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A B S T R A C T

Hydrogen is a common reactant in the petro-chemical industry and moreover recognized as a potential fuel 
within the next 20 years. The production of hydrogen from biomass and carbohydrate feedstock, though un
doubtedly desirable and favored, is still at the level of laboratory or pilot scale. The present work reviews the 
current researched pathways. Different types of carbohydrates, and waste biomass are identified as feedstock for 
the fermentative bio-hydrogen production. Although all techniques suffer from drawbacks of a low H2 yield and 
the production of a liquid waste stream rich in VFAs that needs further treatment, the technical advances foster 
the commercial utilization. Bacterial strains capable of high hydrogen yield are assessed, together with advanced 
techniques of co-culture fermentation and metabolic engineering. Residual VFAs can be converted. The review 
provides an insight on how fermentation can be conducted for a wide spectrum of feedstock and how fermen
tation effluent can be valorized by integrating fermentation with other systems, leading to an improved industrial 
potential of the technique. To boost the fermentation potential, additional research should firstly target its 
demonstration on pilot or industrial scale to prove the process efficiency, production costs and method reli
ability. It should secondly focus on optimizing the micro-organism functionality, and should finally develop and 
demonstrate a viable valorization of the residual VFA-rich waste streams.   

1. Hydrogen and traditional production methods

Hydrogen is a common reactant in the petro-chemical industry and
recognized as a potential fuel within the next 20 years. IHS Chemical 
expects an annual worldwide increase of the demand for hydrogen by 
nearly 4–5% during the next five years. Asia continues to dominate the 
increased demand due to the progressive growth of its domestic econ
omies [1]. The major applications of hydrogen are at present in pro
cessing fossil fuels and in synthesizing ammonia. Hydrogen also serves 
as a reactant in the production of methanol. Minor applications include 
the hydrogenation of fats, fuel cells and the demonstration in 
hydrogen-fuelled vehicles. The worldwide distribution of the con
sumption of hydrogen is summarized in Fig. 1. 

With depleting fossil fuels, bio-hydrogen is increasingly considered 
as a potential renewable and top energy source for its clean combustion 
and its high specific energy, i.e. 123 MJ/kg or ~3 times higher than 
petro-based fuels (~46 MJ/kg). The enhanced demand of hydrogen has 
been significantly influenced by its use in the desulfurization of 

transportation fuel, and by the growth of the transportation sector [2]. 
Co-currently the quality of crudes is diminishing, leading to a decrease 
of hydrogen generation from crude processing. This has caused re
fineries to re-evaluate the hydrogen availability. Numerous research is 
being conducted on appropriate hydrogen production [3–7], storage 
[7–12] and application [5,6]. Though hydrogen is proposed as an 
alternative for fossil fuels, this application is however depending on the 
availability of technologies to enable a sustainable production of 
hydrogen, most of which are still under development. Bio-hydrogen 
could soon be entering the fuel market, provided the cost of the 
pre-cited steps decreases considerably [5,13]. Under this circumstance, 
worldwide ongoing research on hydrogen generation and storage is 
intensive. 

Hydrogen can be prepared through various methods. Refineries, as 
mentioned above, are large-volume consumers of hydrogen as well as 
producers. Till now, fossil fuels are the main feedstock of 96% of all 
hydrogen: natural gas accounts for ~49%, liquid hydrocarbons are 
involved for ~29% and coal represents ~18% of the hydrogen pro
duction. Electrolysis (3.9%) and other by-product sources of hydrogen 
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(0.1%) make up the remaining 4% [4–6]. 
Steam reforming of methane from natural gas or syngas is now 

economically the most important process of industrial bulk hydrogen 
production, and also involves removal of hydrogen from hydrocarbons 
[14]. At high temperature, i.e. 700–1100 �C, steam (water vapor) and 
methane react to form hydrogen and carbon monoxide:  

CH4þ H2O ⇌ 3H2þ CO (1) 

