
HAL Id: hal-02944685
https://hal.science/hal-02944685

Submitted on 21 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unifying neighbourhood and distortion models: part II -
new models and synthesis

Ignacio Montes, Enrique Miranda, Sébastien Destercke

To cite this version:
Ignacio Montes, Enrique Miranda, Sébastien Destercke. Unifying neighbourhood and distortion mod-
els: part II - new models and synthesis. International Journal of General Systems, 2020, 49 (6),
pp.636-674. �10.1080/03081079.2020.1778683�. �hal-02944685�

https://hal.science/hal-02944685
https://hal.archives-ouvertes.fr


UNIFYING NEIGHBOURHOOD AND DISTORTION MODELS:

PART II - NEW MODELS AND SYNTHESIS

IGNACIO MONTES, ENRIQUE MIRANDA, AND SÉBASTIEN DESTERCKE

Abstract. Neighbourhoods of precise probabilities are instrumental to per-
form robustness analysis, as they rely on very few parameters. In the �rst
part of this study, we introduced a general, uni�ed view encompassing such
neighbourhoods, and revisited some well-known models (pari mutuel, linear
vacuous, constant odds-ratio). In this second part, we study models that have
received little to no attention, but are induced by classical distances between
probabilities, such as the total variation, the Kolmogorov and the L1 distances.
We �nish by comparing those models in terms of a number of properties: pre-
cision, number of extreme points, n-monotonicity, . . . thus providing possible
guidelines to select a neighbourhood rather than another.

Keywords: Neighbourhood models, distorted probabilities, total variation
distance, Kolmogorov distance, L1 distance.

1. Introduction and quick reminders

Our motivations for studying neighbourhood models have already been discussed
in the �rst part of this study [19]. Here, let us simply recall that their interest is
to provide simple models relying on very few parameters, which are:

• An initial probability P0 de�ned on some �nite space X with at least two el-
ements and belonging to the set P(X ) of probability distributions, that may
be the result of a classic estimation procedure or of some expert elicitation.

• A function d : P(X ) × P(X ) → [0,∞) (in this second paper a distance)
between probabilities, de�ning the shape of the neighbourhood. Hence, d
satis�es positive de�niteness (Ax.1), triangle inequality (Ax.2) and symme-
try (Ax.3), as well as two weaker conditions than positive de�niteness:

Ax.1a: d(P1, P2) = 0 implies P1 = P2.
Ax.1b: d(P, P ) = 0.

Also, it may satisfy other desirable properties: convexity (Ax.4) and conti-
nuity (Ax.5).

• A distortion factor δ de�ning the size of the neighbourhood around P0.

From these three elements we de�ne the associated neighbourhood as the credal set

Bδd(P0) := {P ∈ P(X ) | d(P, P0) ≤ δ} (1)

whose associated lower and upper previsions are de�ned as

P (f) := inf
{
P (f) | P ∈ Bδd(P0)

}
and P (f) := sup

{
P (f) | P ∈ Bδd(P0)

}
for any function f : X → R, and where we also use P to denote the expectation
operator. Lower and upper probabilities of an event A ⊆ X are analogously de�ned
as

P (A) = inf
{
P (A) | P ∈ Bδd(P0)

}
and P (A) = sup

{
P (A) | P ∈ Bδd(P0)

}
(2)

1
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and simply correspond to taking expectations over the indicator function of A.
In our companion paper, we analysed some properties of the credal set Bδd(P0)

and its associated lower prevision/probability for three of the usual distortion mod-
els within the imprecise probability theory: the pari mutuel (PMM), linear vacuous
(LV) and constant odds ratio (COR) models. In this second part of our study,
we will investigate the features of the polytopes Bδd(P0) induced by classic dis-
tances such as the total variation, the Kolmogorov and the L1 distances. To avoid
having too many technicalities and unnecessary details in an already long study,
we will assume that P0({x}) > 0 for all x ∈ X , and also that δ will be cho-
sen small enough such that the lower probability P induced by Bδd(P0) in Equa-
tion (2) satis�es P ({x}) > 0 ∀x ∈ X (or, equivalently, that Bδd(P0) is included in
P∗(X ) = {P ∈ P(X ) | P ({x}) > 0 ∀x}) . Some details about the general case are
given in Appendix B.

Our analysis of these models shall be made in terms of a number of features1:

• The properties of the distance d.
• The number of extreme points of Bδd(P0), which is �nite as the considered
distances induce polytopes.

• The k-monotonicity of the associated lower probability, that is satis�ed if
the inequality

P
(
∪pi=1 Ai

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∩i∈I Ai

)
(3)

holds for any collection of p events Ai ⊆ X where p ≤ k. For lower pre-
visions, we will look more speci�cally at 2-monotonicity, that is satis�ed
whenever

P (f ∧ g) + P (f ∨ g) ≥ P (f) + P (g),

holds for any pair of real-valued functions f, g over X . The restriction
to events (indicator functions) of a 2-monotone lower previsions is a 2-
monotone lower probability. Also, for a 2-monotone lower probability P
there exists a unique 2-monotone lower prevision P ′ whose restriction to
events coincide with P , and it is given by the Choquet integral [29].

A lower probability satisfying the property of k-monotonicity for every
k is usually called complete monotone.

• The behaviour of a family of distortion models under a conditioning on an
event B, where we will consider the conditional lower prevision resulting
from regular extension, de�ned as

PB(f) = inf{PB(f) | P ∈M(P )}. (4)

This second part of our study is organised as follows: the neighbourhood and
distortion models induced by the total variation, Kolmogorov and L1 distances are
respectively studied in Sections 2, 3 and 4. Finally, we propose a synthetic com-
parative analysis in Section 5, before discussing some conclusions and perspectives.
To ease the reading, proofs and some additional results have been relegated to
Appendices A and B, respectively.

1We refer the reader to the �rst part for a more detailed introduction to these notions.
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2. Distortion model based on the total variation distance

In our companion paper we have seen that the pari mutuel, linear vacuous and
constant odds ratio are models that, even if they can be expressed as neighbour-
hoods as in Equation (1), are de�ned without an explicit link to a distorting function
d.

In the current and two forthcoming sections we go the other way: we start with
a known distance between probabilities and study its induced neighbourhood as
well as the properties of the associated lower probability/prevision.

We begin with the total variation distance. Given two probabilities P,Q ∈ P(X ),
their total variation is de�ned by [15]:

dTV (P,Q) = max
A⊂X

|P (A)−Q(A)|. (5)

2.1. Properties of the TV model. We begin by studying the axiomatic proper-
ties of this distance; they are summarised in the following proposition.

Proposition 1. The total variation distance dTV given by Equation (5) satis�es
Ax.1 (hence also Ax.1a and Ax.1b), Ax.2, Ax.3, Ax.4 and Ax.5.

Note also that by de�nition dTV is bounded above by 1, so we can restrict our
attention to δ ∈ (0, 1). This motivates the following:

De�nition 1. Let P0 be a probability measure and consider a distortion factor
δ ∈ (0, 1). Its associated total variation model PTV is the lower envelope of the
credal set BδdTV (P0).

The following result gives a formula for the coherent lower probability PTV and
its conjugate upper probability PTV :

Theorem 2. [13] Consider a probability measure P0 and a distortion parameter
δ ∈ (0, 1). The lower envelope PTV of the credal set BδdTV (P0) is given, for any
A 6= ∅,X , by:

PTV (A) = max{0, P0(A)− δ}, PTV (A) = min{1, P0(A) + δ}, (6)

and PTV (∅) = PTV (∅) = 0, PTV (X ) = PTV (X ) = 1.

This result was established [13] for an arbitrary δ ∈ (0, 1); our assumption
PTV (A) > 0 for every A 6= ∅ means that

δ < min
x∈X

P0({x}), (7)

whence
PTV (A) = P0(A)− δ and PTV (A) = P0(A) + δ (8)

for every A 6= ∅,X .
Let us give a behavioural interpretation of this model: assume that P0 is the fair

price for a bet on A. Then, the expected bene�t from the house would be:

E(P0 − IA) = (P0(A)− 1)P0(A) + P0(A)(1− P0(A)) = 0.

In order to guarantee a positive gain, the house may impose a �xed tax of δ > 0
that the gambler has to pay for betting, regardless on the event A that is bet on.
Then, if the gambler wants to buy a bet on A, he/she has to pay P0(A) + δ units.
In this way, the bene�t of the house becomes

(P0(A) + δ)− IA,
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which assures a positive expected gain:

E(P0 + δ − IA) = (P0(A) + δ − 1)P0(A) + (P0(A) + δ)(1− P0(A)) = δ > 0.

This gives rise to the upper probability P (A) = P0(A)+ δ. Hence, we can interpret
the distortion parameter δ as the �xed tax that the gambler has to pay for betting,
regardless on the non-trivial event A to be bet on.

Next we establish that whenever the distortion factor δ satis�es Equation (7),
we can �nd a probability in BδdTV (P0) whose distance to P0 is exactly δ.

Proposition 3. Consider the total variation model associated with a probability
measure P0 and a distortion parameter δ ∈ (0, 1) satisfying Equation (7). Then:

max
P∈BδdTV (P0)

dTV (P, P0) = δ.

Let us study the properties of PTV as a lower probability.

Proposition 4. The coherent lower probability PTV is 2-monotone.

However, it is neither completely monotone nor a probability interval in general,
as our next example shows:

Example 1. Consider X = {x1, x2, x3, x4}, let P0 be the uniform probability dis-
tribution and consider δ = 0.1. From Equation (8), PTV , PTV are given by:

|A| PTV PTV
1 0.15 0.35
2 0.40 0.60
3 0.65 0.85
4 1 1

Since P = (0.15, 0.15, 0.35, 0.35) satis�es that P ({xi}) ∈ [PTV ({xi}), PTV ({xi})]
for every i = 1, . . . , 4 but P ({x1, x2}) = 0.3 < 0.4 = PTV ({x1, x2}), we conclude
that PTV is not a probability interval. Also, taking A1 = {x1, x2}, A2 = {x1, x3}
and A3 = {x2, x3}, we obtain:

PTV (A1) + PTV (A2) + PTV (A3)− PTV (A1 ∩A2)− PTV (A1 ∩A3)

− PTV (A2 ∩A3) + PTV (A1 ∩A2 ∩A3) = 3 · 0.40− 3 · 0.15 + 0 = 0.75,

while PTV (A1 ∪ A2 ∪ A3) = 0.65. Hence, Equation (3) is not satis�ed, so PTV is
not 3-monotone, and as a consequence it is not completely monotone either. �

The fact that PTV is not completely monotone can be easily deduced from the
results in [3]. Speci�cally, [3, Prop.5] and [3, Cor.1] give necessary and su�cient
conditions on f for the distortion model of the type f(P0) to be completely mono-
tone. In particular, f must be di�erentiable in the interval [0, 1). It can be easily
checked that PTV (A) = f(P0(A)), where f(t) = max{t − δ, 0}. Since f is not
di�erentiable, it follows that PTV cannot be completely monotone. We refer to [3,
App. B] for some interesting results on the k-monotonicity of the distortion models
of the type f(P0).

Since PTV is a 2-monotone lower probability, it has a unique 2-monotone ex-
tension to gambles, that can be determined by means of the Choquet integral [30,
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Sec. 3.2.4]:

PTV (f) = sup f −
∫ sup f

inf f

F f (x)dx = inf f +

∫ sup f

inf f

1− F f (x)dx,

PTV (f) = sup f −
∫ sup f

inf f

F f (x)dx = inf f +

∫ sup f

inf f

1− F f (x)dx,

where F f and F f denote the lower and upper distributions of f under PTV , PTV :

F f (x) = PTV (f ≤ x), F f (x) = PTV (f ≤ x) ∀x ∈ X .

