm-Overview
http://www.scribd.com/doc/396655/Genetic-Algorithm-Overview

AMELI ET AL. 15

Janson, B. N. (1991). Dynamic traffic assignment for urban road net-
works. Transportation Research Part B: Methodological, 25(2–3),
143–161.

Jayakrishnan, R., & Rindt, C. R. (1999). Distributed computing and
simulation in a traffic research test bed. Computer-Aided Civil and
Infrastructure Engineering, 14(6), 429–443.

Jiang, H. (2004). Parallel implementations of dynamic traffic assignment
models and algorithms for dynamic shortest path problems. PhD the-
sis, Massachusetts Institute of Technology.

Jordan, C., Foytik, P., Collins, A., & Robinson, R. M. (2017). Devel-
opment of a future year large-scale microscopic traffic simulation
model. In TRB 2017, Transportation Research Board 96th Annual
Meeting.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671–680.

Krug, J., Burianne, A., & Leclercq, L. (2019). Reconstituting demand
patterns of the city of Lyon by using multiple GIS data sources. Tech-
nical report, University of Lyon, ENTPE, LICIT, Lyon, France.

Leclercq, L., Chevallier, E., & Laval, J. (2008). The lagrangian coordi-
nates applied to the LWR model. In T. Y. Hou & E. Tadmor (Eds.)
Hyperbolic problems: Theory, numerics, applications (pp. 671–678).
Berlin Heidelberg: Springer.

Levin, M. W., Boyles, S. D., & Nezamuddin (2014). Warm-starting
dynamic traffic assignment with static solutions. Transportmetrica
B: Transport Dynamics, 3(2), 99–113.

Levin, M. W., Pool, M., Owens, T., Juri, N. R., & Waller, S. T.
(2014). Improving the convergence of simulation-based dynamic
traffic assignment methodologies. Networks and Spatial Economics,
15(3), 655–676.

Lin, D.-Y., Valsaraj, V., & Waller, S. T. (2011). A Dantzig-Wolfe
decomposition-based heuristic for off-line capacity calibration of
dynamic traffic assignment. Computer-Aided Civil and Infrastruc-
ture Engineering, 26(1), 1–15.

Lu, C.-C., Mahmassani, H. S., & Zhou, X. (2009). Equivalent gap
function-based reformulation and solution algorithm for the dynamic
user equilibrium problem. Transportation Research Part B: Method-
ological, 43(3), 345–364.

Mahmassani, H. S. (1998). Dynamic traffic simulation and assign-
ment: Models, algorithms and application to ATIS/ATMS evalua-
tion and operation. In M. Labbe, G. Laporte, K. Tanczos, & P. Toint
(Eds.), Operations research and decision aid methodologies in traffic
and transportation management (pp. 104–135). Berlin Heidelberg:
Springer.

Mahmassani, H. S. (2001). Dynamic network traffic assignment and sim-
ulation methodology for advanced system management applications.
Networks and Spatial Economics, 1(3), 267–292.

Maini, H., Mehrotra, K., Mohan, C., & Ranka, S. (1994). Knowledge-
based nonuniform crossover. Proceedings of the First IEEE Confer-
ence on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence.

Marcotte, P., & Nguyen, S. (Eds.). (1998). Equilibrium and advanced
transportation modelling, Boston: Kluwer Academic Publishers.

Mehrabipour, M., Hajibabai, L., & Hajbabaie, A. (2019). A decompo-
sition scheme for parallelization of system optimal dynamic traffic
assignment on urban networks with multiple origins and destinations.
Computer-Aided Civil and Infrastructure Engineering, 34, 915–
931.

Mounce, R., & Carey, M. (2015). On the convergence of the method of
successive averages for calculating equilibrium in traffic networks.
Transportation Science, 49(3), 535–542.

Nagel, K., & Flötteröd, G. (2016). Agent-based traffic assignment. In A.
Horni, K. Nagel, & K. W. Axhausen (Eds.), The multi-agent transport
simulation MATSim (pp. 315–326). London: Ubiquity Press.