The CO produced can further react with steam to yields extra H2 
through the water-gas-shift (WGS) reaction:  

CO þ H2O ⇌ CO2 þ H2 (2) 

Electrolysis of water is responsible for about 3.9% of the worldwide 
hydrogen production [6], and is normally used onsite:  

2H2O → 2H2 (g) þ O2 (g) (3) 

Most industrial electrolysis cells apply complex platinum electrodes 

(plates or honeycombs). Generally, electrolysis as a hydrogen produc
tion method is only used for specific applications such as oxy-hydrogen 
torches or when extremely high purity hydrogen is required. 

Innovations such as the application of Polymer Electrolyte Mem
brane (PEM) electrolysis [15] and microbial reverse-electrodialysis 
electrolysis cells [16] are currently under investigation. New 
configurations of a typical water electrolysis system are evaluated. The 
efficiency of a water electrolysis hydrogen production system under 
different operating conditions was calculated in detail by Zhang et al. 
[17], which can be helpful for further understanding and developing 
water electrolysis systems for H2 production. 

Although bio-hydrogen produced from renewable sources could be a 
promising production method, its contribution is below 1% so far. 

Large industrial-scale hydrogen production from biomass or carbo
hydrates, i.e. hydrogen by fermentation, is undoubtedly desirable and 
favored, however still at the level of laboratory or pilot scale, as assessed 
in section 2 below. Strategies for industrial-scale production need to be 
developed, and further research is still needed. 

Since hydrogen yields are reported to be low, it is important to select 
feedstock that is cheap, rather than using carbohydrate-rich raw mate
rials such as starch, corn or sugars, of high commercial value and 
contributing to the human food-requirements. Waste biomass streams, 
with lower but accessible concentrations of carbohydrates, and offered 
at a limited or at zero cost (since needing to be treated prior to 
discharge) are economically the selected feedstock for bio-hydrogen 
production. It is therefore important to compare the different feed
stock towards their real hydrogen production potential. 

The hydrogen production by fermentation generally refers to three 
main categories, i.e. firstly by dark-fermentation, where no light is 
involved; secondly by photo-fermentation with light as the source of 
energy; and thirdly by combining photo- and dark-fermentation. 

It should also be mentioned that the production of hydrogen by 
biomass gasification is often considered within the bio-production 
scope. The gasification technique is however of thermo-chemical na
ture, and hence not within the category of biochemical production 
methods. Gasification is well-documented in literature for both labora
tory, pilot and industrial scale, with numerous review and research 
papers available. Gasification is therefore not considered in the present 
biochemical production review. 

2. The bio-production of hydrogen through fermentation

In dealing with the fermentation production of H2, several aspects

Abbreviations 

ADP adenosine diphosphate 
ATP adenosine triphosphate 
B batch operating mode 
C continuous operating mode 
fhl formate hydrogen lyase complex 
ldhA lactate dehydrogenase 
ORP oxidation-reduction potential 
PEM polymer electrolyte membrane 
PFL pyruvate formate-lyase 
PFOR pyruvate ferredoxin oxidoreductase 
PHB poly-β-hydroxybutyrate 
PNS purple non-sulphur 
VFA volatile fatty acid 

Symbols 
BOD, COD biological and chemical oxygen demand, respectively, 

g/L 
HHV high heating value, MJ/Nm3 

T temperature, K  

Fig. 1. Geographic distribution (%) of the worldwide hydrogen consumption.  



and 30 wt% in microalgae and a lower wt% in macro-algae [46]. Further 
research is however required before the H2 yield can be validated and 
economically assessed. 

2.2. Dark fermentation 

Dark fermentative avoids the problem of needing light as the 
necessary energy resource. The production proceeds mostly through the 
acetate and butyrate pathways [47].  

