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Summary
In the present work, a phase field damage model is developed to address the
numerical simulation of brittle fracture. This model successfully captures some
important aspects of crack propagation, including crack branching and bifur-
cation. In addition, the proposed phase field model has been developed in the
general framework of anisotropic elasticity. It can thus be used for the simula-
tion of brittle fracture in polycrystalline materials, for which crack propagation
is impacted by crystallographic orientation because of the anisotropic character
of stiffness properties.
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1 INTRODUCTION

The prediction of failure due to crack initiation and propagation through computational models is an important challenge
in materials science and solid state physics. The theoretical foundation of brittle fracture uses the work of Griffith,1 which
considers the competition between elastic strain energy and surface energy to determine whether the conditions for
fracture are met or not. However, because the approach of Griffith is inappropriate for dealing with phenomena such as
nucleation or branching, some alternative methods have been proposed. Specifically, in the recent years, the Phase Field
Method (PFM) has emerged as an attractive approach for the description of brittle fracture.2-5 Generally speaking, the PFM
is appropriate for dealing with moving boundary problems (eg, phase transitions). The PFM relies on the introduction of
a field variable, which plays the role of an order parameter, to obtain a smooth description of the interfaces in multiphase
systems. In the context of fracture, the PFM uses the ingredients of continuum damage mechanics6 to treat the order
parameter as a damage variable representing the degradation of mechanical properties. The PFM considers the damage
variable and its spatial gradient as state variables to obtain a smooth approximation of cracked surfaces. Phase field models
of fracture can thus be interpreted as damage gradient models7,8 for which the free energy includes a damage gradient
term associated with a regularizing internal length scale. The PFM allows dealing with complex fracture problems and
stands as an interesting alternative to element enrichment strategies,9 nodal enrichment strategies,10 or thick level-set
methods.11 For instance, the PFM has been used by Nguyen et al12 to model the behavior of cementitious materials. The
works of Larsen,13 Bourdin et al,14 Borden et al,15 and Hofacker and Miehe5 have shown that the PFM can be extended
to dynamic fracture and produce results that agree properly with experimental observations. The works of References 16
and 17 have shown that the PFM can deal with anisotropic fracture. These works are mainly focused on the anisotropy
of fracture energy only and they do not include anisotropy related to the properties of the materials. Indeed, anisotropy
is included through a fourth-order tensor penalizing fracture interfaces in different directions and by including higher
order gradient term in the crack energy density function.
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An important aspect for phase field models of brittle fracture is their ability to correctly reproduce the impact of load-
ing conditions. Specifically, to describe the asymmetric behavior of brittle materials (ie, tension/compression asymmetry),
different strategies have been employed. The phase field model of Reference 3 uses the decomposition of the strain tensor
into positive and negative parts to include tension/compression asymmetry. An alternative option, which has been pro-
posed by Amor et al,18 is based on the separation of the strain tensor into spherical and deviatoric contributions. Closure
effects are then handled by considering the impact of damage on stiffness properties differently depending on the sign
of the spherical strain tensor. These strategies have been compared to each other by Ambati et al,19 who also proposed
a hybrid formulation to reduce the computational cost of finite element simulations of brittle fracture with the PFM.
Recently, another alternative, which considers the crack's orientation to define the driving stress and the corresponding
driving strain potential, has been introduced by Steinke et al.20 They postulate a directional split analysis of the crack
closure behaviour of isotropic linear elastic material, which overcomes some issues of the previous volumetric-deviatoric
and spectral splits.

In this work, a nonlocal damage model, which considers a scalar damage variable and its gradient as state variables,
is constructed. Following the suggestion of Reference 18, the consideration of closure effects relies on the separation of
the elastic strain energy into spherical and deviatoric contributions. However, while the original proposition of Reference
18 is restricted to isotropic elasticity, the proposed model is adapted to any class of material symmetry. Also, particular
care is taken to introduce some material parameters to control the respective impacts of the spherical and deviatoric
contributions on the development of damage. This article is organized as follows. In Section 2, the diffuse approximation
of fracture surfaces is briefly recalled. The constitutive relations are detailed in Sections 3 and 4. The numerical method
used for the resolution of equilibrium and compatibility equations is described in Section 5. Finally, in Section 6, some
numerical examples are presented.

2 CRACK DENSITY FUNCTIONAL

In engineering materials, the degradation of mechanical properties results from the creation and the propagation of inter-
nal discontinuity surfaces known as cracks. For the evaluation of the total cracked surface area c in a body , the PFM
relies on the introduction of a damage phase field d. For a material point, whose position at time t is denoted by x, the
value of the phase field d (x, t) is comprised between zero and unity*. The unity value corresponds to a fully damaged state
while an undamaged material point is given a zero value. The evaluation of the total cracked surface area c requires the
introduction of a crack density functional 𝛾 which depends on both the phase field d and its gradient 𝜵d:

c = ∫Ω
𝛾 (d,𝛁d) dV , (1)

whereΓ is the boundary ofΩ andΩ is the region in space that is occupied by the body at time t. Different propositions21-23

have been made for the construction of the crack density functional 𝛾 . The functional proposed by Pham et al,22 which
has been used by Bleyer et al,24 is adopted in the present work. This functional takes the following form:

𝛾(d,𝛁d) = 3
8lc

(
d + l2

c𝛁d ⋅ 𝛁d
)
. (2)

In the above expression, lc is an internal length controlling the crack thickness, the discrete description being retrieved
when lc approaches zero. The above definition of the crack density functional 𝛾 is such that the surface energy obtained
for the localized 1D-solution of a bar in traction will be precisely equal to gc, identified to the fracture energy of the Griffith
model.