An equivalent expression is given in [24, Sec. 3.2].
Next we establish the number of extreme points of BδdTV (P0).

Proposition 5. Let BδdTV (P0) be the neighbourhood model associated with a proba-
bility measure P0 and a distortion factor δ ∈ (0, 1) satisfying Equation (7) by means
of the total variation distance. Then the number of extreme points of BδdTV (P0) is
n(n− 1).

Proposition 5 has been adapted to the general case in which δ does not satisfy
Equation (7) in Appendix B.1.

2.2. Conditioning the TV model. Next proposition shows that when condi-
tioning according to Equation (4), the resulting credal set is still a total variation
model.

Proposition 6. Consider the model BδdTV (P0), where the distortion parameter δ
satis�es Equation (7), and its induced lower probability PTV . Then, the credal set
associated with the conditional model PB (B 6= ∅,X ) coincides with the credal set

BδBdTV (P0|B), where

P0|B(A) = P0(A|B) and δB =
δ

P0(B)
. (9)

As with some of the models studied in the �rst part of this study (i.e., the
PMM and LV models), we can see that the conditional model has an increased
imprecision with respect to the original one because δB = δ

P0(B) > δ, this increase

being between the one we observed in the PMM (δB = δ
PPMM (B) ) and that of the

LV model (δB = δ
PLV (B)

); see Equations (16) and (19) of the �rst paper [19].

3. Distortion model based on the Kolmogorov distance

Let us now consider the neighbourhood model based on the Kolmogorov dis-
tance [14], that makes a comparison between the distribution functions associated
with the probability measures. We shall assume in this section that the �nite pos-
sibility space X = {x1, . . . , xn} is totally ordered: x1 < x2 < . . . < xn. Given
two probability measures P,Q de�ned on an ordered space X , their Kolmogorov
distance is de�ned by:

dK(P,Q) = max
x∈X
|FP (x)− FQ(x)|, (10)

where FP and FQ denote the cumulative distribution functions associated with P
and Q, respectively.
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When dealing with this model, it will be useful to consider another of the usual
model within the imprecise probability theory: p-boxes [11]. A p-box is a pair of
cumulative distribution functions F , F : X → [0, 1] such that F ≤ F . A p-box,
usually denoted by (F , F ), de�nes a closed and convex set of probabilities by:

M(F , F ) = {P ∈ P(X ) | F ≤ FP ≤ F}, (11)

where FP denotes the cumulative distribution function induced by P . In particular,
a p-box (F , F ) de�nes a coherent lower probability taking the lower envelope of its
associated credal set in Equation (11):

P (F,F )(A) = inf{P (A) | P ∈M(F , F )}. (12)

This lower probability is not only coherent, but also completely monotone, and
hence in particular it is 2-monotone. We refer to [28] for a mathematical study of
p-boxes.

3.1. Properties of the Kolmogorov model. Our �rst result studies the prop-
erties satis�ed by dK .

Proposition 7. The Kolmogorov distance given by Equation (10) satis�es Ax.1
(hence also Ax.1a and Ax.1b), Ax.2, Ax.3, Ax.4 and Ax.5.

Also, dK is a distance that is bounded above by 1. This motivates the following
de�nition:

De�nition 2. Let P0 be a probability measure and consider a distortion factor
δ ∈ (0, 1). Its associated Kolmogorov model PK is the lower envelope of the credal
set BδdK (P0).

In other words, the coherent lower probability PK obtained as the lower envelope
of BδdK (P0) is given by:

PK(A) = min{P (A) | P ∈ BδdK (P0)} = min
{
P (A) | max

x∈X
|FP (x)− FP0

(x)| ≤ δ
}

for every A ⊆ X .
There exists an obvious connection between the credal setsBδdTV (P0) andB

δ
dK

(P0):

since dK(P,Q) ≤ dTV (P,Q) for every P,Q ∈ P(X ), we deduce that BδdK (P0) ⊇
BδdTV (P0). However, the two sets do not coincide in general:

Example 2. Consider a four-element space X = {x1, x2, x3, x4}, let P0 be the
uniform distribution and take δ = 0.1. Consider also the probability P given by
P = (0.35, 0.05, 0.35, 0.25). Then P belongs to BδdK (P0), because

x1 x2 x3 x4
FP 0.35 0.4 0.75 1
FP0

0.25 0.5 0.75 1
|FP − FP0 | 0.1 0.1 0 0

However, P does not belong to BδdTV (P0), since

PTV ({x2}) = P0({x2})− δ = 0.15 > 0.05 = P ({x2}).

Thus, BδdK (P0) is a strict superset of BδdTV (P0). �
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From this we also deduce that the behavioural interpretation of the Kolmogorov
model is the same than that of the total variation but restricted to the cumulative
events {x1, . . . , xk} for k = 1, . . . , n.

The assumption of strictly positive lower probabilities implies that in particular
PK({x}) > 0 for every x ∈ X , whence (see [28, Prop. 4]):

PK({x1}) > 0⇒ δ < FP0
(x1),

PK({xi}) > 0⇒ δ <
1

2
(FP0

(xi)− FP0
(xi−1)) ∀i = 2, . . . , n.

From this, we deduce that the assumption of strictly positive lower probabilities
implies that:

δ < min
1,...,n

1

2
(FP0(xi)− FP0(xi−1)) , (13)

where FP0
(x0) := 0.

Next we establish that any such distortion factor is attained in the neighbourhood
model.

Proposition 8. Consider the Kolmogorov model associated with a probability mea-
sure P0 and a distortion parameter δ ∈ (0, 1) satisfying Equation (13). Then:

max
P∈BδdK (P0)

dK(P, P0) = δ.

Since the Kolmogorov distance is de�ned over cumulative distributions, its asso-
ciated credal set is equivalent to a p-box. To see this, note that we can rewrite

BδdK (P0) = {P ∈ P(X ) | |FP (x)− FP0(x)| ≤ δ, ∀x ∈ X}
= {P ∈ P(X ) | FP0

(x)− δ ≤ FP (x) ≤ FP0
(x) + δ, ∀x ∈ X};

if we de�ne a p-box (F , F ) by:

F (xi) = max{0, FP0
(xi)− δ}, F (xi) = min{1, FP0

(xi) + δ} ∀i = 1, . . . , n− 1,

F (xn) = F (xn) = 1,

then BδdK (P0) =M(F , F ), whereM(F , F ) is given in Equation (11). Also, since δ

satis�es Equation (13), the expression of (F , F ) simpli�es to:

F (xi) = FP0
(xi)− δ, F (xi) = FP0

(xi) + δ ∀i = 1, . . . , n− 1, (14)

F (xn) = F (xn) = 1.

This means that BδdK (P0) is the credal set associated with a p-box, and as a conse-
quence PK is given by Equation (12), and it is completely monotone [28, Thm. 17].
Note that, although PK and PTV induce the same p-box, they are not the same
coherent lower probability: PK � PTV , as we have seen in Example 2. If we fol-
low the notation in [4, 20], we deduce from [21, Prop. 16] that PK is the unique
undominated outer approximation of PTV in terms of p-boxes.

The p-box induced by the Kolmogorov distance in Example 2 is represented in
Figure 1.
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x1 x2 x3 x4

1

Figure 1. Cumulative distribution function FP0 (bold line) and
p-box (F , F ) associated with the distortion model in Example 2.

Example 3. Example 2 also shows that PK is not a probability interval in general.
If P0 is the uniform distribution and δ = 0.1, it holds that (see [28, Prop. 4] for
details in how to compute PK and PK):

PK({x1}) = PK({x4}) = 0.15, PK({x2}) = PK({x3}) = 0.05,

PK({x1}) = PK({x4}) = 0.35, PK({x2}) = PK({x3}) = 0.45.

If we consider the probability measure P determined by the probability mass func-
tion (0.35, 0.45, 0.05, 0.15), it satis�es P ({xi}) ∈ [P ({xi}), P ({xi})] for every i =
1, . . . , 4. However, FP (x2)− FP0

(x2) = 0.8− 0.5 = 0.3 > 0.1. Thus, P /∈ BδdK (P0)
and therefore PK is not a probability interval. �

Finally, we investigate the maximal number of extreme points in BδdK (P0). It
is known [17, Thm. 17] that the maximal number of extreme points induced by a
p-box coincides with the n-th Pell number, where n is the cardinality of X . The
Pell numbers are recursively de�ned by:

P0 = 0, P1 = 1, Pn = Pn−2 + 2Pn−1 ∀n ≥ 2.

Our next result shows that this maximal number is also attained in the p-boxes
associated with the Kolmogorov models.

Proposition 9. Let BδdK be the neighbourhood model associated with a probability
measure P0 and a distortion factor δ ∈ (0, 1) satisfying Equation (13) by means of
the Kolmogorov distance. Then the number of extreme points of BδdK is Pn.

As we show in the proof in Appendix A, this maximal number of extreme points
is attained for instance when P0 is the uniform distribution and δ ∈

(
1
2n ,

1
n

)
.

Moreover, it is worth noting that when our assumption that Bδdk ⊆ P
∗(X ) does

not hold, the maximal number of extreme points of the Kolmogorov model is dif-
�cult to compute, but it may be smaller than the Pell number Pn. One trivial
instance of this would be when δ is large enough so that Bδdk = P(X ), in which case
there would be n extreme points.

3.2. Conditioning the Kolmogorov model. For the Kolmogorov distance, known
results [9] indicate that the conditional model obtained by applying the regular ex-
tension to the lower probability induced by a generalised p-box will not induce,
in general, a generalised p-box. A simple adaptation of Example 3 in [9] (picking
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F (x2) = 0.3 instead of 0.4) shows that it is also the case for p-boxes induced by
the Kolmogorov distance.

4. Distortion model based on the L1 distance

We conclude our analysis by considering the distortion model where the dis-
torting function is the L1-distance between probability measures, that for every
P,Q ∈ P(X ) is given by

dL1
(P,Q) =

∑
A⊂X

|P (A)−Q(A)|.

This distance has been used for instance within robust statistics [25]. It seems
therefore worthwhile to investigate the properties of the neighbourhood model it
determines.

4.1. Properties of the L1 model. Our �rst result gives the properties satis�ed
by dL1

.

Proposition 10. The L1-distance dL1 satis�es Ax.1 (hence also Ax.1a and Ax.1b),
Ax.2, Ax.3, Ax.4 and Ax.5.

Using the L1-distance, we can de�ne the following distortion model.

De�nition 3. Let P0 be a probability measure and consider a distortion parameter
δ > 0. Its associated L1-model PL1

is the lower prevision obtained as the lower

envelope of the credal set BδdL1
(P0).

The restriction to events of the lower prevision PL1
associated with this model

is given in the next result. In the statement of this theorem, especially in Equa-
tions (15) and (16), recall that n denotes the cardinality of X : n = |X |.

Theorem 11. Consider a probability measure P0 and a distortion parameter δ > 0.
Let us de�ne the lower probability PL1

by

PL1
(A) = P0(A)−

δ

ϕ(n, |A|)
, ∀A 6= X (15)

and PL1
(X ) = 1, where, for any k = 1, . . . , n− 1, ϕ(n, k) is given by:

ϕ(n, k) =

k∑
l=0

(
k

l

) n−k∑
j=0

(
n− k
j

) ∣∣∣∣ lk − j

n− k

∣∣∣∣ , (16)

and ϕ(n, n) = 0.
If δ is small enough so that PL1

({x}) > 0 for every x ∈ X , then PL1
is the

restriction to events of the lower envelope of the credal set BδdL1
(P0).

