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A B S T R A C T   

Recent empirical studies have found that travellers route choices deviate from perfect rationality, showing that 
urban trips do not necessary follow the shortest-time routes. However, there is no consent on how much the 
travellers’ route choice behaviour deviates from the perfect rational assumption. The objective of this study is to 
contribute to the understanding on how travellers process travel time when making route choices, and to 
quantify to what extent users are strict travel time minimisers or if bounded rationality is observed. The question 
of whether travellers evaluate travel time differences in absolute or relative terms is also addressed, and the 
heterogeneity in the route choice behaviour of travellers investigated. 

The results of route choice experiments, focused on the choices in diverse OD pairs and traffic conditions, are 
analysed. In total, 496 participants recorded 5535 choices over 41 OD pairs. It was found that travellers evaluate 
relative rather than absolute differences in travel time. In 60.5% of the trips participants chose the fastest route, 
but this percentage is 80% when the travel time between the fastest and the rest of the alternatives is at least 
30% higher. Only 10% of the individuals chose the fastest route in all trips, confirming the hypothesis of 
bounded rationality. Participants exhibited heterogeneous travel time indifference bands: the average partici-
pant was indifferent to relative travel time differences of less than 31%. A mixed logit model (MXL), considering 
heterogeneous indifference bands is proposed. The model shows a similar predictive accuracy compared to the 
classical MXL model.   

1. Introduction 

Travel time is often considered the most important variable in ex-
plaining the route choice behaviour of travellers (Bovy and Stern, 
1990). From an individual point of view, routes with longer travel times 
result in higher opportunity costs, i.e., less time that the traveller could 
allocate into other activities (value of time), thus, decreasing the like-
lihood of being chosen. When studying traffic assignment, it is tradi-
tionally assumed that travellers are perfectly rational, in the sense that 
they know the travel times in all the alternative routes (perfect in-
formation) and he or she will always choose the one with the minimum 
travel time. As a consequence of this hypothesis, the traffic states in a 
transportation network must fulfil the User Equilibrium (UE) condition, 
originally stated by Wardrop (1952): “the journey times in all routes 
actually used are equal and less than those that would be experienced 
by a single vehicle on any unused route”. By relaxing the perfect in-
formation assumption (but not the rationality of users), Sheffi (1985) 
defined the Stochastic User Equilibrium (SUE). At the individual level, 
SUE means that users are still strict optimisers, i.e., they choose the 

minimum travel time alternative, but they have no perfect information 
from the travel times in the system. However, recent empirical studies 
have shown that travellers do not necessarily choose the minimum 
travel time route. In the study of Zhu and Levinson (2015), GPS itin-
eraries were collected from 143 residents of the Minneapolis-St. Paul 
metropolitan area during a period of 13 weeks, finding that 40% of the 
trips followed the strict shortest-time path. More important, in almost 
90% of the trips travellers chose routes no more than 5 min longer than 
the shortest time route, meaning that users may not be strict optimisers, 
but consider travel time as a key decision input. In a related study,  
Yildirimoglu and Kahraman (2018a,b) use GPS trajectories of taxi trips 
in the city of Shenzhen, China, to compare the actual followed paths to 
those implied by UE. The results show that 38.2% of the taxi trips 
followed the shortest-time path. Similar results can also be found in the 
work of Bekhor et al. (2006), who by analysing data of 188 participants 
in a survey consisting on the description of their habitual route to work, 
found that 37% chose a route that overlaps in 90% with the shortest- 
time alternative, or in the work of Papinski et al. (2009), who examined 
the GPS traces and survey answers of 31 individuals residing in Ontario, 
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Canada. In the survey approximately 50% of the individuals stated that 
minimising travel is the most important factor in their route choices. 
These values, however, differ considerably from the results reported in 
other studies. Hadjidimitriou et al. (2015) analyse the GPS coordinates 
of 89 travellers in the province of Reggio Emilia, Italy, concluding that 
only 25% of the trips matched the shortest path route (considering a 
match to be the routes that overlap at least in 80% with the shortest 
route). The authors found that travellers selected routes on average 1.3 
longer than the shortest path. By analysing the data from an experiment 
in Virginia, United Estates, involving 20 participants who completed 
trips on 5 OD pairs over a period of 20 days, Vreeswijk et al. (2014) 
found that in 74% of the cases the average shortest time route was 
chosen. However, this percentage varies from 63% to 90% depending 
on the OD pair. Thomas and Tutert (2010) used license plate observa-
tions in the Dutch city of Enschede to conclude that 75% of the trips 
followed the shortest time paths. 

The fact that travellers not necessarily choose the fastest route is 
explained, on the one hand, by the presence of other route attributes 
that make some alternatives more desirable than the others. For ex-
ample, distance, the number of intersections, traffic lights, complexity 
of the paths, the amount of freeway, aesthetics (Bovy and Stern, 1990; 
Ramming, 2002; Bekhor et al., 2006; Papinski et al., 2009) and travel 
time reliability (Avineri and Prashker, 2005; Abdel-Aty et al., 1997; 
Mahmassani and Liu, 1999). On the other hand, sub-optimal choices of 
travellers are explained by limitations in travel time perception and 
cognitive biases that cause deviations from perfect rationality (see Di 
and Liu (2016) for a review on cognitive biases in route choice beha-
viour). The cognitive limitations in human reasoning is the cornerstone 
of bounded rationality of decision makers. Under bounded rationality, 
decision-makers search a solution until a satisfactory (not necessary 
optimal) alternative is found, thus departing from perfect rationality. 
This idea was introduced by Simon (1957) as a model of decision- 
making process as an alternative to the classical utility maximisation 
assumption of expected utility or random utility models (Manski and 
McFadden, 1981; Train, 2003; Walker and Ben-Akiva, 2002). In the 
context of traffic, bounded rationality was first discussed in  
Mahmassani and Chang (1987) who introduced the notion of “in-
difference band” and studied network equilibrium under bounded ra-
tionality assumption (BRUE). The idea of indifference band is that 
travellers are only willing to switch their usual route when time savings 
are above a threshold. Or, to put it another way, a decision-maker is 
indifferent to the travel time of the alternatives when their difference is 
under a threshold (indifference band). The set of alternatives under this 
condition are called satisficing, a term coined by Simon (1957) to refer 
to alternatives that both satisfy and suffice. By modifying a random 
utility model to include this threshold, Watling et al. (2018) propose a 
bounded choice model and formulate the bounded stochastic equili-
brium (Bounded SUE). Bounded rationality can therefore explain why 
travellers do not necessarily choose the shortest-time routes, but close 
alternatives that may have other appealing features while being con-
sidered equivalent from strict travel time point of view. 

In the above-cited studies, there is no consent on the amount of 
travellers that follow the shortest time route, nor the size of the in-
difference band: the percentage of travellers that chose the fastest route 
ranges from 25% to 75%. Moreover, five of the six studies are revealed 
preference (RP), i.e., those based in GPS traces and license plate ob-
servations. While RP methods are not affected by validity issues, they 
have the disadvantage of low control of the experimental environment, 
meaning that the diversity of explored situations may be limited. In the 
context of route choice, the list of alternatives and, more important, the 
related travel times are not known, making it necessary to infer them. 
This could introduce some errors in the estimates of the proportion of 
route choices for the shortest time route. Additionally, in some of the 
experiments the number of participants is small (20 and 31) and thus 

the estimates may not generalise to the segment of the population under 
study. The objective of this study is to contribute to the understanding 
on how travellers process travel time when making route choices, to 
better quantify to what extent users are strict travel time minimisers, 
and if bounded rationality is observed, to narrow the estimation of the 
indifference bands. The question of whether travellers evaluate travel 
time differences in absolute or relative terms is addressed. Does a dif-
ference of 5 min weigh equally in a 10 min trip than in a 30 min trip? 
The answer to this question is necessary in determining the indifference 
band. To this purpose, the results of several stated preference route 
choice computer experiments, using a dedicated simulation game 
platform, are statistically analysed. Then, a Mixed Logit Model (MXL) 
(McFadden, 1984; McFadden and Train, 2000; Walker and Ben-Akiva, 
2002), estimated considering only satisficing alternatives, is compared 
to the estimates of an unrestricted MXL model to assess the impact that 
the indifference bands may have on the route choice probabilities. 
These models are compared in terms of predictive accuracy for out-of- 
sample observations. 

Computer-based experiments have been largely used to study the 
route choices of travellers, with particular attention to the study of how 
travellers learn from experience (Bogers, 2005; Selten et al., 2007), the 
impact of advanced travel information systems (ATIS) (Adler and 
McNally, 1994; Mahmassani and Liu, 1999; Ben-Elia and Shiftan, 2010; 
Abdel-Aty et al., 1997; Srinivasan and Mahmassani, 2000; Bifulco et al., 
2014), the effect of travel time variability and risk attitudes on the 
travellers choices (De Moraes Ramos et al., 2013; Avineri and Prashker, 
2005; Bogers et al., 2006), and the impact of human choices on network 
performance (Iida et al., 1992; Tawfik et al., 2010), to mention some. In 
this article, experiments focus on travellers’ route choices considering 
travel time information. Participants made choices over 41 OD pairs in 
the network of the city of Lyon, France, joined by three alternative 
routes and presented over a map representation of the city. The OD 
pairs and routes were selected such that the values of their physical 
attributes (length, directness, number of intersections, number of turns 
and freeway composition) show a significant variation, while the routes 
remain being plausible alternatives. Furthermore, the traffic conditions 
in the network, and thus the travel times in the routes, varied between 
and within the different experiments. The variability of the route at-
tributes and travel times make it possible to study their joint effect on 
participants’ choices. In total, 496 participants recorded 5535 route 
choices. From the total number of participants, 71% received travel 
time estimates in the three alternative routes, eliminating the travel 
time perception bias from the analysis, and providing a common 
ground to study the (bounded) rationality in route choice behaviour in 
the presence of travel time information. 

The rest of the article is organised as follows. In Section 2, the route 
choice experimental tool, the Mobility Decision Game (MDG) is de-
scribed. The methodology to estimate the perfect and bounded ration-
ality, as well as the size of the indifference band is introduced in Section  
3. The specification of a Mixed Logit Model (MXL) that only accounts 
for satisficing routes is also presented in this section. In Section 4, the 
results are discussed. First, a global analysis on the travel time mini-
misation behaviour of travellers is done, including the heterogeneity of 
the travel time minimisation behaviour by OD pair and by participant. 
Second, the effect of the absolute (time) and relative (percentage) travel 
time differences in the travel time minimisation behaviour of travellers 
is studied. Third, the bounded rationality in the route choice behaviour 
is analysed, and the heterogeneity of the indifference band is addressed: 
the distribution of the indifference band is estimated. Finally, the re-
sults of the MXL model are analysed to study the effect of the in-
difference bands on the probability of route choice. This also permits to 
test the influence of the route attributes on the choices of the partici-
pants. A summary of the important results and the main conclusions are 
presented in Section 5. 
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2. Computer route choice experiments 

The computer route choice experiments were carried out using a 
computer platform, the mobility decision game (MDG), developed to 
investigate travellers’ behaviour in transportation networks at large 
scale. In an experiment with the MDG, participants are confronted with 
route choice problems under different scenarios. A route choice pro-
blem consist in travelling from an origin to a destination, for which the 
participants are required to select one of the three proposed routes. A 
scenario is the environment in which the decision problems are placed: 
the transportation road network, the OD pairs and routes where the 
decisions are made, and the traffic conditions. The MDG platform cre-
ates the scenarios and present the decision problems to the participants. 
In the MDG, the participants access simultaneously to the experiment 
through a dedicated web interface, showing the map of an urban net-
work (see Fig. 1). During a MDG session, multiple OD pairs are assigned 
to the participants, allowing to observe the choices of the same parti-
cipants in different OD pairs. Furthermore, some of the participants 
may receive traffic information in the form of travel time estimates. 
Thus, the MDG permits to investigate the determinants of the partici-
pants’ decisions under different transportation and traffic information 
conditions. 