3 BALANCE EQUATIONS

For an isothermal process, the response of the body  is given by the evolution of the displacement field u and the
phase field d, which represents the progression of damage. The evolution of these fields is governed by some equilibrium

*The present work is based on the infinitesimal deformation theory. No distinction between the initial and current positions of a material point is
therefore made.



equations which are commonly derived from the application of an extended principle of virtual power.25 More specifically,
in a Galilean frame, for any admissible virtual motion {u̇⋆, ḋ⋆}, the power developed by external forces e is equal to the
sum of the change in total kinetic energy ̇ and the power developed by internal forces  i:

e = ̇ +  i. (3)

The external forces contributing to e are represented by a body force density b and a contact force density t. The
power of external forces is thus given by:

e = ∫Ω
b ⋅ u̇⋆dV + ∫

𝜕Ω
t ⋅ u̇⋆dS. (4)

Following the terminology of Reference 26, the above expression for the power developed by external forces corre-
sponds to an insulation condition in the sense that no external force is associated with the damage phase field.

In contrast with the classical formulation of continuum mechanics, the power of internal forces  i includes the
additional contributions of ḋ⋆ and 𝛁ḋ⋆ so that:

 i = ∫Ω
𝝈 ∶ 𝛁u̇⋆dV + ∫Ω

𝜉ḋ⋆dV + ∫Ω
𝜼 ⋅ 𝛁ḋ⋆dV , (5)

where 𝝈 is the stress tensor, 𝜉 is the force associated with the damage variable d, and 𝜼 is the force associated with its
spatial gradient 𝜵d. The rate of change in kinetic energy ̇ is:

̇ = ∫Ω
𝜌ü ⋅ u̇⋆dV , (6)

where 𝜌 is the mass density.
The principle of virtual power, whose statement is provided by Equation (3), is satisfied for any {u̇⋆, ḋ⋆} if the stress

field 𝝈 is such that:

div𝝈 + b = 𝜌ü ∀x in Ω (7)

𝝈 ⋅ n = t ∀x in 𝜕Ω. (8)

In a similar fashion, the fields 𝜉 and 𝜼 must meet with the following conditions:

div𝜼 − 𝜉 = 0 ∀x in Ω (9)

𝜼 ⋅ n = 0 ∀x in 𝜕Ω. (10)

The evolution of the body , when subjected to the boundary conditions given by (8) and (10), is governed by the
equilibrium equations (7) and (9).

4 CONSTITUTIVE EQUATIONS

In order to model the evolution of the body , the equilibrium equations must be supplemented with some constitutive
equations. The state variables used for the construction of constitutive equations are the strain tensor 𝜺, the damage
variable d, and its gradient 𝜵d. Because no additional internal variable (eg, plastic strain tensor, hardening variable) is
introduced, the behavior of a material point is assumed to be purely elastic. In the following, the constitutive equations
are developed within the framework of generalized standard materials.27 Within this framework, constitutive relations
are obtained from a state potential 𝜓 and a dissipation potential 𝜙 which are such that:

𝝈 = −𝜕𝜺𝜓 (11)



𝜉 = 𝜕d𝜓 + 𝜕ḋ𝜙 (12)

𝜼 = 𝜕𝛁d𝜓. (13)

The state potential 𝜓 , which corresponds to the free energy density, is decomposed into volume and surface
contributions denoted, respectively, 𝜓v and 𝜓s:

𝜓(𝜺, d,𝛁d) = 𝜓v(𝜺, d) + 𝜓s(d,𝛁d). (14)

The surface contribution𝜓s uses the crack density 𝛾 , which is given by Equation (2), and the surface energy density gc:

𝜓s(d,𝛁d) = gc𝛾(d,𝛁d) (15)

=
3gc

8lc

(
d + l2

c𝛁d ⋅ 𝛁d
)
. (16)

The volume contribution 𝜓v depends on the stress tensor 𝜺 according to:

𝜓v(𝜺, d) =
1
2
𝜺 ∶ C ∶ 𝜺. (17)

The stiffness tensor C depends on both the damage variable d and the strain tensor 𝜺. Specifically, to account for
closure effects, two different situations, depending on whether the volume increases or decreases, are considered:

C =

{
Ct if tr(𝜺) ≥ 0
Cc = Ct + Ps ∶

(
C̃ − Ct

)
∶ Ps if tr(𝜺) < 0

(18)

with†:

Ct =
(
C̃

−1 + g(d)
(

fs Ps ∶ C̃
−1 ∶ Ps + fd Pd ∶ C̃

−1 ∶ Pd

))−1
. (19)

In the above equations, C̃ denotes the initial (ie, undamaged) elastic stiffness tensor. Also, according to Equation (18),
the spherical part of stiffness properties is recovered for negative volume changes. The definition of the stiffness tensor
therefore uses the spherical and deviatoric projection tensors, Ps and Pd, which are given by:

Ps =
1
3
(I ⊗ I) (20)

Pd = I − 1
3
(I ⊗ I). (21)

The material parameters fs and fd, which have been introduced in Equation 18, allow controlling the contributions
of spherical and deviatoric strains to the development of damage. The degradation function g (d) displays the following
properties:

g(0) = 0 (22)

g(1) = ∞ (23)

g′ (d) ≥ 0, ∀d in [0, 1] . (24)

Condition (22) is needed for stiffness properties to be unaltered in the absence of damage. Also, according to condition
(23), the stiffness properties of a fully damaged material point completely vanishes when tr(𝜺) ≥ 0. Finally, when condition

†For generalization purpose, one could include some cross-terms in the definition of Ct to consider interactions between deviatoric and spherical
strains. These terms, which are not considered here for simplicity, necessarily vanish for isotropic and cubic materials.



(24) is fulfilled, for a fixed strain state, the progression of damage always results in a decrease of stiffness properties. In
the present work, the degradation function g (d) has the following form:

g(d) = d
1 − d

. (25)

The constitutive equation for 𝜼, which is the dual variable of 𝜵d, is obtained from (13):

𝜼 =
3gclc

4
𝛁d. (26)

To obtain the evolution rule for the damage variable, the expression of the dissipation potential𝜙 has to be established.
In the present work, a purely local formulation is adopted since the dissipation potential depends solely on the damage
variable d and its evolution rate ḋ:

𝜙
(

ḋ, d
)
=

{ K
N+1

ḋN+1

(1−d)
, ḋ ≥ 0

∞, ḋ < 0
(27)

where K and N are viscosity parameters (with K > 0 and N ≥ 0). The parameter N controls the rate sensitivity of damage
development. The specific case of a rate insensitive behavior corresponds to N = 0, in which case the dissipation potential
is linearly homogeneous with respect to ḋ.

Though 𝜙 is not differentiable with respect to ḋ around ḋ = 0, the convexity of the dissipation potential allows
calculating the subdifferential 𝜕ḋ𝜙 which is such that:

𝜕ḋ𝜙
(

ḋ, d
)⎧⎪⎨⎪⎩

= K ḋN

(1−d)
, ḋ > 0

≤ 0, ḋ = 0
= ∅, ḋ < 0

(28)

The application of (12) leads to the expression of the driving force for damage 𝜉:

𝜉 = 𝜏 +
3gc

8lc
+ 𝜕ḋ𝜙

(
ḋ, d

)
, (29)

where 𝜏 denotes the elastic energy restitution rate:

𝜏 = 1
2
𝜺 ∶ 𝜕dC ∶ 𝜺 (30)

with:

𝜕dC =

{
𝜕dCt if tr(𝜺) ≥ 0
𝜕dCc = 𝜕dCt − Ps ∶ 𝜕dCt ∶ Ps if tr(𝜺) < 0

(31)

𝜕dCt = −g′(d)Ct ∶
(

fs Ps ∶ C̃
−1 ∶ Ps + fd Pd ∶ C̃

−1 ∶ Pd

)
∶ Ct. (32)

Combining the above relations together with the balance equation (9), one obtains the evolution rule for the damage
variable:

KḋN =
⟨
−𝜏 +

3gclc

4
Δd −

3gc

8lc

⟩
(1 − d) . (33)

According to the evolution equation of the damage variable, damage healing is not allowed (ie, ḋ ≥ 0) and the damage
variable cannot exceed unity (ie, ḋ = 0 for d = 1).



As will be discussed in the upcoming result section, the proposed constitutive model offers two advantages. First,
closure effects, which favors the development of damage in tension, are accounted for and can be controlled with
the fs and fd parameters. Second, the above constitutive relations do not require any assumption regarding material
symmetry.

5 NUMERICAL IMPLEMENTATION

In the present work, the finite element method is used for the resolution of field equations. The numerical implementation
of this method for the specific case of the proposed model is briefly discussed here.