Let us comment on the meaning of the function ϕ(n, k). Given events A,B ⊆ X ,
denote by ϕ∗X (A,B) the function given by:

ϕ∗X (A,B) =

∣∣∣∣ |Ac ∩B||Ac|
− |A ∩B|

|A|

∣∣∣∣ .
This function measures the di�erence, in absolute value, between the common el-
ements between A and B, relative to the size of A, and the common elements
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between Ac and B, relative to the size of Ac. Then, we can de�ne ϕ∗X (A) by:

ϕ∗X (A) =
∑
B⊆X

ϕ∗X (A,B).

If the cardinality of A is k, |A| = k, any B ⊆ X has l elements in common with A,
for some l = 0, . . . , k, and j elements in common with Ac, for some j = 0, . . . , n−k.
Hence, taking into account that such B could be chosen in

(
k
l

)
·
(
n−k
j

)
di�erent ways,

we obtain that ϕ∗X (A) = ϕ(n, |A|).
Table 1 provides the values of ϕ up to cardinality n = 12.

n\k 1 2 3 4 5 6 7 8 9 10 11 12
2 2 - - - - - - - - - - -
3 4 4 - - - - - - - - - -
4 8 6 8 - - - - - - - - -
5 16 12 12 16 - - - - - - - -
6 32 22 20 22 32 - - - - - - -
7 64 44 40 40 44 64 - - - - - -
8 128 84 76 70 76 84 128 - - - - -
9 256 168 144 140 140 144 168 256 - - - -
10 512 326 288 264 252 264 288 326 512 - - -
11 1024 652 564 520 504 504 520 564 652 1024 - -
12 2048 1276 1100 998 964 924 964 998 1100 1276 2048 -

Table 1. Values of ϕ(n, k) for n ≤ 12.

Throughout the remainder of this section, we will assume that δ is small enough
so that PL1

(A) > 0 for every A 6= ∅. This restriction on δ can be equivalently
expressed as

0 < δ < min
A⊂X

P0(A)ϕ(n, |A|). (17)

Comparing Equations (8) and (15), the only di�erence between them is that
in PTV we always subtract the distortion parameter δ, while in PL1

we subtract
δ

ϕ(n,|A|) , taking into account the size of event A. Using this fact, the behavioural

interpretation of the L1-model is similar to that of the total variation. However,
note that in the total variation model the gambler has to pay always the same tax
δ for betting on any event, while in the case of the L1-model, the tax depends on
the size of the event, with the constraint that events of the same cardinality have
the same tax.

Our next result shows that for the L1 model, there is always a probability mea-
sure P in the ball BδdL1

(P0) such that dL1(P, P0) = δ.

Proposition 12. Consider the L1 model associated with a probability measure P0

and a distortion parameter δ > 0 satisfying Equation (17). Then:

max
P∈BδdL1

(P0)
dL1

(P, P0) = δ.

Let us now study the properties of the lower envelope of the L1-model. We begin
by establishing that the lower prevision PL1

associated with the L1-distance is not
a 2-monotone lower prevision.
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Example 4. Consider X = {x1, x2, x3, x4}, P0 the uniform probability measure and
δ = 1. Let f be the gamble given by f = 4I{x1} + 3I{x2} + 2I{x3} + I{x4}. If PL1

was a 2-monotone lower prevision, then it would be given by the Choquet integral
associated with its restriction to events, that produces

(C)

∫
fdPL1

= PL1
({x1}) + PL1

({x1, x2}) + PL1
({x1, x2, x3}) + PL1

({x1, x2, x3, x4})

=
3

24
+

8

24
+

15

24
+ 1 =

50

24
,

using Equation (15). However, there is no Q ∈ B1
dL1

(P0) such that Q(f) =

(C)
∫
fdPL1

: such a Q should satisfy

Q({x1}) = PL1
({x1}), Q({x1, x2}) = PL1

({x1, x2}),
Q({x1, x2, x3}) = PL1

({x1, x2, x3}), Q({x1, x2, x3, x4}) = PL1
({x1, x2, x3, x4}),

meaning that it should be Q = ( 3
24 ,

5
24 ,

7
24 ,

9
24 ). This probability measure satis�es

dL1(P0, Q) = 28
24 , and as a consequence it does not belong to B1

dL1
(P0). �

The study of the k-monotonicity of the restriction of PL1
to events can be given

in terms of the function ϕ(n, k), because:

P
(
∪pi=1 Ai

)
−

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∩i∈I Ai

)
= P0

(
∪pi=1 Ai

)
− δ

ϕ(n, | ∪pi=1 Ai|)

−
∑

∅6=I⊆{1,...,p}

(−1)|I|+1

(
P0(∩i∈IAi)−

δ

ϕ(n, | ∩i∈I Ai|)

)

= − δ

ϕ(n, | ∪pi=1 Ai|)
+

∑
∅6=I⊆{1,...,p}

(−1)|I|+1 δ

ϕ(n, | ∩i∈I Ai|)
.

Hence, Equation (3) holds if and only if

1

ϕ(n, | ∪pi=1 Ai|)
≤

∑
∅6=I⊆{1,...,p}

(−1)|I|+1 1

ϕ(n, | ∩i∈I Ai|)
(18)

for every A1, . . . , Ap ⊂ X and p ≤ k. In particular, taking k = 2, PL1
is 2-monotone

in events if and only if:

1

ϕ(n, |A ∪B|)
+

1

ϕ(n, |A ∩B|)
≤ 1

ϕ(n, |A|)
+

1

ϕ(n, |B|)
for every A,B ⊂ X . Also, this inequality is equivalent to:

1

ϕ(n, k1)
+

1

ϕ(n, k4)
≤ 1

ϕ(n, k2)
+

1

ϕ(n, k3)
(19)

for every 1 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ n such that k1 + k4 = k2 + k3. These facts
simplify the study of the properties of the restriction to events of PL1

.

Proposition 13. Let PL1
be the L1-model generated by a probability measure P0

and a distortion parameter δ > 0 satisfying Equation (17) in a n-element space X .
• The restriction of PL1

to events is a 2-monotone lower probability for n ≤
11.

• The restriction of PL1
to events is a completely monotone lower probability

for n ≤ 4.
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Next example shows that the restriction of PL1
to events is not completely

monotone for cardinalities larger than n = 4.

Example 5. Consider a 5-element space X = {x1, x2, x3, x4, x5}, let P0 be any
probability measure and δ > 0 be a distortion parameter satisfying Equation (17).
Consider now the events A1 = {x1, x2}, A2 = {x1, x3} and A3 = {x2, x3}. Applying
Equation (18) to these events, we obtain the following inequality:

1

ϕ(5, 3)
≤ 3

ϕ(5, 2)
− 3

ϕ(5, 1)
.

If we now replace the values of ϕ, this is equivalent to:

1

12
≤ 3

12
− 3

16
⇔ 3

16
≤ 2

12
,

which does not hold. We conclude that Equation (18) is not satis�ed, so the restric-
tion of PL1

to events is not a 3-monotone lower probability, and as a consequence
it is not completely monotone either. �

Also, Proposition 13 shows that PL1
is 2-monotone on events for n ≤ 11. Some-

what surprisingly, it is not a 2-monotone lower probability in general for larger
cardinalities:

Example 6. Consider X = {x1, . . . , x12}, let P0 be the uniform distribution and
δ = 1. Take A = {x1, x2, x3, x4, x5} and B = {x1, x2, x3, x4, x6}. From Equa-
tion (16),

ϕ(12, 4) = 998, ϕ(12, 5) = 964 and ϕ(12, 6) = 924.

Applying Proposition 11, we obtain

PL1
(A∪B)+PL1

(A∩B) =
6

12
− 1

924
+

4

12
− 1

998
< 2·

(
5

12
− 1

964

)
= PL1

(A)+PL1
(B),

whence the restriction to events of PL1
is not a 2-monotone lower probability. As

a consequence, it is not a probability interval either. �

To conclude the study of the L1-model, it only remains to determine the extreme
points of the closed ball BδdL1

(P0). It is not di�cult to see that these must lie on the

boundary of the ball. However, its maximal number and an explicit formula is an
open problem at this stage. As we have seen, PL1

is neither 2-monotone in gambles
(see Example 4) nor 2-monotone in events for cardinalities greater n ≥ 12 (see
Example 6). This means that for the general case there is not a simple procedure
for determining the extreme points of BδdL1

(P0), and in particular we cannot use the

procedure based in the permutations, described in [19, Eq. (2)], for computing them.
Also, the fact that complete monotonicity is not guaranteed for n > 4 suggests that
geometrical intuitions we may get from a 3 state space may be misleading.

4.2. Conditioning the L1 model. Let us �rst look at what happens when we
condition a L1-model over some event B. For the L1-distance, we have to mention
that since PL1

is not 2-monotone (on gambles nor or events), we cannot use some
of the useful results for conditioning from [16]. Furthermore, even in the case of
a cardinality smaller than 12, where from Proposition 13 we know that PL1

is 2-
monotone in events, the conditional model is not necessarily a L1-model, as next
example shows:
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Example 7. Consider a �ve element space X = {x1, x2, x3, x4, x5}, a probability
measure P0 with uniform distribution and a distortion parameter δ = 1. The values
of PL1

and P 1 are:

|A| 1 2 3 4 5
PL1

11/80 19/60 31/60 59/80 1
PL1

21/80 29/60 41/60 69/80 1

Since n = 5 < 12, from Proposition 13 we know that PL1
is 2-monotone. Hence,

the conditional model PB, where B = {x1, x2, x3, x4}, can be computed using the
formula [29, Thm. 7.2]:

PB(A) =
PL1

(A ∩B)

PL1
(A ∩B) + PL1(A

c ∩B)
∀A ⊆ B,

that gives

|A| 1 2 3 4
PB 33/197 19/48 124/187 1

If we assume that PB is a L1-model, there must exist a probability measure P ′0 =
(p1, p2, p3, p4) and a distortion parameter δ′ > 0 such that:

PB(A) =


P ′0(A)− δ′

8 if |A| = 1.

P ′0(A)− δ′

6 if |A| = 2.

P ′0(A)− δ′

8 if |A| = 3.

Then:

4× 33

197
=

4∑
i=1

PB({xi}) =
4∑
i=1

(
P ′0({xi})−

δ′

8

)
= 1− δ′

2
=⇒ δ′ =

130

197
.

Also:

6× 19

48
=

∑
A:|A|=2

PB(A) =
∑

A:|A|=2

(
P ′0(A)−

δ′

6

)
= 3− δ′ =⇒ δ′ =

5

8
.

This is a contradiction, meaning that PB is not a L1-model. �

5. Comparative and synthetic analysis of the distortion models

In our companion paper we have seen that some usual distortion models within
the imprecise probability theory (the pari mutuel, lineal vacuous and constant odds
ratio) can be expressed as neighbourhoods of probabilities. In this second paper,
we have studied the neighbourhoods induced by the total variation, Kolmogorov
and L1 distances.

In this section we compare all these models from di�erent points of view: the
amount of imprecision, the properties of the distorting function, the properties of
the lower probability associated with each model, the complexity of each model and
their behaviour under conditioning.
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5.1. Amount of imprecision. We �rst compare the amount of imprecision that is
introduced by the di�erent neighbourhood models we have considered in these two
papers once the initial probability measure P0 and the distortion factor δ ∈ (0, 1)
are �xed. Given two credal setsM1,M2, we shall say thatM1 is more informative
than M2 when M1 ⊆ M2; in terms of their lower envelopes P 1, P 2, this means
that P 1(f) ≥ P 2(f) for every gamble f on X .