C6H12O6 þ 2H2O → 2CH3COOH þ 2CO2 þ 4H2 (4)  

C6H12O6 → CH3CH2CH2COOH þ 2CO2 þ 2H2 (5) 

Most literature sources investigate the microorganism species of the 
Clostridium genus because of their high hydrogen production rates. In 
addition, these bacteria possess ideal properties for industrial applica
tion, including forming endospores and high growth rates [47]. Clos
tridium sp. also allows mixed culture hydrogen production, in which the 
variety of species present facilitates the efficient decomposition and 
conversion of organic waste into hydrogen. The conversion process is 
generally accompanied by organic acid production [47]. 

The fermentative hydrogen production process is self-inhibiting once 
the partial pressure of hydrogen exceeds a critical value, which induces a 
switch to a different metabolic pathway in which acetyl-CoA and CO2 
are produced instead of hydrogen and organic acids [48] (Fig. 2). 

Different bacterial strains have been used in the dark fermentation of 
various carbohyfdrate feedstock. Productivities are generally expressed 
in the molar amount of H2 produced per mol of substrate. Results are 
depicted in Fig. 3. With molecular weights of 180 g for glucose and 
galactose, 342 g for sucrose and lactose, and 2 g/mol for H2, the pro
duction yields can be converted into g H2/g substrate. Waste water 
treatment sludge was also used as substrate for DF by Chlostridium 
bifermentants and Pseudomonas sp. GZI, however with low H2 yields (0.9 
mmol/g dried sludge, or about 0.1 mol/mol dried sludge, if the molec
ular formula of activated sludge is approximated as C5H7O2N) [50,51]. 

Other commonly used enteric bacteria, such as Escherichia coli and 

Waste 
sources 

Substrates Pretreatment pH Inhibitors Hydrogen yield 

Industrial Paper solid waste [28] Crushed to < 0.5 mm 2.5% H2SO4 – 61.1 mmol/h/g 
Waste peach pulp [29] Boiled for 45 min – – 123.27 mL/g TOC 
Wastewater from citrus 
processing [30] 

suspended – – 85.4 mmol/L 

Vinasse from citrus processing 
[30] 

solids and settled inorganics removed – – 13.4 mmol/L 

Vinegar residue [25] heat (99 �C for 30 min) 1(10 mL HCl/g) NH4–N, acetate, 
butyrate 

53.2 mL/g VS 

Waste activated sludge [31] γ-irradiation 12.0 Low pH 1.07 mL/L sludge 
Sewage sludge [32] Heat treatment (150 �C for 30 min) with 

alkaline condition 
– Ammonia 39.0–220.3 mL/L sludge 

Cassava starch wastewater 
[33,34] 

Without treatment – -, 
VFAs and alcohols 

287 mL/g starch, 
0.3 mol H2/mol 

Agricultural Dairy cow solid waste [35] Dried and crushed; hydrolyzed the dilute 
acid 

– VFAs 97 mL/g 

Cassava starch [36] Suspended – Low pH 1.72 mol/mol glucose 
Corn starch [37] Heated at 100 �C for 30 min – Low pH 1.94 mol/mol glucose 
Wheat straw [38] 120 �C for 90 min 2% H2SO2 1.19 mol/mol glucose 
Wheat straw [39] Enzyme treatment – – 19.64 mL/g-VS 
Sugarcane bagasse [40] Raw bagasse heated at 120 �C for 30 min sulfuric acid (1%, 

g/v) 
Phenolics 62.1 mL/g non-detoxified 

sugarcane bagasse 
Municipal Fruits and vegetable wastes 

[41] 
Crushed < 2 mm – Acetate, Lactate 3.46 mol/mol 

Waste paper [42] Crushed <0.15 mm and Heat (120 �C for 90 
min) 

2.2 Furan 140 mL/g sugar 

Waste pastry [43] Crushed <0.5 mm – – 241.4 mL/g glucose 
Food waste [44] Crushed <0.5 mm – VFAs 57 mL/g-VS (50 �C) 

Forestry Poplar leaves [21] 2% vicozyme – Furfural 44.92 mL/g dry poplar leaves 
Waste sorghum leaves [45] heat at 100 �C for 176 min 5.95% HCl – 47.3 mL/g sugar  

should be considered to understand the selected feedstock and the 
principles of the principal technologies used, i.e. dark and photo 
fermentation, and their combined 2-step application. These aspects are 
dealt with below. 