5.1 Displacement field

The evolution of the displacement field u is governed by the following field equations:

div𝝈 = 𝜌ü (34)

𝝈 = C(d) ∶ 𝜺 (35)

𝜺 = sym (𝛁u) . (36)

In the above set of equations, which result from equilibrium and compatibility conditions as well as from constitutive
assumptions, the effect of external volume forces has been excluded. The corresponding variational formulation of this
problem is given by:

∫Ω
u⋆ ⋅ div𝝈 dV = ∫Ω

𝜌u⋆ ⋅ ü dV , (37)

where u⋆ is the test displacement field. After integration by parts, one obtains:

∫Ω
𝜌u⋆ ⋅ ü dV + ∫Ω

𝜺⋆ ∶ 𝝈 dV = 0, (38)

where 𝜺⋆ is the test strain field derived from u⋆.
Within the context of the finite element method, the introduction of interpolation functions N allows expressing the

displacement fields u and u⋆ from the nodal displacement vectors U and U⋆ as follows:

u (x, t) = N (x)U (t) (39)

u⋆ (x, t) = U⋆T (t)NT (x) . (40)

Using the interpolation functions N, the first term in (38) becomes:

∫Ω
𝜌u⋆ ⋅ ü dV = U⋆T

(
∫Ω
𝜌NT ⋅ NdV

)
Ü = U⋆T M Ü , (41)

where M is the mass matrix. Also, the strain fields 𝜺 and 𝜺⋆ are obtained from U and U⋆ with:

𝜺 (x, t) = B (x)U (t) (42)

𝜺⋆ (x, t) = U⋆T (t)BT (x) . (43)



The matrix B(x) is defined by the first derivative of the shape functions. In the 2D case, one finds that:

B(x) =
⎛⎜⎜⎜⎝
𝜕N1(x)
𝜕x

0 … 𝜕Nn(x)
𝜕x

0
0 𝜕N1(x)

𝜕y
… 0 𝜕Nn(x)

𝜕y
𝜕N1(x)
𝜕x

𝜕N1(x)
𝜕y

… 𝜕Nn(x)
𝜕x

𝜕Nn(x)
𝜕y

⎞⎟⎟⎟⎠ . (44)

The second term in Equation (38) is thus given by:

∫Ω
𝜺⋆ ∶ 𝝈 dV = U⋆T

(
∫Ω

BT ∶ C ∶ B dV
)

U = U⋆T K U , (45)

where K is the stiffness matrix of the system.
The solution of the displacement problem consists in determining the nodal displacement vector U . After elimination

of the test displacement field from the variational formulation, the nodal acceleration vector Ü is obtained from the
resolution of the following system:

M Ü (t) + K U (t) = 0. (46)

In the present work, U is determined from Ü with the Newmark method :

U (t + Δt) = U (t) + Δt U̇ (t) + Δt2

2
(
(1 − b) Ü (t) + b Ü (t + Δt)

)
(47)

U̇ (t + Δt) = U̇ (t) + Δt
(
(1 − a) Ü (t) + a Ü (t + Δt)

)
, (48)

where Δt is the time step while, a and b are time integration parameters.

5.2 Damage field

For the evolution of the damage field d, a discrete form of the following nonlocal equation is first needed:

KḋN =
(⟨

−𝜏 +
3gclc

4
Δd −

3gc

8lc

⟩
(1 − d)

)
. (49)

To circumvent the difficulty related to the impossibility for damage healing to occur (ie, ḋ ≥ 0) and the presence of the
power N, a local (ie, point-by-point) resolution strategy is adopted here. The sole obstacle for this strategy is the presence
of the nonlocal Laplacian diffusion operator, which can be overcome with the construction of a local Laplacian diffusion
operator obtained from the resolution of the problem 𝜃 = Δd in a weak form. For this purpose, the following nonlocal
equation is considered:

∫Ω
d⋆𝜃 dV = ∫Ω

d⋆Δd dV , (50)

where d⋆ is the test damage field. Integrating by parts and using the divergence theorem, one obtains:

∫Ω
d⋆𝜃 dV = ∫

𝜕Ω
d⋆(𝛁d ⋅ n) dS − ∫Ω

𝛁d⋆ ⋅ 𝛁d dV . (51)

Combining the boundary condition (10) with the constitutive relation (26), the surface integral in the above equation
vanishes so that:

∫Ω
d⋆𝜃 dV + ∫Ω

𝛁d⋆ ⋅ 𝛁d dV = 0. (52)



Within the context of the finite element method, the damage variables d and d⋆ at position x are evaluated from the
interpolation function N and the nodal damage vectors D and D⋆ with:

d (x, t) = N (x)D (t) (53)

d⋆ (x, t) = D⋆T (t)NT (x) . (54)

In a similar fashion, the spatial gradients of the damage variables 𝜵d and 𝜵d⋆ are obtained from D and D⋆

according to:

𝛁d (x, t) = Q (x)D (t) (55)

𝛁d⋆ (x, t) = D⋆T (t)QT (x) (56)

Q(x) =

(
𝜕N1(x)
𝜕x

… 𝜕Nn(x)
𝜕x

𝜕N1(x)
𝜕y

… 𝜕Nn(x)
𝜕y

.