Ngoduy, D. (2011). Kernel smoothing method applicable to the dynamic
calibration of traffic flow models. Computer-Aided Civil and Infras-
tructure Engineering, 26(6), 420–432.

Nguyen, S., & Dupuis, C. (1984). An efficient method for computing
traffic equilibria in networks with asymmetric transportation costs.
Transportation Science, 18(2), 185–202.

Peeta, S., & Ziliaskopoulos, A. K. (2001). Foundations of dynamic traf-
fic assignment: The past, the present and the future. Networks and
Spatial Economics, 1, 233–265.

Perederieieva, O., Ehrgott, M., Raith, A., & Wang, J. Y. (2015). Numer-
ical stability of path-based algorithms for traffic assignment. Opti-
mization Methods and Software, 31(1), 53–67.

Raadsen, M. P., Bliemer, M. C., & Bell, M. G. (2019). A review of
(dis)aggregation and decomposition methods in traffic assignment.
In TRB 2019, Transportation Research Board 98th Annual Meeting.

Ramadurai, G., & Ukkusuri, S. (2011). B-dynamic: An efficient algo-
rithm for dynamic user equilibrium assignment in activity-travel net-
works. Computer-Aided Civil and Infrastructure Engineering, 26(4),
254–269.

Rickert, M., & Nagel, K. (2001). Dynamic traffic assignment on parallel
computers in transims. Future Generation Computer Systems, 17(5),
637–648.

Robbins, H., & Monro, S. (1951). A stochastic approximation method.
The Annals of Mathematical Statistics, 22, 400–407.

Sancho, E. C., Ibáñez Marí, G., & Bugeda, J. B. (2015). Applying
projection-based methods to the asymmetric traffic assignment prob-
lem. Computer-Aided Civil and Infrastructure Engineering, 30(2),
103–119.

Sbayti, H., Lu, C.-C., & Mahmassani, H. S. (2007). Efficient imple-
mentation of method of successive averages in simulation-based
dynamic traffic assignment models for large-scale network applica-
tions. Transportation Research Record: Journal of the Transportation
Research Board, 2029, 22–30.

Schreiter, T., Wageningen-Kessels, V., Yuan, Y., Van Lint, J., & Hoogen-
doorn, S. (2012). Fastlane: Traffic flow modeling and multi-class
dynamic traffic management. In Trail-Beta Congress 2012, Mobility
and Logistics-Science Meets Practice, Rotterdam, The Netherlands.
Citeseer.

Seshadri, R., & Srinivasan, K. K. (2017). Robust traffic assignment
model: Formulation, solution algorithms and empirical application.
Journal of Intelligent Transportation Systems, 21(6), 507–524.

Sheffi, Y. (1985). Urban transportation networks: Equilibrium analysis
with mathematical programming methods (chapters 10 and 11, pp.
262–308). Englewood Cliffs, NJ: Prentice Hall Inc.

Siddique, N., & Adeli, H. (2014a). Spiral dynamics algorithm. Interna-
tional Journal on Artificial Intelligence Tools, 23(06), 1430001.

Siddique, N., & Adeli, H. (2014b). Water drop algorithms. International
Journal on Artificial Intelligence Tools, 23(06), 1430002.

Siddique, N., & Adeli, H. (2015a). Harmony search algorithm and its
variants. International Journal of Pattern Recognition and Artificial
Intelligence, 29(08), 1539001.

16 AMELI ET AL.

Siddique, N., & Adeli, H. (2015b). Nature inspired computing: An
overview and some future directions. Cognitive Computation, 7(6),
706–714.

Siddique, N., & Adeli, H. (2016a). Gravitational search algorithm and its
variants. International Journal of Pattern Recognition and Artificial
Intelligence, 30(08), 1639001.

Siddique, N., & Adeli, H. (2016b). Physics-based search and optimiza-
tion: Inspirations from nature. Expert Systems, 33(6), 607–623.