2.1. Carbohydrate substrates utilized for bio-hydrogen production 

According to the fermentation principles, the use of carbohydrates 
offers the highest potential. Carbohydrates such as glucose, sucrose and 
starch were initially investigated, despite their high cost (300–1000 
€/ton), hence hampering large-scale production and competing with the 
food cycle. 

There are however numerous waste products that contain a wide 
range of carbohydrates [18] and are available at very low cost, since 
otherwise to be treated to meet environmental standards [19,20]. These 
waste feedstock streams can be of industrial, agricultural, municipal or 
forestry origin. 

For most of these waste feedstock materials, pretreatments are 
necessary to liberate e.g. glucose by saccharification of the macromol-
ecules. It should however be remembered that the pretreatment pro-
cesses can generate inhibitors unless the pretreatment method is 
carefully selected, as illustrated in Table 1, where these substrates and 
there required pretreatments are summarized. 

For cellulosic substrates, various chemical, biological and enzymatic 
pretreatments are possible [21–24]. These pretreatments can disrupt the 
stable structure of cellulosic materials, resulting in a higher surface area 
and an increased hydrolysis rate of cellulose materials. They can also 
decrease the degree of crystallinity and of cellulose/hemicelluloses 
polymerization [25]. Besides pretreatment, other measures can also be 
taken to increase the bio-hydrogen yield of cellulose substrates, 
including manipulation of carbon and electron flows through a meta-
bolic shift caused by end-product inhibition, metabolic engineering at 
the genetic level, fermentation by co-cultures, and appropriate reactor 
designs [26,27]. 

Recently, also algae have been considered as potential feedstock, due 
to their content of polysaccharides and carbohydrates, e.g. between 8 

Table 1 
Waste substrates utilized for fermentation bio-hydrogen production.  



Enterobacter aerogenes, can also be applied for hydrogen production via 
fermentation [62]. Unlike Clostridia, enteric bacteria primarily yield 
hydrogen via the decomposition of formic acid and formate, even the 
exclusive pathway in the case of E. coli. Since cleavage is not a redox 
reaction, it does not influence the redox balance in the fermentation. 
This conversion route does not suffer from inhibition in case of an 
increased hydrogen partial pressure since formate cleavage is an irre
versible reaction. Furthermore, enteric bacteria are facultative anaer
obes, showing high growth rates in the presence of oxygen. After oxygen 
depletion, an anaerobic metabolism takes over from an aerobic one. 
Under anaerobic conditions, their growth rate is reduced since less 
metabolic energy can be extracted from the same substrate. These 
properties offer the opportunity to develop an industrially interesting 
scheme of alternating aerobic (fast microbial grown to a high concen
tration) and anaerobic (high rate hydrogen production) conditions [63]. 

Controlling the microbial community in the fermenter is necessary to 
obtaining a sustainable industrial-scale hydrogen production because 
the used substrate may contain micro-organisms that affect the micro
bial community within the fermenter, leading to unfavorable conditions 
and lower hydrogen production rates. Necessary procedures should be 
taken into consideration, for example, sterilization [64]. Hyperther
mophilic archaea (e.g. Thermotoga neapolitana) which can be operated at 
~70 �C and leave little chance of feedstock contaminants becoming 
established, can also be used for hydrogen fermentation [65]. 

2.3. Photo-fermentation 

Fermentation processes which employ light as an energy source for 
photosynthesis are referred to as photo-fermentation. Comparing to 
other routes, photo-fermentation has the advantage that light can 
replace sugars as source of energy, hence reducing the competition for 
land usage with food crops. The following chemical equation illustrates 
the hydrogen production via photo-fermentation. 