We start with an example showing that some of the models are not related in
general.

Example 8. Consider X = {x1, x2, x3}, P0 = (0.5, 0.3, 0.2) and δ = 0.1. Then the
associated distortion models are:

A PPMM (A) PLV (A) PCOR(A) PTV (A) PK(A) PL1

{x1} 0.45 0.45 0.4737 0.4 0.4 0.475
{x2} 0.23 0.27 0.2784 0.2 0.1 0.275
{x3} 0.12 0.18 0.1837 0.1 0.1 0.175
{x1, x2} 0.78 0.72 0.7826 0.7 0.7 0.775
{x1, x3} 0.67 0.63 0.6774 0.6 0.5 0.675
{x2, x3} 0.45 0.45 0.4737 0.4 0.4 0.475

where we are assuming the order x1 < x2 < x3 in the case of the Kolmogorov model.
By considering the events A = {x2} and B = {x1, x2}, we observe that the pari
mutuel model and the linear vacuous mixture are not comparable, in the sense that
none of them is more imprecise than the other.

Also, this example tells us that PL1
neither dominates nor is dominated by

PPMM , considering the events A = {x1} and B = {x1, x2}. By considering the
events A = {x1} and B = {x3}, we also observe that PL1

neither dominates nor is
dominated by PLV or PCOR. �

It was already stated in [30, Sec. 2.9.4] that the restriction to events of PCOR,
denoted by Q

COR
, dominates the lower probabilities of both the linear vacuous,

PLV , and the pari mutuel PPMM . In terms of credal sets,

Bδd′COR
(P0) ⊆ BδdLV (P0) ∩BδdPMM (P0).

Since Q
COR

is the restriction to events of PCOR, it holds that BδdCOR(P0) ⊆
Bδd′COR

(P0).

Next we compare these models with the one associated with the total variation:

Proposition 14. Consider the coherent lower probabilities PPMM , PLV and PTV
induced by the probability measure P0 and the distortion factor δ ∈ (0, 1). It holds
that

BδdPMM (P0) ∪BδdLV (P0) ⊆ BδdTV (P0).

In terms of their associated coherent lower probabilities, we can equivalently state
that PTV ≤ min{PPMM , PLV }.

In other words, the total variation model is more imprecise than both the pari
mutuel and linear vacuous, and as a consequence it is also more imprecise than the
constant odds ratio.

On the other hand, taking into account the comments given in Section 3, we
observe that the model based on the Kolmogorov distance is more imprecise than
the total variation distance: BδdTV (P0) ⊆ BδdK (P0).
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Finally, since dTV (P,Q) ≤ dL1
(P,Q) for any pair of probability measures P,Q,

we deduce that BδdL1
(P0) ⊆ BδdTV (P0) ⊆ BδdK (P0). Thus, PL1

is more precise

than the distortion models associated with the total variation and the Kolmogorov
distance.

These relationships are summarised in Figure 2.

BδdCOR(P0)

Bδd′COR
(P0)

BδdTV (P0)

BδdK (P0)

BδdPMM (P0) BδdLV (P0) BδdL1
(P0)

Figure 2. Relationships between the di�erent models. An arrow
between two nodes means that parent includes the child.

The credal sets of the neighbourhood models from Example 8 are represented in
Figure 3.

5.2. Properties of the distorting function. We may also compare the di�er-
ent models by means of the properties of the associated distorting function, as
introduced in [19, Sec. 3]. Our models satisfy the ones in Table 2.

Model Ax.1 Ax.1a Ax.1b Ax.2 Ax.3 Ax.4 Ax.5 Result

dPMM X X X X X [19, Prop. 6]
dLV X X X X X X [19, Prop. 10]
dCOR X X X X X X X [19, Prop. 15]
d′COR X X X X X X X [19, Prop. 19]

dTV X X X X X X X Prop. 1
dK X X X X X X X Prop. 7
dL1 X X X X X X X Prop. 10

Table 2. Summary of the properties satis�ed by the distorting
functions dPMM , dLV , dCOR, d

′
COR, dTV , dK and dL1

.

Since dTV , dK and dL1
are distances, they satisfy Ax.1�Ax.3 (and hence also

Ax.1a and Ax.1b). So does the distance associated with the constant odds ratio
model. On the other hand, neither dLV nor dPMM are symmetrical, meaning that
Q may belong to the neighbourhood model of P with radius δ while P does not
belong to the neighbourhood model of Q with radius δ; in addition, dPMM does
not satisfy Ax.2 either: this means that two di�erent probability measures may
be unidenti�able with respect to dPMM , and also that dPMM does not satisfy
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p({x1})

p({x2})

p({x3})

BδdTV

(P0)

BδdPMM

(P0)

BδdLV

(P0)

P0

BδdCOR

(P0)

Bδ
d′

COR

(P0)BδdK

(P0)

Bδd
L1

(P0)

p({x1})

p({x2})

p({x3})

BδdTV

(P0)

BδdPMM

(P0)

BδdLV

(P0)

P0

BδdCOR

(P0)

Bδ
d′

COR

(P0)BδdK

(P0)

Bδd
L1

(P0)

Figure 3. Graphical representation of the di�erent credal sets in
Example 8.

the triangle inequality in general. It follows that dPMM , dLV are only premetrics
instead of distances. Nevertheless, one may argue for instance that the property
of symmetry is less natural than other axioms we have considered in these papers,
because the roles of the original model and the distorted one are not the same.

Finally, all distorting functions satisfy Ax.4 and Ax.5, meaning that the open
balls are convex and continuous. From [19, Prop. 1], this implies that the closed
ball coincides with the credal set associated with the coherent lower probability.

5.3. Properties of the associated coherent lower probability. We may also
compare the di�erent distortion models in terms of the properties of the coherent
lower probability they determine. As we recalled in the Introduction, there are a
number of particular cases of coherent lower probabilities that may be of interest
in practice. The �rst of them is 2-monotonicity: not only it guarantees that the
distortion model has a unique extension to gambles as a lower prevision, but also
it allows us to use a simple formula [19, Eq. (2)] to compute the extreme points of
the credal set. It turns out that all the models we have considered in this paper are
2-monotone, except for the constant odds ratio, that only satis�es 2-monotonicity
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once we consider its restriction to events, and the L1-model, which is neither 2-
monotone on gambles nor on events.

Two particular cases of 2-monotone lower probabilities are probability intervals
and belief functions. The �rst correspond to those that are uniquely determined by
their restrictions to singletons. Thus, for them there is a simpler representation of
the associated credal set. With respect to the examples considered in these papers,
only the pari mutuel model and the linear vacuous mixture satisfy this property.

Belief functions are completely monotone lower probabilities. They connect the
model with Shafer's Evidential Theory [27], and allow to represent the lower prob-
ability by means of a basic probability assignment. In this respect, both the linear
vacuous mixture and Kolmogorov's model are belief functions: the former, because
it is a convex combination of two completely monotone models, and the latter be-
cause every coherent lower probability associated with a p-box is (see [28, Sec.5.1.]).
On the other hand, the pari mutuel is not 3-monotone in general ([18, Prop. 5])
and the total variation is not completely monotone (see Example 1). Finally, both
the constant odds ration on events and the neighbourhood model based on Kol-
mogorov's distance induce a completely monotone lower probability that is not a
probability interval.

Table 3 summarises the results mentioned in this subsection.

Model 2-monotone Complete monotone Probability interval

PPMM YES NO ([18, Prop. 5]) YES ([18, Thm. 1])
PLV YES YES ([19, Sec. 5]) YES ([19, Sec. 5])
PCOR NO ([19, Ex. 1]) NO NO ([19, Ex. 2])
Q

COR
YES ([19, Prop. 17]) YES ([19, Prop. 17]) NO ([19, Ex. 2])

PTV YES (Prop. 4) NO (Ex. 1) NO (Ex. 1)
PK YES YES NO (Ex. 3)
PL1

NO (Ex. 4, Ex. 6) NO (Ex. 5) NO (Ex.6)

Table 3. Properties satis�ed by the coherent lower probabilities
induced by the neighbourhood models.

We therefore conclude that, from the point of view of these properties, the most
adequate model is the linear vacuous model. The only models that do not satisfy
2-monotonicity are the constant odds ratio (on gambles) and the L1-model.

5.4. Complexity. One important feature of a neighbourhood model is that it has
a simple representation in terms of a �nite number of extreme points. As we said
before, when its lower envelope is 2-monotone there are at most n! di�erent extreme
points, that are related to the permutations of the possibility space (see Eq. (2) in
[19]). On the other hand, the credal set associated with a coherent lower probability
also has at most n! di�erent extreme points, but their representation is not as simple
[31]; and a general credal set may have an in�nite number of extreme points.

In the case of the pari mutuel and the linear vacuous models, the extreme points
were studied in [18] and [30], respectively. In these papers, we have computed the
maximum number of extreme points also for the neighbourhood models BδdTV (P0),

BδdK (P0), B
δ
dCOR

(P0) and B
δ
d′COR

(P0). Table 4 summarises the results2.

2In [18, Prop. 2], it is stated that the maximal number of extreme points induced by a PMM is
n
2

(n
n
2

)
, when n even, and n+1

2

( n
n+1
2

)
, when n is odd. The expression given in Table 4 is equivalent.
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Model Maximal number of extreme points Result

PPMM
n!

bn2 c(b
n
2 c−1)!(n−b

n
2 c−1)!

[18, Prop. 2]

PLV n [30, Sec.3.6.3(b)]

PCOR 2n − 2 [19, Prop. 13]

Q
COR

n! [19, Prop. 17]

PTV n(n− 1) Prop. 5

PK Pn Prop. 9

Table 4. Maximal number of extreme points in the di�erent
neighbourhood models.

We observe that the the simplest model is the linear vacuous, followed by the
total variation distance, the constant odds ratio, the Kolmogorov model, the pari
mutuel, and, �nally, the constant odds ratio restricted to events. We see also that
the bound is usually much smaller than the general bound of n! that holds for
arbitrary coherent or 2-monotone lower probabilities.

For illustrative purposes, next table gives the maximal number of extreme points
for small values of n:

|X | 2 3 4 5 6 7 8 9 10
PPMM 2 6 12 30 60 140 280 630 1260
PLV 2 3 4 5 6 7 8 9 10
PCOR 2 4 6 14 30 62 126 254 510
Q
COR

2 6 24 120 720 5040 40320 362880 3628800

PTV 2 6 12 20 30 42 56 72 90
PK 2 5 12 29 70 169 408 985 2378

Finally, let us recall that the extreme points in BδdL1
(P0) have not been determined

yet. As we have seen in Examples 4 and 6, PL1
is neither 2-monotone in gambles

nor in events, so the procedure described in [19, Eq. (2)] cannot be applied.

5.5. Conditioning. For each of the models, we have studied how to update the
model when new information is obtained, and we have checked whether the condi-
tional model obtained by regular extension belongs to the same family of distortion
models. Table 5 summarises our results. From this table, it is clear that all the
models present a correct behaviour except the Kolmogorov and L1-models.