2.1. Scenarios 

The road networks in the MDG experiments are based on the real 
network of the city of Lyon, France. Two networks were used in the 
experiments: Lyon-36 V, and Lyon-full. The first is composed of 3,663 
links and the second of 19,967 links (see Fig. 2). The traffic conditions 
in the network are dynamically generated by a microscopic traffic si-
mulator, based on the LWR traffic model (Leclercq, 2007; Laval and 
Leclercq, 2008; Laval and Leclercq, 2010). The simulator generates and 
handles all the trips that populate the transportation network, based on 
a trip demand matrix from all origins to all destinations. The MDG runs 
over a dynamic traffic simulator because it is conceived (i) to reproduce 
realistic flows in all of the OD configurations during the morning peak 
hour in Lyon city, giving access to travel times that are close to what 
can be observed, and (ii) to study the interaction between the partici-
pants choices and the traffic states of the network. However, it is im-
portant to mention that this last aspect is not relevant to this study, 
since the travel times that are provided to the participants (which is the 

main stimulus studied here) are pre-computed and do not depend on 
the traffic conditions in the experiments. The trips’ origins and desti-
nations in the network come from the zoning defined by the National 
Institute of Statistics and Economic Studies (INSEE) (Institut national de 
la statistique et des études économiques, 2018), and the major entry/ 
exit points to the network. The most likely routes joining the origins to 
the destinations are derived with the A∗ algorithm looking for the k- 
shortest paths in free-flow travel time. The characteristics of the road 
networks are summarised in Table 1. The demand scenarios have been 
built upon the estimation of the real dynamic OD matrix (Krug et al., 
2019) with adequate modifications to increase the diversity of travel 
time configurations for the OD pairs where decision are made. This 
allows to obtain traffic conditions suitable for testing different beha-
vioural traits. For example, the change in route choice behaviour when 
the fastest alternative route is switched. 

The playable OD pairs and alternative routes are the origins and 
destinations of the trips that the participants are asked to complete. 
These OD pairs are predefined in the experiments and are assigned 
randomly to the participants. Three routes are proposed to the parti-
cipants to complete a trip between an OD pair in a decision problem. In 
total, 41 playable OD pairs were defined for the MDG experiments, 15 
OD pairs in the Lyon-V36 network and 26 OD pairs in the Lyon-full 
network. The main idea behind the definition of the OD pairs is the 
variability of the routes’ attributes, both between and within OD pairs. 
The attributes that are considered in their definition are the euclidean 
distance from origin to destination, the length of the route, the direct-
ness of the trip (euclidean distance divided by the length of the route), 
the number of turns and crossings per kilometre, and the % of freeway 
that composes the routes. The values of the attributes of these OD pairs 
and routes are summarised in Fig. 3, where it can be seen that the 
distributions of the attributes of the selected OD pairs in the experi-
ments are similar to those of the entire network, i.e., the sample used 
for the experiments is not that different from a situation that a traveller 
would find in real life in the Lyon network (González Ramírez et al., 
2019). The attributes of the 41 OD pairs and routes are included in  
Appendix A, and their maps in Appendix B. 

In the experiments, the choices of the participants were solely based 
on the travel time estimates (when available) and the map re-
presentation of the routes. The travel time information provided to the 
participants is computed from the results of a reference simulation, i.e., 
a previous dynamic simulation of the network, which is parametrised 

Fig. 1. MDG interface. An OD pair and three alternative routes are shown over a section of the Lyon network in the MDG. The left menu allows participants to choose 
the route. Note: in the experiments, the mode and departure time buttons in the interface were not activated. Participants could only make route choice decisions. 
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with the same conditions as in the experiments. The travel time esti-
mates are computed for each link in the network. Since the MDG ex-
periments evolve over a dynamic simulation of the network and during 
a period of the day (the morning peak), the travel time depends on the 
fixed departure time of the trip where the route choice is being made. 

2.2. Experiment results 

The data on route choice behaviour in this article comes from 6 
route choice experiments carried out between February 2018 and 
February 2019. In total, 496 individuals participated in the experi-
ments. The participants in the experiments were students at the 
University of Lyon taking part in the courses of traffic theory (66%), 
staff from the IFSTTAR (French Institute of Science and Technology for 
Transport, Development and Networks) and other universities, who 
received an invitation by e-mail to remotely join the experiments via a 
web browser (34%). The great majority of the participants, 80%, are 
from the city of Lyon, 10% from other cities in France, and 10% from 
other countries. All participants have signed, before the experiments 
begin, an informed consent form describing the objectives of the study, 
the data collection and processing, and the confidentially rules. 
Participants could opt out of the experiment at any time. No personal 
data were mandatory to participate to the experiments as people had 
the opportunity to identify themselves by a login of their choice. 
Finally, all data were fully anonymised and processed as such. At the 
beginning of the experiments, the participants were briefed about the 
objective of the experiment and the interface of the experimental 
platform; for the participants that joined the experiments via web, a 
document with the instructions was shared. The participants were in-
structed to choose the route that they consider the best to complete a 
trip on time. 

From the 496 participants, 353 (71%) received traffic information 
as estimates of the travel time in the alternative routes. The participants 
recorded a total number of 5535 choices in the 41 OD pairs (Fig. 4). It is 
important to mention that not all of the 41 OD pairs were available in 
each experiment in order to guarantee a sufficient number of ob-
servations in each one: the maximum number of OD pairs in a single 
experiment was 15. The distribution of the number of choices per 
participant is presented in Fig. 5(a), where it can be seen that partici-
pants recorded a different number of choices; the average is 11.2. These 
choices are distributed over an average of 5.41 OD pairs, meaning that 
participants repeated, on average, 2 choices in the same OD pair 
(Fig. 5(b)). The variation on the number of choices per participant is 
explained by the duration of the experiments and the availability of the 
players: some experiments were carried out in sessions of 30 min while 
others in sessions of 1 h and participants could opt out of the experi-
ment at any moment. 

It is worth mentioning that, even when participants made repeated 
choices, learning is not observed. The learning process was limited by 
the design of the experiments, where participants make several si-
multaneous choices (up to 10), i.e., they do not have to wait until a trip 
is completed to make the next choice. Furthermore, the OD pairs in the 
MDG are not presented in any particular order, so participants make 
choices in other OD pairs before encountering a repetition. As a result, 
participants might have trouble memorising the travel time information 
provided in their past choices. This, along with the low number of re-
petitions in the same OD pair (2 on average) prevented participants 
from learning. To see this in a quantitative manner, the trend of the 
percentage of times that the fastest route is chosen is analysed against 
the ordered choice number. Let F t( ) be the percentage of times that the 
fastest route is chosen in choice number t, then if there is a learning 
process, one would expect that + >F t F t( 1) ( ) 0, i.e., a positive 

Fig. 2. Lyon-full and Lyon-V36 OD pairs. The zones are depicted in different colours with their centroids in blue. The entry/exit points to the network are depicted 
with yellow points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Characteristics of the Lyon-full and Lyon-V36 road networks.          

Network No. links No. zones No. entries No. exits No. OD pairs No. routes Avg. No. routes OD  

Lyon-full 19,967 285 29 28 96,096 559,423 5.8 
Lyon-V36 3663 71 14 13 9494 40,938 4.3 
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trend in the series. The regression + = +F t F t( 1) ( ) is estimated, 
and the hypothesis test H : 00 is performed. The analysis is done for 
the participants that received travel time information, as the rest of the 
article concerns mainly this group. Note that since the number of 
choices per participant vary (Fig. 5(a)), the values F t( ) are obtained 
with different number of observations: F (1) is estimated with the first 
choice of participants and thus all participants contribute to its com-
putation; F (20) is estimated with the 20th choice of participants, but 
there are only around 10% of participants that made at least 20 choices. 
Therefore the observations need to be weighted in the regression. The 
result of the regression is =phi 0.0066 with a standard error of 0.0136. 
The test for H : 00 (p-value = 0.3146) suggests that there is not 
enough evidence to reject the null hypothesis with a high significance 

level (significance 0.1). Hence, no learning process is suspected. The 
differences +F t F t( 1) ( ) are presented in Fig. 6 along with . 

3. Methodology 

3.1. Travel time minimisation behaviour 

To study to what extent the participants in the experiments are 
travel time minimisers, the minimisation rate, defined as the proportion 
of times that the fastest route informed to participants was chosen is 
computed. When travel time is the only variable that travellers take into 
account when making a route choice, then the minimisation rate can be 
interpreted as the proportion of perfect rational choices. Denote as F k( )

Fig. 3. Distributions of the attributes experienced by the travellers in the OD pairs and three alternative routes defined for the MDG experiments.  

Fig. 4. Choice distributions for the 41 OD pairs in the MDG experiments.  
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the proportion of times that the kth fastest route informed to partici-
pants route was chosen, then F(1) is the minimisation rate. Although the 
proportions F k( ) is defined for the general case, i.e., for choice problems 
with more than 3 alternative routes, in this study =k 1, 2, 3. The pro-
portions F k( ), can be computed globally, at OD pair level, at route level, 
and at participant level. Computed at global level, F k( ) allows to make 
general conclusions about the travel time minimisation behaviour and 
how this relates to the differences in travel time between the alternative 
routes. At OD pair and route level, F k( ) allows to investigate if the 
minimisation behaviour is influenced by the characteristics of the 
routes, other than travel time. Finally, heterogeneity in participants 
choices can be observed by computing F k( ) at participant level. The 
quantities F k( ) can be formally defined in terms of probability. In this 
article, the terms probability and proportion are used interchangeably. 

Let Rod be the set of alternative routes belonging to the OD pair od 
with J alternative routes. Define C as a random variable taking the 
value =C j ( = …j J1, 2, , ), if the route r Rj od is chosen, and I k( ) as the 
random variable taking the value =I jk( ) ( = …j J1, 2, , ), when route 
r Rj od is informed to participants to be the kth fastest route. Then, the 
probability that the route rj is chosen, given that it was the kth fastest 
amongst the J alternatives in the OD pair od, is given by 

= = = =F Pr C j I j OD od( , ).k
j od

k( )
,

( ) (1)  

At OD pair level, the proportion of times that the k-th fastest route 
was chosen, F k

od
( ) , is obtained by integrating the expression in Eq. (1) 

over all the routes r Rj od, i.e., 

= = = = × = =

= = = = = = =

F Pr C j I j OD od Pr I j OD od

Pr C j I j OD od Pr C I OD od

,

, .

k
od

j r R
k k

j r R
k k

( ) ( ) ( )

( ) ( )

j od

j od

(2)  

Likewise, the global proportion of times that the kth fastest route 
was chosen, F k( ), is obtained by integrating the expression in Eq. (2) 
over all OD pairs, this is 

= = = × = = =F Pr C I OD od Pr OD od Pr C I .k
od

k k( ) ( ) ( )
(3)  

The proportions F k( ) by individual i are obtained in a similar fashion 
by conditioning by individual instead of the OD pairs, i.e., 

= =F Pr C I i( )k
i

k( ) ( ) . 