)
(57)

The vector 𝚯, which contains the nodal values of the Laplacian term 𝜃, can therefore be determined from the solution
of:

A 𝚯 (t) + Z D (t) = 0, (58)

with:

A = ∫Ω
NTNdV (59)

Z = ∫Ω
QT ⋅ QdV , (60)

where A is the lumped mass matrix.
Once the vector 𝚯 = −A−1ZD is known, the damage rate vector Ḋ is obtained from:

KḊ◦N (t) =
⟨
−𝚼 (t) +

3gclc

4
𝚯 (t) −

3gc

8lc
D (t)

⟩
◦ (1 − D (t)) , (61)

where ◦ is the symbol of Hadamard product, 1 is the vector containing the value of 1 in each component and 𝚼 (t) is
the vector containing the nodal values of the elastic energy restitution rate 𝜏. In order to obtain the nodal values straight
from the integration point values, a mapping projector is used. For time integration of nodal damage variables, an explicit
time integration scheme is employed for the temporal discretization. The Euler explicit method is applied to the time
integration of the damage vector:

D (t + Δt) = D (t) + Ḋ (t) Δt. (62)

5.3 Overall algorithm

The overall algorithm for the estimation of the displacement and damage fields is briefly described here. It is composed
of the following steps:

• Initialization

1. Initialize the nodal displacement vector U(t0), the nodal velocity vector U̇(t0) and the nodal damage vector D(t0).
2. Compute the matrices A and Z.



F I G U R E 1 Single-edge-notched tensile test:
boundary conditions, specimen geometry, and mesh
[Colour figure can be viewed at wileyonlinelibrary.com]

• For each time t

1. For each integration point, compute the strain tensor 𝜺(t) and the damage variable d(t).
2. For each integration point, compute the stress tensor 𝝈(t) and the stiffness tensor C(t).
3. Compute the stiffness matrix K(d) and the mass matrix M of the system.
4. Compute the nodal acceleration vector Ü(t).
5. Compute the vector 𝚯(t) containing the nodal values of 𝜃(t) = Δd(t).
6. For each integration point, compute the elastic energy restitution rate 𝜏(t).
7. Compute the vector 𝚼(t) containing the nodal values of 𝜏(t).
8. Compute the nodal damage rate vector Ḋ(t).
9. Update the nodal displacement vector U(t + Δt) and the nodal damage vector D(t + Δt).

• End

The present code has been implemented in Matlab.

6 NUMERICAL EXAMPLES

To discuss the advantages offered by the present formulation, some numerical examples are presented in this section. All
the following examples deal with two dimensional problems with generalized plane strain conditions. For each applica-
tion, the domain of interest Ω is meshed with triangular elements. Each node possesses three degrees of freedom: two for
the displacement field u and one for the damage field d. Furthermore, following the recommendations of Reference 3,
the element size h is smaller than lc∕4 in the crack propagation zone.

6.1 Notched specimen under tension

A notched specimen, whose geometry is shown in Figure 1, is considered for the first application of the proposed model.
The specimen is meshed with 19 300 triangular elements. The typical size h of an element is about 1.5 × 10−3 mm in the
crack propagation zone and 6 × 10−3 mm elsewhere. A vertical displacement u of 8 × 10−3 mm is progressively imposed
on the top edge of the specimen, whereas the bottom edge is completely fixed. The total duration of the simulation is
10−3 seconds.

The material properties are listed in Table 1. Stiffness properties, which are assumed to be isotropic, are given by the
Young's modulus E and the Poisson's ratio 𝜈. Also, in order to investigate the impact of the length scale lc, this param-
eter is varied from 0.015 mm to 0.0075 mm. The resulting crack patterns are displayed in Figure 2 for different vertical
displacements. The crack initiates at the notch tip and propagates horizontally. Also, as expected, the sharpest crack pat-
tern is obtained for the smallest length scale parameter lc = 0.0075 mm. The corresponding load-displacement curves are
shown in Figure 3. Because damage development is controlled by gc, the load-displacement curve does not depend much
on the internal length scale.

http://wileyonlinelibrary.com


Property Value

E 210 GPa

𝜈 0.3

gc 2.7 × 10−3 kN/mm

lc 1.5 × 10−2 to 7.5 × 10−2 mm

K 10−7 kNs/mm2

fd 1

fs 1

N 1

T A B L E 1 Single-edge-notched tensile test: material parameters

F I G U R E 2 Single-edge-notched tensile test:
crack patterns at a vertical displacement of (A)
3.8 × 10−3 mm for a length scale lc = 0.015 mm and
(B) 4 × 10−3 mm for a length scale lc = 0.0075 mm
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 Single-edge-notched tensile test:
load-displacement curve for a length scale of l0 = 0.015 mm
represented by the solid line and lc = 0.0075 mm represented by
the dashed line

6.2 Notched specimen under shear

For the second example, the specimen geometry is the same as before but different boundary conditions are used (see
Figure 4). Indeed, following the suggestion of Bourdin et al,28 a horizontal displacement of+u (respectively−u) is progres-
sively imposed on the upper (respectively lower) boundary of the specimen so that the notched specimen is sheared. The
total duration of the shear test is 10−3 seconds and the maximum horizontal displacement is 2 × 10−2 mm. The specimen
is meshed with 75 500 triangular elements. In order to capture the crack pattern properly, the typical size h of an element
is about 10−3 mm in the crack propagation zone and 4 × 10−3 mm elsewhere. The material properties are presented in
Table 2. For this application, the fd and fs parameters are varied from 0.1 to 10.
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F I G U R E 4 Single-edge-notched shear test: boundary
conditions, specimen geometry, and mesh [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E 2 Single-edge-notched shear test: material parameters Property Value