Conditioning Parameter δ
PMM YES [19, Prop. 8] Increases [19, Eq.(16)]
LV YES [30, Sec. 6.6.2] Increases [19, Eq.(19)]
COR YES [30, Sec. 6.6.3] Does not change [19, Eq.(29)]
TV YES (Prop. 6) Increases (Eq. (9))
K NO [9, Ex. 3] -
L1 NO (Ex. 7) -

Table 5. Behaviour of the neighbourhood models when applying
the regular extension.
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We observe that among the models that are preserved under conditioning (PMM,
LV, COR and TV), the constant odds ratio model is the only one that does not
increase its imprecision, since its parameter δ remains unchanged after condition-
ing. In other words, it is the only one that does not produce the phenomenon of
dilation [26]. In the other three cases, PMM, LV and TV, dilation happens, being
the PMM the model where the parameter increases more, followed by the TV model
and the LV.

6. Final synthesis and conclusions

In these papers, we have made a uni�ed study of a number of imprecise proba-
bility models, where a probability measure P0 is distorted by means of a suitable
function, and also taking into account some distorting factor representing the ex-
tent to which the estimation of P0 is reliable. This produces a number of credal
sets, that can most often3 be equivalently represented in terms of the coherent lower
probability that is obtained by taking lower envelopes. As we have seen, this frame-
work includes in particular the models where the probability measure is directly
transformed by means of some monotone function.

Old models New models

PMM LV COR (gambles) COR(events) TV K L1

Imprecision + + ++ ++ − −− +
Properties

of d
− + ++ ++ ++ ++ ++

Properties
of P

+ ++ −− + − + −−

# extreme
points

+ ++ + −− ++ + Open

Conditioning + + ++ N.A. + −− −−
Table 6. Qualitative assessment of the model properties evalu-
ated in this study (Very Good (++), Good (+), Bad (-), Very Bad
(�), Not Applicable (N.A.).

Table 6 tries to synthesise in an evaluation table the various aspects of the models
we have studied here. It shows that the linear vacuous model tends to result in a
highly tractable and stable model, at least for those aspects we considered here. It
is shortly followed by the pari mutuel and odds ratio model, that may explain why
these models are the one that have received the most attention. The COR seems
to be the best model in terms of the amount of imprecision introduced, in the sense
that for a �xed distortion parameter δ, it induces the smallest credal set among
the six models. However, note that the credal sets may also be compared in terms
of other properties, such as their geometry. Some relevant works in this context
are [2, 7]. The total variation model and its restriction to cumulative events also
satisfy a number of interesting properties, but can provide quite imprecise models.
Finally, our study of the L1-model tends to suggest that it is quite impractical to
handle, with properties that are quite di�cult to characterise and sometimes not
very intuitive. Nevertheless, as the L1 distance is a quite common choice, we still

3As for some models, we need to consider lower previsions.
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think it is interesting to have a better understanding of the neighbourhood model
it induces.

Overall, it seems that the old models, those analysed in the �rst part of this
study, have in general better properties than the new ones. Nevertheless, there is
not a model that is uniformly better than all the others, and this leads naturally
to the question of which model should we use in each situation. In this respect, if
our priority is to have a distorted model where we introduce as little imprecision as
possible, we should choose the COR. Also, the extension to gambles of this model
has the advantage than the imprecision is preserved when conditioning. Secondly, if
we look for a model that is easy to handle, we believe that the LV has a quite good
behaviour. Thirdly, if we have an experiment whose probabilistic information is
given in terms of cumulative events, it seems reasonable to consider a Kolmogorov
model. Fourthly, if we are following a behavioural interpretation of the distortion
model, the decision should be made in terms of the interpretation of the parameter
δ. Remember that δ could be interpreted as the in�ation rate for the selling price
for A (PMM), the de�ation rate for the buying price for A (LV), the constant rate
on the investments (COR) or the �xed tax to be paid for betting, regardless on the
event (TV). The behavioural interpretation of the Kolmogorov model is equivalent
to that of the TV-model but restricted to cumulative events, while in the L1-model
δ has a similar interpretation as in the TV-model, but considering the size of the
event.

While our study encompassed several aspects, it is not exhaustive and it provides
only some guidelines to pick a neighbourhood model. Indeed, there may be other
criteria that may help choose a given neighbourhood model. For instance, when two
models are incomparable in terms of the inclusion of their respective neighbourhood
models, we may compare them by means of imprecision indices (see for instance
[1, 5]); or we may consider other properties of the associated lower probability, such
as being k-additive or minitive.

One crucial assumption we have done throughout is that the support of the orig-
inal probability measure coincides with the possibility space, i.e., that no singleton
has zero probability, and that the same applies to all probability measures in the
neighbourhood. While most of the results in the paper also hold in the more gen-
eral case where zero probabilities arise, this is not always the case. Moreover, the
treatment of the problem of conditioning becomes more involved, the expressions
of the distance should be suitably modi�ed to avoid zeros in the denominators, and
the number of extreme points of the credal set may also be reduced considering
the size of the support. For all these reasons, we have preferred to consider this
simplifying assumption in this already long and involved study. Some more general
results can be found in Appendix B.

Another assumption we have made in these two papers is that the distorting
functions induce polytopes in the space of probability measures, meaning for exam-
ple the Euclidean distance or the Kullback-Leibler divergence are out of the scope.
Of course, our study could be extended to any type of distorting function. For in-
stance, a similar study could be made using divergence measures [23], that include
as an example the total variation distance. Out of them, the Kullback-Leibler is
one of the most prominent, and was already considered in [12, 22] as a means to
build neighbourhoods around a probability or a set of probabilities. A preliminary
study of the distortion model associated with the Kullback-Leibler distance leads
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us to believe that the neighbourhood model will be more involved than the ones we
have considered in our analysis, due to (i) the di�culty in giving an explicit for-
mula for its associated lower probability; (ii) that it is not clear whether the lower
probability satis�es helpful properties such as 2-monotonicity; and (iii) that from
this some problems ensue for determining the conditional models. Nevertheless, a
detailed study of this approach would be one of the main future lines of research.

Also, while we have characterised under which cases the distortion model is a
probability interval, it could be interesting to give necessary and su�cient con-
ditions, in terms of the distance, for the associated distortion model to be 2 or
completely monotone. A preliminary analysis of this problem has not been suc-
cessful, and we conjecture that such conditions would turn out to be somewhat
arti�cial. The study of this problem is left as a future line of research. It would
also be of interest to deepen in the comparison between the models in this paper
as well as the study of other neighbourhood models, such as those in [6].

Finally, a natural next step would be to look at the distortion of imprecise
probability models. This could be done in two manners: distorting each probability
measure compatible with the imprecise model, and then taking the lower envelope
of the union of the credal sets that result [22]; or to consider directly a distance
between imprecise probability models, as in [20, 21].
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Appendix A. Proofs

Proof of Proposition 1. Since dTV is a distance, it immediately satis�es Ax.1 (hence
also Ax.1a and Ax.1b), Ax.2 and Ax.3. Ax.4 holds because dTV is the metric
induced by the supremum norm, and Ax.5 follows by de�nition. �

Proof of Proposition 3. If δ ≤ P0(A) for a �xed event A, we can consider the prob-
ability measure P determined by:

P ({x}) =

{
P0({x})− δ P0({x})

P0(A) if x ∈ A;
P0({x}) + δ P0({x})

P0(Ac)
if x /∈ A.

This function P satis�es the following properties:
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(1)
∑
x∈X P ({x}) = 1:∑

x∈X
P ({x}) =

∑
x∈A

(
P0({x})− δ

P0({x})
P0(A)

)
+
∑
x/∈A

(
P0({x}) + δ

P0({x})
P0(Ac)

)

=

(∑
x∈A

P0({x}) +
∑
x/∈A

P0({x})

)
− δ

∑
x∈A

P0({x})
P0(A)

+ δ
∑
x/∈A

P0({x})
P0(Ac)

= 1− δ + δ = 1.

(2) P ({x}) ≥ 0 for every x ∈ X . If x /∈ A, P ({x}) ≥ P0({x}) ≥ 0. If x ∈ A,

P ({x}) ≥ 0⇔ P0({x}) ≥ δ
P0({x})
P0(A)

⇔ P0(A) ≥ δ,

which holds by hypothesis. Taking items (1) and (2) into account, P is a
probability measure.

(3) P ∈ BδdTV (P0). Let us see that dTV (P, P0) ≤ δ:
(a) Assume that B ⊆ A:

|P0(B)− P (B)| =

∣∣∣∣∣P0(B)−
∑
x∈B

(
P0({x})− δ

P0({x})
P0(A)

)∣∣∣∣∣
=

∣∣∣∣P0(B)− P0(B) + δ
P0(B)

P0(A)

∣∣∣∣ = δ
P0(B)

P0(A)
≤ δ.

(b) Assume that B ⊆ Ac:

|P0(B)− P (B)| =

∣∣∣∣∣P0(B)−
∑
x∈B

(
P0({x}) + δ

P0({x})
P0(A)

)∣∣∣∣∣
=

∣∣∣∣P0(B)− P0(B)− δ P0(B)

P0(Ac)

∣∣∣∣ = δ
P0(B)

P0(Ac)
≤ δ.

(c) Assume that B 6⊆ A and B 6⊆ Ac:

|P0(B)− P (B)| = |P0(A ∩B) + P0(A
c ∩B)− P (A ∩B)− P (Ac ∩B)|

=

∣∣∣∣∣P0(A ∩B) + P0(A
c ∩B)−

∑
x∈Ac∩B

(
P0({x}) + δ

P0({x})
P0(Ac)

)

−
∑

x∈A∩B

(
P0({x})− δ

P0({x})
P0(A)

)∣∣∣∣∣
=

∣∣∣∣δP0(A ∩B)

P0(A)
− δP0(A

c ∩B)

P0(Ac)

∣∣∣∣ ≤ δ.
We therefore conclude that dTV (P, P0) ≤ δ, hence P ∈ BδdTV (P0).

(4) Finally:

P (A) =
∑
x∈A

(
P0({x})− δ

P0({x})
P0(A)

)
= P0(A)− δ.

Therefore, we conclude that:

PTV (A) = P (A) = max{0, P0(A)− δ} = P0(A)− δ.
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Thus, δ ≥ dTV (P, P0) ≥ |P (A) − P0(A)| = δ. Since moreover by assumption δ <
minx P0({x}) ≤ P0(A) ∀A 6= ∅, we deduce that maxP∈BδdTV (P0) dTV (P, P0) = δ. �

Proof of Proposition 4. From [8, Ex. 2.1], every convex transformation of a prob-
ability measure is 2-monotone. Thus, the proof directly follows just noting that
for every A ⊆ X it holds that PTV (A) = f(P0(A)), where f(t) = max{0, t − δ}
∀t ∈ [0, 1) is a convex function satisfying f(1) = 1. �

Proof of Proposition 5. The 2-monotonicity of PTV implies that the extreme points
of BδdTV (P0) are in correspondence with the permutations of the possibility space,
as mentioned in [19, Eq. (2)]. Let us use this to determine the maximum number of
extreme points. Recall that the assumption of positive lower probabilities implies
that δ < minx∈X P0({x}). In that case, the extreme point Pσ is determined by:

Pσ({xσ(1)}) = PTV ({xσ(1)}) = P0({xσ(1)})− δ.
Pσ({xσ(1), xσ(2)}) = PTV ({xσ(1), xσ(2)}) = P0({xσ(1), xσ(2)})− δ.
. . .

Pσ({xσ(1), . . . , xσ(k)}) = PTV ({xσ(1), . . . , xσ(k)}) = P0({xσ(1), . . . , xσ(k)})− δ.
Pσ({xσ(1), . . . , xσ(n)}) = 1.