3.2. Travel time boundedly rational behaviour 

Recall that under boundedly rational behaviour, a traveller is in-
different to the travel time of the alternatives when their difference is 
under a threshold (indifference band). The set of alternatives under this 
condition are called satisficing. Analogous to the perfect rational beha-
viour, the proportion of times that participants chose a satisficing route 
is computed. Note that the above definition does not mean that the 
traveller is indifferent to the satisficing routes, in the sense that she or 
he will choose any of them with the same probability. Rather, the de-
finition means that the effect of travel time is negligible among the 
satisficing routes. This last interpretation allows for other attributes to 
play a role in the choices of travellers. Thus, under boundedly rational 
behaviour, travellers do not necessarily choose the shortest travel time 
route, but a satisficing route. The indifference band in this study is 
defined relative to the fastest route. 

Let ITTj( ) and ITTk( ) be the travel time information in the jth and kth 
fastest routes in a choice problem, such that ITT ITTj k( ) ( ). The differ-
ence in travel time information can be computed in absolute (time) or 
relative (percentage) terms as =ITT ITT ITTj k k j, ( ) ( ), and 

=ITT ITT ITT ITT% ( )/j k k j j, ( ) ( ) ( ), respectively. For ease of exposition, in 
the rest of this section, the differences in the travel time information 
will be denoted as ITTj k, to refer to either the absolute or the relative 
difference. Contrary to the minimisation rate, where each choice pro-
blem has a minimum travel time route, in bounded rationality a choice 
problem may have one, two or more satisficing routes. This implies that 

Fig. 5. The distributions of (a) the number of choices per participant and (b) the number of choices per participant per OD pair. This later plot shows that participants 
barely made more than 2 choices in the same OD pair. 

Fig. 6. Differences in the proportion of choices for the fastest route 
+F t F t( 1) ( ). If + =F t F t( 1) ( ) 0, then there is no clear trend in the data. 
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for some choice problems the probability of choosing the fastest route 
needs to be estimated, for other choice problems the probability of 
choosing the fastest or second fastest, and so on. These probabilities can 
be written as the conditional probability of choosing a satisficing route, 
given that there are n satisficing routes. Formally, for a given in-
difference band =IB ( ) [0, ], define the set S ( )n as the set of choice 
problems with exactly n satisficing alternative routes. If there are N 
alternative routes in the choice problems, these sets are 

= >
= > >

…
= > >

…
=

S choice problem ITT
S choice problem ITT ITT j

S choice problem ITT ITT j n

S choice problem ITT

( ) { }
( ) { 2}

( ) { }

( ) { }.

j

n n j

N N

1 1,2

2 1,2 1,

1, 1,

1, (4)  

Using the same notation of the previous section, the conditional 
probabilities of choosing a satisficing route, given that there are n sa-
tisficing routes, are then 

=

= =

=

=

Pr satisficing S Pr C I S

Pr C I S

( ) { } ( )

( ) ,

n
k

n

k n

k

n

k n

1
( )

1
( )

(5) 

where the last equality is because the events =C I j( ) and =C I k( ) are 
disjoint for j k. Finally, the total probability of choosing a satisficing 
route can be obtained as 

= ×
=

Pr satisficing Pr satisficing S Pr S( ) ( ) .
n

N

n n
1

The probabilities Pr satisficing S( ( ))n and Pr satisficing( ) are also 
estimated for subsamples of the data to create some variation. In total, 
141 subsamples are obtained: 41 by removing one OD pair at a time, 
and 100 by randomly selecting two thirds of the observations with re-
petition. By sampling two thirds of the observations the margin of error 
for the estimated proportions is approximately 5%. This sampling 
strategy (bootstrap) allows to observe the effect that heterogeneous 
participants and route attributes may have on the estimates of the 
probabilities. 

Note that Pr satisficing S( ( ))1 is the proportion of times that the fastest 
route is chosen, given that the difference in the travel time information be-
tween the fastest and the rest of the alternatives is more than . Since S ( )1
is equivalent to the case when only one route is satisficing (the fastest 
route), Pr satisficing S( ( ))1 can also be interpreted as the proportion of 
perfect rational choices. The analysis in Section 4.1.1 is based on the 
probabilities Pr satisficing S( ( ))1 for different values of , with special 
interest in comparing the results between the subsets S1 when defined in 
terms of absolute or relative time differences. In Section 4.2, the perfect 
rationality behaviour is relaxed by considering the cases in which more 
than one route is satisficing. 

3.2.1. Estimation of indifference band by participant 
Until now, the bounded rationality has been studied for hypothe-

tical values of . Moreover, the values of have been considered to be 
equal for all the travellers. However, this assumption does not hold (see 
Section 4.2.1), meaning that travellers are heterogeneous with respect 
to their indifference bands. To estimate the indifference band of in-
dividual i, the travel time differences of the routes chosen by i are 
considered. Formally, let Ci m, represent the chosen route by individual 
in choice problem m, then by assuming that all the participants choose 
always a satisficing route, the indifference band of each individual i can 
be estimated as 

= =max ITT C k m{ , }.i
max

k i m1, ,

Nevertheless, this definition is restrictive, in the sense that not all 
information on the travel time differences of the chosen routes is used. 
For example, a participant that chose a route k with =ITT 2k1, and the 
fastest route in the choice problems = …m M2, , i will have = 2i

max , 
without considering that =ITT 0k1, in for all k k . Therefore, two 
other estimators for i are considered in this study: the 95 percentile 
and the median of the distribution of =ITT C kk i m1, , , with 

= …m M1, , i. Respectively, 

< = =
< = =

Pr ITT C k m
Pr ITT C k m

( , ) 0.95
( , ) 0.50.

k i i m

k i i m

1,
95

,

1,
50

,

3.3. A MXL model for route choice conditioned on the indifference band 

The previous sections introduced a methodology to compute the 
probability of choosing a satisficing route as a function of the in-
difference band. That methodology allows to make general conclusions 
about the perfect and bounded rational behaviour of travellers, and 
assumes no route choice model. Nevertheless, the probability of 
choosing a specific route is not known. To fill-in this gap, a discrete 
choice model, specifically, a Mixed Logit Model (MXL) for repeat 
choices (panel data) is estimated. The model is specified considering the 
indifference band i as an input. i is exogenous to the model, and it 
determines which routes are part of the satisficing set. The routes that 
do not belong to the satisficing set have probability equal to zero of 
being chosen. 

Let =y 1ij be the event of individual i choosing route j ( =y 0ij
otherwise) and i be its exogenous determined indifference band. For 
ease of exposition, the subscript for the repeated choices of individuals 
is eliminated from the notation. Then, the conditional probability of 
choosing the alternative j can be written as 

= =Pr y x
ITT

1 , ,
, %

0, otherwise,

ij i i i

exp x

exp x

j i
·

1,
ij
T i

k S i
ik
T i

( )

(6) 

where xi· is the vector of observed attributes of the individual i and 
routes in the choice problem, i is the vector of coefficients specific to 
the individual, and S ( )n i is the set of satisficing routes for the in-
difference band i. The probability in Eq. (6) is conditioned by the 
vector of coefficients i, which represents the preferences or tastes of 
individual i for the different attributes xij. MXL models assume that 
these preferences are drawn from a probability distribution re-
presenting the taste heterogeneity between the individuals. Here, it is 
assumed that ( ¯, )i N , allowing correlation between preferences. 
The unconditional choice probability is given by the multiple integral 

= = = ×Pr y x Pr C j x Pr d1 , ; ¯, , , ¯, ,ij i i i i ij·

(7) 

where ¯ and are the parameters defining the distribution of in-
dividuals’ preferences which need to be estimated. 

The above model is a two step process: (1) the individual i conforms 
the set S ( )n i by discarding the not satisficing alternatives from a larger 
set and, then, (ii) he/she chooses an alternative from S ( )n i . In the in-
terpretation given here, the first step regards a boundedly rational 
process, and the second a rational process since the probability in Eq.  
(6) is given by a MXL model. Note that for a perfect rational traveller 

= 0i , which implies that the fastest route is always chosen. It is im-
portant to mention that, contrary to random utility models where all 
the alternatives have a nonzero probability, in Eq. (6) it is possible to 
assign a zero probability to an alternative in the data that was actually 
chosen. In other words, if the chosen alternative results to be outside of 
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the indifference band, then it will not be considered in the satisficing 
set, which violates one of the assumptions of RUMs: the chosen alter-
native must be part of the chosen set. To avoid this issue, the estimator 
of the indifference band used as an input is i

max , which guarantees that 
all the chosen routes in the data belong to the satisficing set. The 
variables that enter the model are:  

• FRWj: the % of freeway that composes the routes;  
• DIRj: the directness of the trip, defined as the euclidean distance 

divided by the length of the route;  
• TRNj: the number of turns per kilometre;  
• INTj: the number of intersections per kilometre;  
• ITT% i j,(1, ): relative travel time difference between route j and the 

fastest route; the subindex i indicates that is participant i who re-
ceived the information. 

To estimate the MXL model in this study a Bayesian approach was 
adopted. In Bayesian inference, a posterior distribution for the para-
meters ¯ and is obtained after updating the prior distribution through 
the likelihood function using the Bayes theorem (see Gelman et al. 
(2014) for details on Bayesian methods or Train (2001) for Bayesian 
methods applied to choice modelling). This contrasts with maximum 
likelihood estimation methods, where point estimates for the para-
meters are found. The posterior probability distribution, denoted as 
Pr ( ¯, )post , has no closed form. However, the Bayesian methods, such 
as Markov Chain Monte Carlo and Gibbs samplers (Levin and Peres, 
2017), allow to obtain samples from this distribution. Estimating the 
model in Eq. (7) with Bayesian methods has the advantage of providing 
the means to predict the choices of individuals for which the in-
difference band has not been observed. To see this, let xi· be the mea-
surable attributes of a new individual and the alternatives in a future 
choice problem. The posterior predictive choice probability for the model 
in expression (7) is given by 

= = = ×

=

= = ×

=

=

=

= =

Pr y x Pr y x Pr d

Pr y x

Pr y x Pr d

Pr y x
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S
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· ·
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1
·

1

1

1

1

1
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where ( ¯, )s is a sample from the posterior Pr ( ¯, )post , and i
s a sample 

from Pr ( ( ¯, ) )s . The samples i
s, for all s, are samples of the posterior 

distribution of the parameters estimated for the individual i. These 
samples are readily available after model estimation, the reason is that 
in Bayesian inference for MXL models the individual coefficients i are 
considered as parameters of the model in order to avoid the integral in 
expression (7), which may cause numerical instabilities and an increase 
in computational effort (Train, 2001). Note that in the last equality in 
expression 8 the indifference bands i are treated as individual-specific 
parameters, and that they are being integrated (along with the coeffi-
cients i) across individuals. The posterior predictive, =Pr y x( 1 )pred ij i· , 
is therefore the average of the predicted choices of the individuals in 
the training set, where each individual has its own indifference band. 