16ATPþ 16H2Oþ N2 þ 10Hþ þ 8e� �!
½hv�

16ADPþ 16piþ 2NHþ4 þ H2 (6) 

Photosynthetic bacteria such as Rhodobacter sphaeroides and Rhodo
spirillum are commonly applied and use small molecule organic acids as 
carbon sources [66]. Combining dark-fermentation as the first step and 
photo-fermentation as the second step can enhance the biohydrogen 
yield due to the enhanced conversion of substrates to H2 [67]. In 
photo-fermentation, the purple non sulphur (PNS) bacteria can utilize 
the light energy for both the production of ATP and high energy elec
trons by reverse electron flow to reduce ferredoxin. The ATP and 
reduced ferredoxin thereafter drive the proton reduction to H2 by 

nitrogenase [68]. The accumulated dark-fermentation VFA can be 
further converted into hydrogen by photo-fermentation. The reactions 
from VFAs (mainly acetate, propionate, butyrate and lactate) into 
hydrogen are shown in Eqs. (7)–(10). An obvious advantage for 
photo-fermentation is the higher theoretical H2 yield in comparison with 
dark fermentation. Moreover, the PNS microorganisms are moreover 
able to absorb and utilize a wide spectrum of light (400–900 nm), and 
can also use organic substrates derived from various wastes [69,70].  

Acetate: CH3COOH þ 2H2O þ ‘light energy’ → 4H2 þ 2CO2 (7)  

Propionate: C3H6O2 þ 4H2O þ ‘light energy’→ 7H2 þ 3CO2 (8)  

Butyrate: C4H8O2 þ 6H2O þ ‘light energy’ → 10H2 þ 4CO2 (9)  

Lactate: C3H6O3 þ 3H2O þ ‘light energy’ → 6H2 þ 3CO2 (10) 

Among algae and some bacteria, hydrogen production capabilities by 
oxygenic photosynthesis of Cyanobacteria are frequently cited [71]. 
Purple non-sulphur (PNS) bacteria (e.g. Rhodobacter) are moreover highly 
promising to hydrogen production via anoxygenic photosynthesis and 
photo-fermentation [62]. Light within a wavelength range of 400–1000 
nm (visible and near-infrared; 400–700 nm; visible) can be used by algae 
and cyanobacteria [72]. 

The industrialization of natural photo-fermentation is restrained by 
the availability and the distribution of light, since self-shading needs to 
be minimized in an industrial scale photo-fermenter. The latter restraint 
imposes a considerable ratio of surface area to volume for an externally 
illuminated photo-bioreactor. In turn, this results in a material-intensive 
and hence expensive construction of the photo-bioreactor. 

The optimization of light distribution via optic fibers for light 
transfer in the fermenter is one method that has been recently employed. 
An additional advantage of this type of photo-bioreactor is the possi
bility to filter out wavelengths that are of no use for the organisms, 
hence also controlling radiant heat-gain by dumping excess light. 

A light-emitting diode (LED) fermenter was reported to be a potential 
industrial-size photo-fermenter with a limited area of land occupied; the 
LED fermenter is able to prevent self-shading and maintain photosyn
thesis within the fermenter with limited energy consumption and low 
installation costs. A maximum light conversion efficiency of about 10% 
has been reported using PNS bacteria. Combining this finding with a 
maximum efficiency of about 80% for generating electricity from 
hydrogen (via a PEM fuel cell) and a subsequent maximum efficiency of 
about 80% for light generation from electricity (via LED), returns are 
significantly hampered [62]. 

Photo fermentation furthermore requires specific substrates, i.e. 
mostly smaller fatty acids such as acetate, propionate and butyrate. 

Fig. 2. Fermentation using e.g. Clostridium butyricum (Reprinted from Ref. [49]. With permission of Springer Nature).  