We deduce that:

Pσ({xσ(1)}) = P0({xσ(1)})− δ.
Pσ({xσ(2)}) = P0({xσ(2)}).
. . .

Pσ({xσ(n−1)}) = P0({xσ(n−1)}).
Pσ({xσ(n)}) = 1−

(
P0({xσ(1), . . . , xσ(n−1)})− δ

)
= P0({xσ(n}) + δ.

As a consequence, the extreme points are determined by those elements in the �rst
and last positions, whence there are n(n− 1) di�erent extreme points. �

Proof of Proposition 6. We need to prove that

PB(A) = max

{
0,
P0(A ∩B)

P0(B)
− δ

P0(B)

}
.

Since P is a 2-monotone probability by Proposition 4, it follows from [29, Thm. 7.2]
that:

PB(A) =
P (A ∩B)

P (A ∩B) + P (Ac ∩B)

=
max{0, P0(A ∩B)− δ}

max{0, P0(A ∩B)− δ}+min{1, P0(Ac ∩B) + δ}
.

Since by assumption P0(A ∩B)− δ > 0, the equality becomes

PB(A) =
P0(A ∩B)− δ

P0(A ∩B)− δ +min{1, P0(Ac ∩B) + δ}
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and since P0(A
c ∩ B) + P0(A ∩ B) < 1 (as P0({x}) > 0 for all x ∈ X ), we also

have P0(A
c ∩B) + δ < 1, as P0(A ∩B) is an upper bound of δ. The equality then

becomes

PB(A) =
P0(A ∩B)− δ

P0(A ∩B)− δ + P0(Ac ∩B) + δ
=
P0(A ∩B)

P0(B)
− δ

P0(B)
,

which �nishes our proof. �

Proof of Proposition 7. Since dK is a distance, it immediately satis�es Ax.1 (hence
also Ax.1a and Ax.1b), Ax.2 and Ax.3. To see that it satis�es Ax.4, note that,
given Q = αQ1 + (1− α)Q2,

|FP (x)− FQ(x)| = |α(FP (x)− FQ1(x)) + (1− α)(FP (x)− FQ2(x))|
≤ α|FP (x)− FQ1

(x)|+ (1− α)|FP (x)− FQ2
(x)|,

whence Ax.4 follows.
Finally, since dK(P,Q) ≤ dTV (P,Q) and the latter satis�es Ax.5, we deduce

that so does dK . �

Proof of Proposition 8. By assumption, PK({x1}) = FP0(x1) − δ > 0. De�ne the
function F by:

F (x) =

{
FP0

(x1)− δ if x = x1.

FP0
(x) otherwise.

F is a cumulative distribution function, and its associated probability P belongs to
BδdK (P0):

• If x = x1, |F (x)− FP0
(x)| = |FP0

(x1)− δ − FP0
(x1)| = δ.

• If x 6= x1, |F (x)− FP0(x)| = |FP0(x)− FP0(x)| = 0.

Thus, P ∈ BδdK (P0), and also dK(P, P0) = δ. �

Proof of Proposition 9. Let us show that there exist P0 and δ such that the p-box
they induce using Equation (14) has exactly Pn di�erent extreme points.

For this aim, let P0 be the uniform distribution on the n-element space X , and
take δ = 3

4n (indeed, the proof still holds for δ ∈
(

1
2n ,

1
n

)
). These give rise to the

following p-box:

F (xi) =
i

n
− δ = 4i− 3

4n
, F (xi) =

i

n
+ δ =

4i+ 3

4n
, ∀i = 1, . . . , n− 1

and F (xn) = F (xn) = 1. This means that:

F (x1) < F (x2) < F (x1) < F (x3) < . . . < F (xi+1) < F (xi) < F (xi+2)

< . . . < F (xn−1) < F (xn−2) < F (xn−1) < F (xn) = F (xn) = 1.

A graphical representation of this p-box for the case n = 5 can be seen in Figure 4.

In order to determine the focal events associated with this p-box, we apply the
results in [10, Sec. 3.3]. There, it is explained that if the values taken by F and F
are denoted by:

0 = γ0 < γ1 < . . . < γM , (20)

there are M focal events, given by:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ (1− gF (xi) < γj)},
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x1x1 x2x2 x3x3 x4x4 x5x5

1

0

F

F

Figure 4. P-box (left) and focal sets of its associated belief func-
tion (right), given by E1 = {x1}, E2 = {x1, x2}, E3 = {x1, x2, x3},
E4 = {x2, x3}, E5 = {x2, x3, x4}, E6 = {x3, x4}, E7 = {x3, x4, x5},
E8 = {x4, x5} and E9 = {x5}.

where gF (xi) = 1 − max{F (xj) | F (xj) < F (xi), j = 0, 1, . . . , i}. In our case,
where F (xi) < F (xi+1) for every i = 1, . . . , n − 1, gF (xi) = 1 − F (xi−1) (here we
assume that F (x0) = 0). Thus, from Equation (20) there are 2n− 1 di�erent focal
events. It holds that:

• For j = 1, γ1 = F (x1) and:

E1 = {xi ∈ X | F (xi) ≥ γ1 ∧ F (xi−1) < γ1}
= {xi ∈ X | F (xi) ≥ F (x1) ∧ F (xi−1) < F (x1)} = {x1}.

• For j = 2, γ2 = F (x2) and:

E2 = {xi ∈ X | F (xi) ≥ γ2 ∧ F (xi−1) < γ2}
= {xi ∈ X | F (xi) ≥ F (x2) ∧ F (xi−1) < F (x2)} = {x1, x2}.

• For j = 2k + 1 (k = 1, . . . , n− 3), γj = F (xk) and:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ F (xi−1) < γj}
= {xi ∈ X | F (xi) ≥ F (xk) ∧ F (xi−1) < F (xk)} = {xk, xk+1, xk+2}.

• For j = 2k (k = 2, . . . , n− 2), γj = F (xk+1) and:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ F (xi−1) < γj}
= {xi ∈ X | F (xi) ≥ F (xk+1) ∧ F (xi−1) < F (xk+1)} = {xk, xk+1}.

• For j = 2n− 3, γj = F (xn−2) and:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ F (xi−1) < γj}
= {xi ∈ X | F (xi) ≥ F (xn−2) ∧ F (xi−1) < F (xn−2)} = {xn−2, xn−1, xn}.

• For j = 2n− 2, γj = F (xn−1) and:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ F (xi−1) < γj}
= {xi ∈ X | F (xi) ≥ F (xn−1) ∧ F (xi−1) < F (xn−1)} = {xn−1, xn}.

• For j = 2n− 1, γj = F (xn) = F (xn) = 1 and:

Ej = {xi ∈ X | F (xi) ≥ γj ∧ F (xi−1) < γj}
= {xi ∈ X | F (xi) ≥ 1 ∧ F (xi−1) < 1} = {xn}.
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This means that the focal sets of the p-box (F , F ) are:

E1 = {x1},
E2k = {xk, xk+1}, for k = 1, . . . , n− 1,

E2k+1 = {xk, xk+1, xk+1}, for k = 1, . . . , n− 2,

E2n−1 = {xn}.

Hence (F , F ) is a p-box of the Pell family, and according to the results in [17], its
number of extreme points is exactly Pn (see [17, Prop. 16]). �

Proof of Proposition 10. Since dL1
is a distance, it immediately satis�es Ax.1 (hence

also Ax.1a and Ax.1b), Ax.2 and Ax.3. To see that it satis�es Ax.4, note that given
P,Q1, Q2 and α ∈ (0, 1),

|(αQ1 + (1− α)Q2)(B)− P (B)| ≤ α|Q1(B)− P (B)|+ (1− α)|Q2(B)− P (B)|,

whence

dL1
(P, αQ1 + (1− α)Q2) ≤ αdL1

(P,Q1) + (1− α)dL1
(P,Q2)

≤ max{dL1
(P,Q1), dL1

(P,Q2)},

and as a consequence Ax.4 holds. Finally, since dL1 is the metric induced by the
L1-norm, it also satis�es Ax.5. �

Proof of Theorem 11. Let us prove �rst of all that PL1
(A) ≤ P0(A)− δ

ϕ(n,|A|) . For

simplicity throughout this proof, we will use ϕ(|A|) to denote ϕ(n, |A|) and assume
that |A| = k. Consider P given by:

P ({xj}) =

{
P0({xj})− δ

|A|·ϕ(|A|) , if xj ∈ A.
P0({xj}) + δ

|Ac|·ϕ(|A|) , if xj /∈ A.
(21)

It satis�es the following properties:

(1) P is non-negative. On the one hand, if xj /∈ A, P ({xj}) ≥ P0({xj}) > 0.
On the other hand, for xj ∈ A it holds that:

P ({xj}) = P0({xj})−
δ

|A| · ϕ(|A|)
= PL1

({x}) > 0,

where the inequality follows by assumption.
(2)

∑n
j=1 P ({xj}) = 1 (and therefore P is a probability measure):

n∑
j=1

P ({xj}) =
∑
xj∈A

P ({xj}) +
∑
xi /∈A

P ({xi})

=
∑
xj∈A

(
P0({xj})−

δ

|A| · ϕ(|A|)

)
+
∑
xj /∈A

(
P0({xj}) +

δ

|Ac| · ϕ(|A|)

)

= 1 +
δ

ϕ(|A|)
− δ

ϕ(|A|)
= 1.

(3) P (A) = P0(A)− δ
ϕ(|A|) :

P (A) =
∑
xj∈A

(
P0({xj})−

δ

|A| · ϕ(|A|)

)
= P0(A)−

|A|δ
|A| · ϕ(|A|)

= P0(A)−
δ

ϕ(|A|)
.
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(4) For any B ⊆ X :

|P (B)− P0(B)| = |P (A ∩B) + P (Ac ∩B)− P0(A ∩B)− P0(A
c ∩B)|

=

∣∣∣∣∣∣
∑

xj∈A∩B

δ

|A| · ϕ(|A|)
−

∑
xi∈Ac∩B

δ

|Ac| · ϕ(|A|)

∣∣∣∣∣∣
=

δ

ϕ(|A|)

∣∣∣∣ |A ∩B||A|
− |A

c ∩B|
|Ac|

∣∣∣∣ .
(5) P ∈M(PL1

), i.e., d(P, P0) ≤ δ:

d(P, P0) =
∑
B⊆X

|P (B)− P0(B)| =
∑
B⊆X

δ

ϕ(|A|)

∣∣∣∣ |A ∩B||A|
− |A

c ∩B|
|Ac|

∣∣∣∣ .
If l is the cardinality of |A∩B| and j that of |Ac∩B|, the above expression
can be rewritten as:

d(P, P0) =
δ

ϕ(|A|)

k∑
l=0

(
k

l

) n−k∑
j=0

(
n− k
j

) ∣∣∣∣ lk − j

n− k

∣∣∣∣
=

δ

ϕ(|A|)

k∑
l=0

(
k

l

) n−k∑
j=0

(
n− k
j

) ∣∣∣∣ l(n− k)− jkk(n− k)

∣∣∣∣ ,
where

(
k
l

)
and

(
n−k
j

)
denote the number of events of B that have l elements

from A and j from Ac. Finally, applying Equation (16):

d(P, P0) =
δ

ϕ(|A|)
ϕ(|A|) = δ.

Thus, PL1
(A) ≤ P0(A)− δ

|A|·ϕ(|A|) .