The log pointwise predictive density (lppd), a measure of goodness-of- 
fit of a model, is the Bayesian analogous of the log-likelihood, and it is 
obtained by considering the joint posterior predictive probability. Let D
be a set of observations (they can be future or observed choices). Then, 
assuming independent observations, the lppd is given by 

= = =

= × =

lppd logPr log Pr y x

y logPr y x

( ) [ ( 1 )]

[ ( 1 )],

pred

i k
pred ik i

y

i k
ik pred ik i

·

·

ikD

(9) 

where y x( , )ik i· are observed and they can be in or out-of-sample. When 
the elements in D are the same used to fit the model, then lppd is a 
measure of goodness-of-fit. When the elements in D are out-of-sample 
observations, then lppd is a measure of predictive error. Although the 
lppd does not give an absolute scale to evaluate a model, it can be 
compared between different models, and therefore used for model se-
lection. Higher values of lppd are desirable. Observe that only the actual 
chosen alternatives ( =y 1ik ) contribute in the computation of the lppd. 
In some applications, however, it is of interest to evaluate the ag-
gregated predicted probability for each alternative, i.e., 

= =
=

Pr j
I

Pr y x¯ ( ) 1 1 .pred
i

I

pred ij i
1

·
(10)  

This is the case in route choice, in which the aggregated choice 
probability represents the predicted usage of the routes. Therefore, 
second way to test the model’s performance is to measure the dis-
crepancy between the observed and predicted choice distributions. The 
following measure is proposed to measure this discrepancy 

=
=

err Pr Pr max Pr j Pr j, ¯ 0, ( ) ¯ ( ) ,obs pred
j

J

obs pred
1 (11) 

where J is the number of alternatives. Fig. 7 shows an example of how 
err is computed. An advantage of this definition is that the error is in 
probability units, for example, =err 0.1 means that 10% of the choices 
will be erroneous on average. Note that in this article there are 41 OD 
pairs, therefore err needs to be computed separately for each OD pair 
and then averaged to obtain the global error. 

4. Results 

4.1. Perfect rationality 

The distribution of the choices of the participants amongst the 
fastest, second fastest and slow routes is presented in Table 2. In the 
results of the route choice experiments, there is clear difference be-
tween the choices of participants who received travel time information 
(informed participants) and those who did not. The difference between 
the informed participants and those who did not receive information is 
confirmed by a 2 test, rejecting the null hypothesis (with a significance 
level of = 0.001) that the observed distributions are the same. 
Therefore, it can be concluded that information has an impact on the 
choices of the participants, and that the most preferred routes (in the 
case of no information) differ from those with information, meaning 
that travel time information is not necessarily aligned to the preferred 
route’ attributes. The most notable difference between these 

Fig. 7. Example of the computation of err for a given OD pair. In this case, 
=err Pr Pr( , ¯ ) 0.10obs pred . 
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distributions is for F(1), thus, it can be concluded that travel time in-
formation causes a minimisation behaviour in participants. It is inter-
esting to note that > >F F F(1) (2) (3) in the not informed case, suggesting 
that participants are somehow minimising the travel time by choosing 
the routes with the characteristics that they believe lead to smaller 
travel times. A second observation is that informed participants pre-
ferred slower routes in nearly 40% of the cases, meaning that they are 
not necessarily strict travel time minimisers. Could this behaviour be 
explained by bounded rationality? Are there factors other than travel 
time influencing the choices of the participants? This question will be 
further investigated. 

The minimisation rate in each of the OD pairs, Fod
(1) , is presented in  

Fig. 8(a), where it can be seen that Fod
(1) shows a high variability, with 

values of Fod
(1) ranging between 0.27 and 0.92. In the case of the three 

OD pairs with the largest minimisation rates, the alternative with the 
high composition of freeway was almost always the fastest according to 
the information given to participants. Contrary, in the OD pair with the 
lowest minimisation rate, either the alternative with high composition 
of freeway was not the fastest, or the three alternative routes were si-
milar in their attributes. This can be observed in Appendix A and B; a 
formal analysis is presented in Section 4.3. The (weighted) mean of Fod

(1)
is equal to the global minimisation rate, i.e., F(1) = 0.605, with a 
standard deviation of 0.16. The distribution of the minimisation rate at 
participant level is included in Fig. 8(b), where it can be seen that the 
travel time informed to participants does not have the same effect on all 
individuals. The group of perfect rational participants, who chose the 
fastest route in all of the choice problems, is relatively small, re-
presenting only 9.5% of the total number of participants. Moreover, the 
minimisation rate of participants is highly heterogeneous, showing a 
more or less even distribution between minimisation rates of 0.20 and 
1.0. The mean of the minimisation rate by participant is 0.58, with a 
standard deviation of 0.24. This clearly highlights that the great ma-
jority of travellers do not make perfect rational decisions in all the 

choice problems they face, even when travel time estimates are avail-
able, thus suggesting a boundedly rational behaviour in route choice. As 
it will be shown later in this article, the variability in F(1) comes, pri-
marily, from the travel time information in the alternative routes, and 
secondly, from the route attributes that make a route more attractive to 
the travellers. 

4.1.1. Perfect rationality and differences in the travel time information 
Travellers are not necessarily travel time minimisers, but how does 

the difference in travel time information in competing routes influence 
the behaviour of travellers? Do travellers value absolute or relative 
differences in travel time? The distributions of the absolute differences 
in travel time information between the two fastest routes, ITT , and the 
relative differences ITT% are shown in Fig. 9. 

The proportion of times that the kth fastest route was chosen in each 
route choice problem, F k( ), is obtained for the subsets S ( )1 , defined in 
Eq. (4), with being the 20-quantiles of the distributions. Recall that 
the sets S ( )1 are those in which the difference between the fastest and 
second fastest route is at least . The minimisation rate, F(1), and the 
proportions F(2) and F(3), estimated for the different subsets S ( )1 , are 
shown in Fig. 10, where it can be noticed that, in general, the larger the 
difference in travel time information, the larger the minimisation rate 
for both ITT1,2 and ITT% 1,2. This result is not surprising; travel time is 
recognised as the most important variable in route choice. However, 
there are important differences between the minimisation rate when 
considering ITT1,2 or ITT% 1,2. The first difference is that in the case of 

ITT1,2, the maximum minimisation rate is barely above 0.75, whereas 
for ITT% 1,2 it can reach values little higher than 0.90. The second 
difference is that for ITT1,2 the minimisation rate does not show an 
increasing trend, having a high decrease in F(1) for large values of 

ITT1,2. This behaviour can be hardly explained, as one would expect 
that larger differences in travel time information would induce larger 
minimisation behaviour: why would I choose the fastest route when it is 
2 min faster, but not when it is 8 min faster? This is not the case 

ITT% 1,2, where F(1) shows an increasing trend. 
To formalise the above findings, two logistic regressions are fitted to 

the data. In both regressions, the response variable Y is binary, taking 
the value =Y 1i if the participant chose the fastest route according to 
the given information; the regressors are ITT1,2 or ITT% 1,2. The results 
of the logistic regressions are presented in Table 3, and their predictions 
for F(1) for the subsets S ( )1 are plotted along the observed values of F(1)
in Fig. 11. In both cases, the regressors are different from zero, with a 
significance level of 0.001, however, the Akaike information criterion 

Table 2 
Global percentage of times that the fastest, second fastest and third fastest 
routes were chosen.      

Travel time info. F(1) F(2) F(3)

No 0.460 0.328 0.212 
Yes 0.605 0.236 0.159 

2 = 106, df  = 2, p-value < 2.2e−16 

Fig. 8. (a) minimisation rates per OD pair, and (b) distribution of the minimisation rates of participants.  
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(AIC) is smaller when using ITT% 1,2 as a regressor, meaning a better fit 
with this explanatory variable. This result is confirmed by the Hosmer 
and Lemeshow goodness of fit test (Hosmer and Lemesbow, 1980). The 
null hypothesis H0 of this test is that the observed proportions are si-
milar to the predicted proportions in different subsets of the data. H0 is 
rejected for ITT1,2, but not for ITT% 1,2, suggesting a good fit of the 
regression with ITT% 1,2. Since the logistic regression is equivalent to 
the multinomial logit model when there are only two alternatives, this 
result can be interpreted from a behavioural perspective: ITT% 1,2 is 
better than ITT1,2 in explaining the minimisation behaviour of the 
participants, and therefore their route choice behaviour. This suggests 
that travellers evaluate the travel time in a problem-wise manner, i.e., 
relative to the travel time in the competing alternatives, and not as an 
absolute difference in time units. 

4.2. Bounded rationality in route choice 

In the previous section, the analysis was based on subsets S ( )1 , i.e., 
the perfect rational behaviour. In this section, the bounded rationality 

of travellers is studied, so the cases when two or more routes are sa-
tisficing are analysed. First, the probability of choosing a satisficing 
route is estimated for different values of for the case of choice pro-
blems with three alternative routes. Then, lower and upper bounds are 
derived for the general case when there are more than three alternative 
routes. In view of the above results, the analyses in this section are 
restricted to the relative differences ITT% . As in the previous section, 

is given by the 20-quantiles of the distribution of the travel time 
differences ITT% 1,2. 

The probability of choosing a satisficing route for the different va-
lues of Pr satisficing, ( ), is shown in Fig. 12(a), along with the con-
ditional probabilities =Pr satisficing S n( ( )), 1, 2, 3n . The fraction of 
the data that each set S ( )n represents, i.e., Pr S( ( ))n , is presented in  
Fig. 12(b). In this last figure, it can be seen that the fraction of the 
choice problems in which there is only one satisficing route, Pr S( ( ))1 , 
decreases with , while the fraction of problems with three satisficing 
routes, Pr S( ( ))3 , increases. This behaviour is expected, as larger in-
difference bands imply more satisficing alternatives. In Fig. 12(a), it can 
be observed that, in general, the probability of choosing a satisficing 

Fig. 9. Kernel density estimation of the distribution of (a) the absolute (seconds) and (b) the relative differences in travel time.  

Fig. 10. Proportion of times the fastest, F(1), second fastest, F(2) and slowest, F(3) routes are chosen, computed for the subsets S p( ) for (a) the absolute difference in 
travel time information, and (b) the relative difference in travel time information. The ribbon corresponds to a margin of error of 5%. 

Table 3 
Summary of the logistic regressions with dependent variable =Y 1 when the fastest route was chosen, and regressors ITT1,2 or ITT% 1,2. The Hosmer and Lemeshow 
(H&L) goodness of fit test is included in the table.         

Coefficient Estimate (s.e.) z statistic >Pr z( ) Estimate (s.e.) z statistic >Pr z( )

intercept −0.0305 (0.0517) −0.59 0.555 −0.1556 (0.0484) −3.218 0.0013 
ITT1,2 0.0033 (0.0003) 11.02 < e2 16

ITT% 1,2 2.4528 (0.1629) 15.058 < e2 16

Deviance = 4,774.9 AIC = 4,778.9 Deviance = 4,614.395 AIC = 4,618.4 
H &L GOF 2 = 79.802, df = 18, p-value = 9.282e−10 2 = 25.444, df = 18, p-value = 0.1132 
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route Pr satisficing S( ( ))n increases with , and that 
Pr satisficing S Pr satisficing S( ( )) ( ( ))2 1 . These trends have a dif-
ferent cause. In the first case, the satisficing alternatives become more 
desirable as a consequence of a larger difference in the travel time in-
formation between the fastest route (which is always satisficing) and 
the not satisficing routes, i.e, larger values of . In the second case, the 
trend is explained because, for the same value of , the number of sa-
tisficing routes is larger in S ( )2 than in S ( )1 , thus making it more 
likely to choose one. These two observations can be generalised to the 
case of choice problems with more than three alternative routes. In the 
first case, by arguing that the travel time has a negative effect on the 
choices of travellers. In the second case, by arguing that more satisfi-
cing alternatives imply necessarily less non-satisficing routes, so the 
probability of choosing a satisficing route is higher for larger values of 
n. Furthermore, more satisficing routes means a greater diversity of the 
route attributes, giving travellers more options from where to choose. 