E 210 GPa

𝜈 0.3

gc 2.7 × 10−3 kN/mm

lc 1.5 × 10−2 mm

K 10−4 kNs/mm2

fd from 0.1 to 10

fs from 0.1 to 10

N 1

F I G U R E 5 The role of the fd and fs
parameters, which can be adjusted to control
the tension-compression asymmetry.
Single-edge-notched shear test: intermediate
patterns for different values of fs and fd
parameters for a imposed displacement of
(A) u = 8 × 10−3 mm, (B) u = 1 × 10−2 mm,
and (C) u = 1.5 × 10−2 mm [Colour figure
can be viewed at wileyonlinelibrary.com]

(A) (B) (C)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

The intermediate crack patterns obtained for the different fd and fs values are shown in Figure 5. According to the
results, the crack propagation path can be controlled with the fs and fd parameters. Specifically, the crack is forced to
propagate downward when the fs∕fd ratio increases, in which case damage preferably develops in the tensile region of
the notched specimen. At the opposite, when fs∕fd is small, the spherical contribution to the stiffness tensor is not much
affected by damage and an horizontal crack propagation is observed.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


r1 (mm) r2 (mm) r3 (mm) h1 (mm) h2 (mm) h3 (mm)

0.4 0.41 0.8 0.4 0.8 0.5

T A B L E 3 Dimensions of the hat-shaped
specimen

F I G U R E 6 Hat-shaped specimen: boundary
conditions, specimen geometry, and mesh [Colour figure
can be viewed at wileyonlinelibrary.com]

Property Value

E 210 GPa

𝜈 0.3

gc 2.7 × 10−3 kN/mm

lc 0.01 mm

K 10−7 kNs/mm2

N 1

fd 0.1

fs 10

T A B L E 4 Hat-shaped specimen: material parameters

6.3 Hat-shaped specimen

A hat-shaped specimen with the dimensions given in Table 3 (see Reference 29) is now considered. The top edge
is restrained horizontally and displaced vertically up to 6 × 10−3 mm, whereas the bottom edge is totally fixed as
shown in Figure 6. The total duration of the test is 1 second. The material parameters are listed in Table 4. The
spatial discretization of the hat-shaped specimen uses 22 091 triangular elements, with a local refinement in the cen-
tral crack propagation zone. For comparison purposes, this problem is investigated with both the proposed model
and the model of Reference 4, which relies on the decomposition of the strain tensor into positive and negative
contributions.

The damage fields obtained at the end of the simulation for both models are presented in Figure 7. With both
models, the development of damage is localized in the central sheared zone. The load vs displacement curves are
plotted in Figure 8. With the present model, as one would expect, the applied force is observed to vanish when the
specimen is fully broken. At the opposite, according to the model of Reference 4, load transfer through the broken
specimen remains possible, which results in a nonvanishing of the applied force. This emphasizes the interest of a
deviatoric/spherical decomposition, rather than positive/negative, of the strain tensor to consider closure effects. How-
ever, it should be mentioned that, no matter what decomposition method is retained, the stiffness perpendicular to
the crack plane is not fully recovered when the crack is closed (ie, when the normal stress acting on the crack plane
is negative). This is due to the fact that these models use a scalar damage variable which, by definition, does not
provide any information regarding the local orientation of cracks. To circumvent this issue, one must either use a ten-
sorial damage variable30 or includes some information regarding the local orientation of cracks with respect to the
stress state.20
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F I G U R E 7 Hat-shaped specimen: crack
patterns obtained with the present model (A) and
the model of Miehe (B) [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 8 Hat-shaped
specimen: load-displacement
curve with the present model (A)
and the model of Miehe (B)

(A) (B)

F I G U R E 9 Polycrystalline microstructure generated
from a Voronoi tessellation of 60 randomly distributed seed
points. Each color represents a random crystallographic
orientation. The dashed-white line represents the hole
situated in the middle of the plate [Colour figure can be
viewed at wileyonlinelibrary.com]

6.4 Polycrystalline volume element under tension

In this section, for illustration purposes, the development of damage in a polycrystalline volume element under plane
strain conditions is investigated. As shown in Figure 9, the volume element is a square plate of length 1 mm containing a
central circular predamaged zone (ie, d = 1) of radius r = 0.04 mm. The polycrystalline microstructure has been generated
with a Voronoi tessellation of 60 seed points. The crystallographic orientations of the individual grains were assigned
randomly. Here, only the specific case of cubic symmetry is considered. In this case, the initial fourth-rank stiffness tensor
C̃ is defined by three independent constants C11, C12, and C44. Using Voigt notation for two dimensions, such a tensor
can be written as:

[C̃] =

(C11 C12 0
C12 C11 0
0 0 C44

)
. (63)

