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1 UMR UTC-CNRS 7253 Heudiasyc
2 Sorbonne Universités, Université de Technologie de Compiègne, France
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Abstract. When classifying an example on the basis of an observed population
of (training) samples, at least three kinds of situations can arise where picking a
single class may be difficult: high aleatory uncertainty due to the natural mixing
of classes, high epistemic uncertainty due to the scarcity of training data, and
non-conformity or atypicality of the example with respect to observations made
so far. While the two first kinds of situations have been explored extensively, the
last one still calls for a principled analysis. This paper is a first proposal to address
this issue within the theory of belief function.
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1 Introduction

In a classification problem, assigning a new test instance to a class based on the set of
training instances can be made difficult due to various kinds of uncertainties: aleatoric
uncertainty or ambiguity (the classes being mixed, none seems to prevail), epistemic un-
certainty (training data are scarce), non-conformity (or atypicality) of the test example
to training observations. This last source of uncertainty, although related to epistemic
uncertainty, cannot be tackled by additional training effort or by gathering additional
training data. It is central in novelty, anomaly or outlier detection [2].

In this paper, we study how atypical instances can be accounted for in the frame-
work of belief functions, in addition to situations of ambiguous or scarce data. The
theory of belief functions, introduced in [3,6], and then further developed by Smets [9],
provides a suitable framework for representing uncertainties. Atypicality has been al-
ready accounted for in different settings, such as distance rejection [5], or conformal
predictions [7]. It was also addressed using belief functions (e.g., [1]), yet for specific
kinds of atypicality.

To our knowledge, no principled, generic way to deal with atypicality has been pro-
posed in the belief function framework. This paper can be seen as a preliminary contri-
bution to this issue. We establish our basic setting in Section 2. Section 3 then discusses
some desirable properties when accounting for atypicality, for which Section 4 proposes
several strategies which are illustrated on a nearest-neighbor classification problem.
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2 Basic setting

We recall here basic material on the theory of belief functions, a rich and flexible frame-
work for managing uncertainty, which will be required in the rest of the paper.

2.1 Preliminaries on belief functions

Let us consider a variable ω taking values in a finite unordered set Ω = {ω1, . . . ,ωM}
called the frame of discernment. Partial knowledge regarding the actual value taken by
ω is represented by a mass function [6] m : 2Ω → [0;1] such that

∑
A⊆Ω

m(A) = 1. (1)

The sets A ⊆ Ω such that m(A) > 0 are called focal sets of m. If m(A) = 1 for some
A⊆Ω , m is said to be categorical and is denoted by mA (if A = Ω , mΩ represents com-
plete ignorance). It is often required that m( /0) = 0; otherwise, m( /0) may have various
interpretations, such as the degree of conflict after inconsistent pieces of information
were aggregated, or the degree of belief that ω /∈Ω (open world assumption).

Any mass function can be equivalently represented by a belief function bel, and a
plausibility function pl defined, respectively, for all A⊆Ω by:

bel(A) = ∑
B⊆A

m(B), pl(A) = ∑
B∩A6= /0

m(B). (2)

Various strategies have been proposed for making decisions based on a belief func-
tion — see, e.g., [4]. Hereafter, we will denote by δ any decision operator to be applied
to a mass function defined over the set of classes. For instance, the interval dominance
operator, which may result in an imprecise decision (i.e. it may provide a set of classes)
is defined as follows.

Definition 1 (Interval dominance). Given a mass m, ωi is said to dominate ω j, noted
ωi � ω j, if bel({ωi}) > pl({ω j}). The interval dominance rule consists in computing
the set of non-dominated classes:

δ ID (m) =
{

ωi : pl({ωi})≥ bel({ω j}) for all j 6= i
}
. (3)