The probability Pr satisficing( ) shown in Fig. 12(a), was estimated 
for choice problems with three alternative routes, but how would it 
look in the general case, i.e., for more than three alternatives? To an-
swer this question, first note that since there are only three alternative 
routes in the choice problems, the probability =Pr satisficing S( ( )) 13
for all . Assuming that the probabilities Pr satisficing S( ( ))n and their 
weights Pr S( ( ))n ( =n 1 and =n 2) in the general case can be esti-
mated from the case of three alternatives, then the total probability 
estimated here, Pr satisficing( ), overestimates the real total probability 

that would be observed in the presence of more than three alternative 
routes. Therefore, Pr satisficing( ) can be considered as an upper bound 
for this real probability. To see this, 
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where the inequality is obtained by making =Pr satisficing S( ( )) 1n for 
all n 3, and the equality since == Pr S( ( )) 1n

N
n1 (they are disjoint 

events). To obtain a lower bound, recall from the previous analysis that 
it can be assumed that +Pr satisficing S Pr satisficing S( ( )) ( ( ))n n1 for 
all n. Thus, 

Fig. 11. Minimisation rate, F(1), computed for the subsets S ( )1 for (a) the absolute difference in travel time information, and (b) the relative difference in travel time 
information. The red lines are the predictions of the logistic models; the ribbon corresponds to the 95% confidence interval. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. (a) Conditional, Pr satisficing S( ( ))n , and unconditional, Pr satisficing( ), probability of choosing a satisficing route as a function of . (b) Probability of 
observing S ( )n in the data, i.e, the fraction of observations with =n 1, 2, 3 satisficing routes for different values of . These probabilities, computed for the bootstrap 
subsamples, are also included in the figures with lighter colours. 
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The lower and upper bounds for the probability in the general case 
are shown in Fig. 13, along with the estimated conditional probabilities 
Pr satisficing S( ( ))n . The results show that the estimates of the pro-
portion of boundedly rational choices are higher that the estimates for 
the perfect rational choices, and that the difference is higher for 

< 0.35. For = 0.35, the estimated proportion of rational choices is 
82%, whereas for boundedly rational choices is between 84% and 92%. 

In Fig. 12(a), it can be seen that the estimates for the bootstrap 
subsamples do not differ considerably from the estimate considering all 
data, specially for the unconditional probability Pr satisficing( ). This 
implies that, at aggregated level, the heterogeneity of participants and 
route attributes have little impact on the probability of choosing a sa-
tisficing route. As in the previous section, a logistic regression is fitted 
to the data to obtain a mathematical expression for the upper and lower 
bounds in the general case. The regression is fitted to the bootstrap 
subsamples to produce some variation. The results of the models are 
summarised in Table 4, where it can be seen that, for both cases, the 
regressor is statistically significant (significance level 0.001), and that 
the Hosmer and Lemeshow goodness of fit test do not reject the null 

hypothesis that the observed and predicted probabilities are the same. 
Therefore, the upper and lower bounds for the probability of choosing a 
satisficing route, given the size of the indifference band can be ap-
proximated by the logistic functions 

=

=
+

+

+
+

+
+

Pr satisficing

Pr satisficing

( )

( ) .

upper e
e

lower e
e

1

1

0.49 5.23
0.49 5.23

0.61 2.85
0.61 2.85

These bounds are shown in Fig. 14 along with the observed values of 
the bootstrap subsamples. 

The conditional probabilities Pr satisficing S( ( ))n can be decom-
posed as the sum of the more simple probabilities =Pr C I S( ( ))k n( ) , 
i.e., the sum of the probabilities of choosing the kth fastest route, given 
that there are n satisficing routes (see Eq. (5)). This decomposition is 
shown in Fig. 15, where it can be seen that the probability of choosing 
the fastest route is higher, no matter the value of , i.e., 

= > =Pr C I S Pr C I S( ( )) ( ( ))n n(1) (2) for all values of . As expected, 
the preference for the fastest route amongst the satisficing routes in-
creases with increasing values of , however, it is interesting to note 
that the preference for the fastest route is much higher even for small 
values of . This means that informing a route to be the fastest has 
already an effect on the preferences of the participants, regardless of the 
difference in the travel time with the rest of the alternatives. This effect 
is specially important in the case of the perfect rational travellers (9.5% 
in this study), who will always choose the fastest route. The probability 
of choosing the fastest route is approximately 29% higher in the case of 
S ( )2 and 116% higher in the case S ( )3 . 

4.2.1. Heterogeneity of the indifference band 
Participants are heterogeneous in their indifference bands. This can 

be observed in Fig. 13 of the previous section, where 
<Pr satisficing( ) 1, contradicting the boundedly rational hypothesis 

Fig. 13. Total probability of choosing a satisficing route for the general case 
(grey area). Perfect rationality is represented by the red line. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 4 
Summary of the logistic regressions to approximate the upper and lower bands for Pr satisficing S( ( ))n in the general case. The Hosmer and Lemeshow (H&L) 
goodness of fit test is included in the table.          

Upper bound Lower bound 

Coefficient Estimate (s.e.) z statistic >Pr z( ) Estimate (s.e.) z statistic >Pr z( )

intercept 0.4943 (0.0676) 7.313 2.62e−13 0.6122 (0.0620) 9.872 <2e−16 
5.2326 (0.3962) 13.206 < 2e−16 2.8531 (0.2690) 10.606 <2e−16  

Deviance = 2.0312 AIC = 1367.2 Deviance = 6.4038 AIC = 1578.5 
H &L GOF 2 = 1.1096, df  = 8, p-value  = 0.9975 2 = 4.6106, df  = 8, p-value  = 0.7983 

Fig. 14. Predicted upper and lower bounds for the probability of choosing a 
satisficing route. The 95% prediction error interval is represented with a dashed 
line. 

H. González Ramírez, et al.   Travel Behaviour and Society 22 (2021) 59–83

70



that travellers choose satisficing routes. To put it another way, if par-
ticipants were all boundedly rational with the same indifference band 
given by , then =Pr satisficing( ) 1 for all the values of . This is 
clearly not the case, unless a large (and therefore not meaningful) value 
of is considered. In this section, the heterogeneity of the indifference 
bands is analysed. To this purpose, the estimators for the indifference 
band at individual level, i, defined in Section 3.2.1, are computed. 

The distribution of the estimators ,i
max

i
95 and i

50 are presented 
in Fig. 16. It can be observed that for the estimators i

max and i
95 the 

proportion of perfectly rational participants, as it was found in Section  
4.1, is 9.5% ( = 0i ). Furthermore, there is a group of participants with 
large indifference band, > 1i , meaning that they will still consider 
routes two times slower than the fastest route. The percentage of par-
ticipants with these large indifference bands is 5% and 2% for i

max and 
i

95, respectively. It is likely that these participants were not engaged in 
the experiments, as it is difficult to believe that a traveller is willing to 
choose a route twice as slow as the fastest alternative. For these two 
estimators, a large heterogeneity is observed, with values more or less 
uniformly distributed in the interval (0.15, 0.5]; in both cases, around 
half of the observations lie in this interval. However, the distribution of 

i
95 accumulates around 30% of the observations in the interval 

[0, 0.15], whereas the distribution of i
95 accumulates around 20% in 

the same interval. This explains difference of 0.08 percentage points in 
the means of the distributions. In contrast, the distribution of the esti-
mators i

50 tells a completely different story, showing low hetero-
geneity with around 80% of the observations having a very small in-
difference band: 0.10i

50 . Moreover, with this definition, the 
proportion of perfect rational participants would be 55%, which is high 
compared to the observed proportion of perfectly rational participants 
(9.5%). Considering that i

max is a restrictive estimator, very sensitive 
to outliers, and that i

50 overestimates the perfect rationality, the es-
timator i

95 may be a good selection. This later estimator is con-
servative, in the sense that it will include the great majority of the 
routes choices within the indifference band, but being less sensitive to 
outliers. 

To see the consequences of using the distinct estimators of i, the 
proportion of satisficing choices in the data set are computed assuming 
that the participants are heterogeneous and that their indifference 
bands are given by the three estimators. These proportions are pre-
sented in Table 5. As expected, when the estimators are defined as 

i
max , the probability of choosing a satisficing route is 100%, since i

max

was defined so all the observed choices are satisficing. By relaxing this 

Fig. 15. Probabilities of choosing the kth fastest route amongst the n satisficing routes for (a) =n 2 and (b) =n 3.  

Fig. 16. Distributions of the indifference band by participant estimated using (a) the maximum of the travel time differences of the routes chosen by the participants, 
(b) the 95 percentile, and (c) the 50 median. The cumulative distributions are included in (d). 

H. González Ramírez, et al.   Travel Behaviour and Society 22 (2021) 59–83

71



condition, and defining the estimator as i
95, the observed probability 

of choosing a satisficing route is 89.9%, and 66.8% for the estimator 
i

50. These proportions are similar to those obtained by assuming that 
participants are homogeneous with equal to the means of the dis-
tributions. Note that the homogeneous case is equivalent to evaluating 

i in Fig. 13. For i
max and i

95, this implies that by assuming homo-
geneity and an indifference band equal to the mean, it is possible to 
know with high probability (92.7 and 88.9%) which routes are travel 
time satisficing. However, a smaller indifference band is preferred, as it 
may reduce the number of alternative routes that are considered. 

4.3. Estimating the MXL model for route conditioned on the indifference 
band 

In this section, the route choice probability is obtained by esti-
mating the route choice model presented in Section 3.3. Name this 
model Model_1. The results are presented alongside the estimates of a 
second unrestricted MXL model (Model_0) that considers no in-
difference band. That is, in Model_0 the three alternative routes are 
always considered by the decision maker and have a probability of 
being chosen greater than zero. The purpose of including Model_0 in the 
analysis is to investigate how considering the indifference bands change 
user route choice behaviour. The models are compared in terms of their 
goodness-of-fit and predictive accuracy for out-of-sample observations 
at the end of this section. Both models were estimated using only the 
participants that received travel time information (353 participants and 
3664 choices). It is worth mentioning that, in order to facilitate the 
interpretation and comparison between the two models, the informed 
travel time variable is considered in the specification of Model_1 for the 
alternatives inside the indifference band. The Gibbs sampler software 
JAGS (Plummer, 2003) and the R (R Core Team, 2018) package rjags 
were used to obtain samples from the posterior distribution of the 
parameters , ¯

i and . The values of the hyperparameters, which de-
fine the priors of ¯ and , were chosen to be weakly-informative (very 
high variances). In other words, it is assumed high uncertainty on the 
real values of the parameters that are being estimated. The estimates for 
models Model_0 and Model_1 are presented in Table 6; the complete 
summary of the estimates is included in C. 