For the application of the finite element method, the volume element is meshed with 210 000 triangular elements (see
Figure 9). The typical size h of an element is about 2 × 10−3 mm in the crack propagation zone and 10−2 mm in the rest of
the domain.
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Case 1 2 3

Elasticity C11(kN∕mm2) 180 180 52

C12(kN∕mm2) 104 100 29

C44(kN∕mm2) 21 40 117

Z 0.5 1 10

Damage gc 2.7 × 10−3 kN/mm

K 10−3 kNs/mm2

lc 10−2 mm

fd 0.1

fs 10

N 1

T A B L E 5 Polycrystalline volume element under tension:
material parameters for different Z values

F I G U R E 10 Polycrystalline volume element under
tension: load-displacement curves for different Zener
anisotropy coefficients

The boundary conditions consist of imposing a progressive vertical displacement up to 0.06 mm to both the top and
bottom edges. The duration of the simulation is 1 second.

In order to evaluate the impact of elastic anisotropy on crack propagation, some simulations have been performed
with different anisotropy factors. According to Zener,31 the anisotropy factor Z for cubic crystals is given by:

Z = 2C44∕(C11 − C12). (64)

As shown in Table 5, the anisotropy factor Z has been varied from 1 to 10 in the present work. The specific case of
isotropy corresponds to Z = 1. The load-displacement curves are shown in Figure 10. Whatever the value of Z is, the load
completely vanishes when the crack passes through the whole volume element. As illustrated by Figure 11, the crack
propagation path is impacted by elastic anisotropy. More specifically, in the isotropic case, the crack follows a straight
line as the impact of microstructural heterogeneities is inexistent. At the opposite, when Z is very different from unity,
some important deviations along the crack propagation path are observed. For the specific case where Z is equal to 10,
the important internal stresses around a triple junction are responsible for a branching phenomenon.

6.5 Notched rectangular plate under dynamic tension

The case of a polymethyl methacrylate (PMMA) rectangular plate under dynamic loading has been studied experimentally
by Zhou.32 Several numerical investigations of this problem can also be found in the literature, with different fracture



F I G U R E 11 Polycrystalline volume element under
tension: (A) initial u = 0 mm, (B) u = 7.5 × 10−3 mm, and
(C) u = 1.2 × 10−2 mm. The different pictures correspond to
different values of the Zener anisotropy coefficient: Z = 1 ,
Z = 5, and Z = 10 [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 12 Prestrained PMMA
plate problem (left) and experimental
results of the specimen broken by
branched crack35

modeling approaches such as cohesive elements,33 nonlocal damage modeling,34 and phase field modeling.24 For this
problem, as shown in Figure 12, a crack of length 4 mm is introduced on the left side of the specimen. The loading
conditions are such that the vertical displacement of the upper and lower edges is first progressively increased under
quasi-static conditions. Once the maximum displacement is reached, at t = 0, the explicit dynamic analysis is then started
with similar boundary conditions. This implies that there is no energy input to the system during the dynamic analysis.
Crack propagation is therefore fed by the elastic energy stored in the plate during the quasi-static analysis.

The evolution of the damage field for different maximum displacements is presented in Figure 13. According to the
results, while significant crack branching is observed for u = 0.1 mm and u = 0.14 mm, no branching phenomenon is
detected for the minimum displacement of 0.04 mm.

The evolutions of the total elastic strain energy and total surface energy as a function of time have been plotted in
Figure 14. The total elastic strain energy e is given by:

e = ∫Ω

1
2
𝜺 ∶ C ∶ 𝜺dV . (65)

The total crack surface energy s is evaluated from:

s =
3gc

8lc ∫Ω

(
d + l2

c𝛁d ⋅ 𝛁d
)

dV . (66)

Because of the development of damage, the elastic strain energy progressively decreases while an augmentation of
crack surface energy is observed. Also, when the initial amount of stored elastic strain energy is too excessive for energy
to be dissipated with a single crack, the number of crack branches increases, which results in an important augmentation
of the surface energy. Branching phenomena are therefore favored for u = 0.14 mm, which corresponds to the case where
the initial stored energy quantity is maximal.
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F I G U R E 13 Notched
rectangular plate under dynamic
tension: damage fields for the
different imposed displacements and
different times [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 14 Notched
rectangular plate under dynamic
tension: Evolutions of the total
elastic strain energy e and the
kinetic energy k (left) and total
surface energy s (right)

For a more quantitative approach, the total crack length l and crack velocity v have been evaluated with the following
expressions:

l = 1
2∫Ω

𝛁d ⋅ 𝛁d‖𝛁d‖ dV = 1
2∫Ω

‖𝛁d‖ dV and v = dl
dt
. (67)

The evolution of the length l, which is a pure geometric estimation of the half of the separation line length (between
d = 0 and d = 1), is plotted in Figure 15A. According to the results, a rise of the imposed displacement causes an
increase in the number of microcracks, hence in the total crack length. This effect is particularly visible for the case
u = 0.14 mm.