Towards the targets of fuel or energy hydrogen production, artificially lit 
photo-bioreactors such as the LED-fermenter were proven non-viable. 

2.4. Combined fermentation 

As briefly mentioned before, there are studies dealing with 
combining dark- and photo-fermentation and these studies consider the 
combined fermentation as the most promising technique for industrial 
fermentation of hydrogen because of its economy and because it reduces 
the amount of by-products of the fermentation process [62,73,74]. The 
major advantage of applying a combined fermentation is due to its 
capability for the photosynthesis step to reuse the otherwise useless 
organic acids. However, combined fermentation also faces the issues to 
optimize the design of the reactor and minimize the energy consump
tion, both major drawbacks of photo-fermentation. 

Chen et al. [75] combined dark and photo fermentation for overall 
hydrogen yield and COD reduction. The dark fermentation effluent 
mainly comprised acetate and butyrate, and Rhodopseudomonas palustris 
WP3-5 was used as inoculum in photo fermentation. The total hydrogen 
yield could be enhanced from 3.80 mol H2/mol sucrose to 10.02 mol 
H2/mol sucrose, and a high COD removal of 72.0% could be obtained. 
They further found that acetate was the most favorable carbon later 
source for Rhodopseudomonas palustris WP3-5 in photo fermentation, 
whereas inhibition occurred when butyrate was used as the carbon 
source [76]. Chookaew et al. [77] investigated a two-stage process in 
which Klebsiella sp. TR17 was used in the first stage (dark-fermentation) 
and Rhodopseudomonas palustris TN1 was applied in the second stage 
(PF) to convert crude glycerol to hydrogen. In the first stage, a hydrogen 
yield of 5.74 mmol H2/g COD consumed was obtained. In the second 
stage, a hydrogen yield of 0.68 mmol H2/g COD consumed was achieved 
with addition of yeast extract (2.3 g/L), NaHCO3 (0.63 g/L), and 
glutamate (2–8 mmol/L) in 5-fold diluted dark-fermentation effluent, 

resulting in a total hydrogen yield of 6.42 mmol H2/g COD consumed. 
Other researchers succeeded in converting the dark-fermentation 
effluent of hydrogen using photo-fermentation [78–80]. These efforts 
demonstrated that photo-fermentation was an effective in the further 
valorization of dark-fermentation effluent. 

3. Specific problems and bottlenecks involved in the
biochemical production methods (like yields, costs, and biomass
waste)

This section will firstly demonstrate the pathways of hydrogen 
fermentation and then discuss the different parameters that affect the 
process as a result of the fundamental pathway. The overall assessment 
will highlight the bottlenecks involved in the hydrogen production, and 
dealt with in detail in section 4. 

3.1. The fundamental metabolic pathways of dark fermentation 

To investigate the biological effects during dark fermentation, Fig. 4 
illustrates the metabolic pathways, where Clostridium sp. and Entero
bacter sp. are the main species that are commonly used in bio-hydrogen 
production. 

The metabolism can be divided into two separate pathways: the 
facultative anaerobic metabolism, such as through Escherichia coli (as 
indicated by PFL pathway, pyruvate formate-lyase) and strict anaerobic 
metabolism, through Clostridium (as indicated by PFOR pathway, 
standing for pyruvate: ferredoxin oxidoreductase). 

Glucose in both routes breaks into pyruvate through standard 
glycolysis, in which process the NAD is reduced to NADH and the con
version of ADP to ATP takes place. The key intermediate is pyruvate, 
since its degradations differ from PFOR and PFL. In principle, formate is 
formed when facultative anaerobes degrade pyruvate, while acetyl-CoA 

Fig. 3. Single bacteria strains for dark fermentation biohydrogen production, at temperature of 34–37 �C (unless indicated) with substrates xylose [52], cassava 
starch [53], galactose [54], glucose [50,53,55–59], starch flour [56,60] and lactose [61]. 



2.8mol H2/mol [50,82–93]. 