Comparing the two models, it can be seen that there is a large dif-
ference in the distribution of the coefficients ITT% , and that this dif-
ference is explained by a change in their mean values ¯

ITT% rather than 
a change in their variance: Model_1 exhibits a mean closer to zero. Note 
that the distributions of the rest of the attributes do not vary con-
siderably (Fig. 17). Model_0 has a negative mean preference for travel 
time information <¯ 0ITT

M
%

0
, meaning that the average traveller finds 

longer travel times undesirable. At individual level i, the preferences for 
ITT% show a high heterogeneity, as it can be deduced from the esti-

mated standard deviation ( = 4.138ITT% ). The proportion of partici-
pants with a negative preference for ITT% is < =Pr ( 0) 0.21ITT

M
%

0 , 
i.e., four in five participants prefer shorter time routes. Moving on to 
Model_1. The estimates show a positive mean preference for the travel 
time information, >¯ 0ITT

M
%

1
, result that may appear counter intuitive, 

as it is interpreted as the mean participant choosing longer routes. 
However, contrary to Model_0 where 4/5 of participants show a pre-
ference for shorter routes, in Model_1 < =Pr ( 0) 0.46ITT

M
%

1 , i.e., there is 
no clear trend in the preferences for the travel time information. In 
words, it is equally likely to find an individual preferring shorter time 
routes than longer ones within the indifference band. This finding is in 
accordance with the bounded rational model assumption in this article: 
travellers are indifferent to travel time when choosing a route from the 

Table 5 
Observed proportion of satisficing choices, (i) given different estimators for the 
individual indifference bands, i, and (ii) assuming homogeneity for the in-
difference band, i .       

i max
i 95 i 50

Heterogeneous i 100% 89.9% 66.8% 
Homogeneous = 92.7% 88.9% 69.1 %    

Table 6 
Estimates for the mean and the covariance (standard deviation and correlation) 
of the parameters of the two MXL models Model_0 and Model_1 estimated for the 
participants that received travel time information. lppd is the log pointwise 
predictive density, an estimate of the predictive accuracy of the model: a higher 
value (compared to another model) means a better fit. WAIC (Watanabe-Akaike 
Information Criterion) penalises the lppd with the model complexity: a smaller 
value (compared to another model) means that the model represents a better 
alternative balancing goodness-of-fit and complexity. err is the discrepancy 
between the observed and predicted choice distributions. The significance of 
the estimated parameters is not tested.        

Model_0 Model_1 

Parameter of the posterior Mean s.error Mean s.error  

F̄RW
0.862 0.313 0.622 0.340 

D̄IR
1.377 0.640 1.863 0.753 

¯TRN
0.012 0.108 0.061 0.132 

ĪNT
−0.044 0.029 −0.076 0.032 

¯ ITT%
−3.285 0.356 0.366 0.373 

FRW
2 2.840 (1.685) 2.253 3.596 (1.896) 1.842 

DIR
2 17.889 (4.230) 11.229 25.970 (5.096) 9.383 

TRN
2 0.505 (0.711) 0.185 0.464 (0.681) 0.178 

INT
2 0.052 (0.228) 0.011 0.058 (0.240) 0.014 

ITT%
2 17.121 (4.138) 3.230 10.867 (3.297) 2.575 

FRW DIR, 4.660 (0.654) 4.628 7.470 (0.773) 3.564 

FRW TRN, 0.389 (0.324) 0.478 0.543 (0.420) 0.451 

FRW INT, 0.011 (0.028) 0.092 −0.031 
(-0.069) 

0.093 

FRW ITT,% 0.116 (0.017) 1.843 0.882 (0.141) 1.596 

DIR TRN, 1.175 (0.391) 1.025 1.622 (0.467) 1.057 

DIR INT, −0.340  
(−0.352) 

0.227 −0.486  
(−0.397) 

0.274 

DIR ITT,% 9.290 (0.531) 3.853 8.525 (0.507) 3.696 

TRN INT, −0.029 
(-0.180) 

0.032 −0.025  
(−0.151) 

0.035 

TRN ITT,% −0.530  
(−0.180) 

0.530 0.021 (0.009) 0.543 

INT ITT,% −0.336  
(−0.356) 

0.160 −0.382  
(−0.482) 

0.150 

lppd −3307.05 −3334.77 
= +WAIC lppd p2 2 waic 6,632.27 (pwaic = 9.08) 6,688.20 (pwaic = 9.33) 

err 0.110% 0.104    

Fig. 17. Distributions of the random coefficients ( ¯ , )N for models 
Model_0 and Model_1. The probability of a coefficient being greater than zero in 
shown at the top of the plot. 
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satisficing set. Furthermore, the physical attributes play, on average, a 
larger role in the choices of travellers in Model_1 compare to Model_0. 
To see this, observe that there is no meaningful change in the dis-
tributions of the physical attributes between the models. Then, since the 
values of ITT% are closer to zero in Model_1, the importance of the 
travel time information relative to the rest of the attributes x, measured 
as ¯ / ¯

ITT x% , decreases significantly. As in Model_0, the distribution of 
these coefficients show a high variance and, as a consequence, the 
coefficients ITT% may take large values. Nonetheless, the impact of 
this coefficient on the choice probabilities is lower than in the unrest-
ricted model, as it multiplies smaller values of ITT% j1, in the utility; 
routes with large differences would not be satisficing. 

Continuing with the interpretation of the rest of the variables. A 
decrease in the mean preferences for FRW and INT can be noticed. In 
the case of FRW, the decrease places the average closer to zero, 
meaning that it becomes less important in the route choice. In the case 
of INT, the decrease makes it more important, meaning that within the 
indifference band a participant is less willing to choose a route with 
more intersections. It is important to mention that even though the 
coefficient seems small, this variable usually takes values >INT 5, 
making it an important variable defining the choice probabilities (see  
Fig. 3). This last variable is even more important than FRW. This is not 
the case for TRN, with coefficients near zero and taking values usually 

<TRN 2. The directness, DIR, is the most important attribute influen-
cing the decisions of travellers in Model_1, but not in Model_0 where 

ITT% dominates. It is interesting to note that DIR and ITT% are 
highly correlated (corr  = 0.5) and that the correlation is positive. This 
implies that travellers who prefer direct routes are likely to prefer 
longer routes. This is true for both estimated models, suggesting that 
there may be two groups of travellers: one taking decisions mainly 
based on the travel time, and the other based on the directness or length 
of the trip. 

Model_0 and Model_1 are now evaluated in terms of their goodness- 
of-fit and their predictive accuracy. The goodness-of-fit is assessed by 
computing the lppd (expression (9)) and the discrepancy between the 
observed and predicted choice distributions err (expression (11)) using 
all the available observations. The estimation results in Table 6 show 
that the MXL model, Model_0, has a higher lppd than the boundedly 
rational model Model_1 (lppdM0 =  −3307 vs lppdM1 =  −3335), 

meaning that, under lppd, the former model fits better the observations. 
The Watanabe-Akaike Information Criterion (WAIC), the Bayesian 
analogous of the Akaike Information Criterion (AIC) that penalises the 
goodness-of-fit by the complexity of the models, is smaller for Model_0. 
As it can be seen in Table 6, the factor that penalises for the complexity 
of the models, pwaic, is similar in both cases, meaning that the difference 
in WAIC between the two models is only explained by the lppd. This is 
not surprising, since both models estimate the same number of para-
meters: i

max in the case of Model_1 enters as a variable, it is not a 
parameter estimated by the model. If model selection were based on the 
WAIC, then Model_0 should be selected. However, in terms of the dis-
crepancy between the observed and predicted choice distributions 
measured by the error err, the results are the opposite. The error err is 
computed OD pair wise and then averaged considering the weight of 
each OD pair in the observations. The results, respectively for Model_0 
and Model_1 are 11.0% and 10.4%, meaning that in this case Model_1 
fits better the observed route choice distributions. For completeness of 
the results, both lppd and err, aggregated per OD pair and weighted by 
the number of observations in each OD pair are presented in Fig. 18, 
where it can be seen that models’ performance is OD pair dependent 
and that no model is systematically superior to the other. 

To complete this analysis, the predictive accuracy of the models is 
obtained for out-of-sample observations to assess how the models 
generalise to unobserved choices. For this purpose, bootstrapping is 
performed with 10 iterations. At each iteration, 1/3 of the observations 
are removed from the training set, the models are estimated with the 
training set and the lppd and err are computed for the out-of-sample 
observations. Bootstrap validation is used (instead of cross-validation) 
to leave out a sufficient number of observations that permit to compute 
the choice distributions of the 41 OD pairs. The results are summarised 
in Fig. 19. The results throw the same conclusions as in the above 
analysis: in terms of the lppd, Model_0 performs slightly better in pre-
dicting new choices: the average lppd values across the ten iterations are 

=lppd¯ 1, 101.65M0 and =lppd¯ 1, 116.49M1 , but in terms of err the 
results are the opposite with err M0 = 12.65% and err M1 = 12.54%. The 
lppd is a measure related to the probability of observing the data, 
whereas err is a measure of discrepancy between the overall observed 
and predicted choice distributions. The opposite conclusions are ex-
plained because only the posterior predictive probability of the actual 
chosen alternatives contribute to the calculation of the lppd, while in 

Fig. 18. Goodness-of-fit of models Model_0 and Model_1 evaluated by OD pair considering (a) the lppd and (b) err measures. The average is represented by the dashed 
lines, it is obtained considering the weight of each OD pair in the data set. 
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the err the posterior predictive probabilities of the forgone alternatives 
are also taken into account. The error err is interpreted as the percen-
tage of trips that are erroneously assigned (on average) on a given OD 
pair. Thus, from a route choice point of view, err is more informative as 
it is related to the collective behaviour of travellers (distribution of 
choices over the OD pair alternative routes). This is of crucial im-
portance in estimating the network loading. As a final conclusion, it can 
be said that both models have a similar predictive accuracy. However, 
Model_1 is more in accordance than Model_0 with the findings in the 
descriptive analysis in this article, where bounded rational behaviour is 
observed. Moreover, the difference in predictive accuracy between the 
models could be larger in favour on Model_1 in cases with many alter-
natives per OD pair. In this case, some of the alternatives may be not 
satisficing for all individuals, and thus Model_1 would assign a prob-
ability of being chosen equal to zero, unlike Model_0 which assigns al-
ways positive probability to all alternatives. 

5. Conclusions and discussion 

In this work, the travel time minimisation behaviour and bounded 
rationality of travellers in route choice was studied through computer 
route choice experiments. In the experiments, participants made several 
route choices on 41 OD pairs presented over the road map of the city of 
Lyon. The choices of the participants were solely based on the travel 
time estimates (in minutes) and the map representation of the routes. It 
was found that, although participants received travel time estimates in 
the alternative routes, in 60.5% of the route choices participants chose 
the minimum travel time information route. This result lies within the 
range of those found in other studies (between 25% and 75%). 
However, it is important to take into consideration that the analysis 
presented here is based on route choices where participants received 
travel time information. Therefore, suggesting that in real-world si-
tuations, where travellers may not have travel time estimates on the 
forgone alternatives, the choices for the fastest route cannot be more 
than 60.5%. The percentage of choices for the fastest route was found to 
be OD pair and player dependant. According to the estimates of the 
MXL models, this dependency is explained by the heterogeneity of the 
preference of participants for the different route attributes, together 
with the variation of attributes between OD pairs. Apart from the travel 
time information, the directness of the routes resulted to be an im-
portant factor influencing the route choice of travellers. 