2.2 Class membership model

We assume that a source provides us with information regarding the actual class of a
test instance x to classify in the form of a mass function m. This mass function it is
usually derived from a sample of N training instances xi (i = 1, . . . ,xN) observed in the
same region than x, and to which x is assumed to be similar. For example, when using
decision trees, x is classified using the training data falling into the same the leaf node;
in the K-NN algorithm, the decision is made based on the K closest training instances
to x.
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In cautious classification, the quantity of information carried out by the training
sample is taken into account in the decision process — thus allowing for cautious strate-
gies, such as retaining a set of plausible classes, should the information be scarce. The
imprecise Dirichlet model (IDM) makes it possible to provide such a cautious model
of class frequencies in the form of a mass function m. In a nutshell, if (n1,n2, ...,nM)
denote the counts of the classes in the observed sample of size N, with ∑k nk = N, the
IDM produces the mass function

mIDir(Ω) =
s

N + s
, mIDir({ωi}) =

ni

N + s
∀i = 1, . . . ,M, (4)

where the parameter s can be interpreted as a number of additional unknown obser-
vations interfering with estimating the probabilities of the classes. This mass function
produces in turn the bounds[

belIDir({ωi}) =
ni

N + s
; plIDir({ωi}) =

ni + s
N + s

]
∀i = 1, . . . ,M, (5)

which account for both aleatoric uncertainty (which occurs if n1, . . . ,nM take similar
values) and epistemic uncertainty (in which case the width of the intervals will increase
when s/(N + s) increases).

2.3 Conformity

It should be clear, however that the IDM does not take into account the typicality of a
test instance of interest, that is, the extent to which it is similar to one of the training
instances from which mIDir is to be built. We assume here that this information is pro-
vided by a separate source, in the form of a conformity score C ∈ [0;1]: we have C = 0
for a completely unusual instance, and C = 1 for a normal one.

Figure 1 displays two situations where an instance x is to be classified into one of
three classes {ω1,ω2,ω3}= Ω , based on four training instances (with known classes).
The same IDM would be built (the class counts being the same), but the level of typical-
ity of x with respect to the four instances is very different. How this level of typicality
may be assessed is left aside for now (for example, it may be derived from the distance
of x to its first neighbour).

x ω1

ω1
ω2

ω3

Fig. 1.a: high conformity (C = 0.8)

x ω1

ω1
ω2

ω3

Fig. 1.b: low conformity (C = 0.2)

Fig. 1. Two situations with identical class counts but different levels of typicality
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The purpose of this paper is to determine how a mass function m related to the
class of the instance x can be revised according to its level of typicality C. To this
end, we introduce the notion of conformity operator Cf, which updates m into a new
mass function Cf [m,C]. Various properties may be desired (see Section 3), according
to which different operators may be proposed (on which Section 4 focuses).

3 Desirable properties of conformity operators

Hereafter, by abuse of notation, Cf [pl, ·] (respectively, Cf [bel, ·]) will stand for the plau-
sibility function (resp., belief function) obtained from a revised mass function Cf [m, ·].

Property 1 (Class preference preservation). A conformity operator Cf preserves the
preferential information over the classes if, for any C ∈ [0;1],

pl({ωi})≤ bel({ω j})⇒ Cf [pl,C] ({ωi})≤ Cf [bel,C] ({ω j}). (6)

Plainly put, it means that taking into account conformity does not alter interval domi-
nance between classes (see Equation (1)).

Fig. 2. Iris dataset example and some non-conformal examples

The example in Figure 2 displays the decision boundaries of a decision tree applied
to the Iris dataset (two features were kept for illustrative purpose). Instances 1,2 and 3
are atypical. Class Setosa clearly dominates both others for instance 1, an information
which may reasonably be kept in the revision process. However, it is more question-
able for instance 2, which seems closer to class Versicolor than class Setosa once class
dispersion is taken into account: then, its seems legitimate to discard the information
brought by the training subset associated with the leaf of the tree. Overall, keeping the
preference information inferred from the reference population seems reasonable if the
model is unlikely to confuse atypicality with another source of uncertainty. Here, in-
stance 2 is equally far from the Versicolor and Setosa classes, which the nature of the
decision tree and hence the decision boundary make it impossible to detect.
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Property 2 (Decision strengthening). A conformity operator Cf strengthens the deci-
sions made with a strategy δ if

C ≤C′⇒ δ (Cf [m,C])⊆ δ
(
Cf
[
m,C′

])
. (7)

In other terms, the set of plausible classes for an instance should grow with its level of
conformity: as it becomes atypical, classes previously deemed likely may be dropped
off. This is similar to assuming an open-world, since known classes are discarded, pos-
sibly ending up with an empty set at the limit, similarly to conformal predictions.