The evolution of the crack velocity is reported in Figure 15B. Whatever the values of the different displace-
ments are, important fluctuations of the crack velocity are obtained. Such fluctuations have been previously observed
experimentally by Fineberg et al36 and numerically by Xu and Needleman.37 These fluctuations are caused by
branching. Indeed, when branching occurs, the energy flowing into the crack tip is split between the primary
crack and the secondary cracks. Less energy is therefore directed into the primary crack, which causes its velocity
to decrease. Once secondary cracks, which enter in competition with the primary crack, have stopped propagat-
ing, the primary crack starts growing again until the next branching event is observed. The crack velocity drop,
which is observed at the end of the test, corresponds to the situation where the crack has propagated through the
specimen.
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F I G U R E 15 Notched rectangular
plate under dynamic tension: evolutions of
the crack length l (left) and the normalized
crack velocity v∕cR (right). cR is the Rayleigh
wave speed, which is about 906 m/s for
PMMA

F I G U R E 16 Geometry and
boundary conditions for the
notched plate under impact
[Colour figure can be viewed at
wileyonlinelibrary.com]

6.6 Notched plate under impact

In this last example, the case of crack propagation under a dynamic shear loading is investigated. The numerical model
is based on the experimental results reported by Kalthoff and Winkler38 and Kalthoff.39 The experiment of Kalthoff and
Winkler38 consists in impacting a prenotched plate with a projectile. This example has been studied by Song et al40 and
by Remmers et al41 with cohesive elements and with phase field modeling by Borden et al15 and Hofacker et al.5

In the present case, due to symmetry considerations, only the upper half part of the plate is considered to reduce the
computational cost. The geometry and boundary conditions for the reduced problem are described in Figure 16. The plate
is meshed with 89 120 triangular elements with a refined mesh in areas where the crack is expected to propagate. The
impact velocity v is applied on the bottom part of the left edge. The imposed velocity v is first increased from zero to v0
during a transient period of t0 = 10−7 seconds. It is then held constant during the remaining part of the test. The material
properties used for this numerical test are listed in Table 7.

The damage fields, which have been obtained for two different impact velocities v0 = 40 m/s and v0 = 70 m/s, are pre-
sented in Figure 17. According to the results, whatever the impact velocity is, the crack propagation direction is consistent
with the experimental findings of Kalthoff,39 who observed cracks to propagate with an angle of about 70◦ with respect
to the horizontal direction. Also, when the impact velocity is increased to 70 m/s, a branching phenomenon occurs.
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Property Value

E 3.09 GPa

𝜈 0.35

cR 906 m/s

gc 300 J/m2

lc 0.1 mm

K 10−3 Ns/m2

𝜌 1180 kg/m3

N 1

fd 0.1

fs 10

T A B L E 6 Notched rectangular plate under dynamic tension: material parameters

F I G U R E 17 Notched plate under impact: damage crack patterns
for the imposed velocities of (A)v0 = 40 m/s and (B)v0 = 70 m/s [Colour
figure can be viewed at wileyonlinelibrary.com]

Property Value

E 190 GPa

𝜈 0.3

cR 2803 m/s

gc 2.217 × 104 J/m2

lc 0.3 mm

K 10−3 Ns/m2

𝜌 8000 kg/m3

N 1

fd 0.1

fs 10

T A B L E 7 Notched rectangular plate under dynamic shear loading: material parameters

7 CONCLUSION

In this work, a phase field implementation of a new damage gradient model for brittle fracture is developed to address
the simulation of crack nucleation and propagation in anisotropic materials. The model uses a scalar damage variable
to represent the progressive degradation of mechanical resistance. The spatial gradient of the damage variable, which is
treated as an additional external state variable, serves regularization purposes and allows considering the surface energy
associated with cracks. Constitutive relations are developed within the framework of generalized standard materials. The
coupling of damage with elasticity is considered. Also, the impact of the loading mode on the development of damage
is captured by differentiating the influence of spherical and deviatoric parts of the stiffness tensor and considering clo-
sure effects. The proposed formulation satisfies the continuity of the stress-strain relation and is adapted to any class of
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material symmetry. Numerical implementation is undertaken via the finite element method, where nodal degrees of free-
dom are the displacement and the damage variable. According to the numerical examples, the proposed model allows
capturing some important aspects of crack propagation, including crack branching and bifurcation. Also, when total fail-
ure occurs, the load displacement curves show a completely vanishing force. The main advantage of this method is its
ability to produce complex crack patterns, including branching and merging, in both two and three dimensions. It should
be noted that the PFM may suffer from the high computational cost (sufficiently refined mesh in the damaged zone is
necessary to accurately resolve the gradient term). Even so, this problem can be solved using parallel implementations
and adaptive remeshing. Therefore, the way in which the parameters are identified is quite complicated. Moreover, the
powerful character of Equation (49) imposes an implicit integration. In the future, a similar strategy will be employed
to deal with more complex deformation mechanisms. More specifically, future work will focus on the construction of a
model, which includes the possible coupling of damage with plasticity and hardening.
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