The first main finding in this study is that travellers evaluate relative 
rather than absolute differences in travel time, at least for the ranges in 
travel time in the experiments. This means that a 5 min difference in 
travel time weights different for trips of 10 and 30 min. In the first case, 
the difference represents an increment of travel time of 50% with re-
spect to the alternative, whilst in the second case the difference is of 
15%. Therefore, the 5 min difference in the first case weighs more in 

favour of the fastest alternative. This implies that travellers minimise 
their travel time with respect to a reference point, given in this case by 
the travel time in the fastest route, and that the reference point is 
context-dependent, since it is evaluated in each route choice problem. 
This result has practical implications for the estimation of route choice 
models, and thus in traffic assignment, where expressing the travel time 
in relative terms could increase the realism of the predictions. For ex-
ample, the travel times of the routes in each OD pair could be expressed 
as the percentage increase in travel time with respect to the minimum 
free flow travel time in that OD pair, or they can be transformed with 
the natural logarithm, as in the case of the Path Size Logit model (Ben- 
Akiva and Bierlaire, 1999), which also accounts for route overlapping. 
At individual level, a small percentage of the participants (10%) chose 
always the fastest route, these participants can be considered as perfect 
rational. The behaviour of the rest of the participants can be better 
explained by bounded rationality. In this regard, it was found that the 
participants are heterogeneous with respect to their indifference band, 
and that at least 70% of them would not consider routes with travel 
time differences 1.5 times slower than the fastest alternative. The mean 
indifference band can be estimated as 31.3%, meaning that the average 
participant did not consider routes with travel time differences 1.3 
times slower than the fastest alternative. This value coincides with the 
average additional travel time in the choices observed in  
Hadjidimitriou et al. (2015). If travellers are assumed to be homo-
geneous with an indifference band equal to the mean, it is possible to 
know with high probability (88.9%) which routes are travel time sa-
tisficing. An interesting finding is that amongst the satisficing routes, 
the minimum travel time route was always preferred, even for small 
relative differences in travel time. This suggests that just the fact of 
informing a route to be the fastest increases its probability to be chosen. 
In this article the increase was of around 10 percentage points with 
respect to the second fastest route. A MXL model was estimated con-
sidering the heterogeneous indifference bands that define the satisficing 
alternatives for each participant (Model_1). This model was compared to 
the estimates of the classical MXL model that takes into account all the 
alternatives (Model_0). The results show that, as expected, travel time 
information losses explanatory importance in the first model, while the 
rest of the variables maintain their same level. Thus, amongst the sa-
tisficing alternatives, participants put more stress on the physical route 
attributes rather than on travel time information for their route choices. 
These models were compared in terms of their predictive accuracy for 
out-of-sample observations, resulting in similar predictive accuracy. 
When measured in terms of erroneously assigned trips for a given OD 
pair, the errors are around 12.6%. However, Model_1 is more in ac-
cordance than Model_0 with the bounded rational behaviour observed 
in the descriptive analysis in this article. This result is promising, 
considering that in Model_1 the definition of the exogenous indifference 
band is i

max is restrictive. A bounded rational model that considers 

Fig. 19. Out-of-sample (a) log pointwise predictive density (lppd) and (b) discrepancy between the observed and predicted choice distributions (err) for each iteration 
of the bootstrap validation. 
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more flexible definitions for the indifference band could improve the 
performance. This would require to investigate more complex models 
capable of inferring the indifference bands endogenously. Moreover, 
Model_1 could be more advantageous in choice situations with many 
alternatives, in which some alternatives will not be satisficing for all 
individuals and thus they will have probability equal to zero of being 
chosen. These questions are left as the subject of future investigation. 

The findings in this article may have practical implications that are 
left for future work. In traffic simulation, the estimates for the in-
difference band can be used to reduce the search space of choice set 
generation by discarding routes with travel time differences (with re-
spect to the shortest time route) above ; or used as exogenous inputs in 
bounded rational models as the one proposed in Watling et al. (2018). 
In these cases, the impact of considering homogeneous versus hetero-
geneous indifference bands could be assessed to determine the trade- 
offs between the simplicity of the former and the realism of the later. 
Apart from these two practical applications, the estimates of the in-
difference band can shed some light on the boundaries in which the 
users’ route choices could be influenced, with the objective of directing 
them towards the social optimum (van Essen et al. (2016) provides a 
complete review on this subject). 
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Appendix A. Attributes of the OD pairs and routes 

Definition of the variables:  

• EDIST: the euclidean distance from origin to destination;LEN: the length of the route;  
• DIR: the directness of the trip, defined as the euclidean distance divided by the length of the route;  
• TRN: the number of turns per kilometre;  
• INT: the number of intersections per kilometre;  
• FRW: the % of freeway that composes the routes;  
• ITT: travel time information (in minutes) that participants received.  

Table A.7 
Values of the attributes faced by player in the playable OD pairs for the Lyon-V36 network.              

OD Route Map-reading ITT   

EDIST LEN DIR TRN INT FRW min max mean s.d.  

O01D01 R1 5.20 6.40 0.80 0.31 10.11 0.04 12.80 35.90 18.50 5.20  
R2 5.20 7.00 0.74 0.72 10.01 0.03 15.70 20.90 18.00 1.50  
R3 5.20 8.40 0.62 0.12 4.18 0.57 10.20 19.60 12.40 2.00 

O02D01 R1 4.70 5.90 0.78 0.51 9.96 0.04 11.80 30.30 16.90 4.30  
R2 4.70 6.10 0.76 0.33 9.82 0.04 13.40 17.20 15.10 1.30  
R3 4.70 8.90 0.52 0.00 5.05 0.54 11.30 20.00 13.60 1.70 

O03D03 R1 2.40 3.70 0.60 0.81 11.82 0.00 7.10 9.30 7.90 0.60  
R2 2.40 3.80 0.58 1.05 10.81 0.00 6.70 12.90 9.30 1.80  
R3 2.40 3.80 0.58 0.78 10.65 0.00 7.50 29.30 11.90 4.70 

O04D03 R1 3.60 4.50 0.76 0.67 9.21 0.00 10.80 16.00 13.20 1.30  
R2 3.60 4.70 0.72 1.07 8.16 0.00 7.70 10.10 9.30 0.70  
R3 3.60 5.10 0.66 0.39 5.29 0.31 9.00 11.30 10.10 0.70 

O05D04 R1 4.40 5.90 0.54 0.85 8.62 0.03 11.60 23.20 16.40 3.20  
R2 4.40 6.30 0.51 0.00 3.18 0.75 5.10 6.10 5.60 0.30  
R3 4.40 6.60 0.49 0.61 9.84 0.03 10.40 15.10 11.80 1.30 

O06D05 R1 5.20 5.90 0.86 0.17 9.22 0.04 12.30 15.40 13.80 0.80  
R2 5.20 6.80 0.74 0.88 10.13 0.04 14.60 35.30 20.40 5.00  
R3 5.20 9.60 0.53 0.21 5.43 0.50 15.50 24.30 17.80 2.10 
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Appendix B. Maps of the OD pairs and routes   

Table A.7 (continued)             

OD Route Map-reading ITT   

EDIST LEN DIR TRN INT FRW min max mean s.d.  

O07D06 R1 3.50 5.50 0.60 0.91 8.60 0.03 12.40 31.40 17.30 4.50  
R2 3.50 6.40 0.52 0.79 3.62 0.77 6.00 6.60 6.30 0.20  
R3 3.50 6.40 0.51 1.25 9.19 0.03 9.30 11.40 10.00 0.60 

O08D07 R1 2.90 3.30 0.69 0.60 3.59 0.28 3.40 4.00 3.50 0.10  
R2 2.90 3.40 0.68 1.17 10.27 0.00 5.80 6.70 6.20 0.30  
R3 2.90 4.00 0.59 1.52 8.59 0.00 6.30 7.10 6.60 0.20 

O09D08 R1 3.10 4.00 0.78 0.75 8.48 0.05 7.50 16.90 9.40 2.20  
R2 3.10 4.30 0.73 0.70 8.38 0.05 9.50 12.50 10.80 0.90  
R3 3.10 5.10 0.62 0.20 9.41 0.38 10.00 11.40 10.90 0.40 

O10D02 R1 3.10 4.90 0.59 2.02 8.49 0.04 7.40 9.40 8.00 0.60  
R2 3.10 5.20 0.56 0.58 8.14 0.04 9.80 14.40 11.70 1.20  
R3 3.10 5.40 0.54 0.93 8.96 0.04 9.30 11.10 10.20 0.50 

O11D11 R1 2.70 3.80 0.66 1.84 11.30 0.00 8.20 11.10 9.50 0.90  
R2 2.70 4.00 0.63 2.01 9.80 0.00 9.10 11.80 10.20 0.80  
R3 2.70 4.70 0.53 0.85 8.07 0.00 8.20 9.00 8.60 0.10 

O12D12 R1 2.70 3.90 0.59 0.77 7.48 0.00 7.80 9.10 8.40 0.30  
R2 2.70 4.20 0.54 1.91 9.56 0.00 8.00 9.40 8.50 0.40  
R3 2.70 4.60 0.50 1.09 9.81 0.00 8.50 10.60 9.50 0.50 

O13D13 R1 3.20 3.90 0.74 0.78 9.84 0.00 9.70 12.70 11.40 0.80  
R2 3.20 4.30 0.66 2.09 11.62 0.00 8.60 13.50 9.60 0.80  
R3 3.20 5.00 0.57 1.41 9.23 0.00 11.00 13.60 12.40 0.70 

O14D14 R1 2.80 3.40 0.62 2.36 10.02 0.00 6.30 9.80 7.70 1.30  
R2 2.80 3.80 0.55 1.57 9.92 0.00 6.30 11.70 8.00 1.20  
R3 2.80 4.00 0.52 0.99 10.88 0.00 7.90 10.80 9.10 0.70 

O15D15 R1 4.10 4.60 0.84 0.87 10.93 0.00 9.80 25.00 13.20 3.10  
R2 4.10 5.40 0.71 0.74 9.94 0.00 12.70 36.00 16.60 5.30  
R3 4.10 6.20 0.63 0.49 11.85 0.00 13.40 15.10 14.10 0.50    

Table A.8 
Values of the attributes faced by player in the playable OD pairs for the Lyon-full network.              

OD Route Map-reading ITT   

EDIST LEN DIR TRN INT FRW min max mean s.d.  

O16D16 R1 10.70 13.70 0.78 0.15 5.57 0.79 16.30 18.10 16.40 0.30  
R2 10.70 18.90 0.56 0.16 3.02 0.78 16.20 18.30 17.20 0.70  
R3 10.70 21.00 0.51 0.14 2.58 0.73 22.30 27.70 23.80 1.40 

O17D17 R1 10.50 14.80 0.70 0.41 8.58 0.27 27.60 32.80 28.90 1.00  
R2 10.50 15.20 0.68 0.00 3.55 0.75 15.80 17.60 16.50 0.40  
R3 10.50 19.30 0.54 0.26 3.42 0.81 18.30 21.00 19.50 0.80 

O19D19 R1 6.40 7.90 0.78 0.66 9.79 0.00 19.70 24.00 21.60 1.30  
R2 6.40 8.50 0.71 1.21 10.19 0.00 20.80 24.70 22.40 1.00  
R3 6.40 10.80 0.57 1.14 9.84 0.27 25.10 31.20 27.40 1.60 

O20D20 R1 6.10 9.00 0.67 0.57 12.18 0.25 17.00 21.40 18.10 1.00  
R2 6.10 10.10 0.60 0.61 9.90 0.02 23.30 27.30 25.00 1.00  
R3 6.10 15.70 0.38 0.19 4.64 0.65 17.80 19.10 18.60 0.30 

O21D21 R1 4.10 5.00 0.76 1.05 10.20 0.00 12.90 15.70 14.40 0.90  
R2 4.10 5.40 0.70 0.97 11.42 0.25 13.80 17.90 16.10 1.20  
R3 4.10 6.40 0.60 0.81 10.94 0.00 12.90 17.00 14.60 1.10 

O22D22 R1 8.20 10.20 0.80 0.40 9.60 0.18 19.70 31.90 22.00 3.20  
R2 8.20 11.20 0.73 0.73 9.12 0.00 27.30 43.60 30.40 3.00  
R3 8.20 17.60 0.46 0.46 4.70 0.45 22.60 29.70 25.60 2.20 

O23D23 R1 6.40 8.40 0.78 1.10 9.29 0.66 13.30 18.20 14.60 1.20  
R2 6.40 10.10 0.65 1.32 9.52 0.03 19.80 22.20 20.50 0.70  
R3 6.40 10.50 0.62 1.07 7.68 0.00 23.70 26.30 24.00 0.50 

O24D24 R1 9.20 14.20 0.62 1.29 8.95 0.00 32.10 42.60 34.20 2.20  
R2 9.20 14.60 0.60 0.56 8.49 0.24 27.80 39.60 31.70 3.10  
R3 9.20 17.10 0.52 0.53 5.97 0.37 27.30 51.40 33.60 6.50 
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Table A.8 (continued)             

OD Route Map-reading ITT   

EDIST LEN DIR TRN INT FRW min max mean s.d.  