Siddique, N., & Adeli, H. (2016c). Simulated annealing, its variants and
engineering applications. International Journal on Artificial Intelli-
gence Tools, 25(06), 1630001.

Song, W., Han, K., Wang, Y., Friesz, T., & Del Castillo, E. (2017). Sta-
tistical metamodeling of dynamic network loading. Transportation
Research Procedia, 23, 263–282.

Srinivas, M., & Patnaik, L. (1994). Adaptive probabilities of crossover
and mutation in genetic algorithms. IEEE Transactions on Systems,
Man, and Cybernetics, 24(4), 656–667.

Srinivasan, S., Riazi, S., Norris, B., Das, S. K., & Bhowmick, S.
(2018). A shared-memory parallel algorithm for updating single-
source shortest paths in large dynamic networks. In 2018 IEEE 25th
International Conference on High Performance Computing (HiPC).
IEEE.

Stathopoulos, A., & Tsekeris, T. (2004). Hybrid meta-heuristic algorithm
for the simultaneous optimization of the o–d trip matrix estimation.
Computer-Aided Civil and Infrastructure Engineering, 19(6), 421–
435.

Szeto, W., & Lo, H. K. (2005). Non-equilibrium dynamic traffic assign-
ment. In H. S. Mahmassani (Ed.), Transportation and traffic theory
(pp. 427–445). College Park: Elsevier.

Szeto, W. Y., & Lo, H. K. (2006). Dynamic traffic assignment: Properties
and extensions. Transportmetrica, 2(1), 31–52.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation,
Vol. 74, Hoboken: John Wiley & Sons.

Verbas, Ö., Mahmassani, H. S., & Hyland, M. F. (2016). Gap-based
transit assignment algorithm with vehicle capacity constraints:
Simulation-based implementation and large-scale application. Trans-
portation Research Part B: Methodological, 93, 1–16.

Verbas, İ. Ö., Mahmassani, H. S., & Hyland, M. F. (2015). Dynamic
assignment-simulation methodology for multimodal urban transit

networks. Transportation Research Record: Journal of the Trans-
portation Research Board, 2498(1), 64–74.

Wang, J., Zhong, D., Adeli, H., Wang, D., & Liu, M. (2018). Smart
bacteria-foraging algorithm-based customized kernel support vector
regression and enhanced probabilistic neural network for compaction
quality assessment and control of earth-rock dam. Expert Systems,
35(6), e12357.

Wang, Y., Szeto, W., Han, K., & Friesz, T. L. (2018). Dynamic traffic
assignment: A review of the methodological advances for environ-
mentally sustainable road transportation applications. Transportation
Research Part B: Methodological, 111, 370–394.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research.
Institution of Civil Engineering, 1, 325–362.

Xie, J., Nie, Y. M., & Liu, X. (2018). A greedy path-based algorithm for
traffic assignment. Transportation Research Record: Journal of the
Transportation Research Board, 2672(48), 36–44.

Yang, Q., Balakrishna, R., Morgan, D., & Slavin, H. (2017). Large-
scale, high-fidelity dynamic traffic assignment: Framework and real-
world case studies. Transportation Research Procedia, 25, 1290–
1299.

Yu, N., Ma, J., & Zhang, H. M. (2008). A polymorphic dynamic network
loading model. Computer-Aided Civil and Infrastructure Engineer-
ing, 23(2), 86–103.

Yun, I., & Park, B. (2006). Application of stochastic optimization method
for an urban corridor. In Proceedings of the 2006 Winter Simulation
Conference. IEEE.

Zhang, L., Yang, Z., Jia, H., Wang, B., & Chen, G. (2010). Test and
implement of a parallel shortest path calculation system for traffic
network. In International Conference on Information Computing and
Applications, Springer, 282–288.

How to cite this article: Ameli M, Lebacque J-P,
Leclercq L. Simulation-based dynamic traffic assign-
ment: Meta-heuristic solution methods with paral-
lel computing. Comput Aided Civ Inf. 2020;1–16.
https://doi.org/10.1111/mice.12577

https://doi.org/10.1111/mice.12577