In order to prove that the inequality is indeed an equality, let us prove an equi-
valent expression for ϕ. Note that:

ϕ(|A|) =
∑
B⊆X

∣∣∣∣ |Ac ∩B||Ac|
− |A ∩B|

|A|

∣∣∣∣ .
If we separate the events B in terms of their cardinality m:

ϕ(|A|) =
n∑

m=0

∑
B ⊆ X
|B| = m

∣∣∣∣ |Ac ∩B||Ac|
− |A ∩B|

|A|

∣∣∣∣ .
For every B ⊆ X , let l be the cardinality of A ∩B:

ϕ(|A|) =
n∑

m=0

min{m,k}∑
l=0

∑
B ⊆ X

|B| = m, |A ∩ B| = l

∣∣∣∣ |Ac ∩B||Ac|
− |A ∩B|

|A|

∣∣∣∣
=

n∑
m=0

min{m,k}∑
l=0

∑
B ⊆ X

|B| = m, |A ∩ B| = l

∣∣∣∣m− ln− k
− l

k

∣∣∣∣ .
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Now, m−l
n−k −

l
k is decreasing in l; moreover, for l = 0 it gives m

n−k > 0 while for

l = m it is − l
k < 0 and for l = k it is m−k

n−k − 1 ≤ 0. Thus, given m �xed, we denote

m∗ the maximum l such that m−l
n−k −

l
k ≥ 0. This allows us to rewrite ϕ(|A|) as:

n∑
m=0


m∗∑
l=0

∑
B ⊆ X

|B| = m, |A ∩ B| = l

(m− l
n− k −

l

k

)
+

min{m,k}∑
l=m∗+1

∑
B ⊆ X

|B| = m, |A ∩ B| = l

( l
k
− m− l
n− k

) .

Finally, given |B| = m and |A ∩ B| = l, there are
(
k
l

)
·
(
n−k
m−l

)
di�erent events B

whose value
∣∣∣m−ln−k −

l
k

∣∣∣ coincides. This gives:
ϕ(|A|) =

n∑
m=0

m∗∑
l=0

(
k

l

)
·

(
n− k
m− l

)(m− l
n− k −

l

k

)
+

min{m,k}∑
l=m∗+1

(
k

l

)
·

(
n− k
m− l

)( l
k
− m− l
n− k

) .

Let us prove next that PL1
(A) = P0(A)− δ

|A|·ϕ(|A|) . Let Q be given by:

Q({xj}) =

{
P0({xj})− δ

|A|·ϕ(|A|) − εj , if xj ∈ A.
P0({xj}) + δ

|Ac|·ϕ(|A|) + εj , if xj /∈ A,

where:

•
∑
xj∈A εj = ε > 0.

•
∑
xi /∈A εi = ε > 0.

• The values εj are such that Q is a probability measure.
• We impose no restriction on the sign of εj .

We can also express Q in terms of P :

Q({xj}) =

{
P ({xj})− εj , if xj ∈ A.
P ({xj}) + εj , if xj /∈ A.

Let us study the properties of Q:

(1) Q(A) < P0(A)− δ
ϕ(|A|) :

Q(A) =
∑
xj∈A

Q({xj}) =
∑
xj∈A

(P ({xj})− εj)

= P (A) +
∑
xj∈A

εj = P0(A)−
δ

ϕ(|A|)
− ε < P0(A)−

δ

ϕ(|A|)
.
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(2) Let us compute d(Q,P0):

d(Q,P0) =
∑
B⊆X

|Q(B)− P0(B)|

=
∑
B⊆X

|Q(A ∩B) +Q(Ac ∩B)− P0(A ∩B)− P0(A
c ∩B)|

=
∑
B⊆X

∣∣∣∣∣∣ δ

ϕ(A)

(
|Ac ∩B|
n− k

− |A ∩B|
k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj

∣∣∣∣∣∣
=

n∑
m=0

∑
B ⊆ X
|B| = m

∣∣∣∣∣∣ δ

ϕ(A)

(
|Ac ∩B|
n− k

− |A ∩B|
k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj

∣∣∣∣∣∣
=

n∑
m=0

∑
B ⊆ X
|B| = m

min{m,k}∑
l=0

∣∣∣∣∣∣ δ

ϕ(A)

(
m− l
n− k

− l

k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj

∣∣∣∣∣∣
=

n∑
m=0

∑
B ⊆ X
|B| = m

m∗∑
l=0

∣∣∣∣∣∣ δ

ϕ(A)

(
m− l
n− k

− l

k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj

∣∣∣∣∣∣
+

min{m,k}∑
l=m∗+1

∣∣∣∣∣∣ δ

ϕ(A)

(
m− l
n− k

− l

k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj

∣∣∣∣∣∣


≥
n∑

m=0

∑
B ⊆ X
|B| = m

m∗∑
l=0

 δ

ϕ(A)

(
m− l
n− k

− l

k

)
+

∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj



+

min{m,k}∑
l=m∗+1

 δ

ϕ(A)

(
l

k
− m− l
n− k

)
−

∑
xi∈Ac∩B

εi +
∑

xj∈A∩B
εj


=

n∑
m=0

∑
B ⊆ X
|B| = m

min{m,k}∑
l=0

δ

ϕ(A)

∣∣∣∣m− ln− k
− l

k

∣∣∣∣
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+

n∑
m=0

∑
B ⊆ X
|B| = m

m∗∑
l=0

 ∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj



+

n∑
m=0

∑
B ⊆ X
|B| = m

min{m,k}∑
l=m∗+1

− ∑
xi∈Ac∩B

εi +
∑

xj∈A∩B
εj



=
δ

ϕ(|A|)
ϕ(|A|) +

n∑
m=0

∑
B ⊆ X
|B| = m

m∗∑
l=0

 ∑
xi∈Ac∩B

εi −
∑

xj∈A∩B
εj



+

n∑
m=0

∑
B ⊆ X
|B| = m

min{m,k}∑
l=m∗+1

− ∑
xi∈Ac∩B

εi +
∑

xj∈A∩B
εj



In order to simplify this expression, it su�ces to check the number of times
we add each εj and its sign. For a �xed event B with |B| = m and
|A ∩B| = l, it holds that :

• if xj ∈ A∩B, εj appears
(
k−1
l−1
)(
n−k
m−l

)
times (once �xed xj ∈ A∩B, we

must select l− 1 elements among the remaining k− 1 in A \ {xj}, and
m− l elements among the n− k in Ac);

• if xi ∈ Ac ∩ B, εi appears
(
k
l

)(
n−k−1
m−l−1

)
times (once �xed xi ∈ Ac ∩ B,

we must select l elements from the k elements in A, and m − l − 1
elements from the remaining n− k − 1 in Ac \ {xi}).

This allows to simplify the expression above into:

d(Q,P0) ≥ δ +
n∑

m=0

m∗∑
l=0

(k
l

)(
n− k − 1

m− l − 1

) ∑
xi∈Ac

εi −

(
k − 1

l − 1

)(
n− k
m− l

) ∑
xj∈A

εj


+

min{m,k}∑
l=m∗+1

−(k
l

)(
n− k − 1

m− l − 1

) ∑
xi∈Ac

εi +

(
k − 1

l − 1

)(
n− k
m− l

) ∑
xj∈A

εj


= δ +

n∑
m=0

(
m∗∑
l=0

((
k

l

)(
n− k − 1

m− l − 1

)
ε−

(
k − 1

l − 1

)(
n− k
m− l

)
ε

)

+

min{m,k}∑
l=m∗+1

(
−

(
k

l

)(
n− k − 1

m− l − 1

)
ε+

(
k − 1

l − 1

)(
n− k
m− l

)
ε

)
= δ + ε

n∑
m=0

(
m∗∑
l=0

((
k

l

)(
n− k − 1

m− l − 1

)
−

(
k − 1

l − 1

)(
n− k
m− l

))
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+

min{m,k}∑
l=m∗+1

(
−

(
k

l

)(
n− k − 1

m− l − 1

)
+

(
k − 1

l − 1

)(
n− k
m− l

))
= δ + ε

n∑
m=0

m∗∑
l=0

(
k

l

)(
n− k
m− l

)(
m− l
n− k −

l

k

)
+

min{m,k}∑
l=m∗+1

(
k

l

)(
n− k
m− l

)(
l

k
− m− l
n− k

)
= δ + ϕ(|A|)ε.

As a consequence, for any such Q it can only be d(Q,P0) ≤ δ if ε = 0, or, in other
words, if Q = P . We conclude that PL1

(A) = P0(A)− δ
|A|·ϕ(|A|) . �

Proof of Proposition 12. Consider a �xed event A 6= ∅,X , and the probability mea-
sures given in Equation (21) in the proof of Theorem 11 by:

P ({xj}) =

{
P0({xj})− δ

|A|·ϕ(|A|) , if xj ∈ A.
P0({xj}) + δ

|Ac|·ϕ(|A|) , if xj /∈ A.

It follows from the proof of Theorem 11 that dL1
(P, P0) = δ. �

Proof of Proposition 13. The proof for the complete monotonicity of PL1
for n ≤ 4

follows straightforwardly by verifying Equation (18) for the di�erent cardinalities
for ∪pi=1Ai and ∩I⊆{1,...,p}Ai.

Analogously, it can be seen that PL1
is 2-monotone in events if and only if

Equation (19) is satis�ed for every 1 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ n such that k1 + k4 =
k2+k3. It can be easily veri�ed that this is the case for all the possible combinations
of k1, k2, k3, k4 and n ≤ 11. �

Proof of Proposition 14. The inequality PTV (A) ≤ PLV (A) is equivalent to P0(A)−
δ ≤ (1 − δ)P0(A), and this is equivalent to P0(A) ≤ 1. On the other hand,
PTV (A) ≤ PPMM (A) if and only if P0(A)−δ ≤ (1+δ)P0(A)−δ, which is equivalent
to δP0(A) ≥ 0. �

Appendix B. Additional results without the assumption of positive

lower probabilities

Throughout our study, we have assumed that the original probability measure
P0 satis�es P0({x}) > 0 for every x ∈ X , and also that the distortion parameter
δ > 0 is small enough so that the ball Bδd(P0) is included in the interior of the set
of probability measures over X . This assumption is crucial for many of the results
we have established in this paper. In this appendix, we establish some results for
arbitrary δ.

B.1. The total variation model. We begin by considering the total variation
model for arbitrary δ > 0. The expression of the lower envelope PTV of the
neighbourhood BδdTV (P0) can be found in Theorem 2. From its proof, we see that
if δ ≤ P0(A) for a �xed event A, the probability measure P determined by

P ({x}) =

{
P0({x})− δ P0({x})

P0(A) if x ∈ A;
P0({x}) + δ P0({x})

P0(Ac)
if x /∈ A,
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satis�es P ∈ BδdTV (P0) and

PTV (A) = P (A) = max{0, P0(A)− δ} = P0(A)− δ.

Thus,

δ ≥ dTV (P, P0) ≥ |P (A)− P0(A)| = δ.

On the other hand, if δ > P0(A) for every A ⊂ X , we obtain that PTV is vacuous.
As a consequence,

max
P∈BδdTV (P0)

dTV (P, P0) = δ ⇔ δ ≤ max
A⊂X

P0(A).

On the other hand, an analogous proof to that of Proposition 4 shows that PTV
is a 2-monotone lower probability for an arbitrary δ. This is instrumental in our
next result, where we establish the number of extreme points induced by the total
variation model. Denote by

L := {A ⊆ X | PTV (A) = 0}, (22)

the set of events with null lower probability, and we de�ne for every A ∈ L the
number sA as

sA =
(
n− |A↑|

)(
n− |A| − 1

)
, where A↑ =

⋃
B⊇A,B∈L

B.