O25D25 R1 5.90 6.70 0.83 0.93 8.68 0.00 15.10 17.30 16.10 0.50  
R2 5.90 8.10 0.69 1.15 9.18 0.00 16.30 19.60 18.50 1.30  
R3 5.90 10.70 0.52 0.57 3.84 0.56 13.20 15.50 14.40 0.70 

O26D26 R1 7.20 8.90 0.80 0.46 12.09 0.10 20.60 33.60 23.50 2.40  
R2 7.20 12.60 0.57 0.49 8.67 0.50 19.90 25.80 22.00 1.40  
R3 7.20 14.20 0.51 0.07 4.30 0.56 15.80 20.60 17.20 0.90 

O27D27 R1 5.60 8.20 0.67 0.63 6.99 0.35 12.50 16.70 14.70 1.30  
R2 5.60 9.40 0.58 1.09 8.62 0.00 19.50 23.50 21.20 1.10  
R3 5.60 9.40 0.58 0.54 9.33 0.27 18.10 20.20 19.30 0.70 

O28D28 R1 10.70 13.00 0.82 0.08 6.86 0.21 18.30 21.90 19.20 0.80  
R2 10.70 17.40 0.61 0.87 8.77 0.15 38.00 57.10 38.90 2.30  
R3 10.70 17.70 0.60 0.29 5.47 0.29 30.90 40.20 32.20 1.30 

O29D29 R1 5.80 8.10 0.72 0.38 7.15 0.00 14.20 18.30 15.60 0.90  
R2 5.80 8.60 0.68 0.96 7.12 0.00 17.70 22.20 19.50 1.00  
R3 5.80 9.00 0.65 0.23 2.44 0.80 9.10 11.30 10.00 0.60 

O30D30 R1 8.00 10.50 0.75 0.68 8.74 0.32 20.40 22.30 21.00 0.40  
R2 8.00 10.80 0.73 1.42 12.09 0.00 25.60 33.80 28.50 2.00  
R3 8.00 12.90 0.61 0.87 6.99 0.14 26.10 30.50 27.70 1.10 

CC1 R1 6.30 8.40 0.70 0.86 9.42 0.25 15.20 22.00 18.00 2.50  
R2 6.30 8.70 0.68 1.19 11.21 0.09 17.10 21.40 19.00 1.20  
R3 6.30 10.30 0.57 0.79 8.03 0.35 19.90 22.70 21.40 1.00 

CC2 R1 2.20 3.30 0.66 1.96 10.90 0.00 8.10 9.60 9.10 0.30  
R2 2.20 3.60 0.60 2.08 8.59 0.00 8.60 9.90 9.40 0.40  
R3 2.20 3.90 0.56 1.39 11.68 0.00 8.90 10.50 10.00 0.40 

CC3 R1 6.80 9.90 0.66 0.72 10.67 0.29 19.10 34.10 26.30 4.30  
R2 6.80 10.30 0.64 0.70 9.02 0.14 23.00 31.40 26.10 2.10  
R3 6.80 11.10 0.59 0.65 9.28 0.13 22.80 28.10 24.80 1.30 

CC4 R1 4.80 6.50 0.71 1.13 10.67 0.00 12.50 13.40 13.00 0.30  
R2 4.80 7.10 0.65 1.17 10.31 0.00 16.00 17.70 16.90 0.60  
R3 4.80 10.10 0.46 0.41 6.92 0.32 18.00 20.50 19.40 0.80 

CC5 R1 6.60 9.90 0.67 0.73 11.33 0.07 24.10 34.60 28.40 3.20  
R2 6.60 12.30 0.54 0.66 9.03 0.35 22.90 32.80 25.80 2.30  
R3 6.60 15.70 0.42 0.77 5.14 0.50 22.50 26.70 24.40 1.20 

CC6 R1 7.90 10.00 0.69 0.31 7.86 0.24 16.00 20.00 18.10 1.30  
R2 7.90 13.30 0.52 0.31 6.48 0.32 20.00 26.90 23.10 1.10  
R3 7.90 14.50 0.47 0.35 7.64 0.49 22.00 27.80 24.40 1.40 

CC7 R1 3.80 5.40 0.68 1.16 11.43 0.15 14.50 17.80 15.90 0.70  
R2 3.80 8.00 0.46 0.78 5.91 0.33 10.20 21.90 14.20 3.50  
R3 3.80 9.50 0.39 0.65 6.97 0.52 13.20 16.20 14.40 0.90 

CC8 R1 3.30 4.30 0.75 0.74 11.12 0.00 10.40 16.10 13.00 1.70  
R2 3.30 4.80 0.67 1.31 9.92 0.00 8.70 16.50 12.40 2.70  
R3 3.30 5.60 0.58 1.32 9.72 0.00 12.10 14.30 13.20 0.60 

CC9 R1 3.00 5.20 0.55 1.43 11.06 0.00 11.60 14.30 12.50 0.80  
R2 3.00 5.80 0.49 0.90 8.95 0.12 12.10 14.90 13.30 0.80  
R3 3.00 6.90 0.42 1.06 9.18 0.29 11.80 15.10 12.90 0.70 

CR2 R1 2.50 3.30 0.68 1.97 9.70 0.00 7.10 7.80 7.40 0.10  
R2 2.50 3.80 0.59 1.97 9.73 0.00 6.80 7.30 7.10 0.20  
R3 2.50 4.70 0.48 2.49 10.07 0.00 8.40 9.10 8.60 0.30 

CR7 R1 4.80 8.80 0.52 1.52 10.09 0.00 21.10 23.10 21.90 0.60  
R2 4.80 9.40 0.49 0.65 8.07 0.00 20.40 22.70 21.20 0.70  
R3 4.80 15.90 0.29 0.77 4.65 0.49 21.50 26.90 22.60 1.40 

CR9 R1 3.60 5.70 0.51 1.09 6.26 0.19 11.30 12.40 11.80 0.30  
R2 3.60 6.40 0.46 1.14 9.86 0.00 12.50 13.60 13.10 0.40  
R3 3.60 7.40 0.39 1.11 7.65 0.00 16.80 20.90 17.70 1.10    
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Fig. B.20. OD pairs and three connecting routes defined for the MDG experiments in the Lyon-V36 network.  
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Fig. B.21. OD pairs and three connecting routes defined for the MDG experiments in the Lyon-full network.  
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Fig. B.22. OD pairs and three connecting routes defined for the MDG experiments in the Lyon-full network.  
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Appendix C. Detailed results of the estimates for Model_0 and Model_1   

Table C.9 
Results Model_0. Statistics on the posterior distribution for the mean and covariance matrix.            

Statistic∗  

Parameter Mean s.d. qt.2.5% qt.25% qt.50% qt.75% qt.97.5% R ∗∗  

F̄RW
0.862 0.313 0.242 0.658 0.869 1.065 1.485 1.026 

D̄IR
1.377 0.640 0.018 0.969 1.414 1.838 2.502 1.042 

¯TRN
0.012 0.108 −0.204 −0.059 0.014 0.086 0.218 1.021 

ĪNT
−0.044 0.029 −0.099 −0.063 −0.045 −0.024 0.011 1.007 

¯ ITT%
−3.285 0.356 −4.010 −3.512 −3.276 −3.045 −2.604 1.018          

FRW
2 2.840 2.253 0.258 0.896 2.261 4.285 8.010 1.123 

DIR
2 17.889 11.229 2.304 9.003 16.272 24.554 44.478 1.165 

TRN
2 0.505 0.185 0.218 0.371 0.475 0.615 0.935 1.042 

INT
2 0.052 0.011 0.034 0.044 0.051 0.059 0.077 1.008 

ITT%
2 17.121 3.230 11.608 14.842 16.833 19.134 24.192 1.001          

FRW DIR, 4.660 4.628 −1.565 0.599 3.936 7.758 14.893 1.122 

FRW TRN, 0.389 0.478 −0.379 0.039 0.298 0.714 1.460 1.091 

FRW INT, 0.011 0.092 −0.173 −0.045 0.015 0.069 0.191 1.022 

FRW ITT,% 0.116 1.843 −3.147 −1.187 0.016 1.284 3.987 1.035 

DIR TRN, 1.175 1.025 −0.309 0.363 1.011 1.840 3.468 1.081 

DIR INT, −0.340 0.227 −0.886 −0.465 −0.304 −0.178 0.014 1.004 

DIR ITT,% 9.290 3.853 2.868 6.492 8.991 11.662 17.941 1.008 

TRN INT, −0.029 0.032 −0.099 −0.048 −0.027 −0.007 0.028 1.007 

TRN ITT,% −0.530 0.530 −1.582 −0.880 −0.535 −0.172 0.479 1.001 

INT ITT,% −0.336 0.160 −0.675 −0.438 −0.328 −0.223 −0.042 1.005 

lppd = −3307.05; WAIC∗∗∗=6,632.27 (pwaic = 9.08) 

∗ Statistics based on 3,000 samples of the posterior after 80,000 (40,000 burn-in period) and saving 1/40 samples (thinning). 
∗∗ R2Potential Scale Reduction. When the MCMC chains converge, it takes values close to 1. 
∗∗∗ WAIC is an estimate of expected predictive error (lower WAIC is better).  

Table C.10 
Results Model_1. Statistics on the posterior distribution for the mean and covariance matrix.            

Statistic∗  

Parameter Mean s.d. qt.2.5% qt.25% qt.50% qt.75% qt.97.5% R

F̄RW
0.622 0.340 −0.053 0.393 0.625 0.853 1.281 1.010 

D̄IR
1.863 0.753 0.387 1.331 1.868 2.395 3.311 1.001 

¯TRN
0.061 0.132 −0.197 −0.030 0.062 0.152 0.311 1.012 

ĪNT
−0.076 0.032 −0.139 −0.098 −0.076 −0.053 −0.014 1.006 

¯ ITT%
0.366 0.373 −0.378 0.117 0.360 0.626 1.097 1.001          

FRW
2 3.596 1.842 0.669 2.247 3.381 4.671 7.766 1.039 

DIR
2 25.970 9.383 10.586 19.601 24.665 31.469 47.839 1.010 

TRN
2 0.464 0.178 0.188 0.329 0.440 0.570 0.861 1.005 

INT
2 0.058 0.014 0.035 0.048 0.056 0.066 0.089 1.001 

ITT%
2 10.867 2.575 6.357 9.056 10.690 12.499 16.354 1.004          

FRW DIR, 7.470 3.564 1.634 4.831 7.176 9.757 15.380 1.039 

FRW TRN, 0.543 0.451 −0.224 0.237 0.490 0.813 1.525 1.028 

FRW INT, −0.031 0.093 −0.219 −0.091 −0.033 0.031 0.154 1.019 

FRW ITT,% 0.882 1.596 −2.146 −0.141 0.874 1.831 4.347 1.011 

DIR TRN, 1.622 1.057 −0.256 0.932 1.521 2.218 3.909 1.026 
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