3.2.2. Effect of the cultures 
Fermentation with pure cultures has a limited metabolic capacity, 

therefore mixed cultures were proposed since they extend the range of 
substrates so that the VFAs produced in dark fermentation can further be 
used in photosynthesis and converted to hydrogen. There are studies 
dealing with two combination patterns, i.e. sequencing batch operations 
of dark- and photo-fermentation, and their combination [94]. 

Combining C. butryricum and Rhodobacter sp. produces 4.5 mol H2/ 
mol glucose, higher than the yield in a sole dark fermentative (1.9 mol 
H2/mol glucose) and the obtained value in two consecutive steps (3.7 
mol H2/mol glucose) [95]. The maximum H2 yield and production rate 
reported when using the combined and sequencing batch operation is 
6.6–7.2 mol H2/mol glucose and 1.55 mmol H2/L culture/hr 
respectively. 

Bao et al. [60] however reported a successful fermentation that 
combines hydrolysis and hydrogen generation in a single bioreactor. The 
strains include Bacillus sp. which is responsible for starch hydrolysis and 
Brevumdimonas sp. being in charge of hydrogen synthesis. The inter
species cooperation allows to produce H2 in a single reactor with cu
mulative yield up to 1.04 mol H2/mol glucose. Table 2 demonstrates the 
studies on various culture modes which also showed the quantity of 
hydrogen produced. Higher hydrogen yields are reported for separate 
hydrolysis and subsequent fermentation. 

3.2.3. Effect of substrates 
Substrates have a definite influence on the fermentation process due 

to their different biodegradabilities. Glucose, maltose and xylose are 
readily used, while other substrates, for example starch, require a pre
liminary transformation into glucose or maltose, either by acid or by 
enzymatic hydrolysis. Furthermore cellulose is the most difficult to use 
as most microorganisms cannot directly or indirectly consume cellulose. 
On the other hand, the carbohydrate-rich wastes feedstock such as waste 
water from the sugar mills, from breweries, from cassava processing and 
others, can to a large extent reduce the cost of bio-H2. Cassava is a 

Fig. 4. Metabolic pathways within the hydrogen dark fermentation (Reprinted from Ref. [81]. With permission of Elsevier).  

is transformed through the action of PFL. Strict anaerobes produce 
acetyl-CoA, CO2, and reduced ferredoxin using PFOR (pyruvate: ferre-
doxin oxidoreductase). Hence, in a facultative anaerobic metabolism 
pathway, the fhl complex which possesses Ni–Fe hydrogenase is 
responsible for producing hydrogen from formate. Alternatively, 
reduced ferredoxin promotes the hydrogen production by a FeFe hy-
drogenase. The by-product is principally ethanol in facultative fermen-
tation, and ethanol, butyric acid, butanol and acetone for the strict 
anaerobic pathway depending on the microorganism and the physical 
fermentation conditions. 

3.2. The parameter-response of fermentation 

The process of fermentative hydrogen production is complex. The H2 
productivity depends mainly on the inoculant, the cultures, the sub-
strates, and the addition of trace elements [13]. 

3.2.1. Effect of inoculum 
Different inoculants have been studied for H2 production, among 

which Enterobacter sp., Bacilus sp. and Clostridium sp. distinguished by its 
gram-negative, rod-shaped and strict anaerobic nature. Clostridium sp. 
converts glucose to VFAs, H2 and CO2. The typical species are 
C. buytricum, C. thermolacticum, C. pasteurianum and C. bifermentants [62, 
72]. Enterobacteriaceae are gram-negative, rod-shaped but facultative 
anaerobes.

Almost all studies used pure cultures of bacteria in batch mode with 
six-carbon sugars (e.g. glucose) as substrate in major cases. Studies 
utilizing five-carbon sugars, such as xylose show low yield though it is a 
potential solution to release the pressure from the food crisis as five- 
carbon sugars account for little of food supply. In this condition, 
renewable feedstock of organic wastes is a more desirable substrate, 
however demanding a diversity of hydrogen producing microorganisms 
due to its complexity. Microorganisms which are capable of H2 pro-
duction exist wildly in soils, wastewater treatment sludge and compost. 