Property 3 (Decision weakening). A conformity operator Cf weakens the decisions
made with a strategy δ if

C ≤C′⇒ δ
(
Cf
[
m,C′

])
⊆ δ (Cf [m,C]) . (8)

Contrary to Property 2, Property 3 is more in line with a closed world assumption, where
Ω is assumed to necessarily contain all classes, but where the information related to an
atypical example may seem too weak to provide a reliable prediction.

In the example above corresponding to Figure 2), assume that the decision for in-
stance 3 is δ (m3)= {Versicolor, Virginica}. Then, requesting Property 2 would amount
to discarding Versicolor, this class being too far; whereas Property 3 would rather leave
us with complete ignorance, Setosa being then added to the set of plausible classes.

Note that other properties might also be proposed, for instance so as to specify the
desired behaviour of the decision rule for extremely non-conformal examples (i.e. for
C→ 0). Several will be examined in the next section.

4 Some conformity operators and their decision rule

This section investigates various operators in the light of the aforementioned proper-
ties. In a nutshell, they consist in computing a linear transformation of the initial mass
according to the level of non-conformity.

4.1 Classical discounting in a closed world

A first strategy amounts to discounting5 m according to the level 1−C of atypicity:

Cf1 [m,C] =C m+(1−C)mΩ . (9)

In the case of a mass function induced by the IDM, we thus haveCf1 [m,C] ({ωi}) =C
ni

N + s
, for all i = 1, . . . ,M;

Cf1 [m,C] (Ω) =C
s

N + s
+(1−C).

(10)

5The discounting ε m of m by a factor ε is defined by ε m(A) = (1− ε)m(A), for all A 6= Ω ;
and ε m(Ω) = (1− ε)m(Ω)+ ε .
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It should be clear that Cf1 satisfies Property 3 (decision weakening) with respect to
δ ID, since discounting makes the belief-plausibility intervals wider. We have as ex-
treme case δ ID (Cf1 [m,0]) = Ω . On the contrary, and for the same reason, Cf1 does not
satisfy Property 1 (class preference preservation). Such a rule therefore appears to be
more consistent with a closed world assumption, where atypical instances are treated as
being scarcely characterizable: complete atypicity should therefore be associated with
complete ignorance.

4.2 Open world with an “unknown” class ωu

Our second operator Cf2 considers the open world assumption via an “unknown” class
ωu: that is, Cf2 [m,C] is now a mass function defined on a frame Θ = Ω ∪ωu:

Cf2 [m,C] =C m↑Θ +(1−C)mωu , (11)

where the vacuous extension m↑Θ of m onto Θ [8] is such that m↑Θ (A) = m(A) for any
A⊆Ω and m↑Θ (A) = 0 for A * Ω ; and where mωu({ωu}) = 1.

When applied to a mass function mIDir generated by the IDM, this operator gives
Cf2
[
mIDir,C

]
({ωi}) =C

ni

N + s
for all ωi ∈Ω ,

Cf2
[
mIDir,C

]
({ωu}) = 1−C,

Cf2
[
mIDir,C

]
(Ω) =C

s
N + s

;
(12)

then, for any ωi ∈Ω , we have the following belief and plausibility values:

Cf2
[
belIDir,C

]
({ωi}) =C

ni

N + s
, Cf2

[
plIDir,C

]
({ωi}) =C

ni + s
N + s

, (13)

and
Cf2
[
belIDir,C

]
({ωu}) = Cf2

[
plIDir,C

]
({ωu}) = 1−C. (14)

Applying δ ID to an updated mass function Cf2 [m,C] (defined on Θ ) satisfies Prop-
erties 1 and 2, with the extreme case δ ID (Cf2 [m,0]) = {ωu}. Also note that

δ ID (Cf2 [m,C]) 3 ωu ⇔ max
ω j∈Ω

Cf2 [bel,C] ({ω j})≤ 1−C, (15)

δ ID (Cf2 [m,C]) = {ωu} ⇔ max
ω j∈Ω

Cf2 [pl,C] ({ω j})< 1−C. (16)

As a consequence, the set of decisions will include {ωu} only if the degree of support
to each class is low. This inspires an alternative strategy, where ωu is left aside when
computing non-dominated classes, and added post-hoc should itself have been non-
dominated.