Using this notation, we give the exact number of extreme points of BδdTV (P0).

Proposition 15. Let BδdTV (P0) be the neighbourhood model associated with a pro-
bability measure P0 and a distortion factor δ > 0 by means of the total variation
distance. Then the number of extreme of extreme points of BδdTV (P0) is

∑
A∈L sA.

Therefore, if |X | = n, the maximal number of extreme points of BδdTV (P0) is

n!(
bn2 c − 1

)
! ·
(
n− bn2 c − 1

)
!
,

where bn2 c denotes the largest natural number that is smaller than or equal to n
2 .

Proof. The 2-monotonicity of PTV implies that the extreme points of BδdTV (P0)
are in correspondence with the permutations of the possibility space, as mentioned
in [19, Eq. (2)]. Let us use this to determine the maximum number of extreme
points. The case δ < minx∈X P0({x}) has already been considered in the proof of
Proposition 5. On the other hand, when δ ≥ minx∈X P0({x}), it holds that:

Pσ({xσ(1)}) = max{0, P0({xσ(1)})− δ}.
Pσ({xσ(1), xσ(2)}) = max{0, P0({xσ(1), xσ(2)})− δ}.
. . .

Pσ({xσ(1), . . . , xσ(k)}) = max{0, P0({xσ(1), . . . , xσ(k)})− δ}.
Pσ({xσ(1), . . . , xσ(n)}) = 1.
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We deduce that:

Pσ({xσ(1)}) = max{0, P0({xσ(1)} − δ}.
Pσ({xσ(2)}) = max{0, P0({xσ(1), xσ(2)})− δ} −max{0, P0({xσ(1)})− δ}

=

{
0 if PTV ({xσ(1), xσ(2)}) = 0

P0({xσ(1), xσ(2)})− δ −max{0, P0({xσ(1)})− δ} if P ({xσ(1), xσ(2)}) 6= 0

=

{
0 if PTV ({xσ(1), xσ(2)}) = 0

min
{
P0({xσ(1), xσ(2)} − δ, P0({xσ(2)})

}
) if P ({xσ(1), xσ(2)}) 6= 0.

If we denote by kσ the number in {0, 1, . . . , n} satisfying:

P0({xσ(1), . . . , xσ(kσ)}) ≤ δ < P0({xσ(1), . . . , xσ(kσ), xσ(kσ+1)}),

then

Pσ({xσ(i)}) =


0 if i = 1, . . . , kσ.

P0({xσ(1), . . . , xσ(kσ+1)})− δ if i = kσ + 1.

P0({xσ(i)}) if i = kσ + 2, . . . , n− 1.

P0({xσ(n)}) + δ if i = n.

(23)

Let us now de�ne a partition of Sn, the set of all permutations of {1, . . . , n}. For
each A ∈ L = {A ⊆ X|PTV (A) = 0}, we de�ne:

Sn,A =
{
σ ∈ Sn | {xσ(1), . . . , xσ(k)} = A, and {xσ(1), . . . , xσ(k+1)} /∈ L

}
.

It is immediate that {Sn,A}A∈L is a partition of Sn. Let us prove that the number
of di�erent extreme points induced by σ ∈ Sn,A is exactly sA. As we discussed in
Equation (23), given σ ∈ Sn,A with A = {xσ(1), . . . , xσ(k)}, it holds that:

Pσ({xσ(1)}) = . . . = Pσ({xσ(k)}) = 0.

Pσ({xσ(k+1)}) = P0({xσ(1), . . . , xσ(k+1)})− δ.
Pσ({xσ(i)}) = P0({xσ(i)}) ∀i = k + 2, . . . , n− 1.

Pσ({xσ(n)}) = P0({xσ(n)}) + δ.

As we can see, we only need to focus on the elements in the positions k + 1 and n.
In addition, the element k + 1 must be such that {xσ(1), . . . , xσ(k+1)} /∈ L. Hence,
we can choose

(
n − |A↑|

)
elements for the position k + 1 and then

(
n − |A| − 1

)
for the position n. Thus, there are sA =

(
n− |A↑|

)(
n− |A| − 1

)
di�erent extreme

points. We conclude that: ∣∣ext(BδdTV (P0))
∣∣ ≤∑

A∈L
sA.

To see that σ1 ∈ SA,n and σ2 ∈ SB,n induce di�erent extreme points for A 6= B,
we just need to realize that Pσ1(A) = 0 and Pσ2(B) = 0. Assume that there exists
x ∈ A \B, whence

Pσ1

(
(A ∩B) ∪ {x}

)
≤ Pσ1

(A) = 0, Pσ2

(
(A ∩B) ∪ {x}

)
≥ Pσ2

({x}) > 0.

Hence, Pσ1
6= Pσ2

. We therefore conclude that:∣∣ext(BδdTV (P0))
∣∣ = ∑

A∈L
sA.
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Let us derive now the formula for the maximum number of extreme points.
Taking Equation (23) into account, two di�erent permutations σ and σ′ give rise
to the same extreme point, i.e. Pσ = Pσ′ , if and only if:

kσ = kσ′ ,

{σ(1), . . . , σ(kσ)} = {σ′(1), . . . , σ′(kσ′)},
σ(kσ) = σ′(kσ′),

{σ(kσ + 2), . . . , σ(n− 1)} = {σ′(kσ′ + 2), . . . , σ′(n− 1)},
σ(n) = σ′(n).

This means for any permutation σ, there are kσ!·(n−2−kσ)! di�erent permutations
σ′ such that Pσ = Pσ′ . This number corresponds to the possible ways of combining
σ(1), . . . , σ(kσ) in the �rst kσ positions (that is, kσ!), and the possible ways of
combining σ(kσ + 2), . . ., σ(n − 1) into the positions kσ + 2, . . . , n − 1 (that is,
(n− 2− kσ)!).

In order to maximise the number of extreme points, we need to minimise the
number of permutations giving rise to the same extreme points, so we need to
minimise kσ! · (n − 2 − kσ)!. This value can be seen as the denominator of the
combinatorial number

(
n−2
kσ

)
. When n is even, it is minimised for kσ = n−2

2 , while

for an odd n, it is minimised both for n−3
2 and n−1

2 . In what follows, we consider

the value n−3
2 for n odd; if we consider the other value, we obtain the same result.

We therefore let:

kσ =

⌊
n− 2

2

⌋
=
⌊n
2

⌋
− 1.

Therefore, the number of extreme points is bounded above by:

n!(
bn2 c − 1

)
! ·
(
n− bn2 c − 1

)
!
.

Let us now see that this bound is attained. Let P0 be the uniform distribution over
the n-element space X , and let δ be a distortion parameter such that:

P0

({
x1, . . . , xbn2 c−1

})
=

1

n
·
(⌊n

2

⌋
− 1
)
≤ δ < 1

n
·
(⌊n

2

⌋)
= P0

({
x1, . . . , xbn2 c

})
.

This means that the set L de�ned in Equation (22) is:

L = {A ⊆ X | PTV (A) = 0} =
{
A ⊆ X

∣∣ |A| ≤ ⌊n
2

⌋
− 1
}
.

Thus, sA = 0, for any A with cardinality |A| < bn2 c − 1 because A↑ = X , while for
those events A with cardinality |A| = bn2 c − 1,

sA = (n− |A↑|)(n− |A| − 1) =
(
n− bn

2
c+ 1

)
·
(
n− bn

2
c
)
.

Furthermore, the number of events A of cardinality |A| = bn2 c − 1 is:(
n

bn2 c − 1

)
.

Then the number of extreme points of BδdTV (P0) is:(
n

bn2 c − 1

)
·
(
n−

⌊n
2

⌋
+ 1
)
·
(
n−

⌊n
2

⌋)
.
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The proof concludes once we realize that the previous expression can be equivalently
expressed as:

n!(
bn2 c − 1

)
! ·
(
n− bn2 c+ 1

) · (n− ⌊n
2

⌋
+ 1
)
·
(
n−

⌊n
2

⌋)
=

n!(
bn2 c − 1

)
! ·
(
n− bn2 c − 1

) . �
B.2. Kolmogorov model. With respect to the Kolmogorov model, from Propo-
sition 9 the maximum number of extreme points of BδdK (P0) cannot be increased
when we consider larger δ, and also that the associated lower probability is com-
pletely monotone but not a probability interval. With respect to which values of δ
are informative, note that, if there exists x∗ ∈ X such that FP0

(x∗) + δ ≤ 1, then
we can de�ne the function F by:

F (x) =


min{FP0

(x), FP0
(x∗)− δ}, if x < x∗.

FP0
(x∗)− δ, if x = x∗.

FP0
(x), if x > x∗.

F is a cumulative distribution function. Its associated probability, P , belongs to
BδdK (P0):

• If x < x∗, there are two possibilities:
(1) If FP0

(x∗)− δ ≤ FP0
(x), then

|F (x)− FP0(x)| = |min{FP0(x), FP0(x
∗)− δ} − FP0(x)|

= |FP0(x
∗)− δ − FP0(x)| = −FP0(x

∗) + δ + FP0(x) ≤ δ.

(2) If FP0(x
∗)− δ > FP0(x), then

|F (x)− FP0
(x)| = |FP0

(x)− FP0
(x)| = 0.

• If x > x∗, it holds that:

|F (x)− FP0
(x)| = |FP0

(x)− FP0
(x)| = 0.

• Finally, if x = x∗,

|F (x)− FP0
(x)| = |FP0

(x∗)− δ − FP0
(x∗)| = δ.

Thus, P ∈ BδdK (P0), and also dK(P, P0) = δ. We conclude that

max
P∈BδdK (P0)

dK(P, P0) = δ.

On the other hand, if there exists P ∈ BδdK (P0) such that dK(P, P0) = δ. Then,
there exists x ∈ X such that |FP (x) − FP0(x)| = δ. This implies that either
FP0

(x) + δ ≤ 1 or FP0
(x)− δ ≥ 0. As a consequence,

max
P∈BδdK (P0)

dK(P, P0) = δ ⇔ δ ≤ max

{
max
x∈X

(1− FP0
(x)),max

x∈X
FP0

(x)

}
.
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B.3. The L1 model. We have established in Theorem 11 that, when δ > 0 is
small enough, the lower envelope PL1

of BδdL1
(P0) is PL1

(A) = P0(A) − δ
ϕ(n,|A|) .

One may think that for general values of δ (that is, including those for which
PL1

(A) = 0 for some event A 6= ∅), the lower envelope PL1
of BδdL1

(P0) is given by

PL1
(A) = max

{
P0(A)− δ

ϕ(n,|A|) , 0
}
. However, as our next example shows, this is

not true.

Example 9. Consider a four-element space X = {x1, x2, x3, x4}, the probability
measure P0 = (0.15, 0.2, 0.3, 0.35) and the distortion parameter δ = 2.1. The pro-

bability measure P = (0, 0, 0.5, 0.5) satis�es P (A) ≥ max
{
P0(A)− δ

ϕ(|A|) , 0
}

for

every A ⊆ X , but dL1(P, P0) = 2.2 > δ, hence P /∈ BδdL1
(P0). This means that

PL1
(A) is not given by max

{
P 0(A)− δ

ϕ(|A|) , 0
}
. �

We have not succeeded in �nding a close expression of the lower envelope PL1

of BδdL1
(P0) for large values of δ, and this is left as an open problem. It is not

di�cult to establish, though, that for δ ≥ 2n−1 PL1
is the vacuous lower probability.

Therefore, the model is completely uninformative for such large distortions.
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