Definition 2 (interval dominance with atypicity trigger). Given a mass m defined on
Θ = Ω ∪{ωu}, the interval dominance with atypicity trigger rule is defined by

δ ID:AT (m) =

δ ID (m[Ω ]) if min
ω j∈δ ID(m[Ω ])

bel({ω j})> 1−C,

δ ID (m[Ω ])∪{ωu} otherwise,
(17)
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where the conditioning m[Ω ] of m on Ω [8] is such that m[Ω ](A) = ∑B⊆Θ :B∩Ω=A m(B),
for any A⊆Ω .

In a nutshell, the set of non-dominated classes is determined from well-identified classes
(i.e., associated with an identified subpopulation), and a warning trigger is sent if the
instance is deemed atypical. This strategy satisfies Property 1 and includes ωu when
C = 1: in particular, δ ID:AT (Cf1 [m,0]) =Θ , and δ ID:AT (Cf2 [m,0]) = ωu.

4.3 Classical discounting in an open world
Finally, we propose a third operator where the mass m is first vacuously extended onto
Θ and then discounted according to the level of atypicity C:

Cf3 [m,C] =C m↑Θ +(1−C)mΘ . (18)

In the case of masses mIDir obtained via the IDM, we thus obtain:
Cf3
[
mIDir,C

]
({ωi}) = C

ni

N + s
for all ωi ∈Ω ,

Cf3
[
mIDir,C

]
(Ω) = C

s
N + s

,

Cf3
[
mIDir,C

]
(Θ) = 1−C;

(19)

therefore, for any ωi ∈Ω , we have the following belief and plausibility values:

Cf3
[
belIDir,C

]
({ωi}) =C

ni

N + s
, Cf3

[
plIDir,C

]
({ωi}) =C

ni + s
N + s

+1−C, (20)

and
Cf3
[
belIDir,C

]
({ωu}) = 0, Cf3

[
plIDir,C

]
({ωu}) = 1−C. (21)

Note that applying δ [ID] to Cf3 [m, ·] satisfies Property 3, since δ ID (Cf3 [m, ·]) =Θ .

Remark 1 (Open world assumption). The “unknown” class ωu introduced above plays
in spirit a role very similar to /0 in the “canonical” open-world assumption (where m( /0)
quantifies the belief that the instance is from a class outside Ω ). However, introducing
ωu makes it possible to 1) distinguish between this degree of belief and the degree of
conflict arising from combining belief masses, and 2) properly handle this degree of
belief when it comes to decision making.

5 Conclusion and perspectives

Table 1 summarizes the properties of the conformity operators with their associated de-
cision strategies presented in this paper. We recall the mass function used in each con-
formity operator, the set of decisions retrieved by the strategy when C = 0, the properties
satisfied (class preference preservation, decision strengthtening, decision weakening),
and the frame assumptions associated with the operator. Whether these latter assump-
tions should be accounted for depends on the application considered. For instance, in
novelty detection, the open world assumption is clearly at work, which is not so clear
in outlier or anomaly detection problems.

Future work will be conducted into two directions. First, we will study whether fur-
ther properties should be required or desirable. Besides, we will compare the strategies
to other approaches to dealing with atypical examples.
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Conformity mass function associated set of decisions properties satisfied type of frame
operator combined to m decision rule for C = 0 Prop. 1 Prop. 2 Prop. 3 open closed

Cf1 mΩ δ ID Ω × ×
Cf2 mωu δ ID ωu × × ×
Cf2 mωu δ ID:AT δ ID (m[Ω ])∪{ωu} × × × ×
Cf3 mΩ∪ωu δ ID Ω ∪ωu × ×
Table 1. Summary of the conformity operators and their associated decision strategies
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