Fig. 5 illustrates the production yield of H2 with different microbial 
strains, which show different capabilities as the yield varies from 1 to 



promising hydrogen production feedstock due to the fact that it can be 
planted on sterile soil [102] and is not used for food at some production 
locations. The maximum production yield using cassava flour under 
optimum operating conditions was reported as 1.72mol H2/mol glucose 
[103]. Moreover, the waste water from the cassava starch manufacture 
is also rich in carbohydrates with a high BOD and COD (»10 g/L), which 
makes it suitable as feedstock. The fermentation process is simulta
neously part of the wastewater treatment, which makes it a win-win 
situation for the cassava starch production. 

In addition to substrates summarized in Fig. 3, additional studies 
with different substrates are illustrated in Table 3. 

3.2.4. Effects of trace elements 
Enzymes are the specific performers of all the metabolism and bio 

reactions including the hydrogen production reactions. Trace elements, 
for example metal ions (Naþ, Mg2þ, Zn2þ and Fe2þ) are co-factors of 
enzymes, thus they are essential factors for the hydrogen synthesis: iron 
and nickel are necessary elements of hydrogenase [37]; magnesium is 
the activating agent for kinase and synthetase [37]; and some reducing 
amino acids, for example L-cysteine, are capable of maintaining the 
oxidation-reduction potential (ORP) [37]. 

Hydrogenase is involved in both pathways, which are[Fe–Fe] hy
drogenase in the PFOR and [Ni–Fe] hydrogenase in the PFL [68,113, 
114]. The [Ni–Fe] hydrogenase is significantly present in 
hydrogen-producing bacteria and it is has a less sensitive inhibitory ef
fect on oxygen in comparison with [Fe–Fe] hydrogenase, therefore Fe2þ

and Ni2þ are the two significant trace elements affecting hydrogen 
fermentation production. 

Fig. 5. Different bacterial cultures in batch or continuous fermentative H2 production modes.  

Table 2 
Hydrogen production using different cultures, in batch (B) or continuous (C) operating mode.  

Substrate and its concentration Inoculums Produced H2 (mol H2/mol glucose)  

Glucose, 9 g/L C. butyricum þ
R. coprophilus 
Pseudomonas RLD-53 

1.98 B [96] 

Acid hydrolysis of wheat starch, 5 g/L Rhodobacter sphaeroide-RV 1.23 B [97] 
Hydrolyzed starch, 26 g/L C. butyricum CGS2 1.5 C [98] 
Discarded wheat starch, 5 g/L C. acetobutylicum þ Rhodobacter sphaeroide-RV 0.6 C [99] 
Wheat starch, 10 g/L Anaerobic digestion sludge 1.14 B [100] 
Corn starch, 20 g/L Excess waste activated sludge 0.92 C [101] 
Corn starch, 10 g/L Mixed cultures 1.04 B [60] 
Wheat starch, 10 g/L Dark fermentation 

þRhodobacter sp. 
185 mL H2 g VFA C [94]  



Research showed that iron and sulphur influence the function of 
proteins by acting as electron carrier in the oxidation of pyruvate to 
acetyl-CoA, CO2 and H2. Wang and Wan reported that iron addition 
boosted the synthesis of hydrogen to the maximum yield of 2.33 moL/ 
mol glucose at 350 mg/L of Fe2þ [115]. Moreover, iron could induce 
metabolic alteration: experiments revealed that the amount of Hydrogen 
produced increased to 3.06 mol/mol glucose from 2.93 mol/mol glucose 
after adding 25 mg/L FeSO4⋅7H2O, and vice versa. 

Table 4 summarizes how adding trace elements affects the hydrogen 
production. Whereas bio-hydrogen production essentially requires the 
presence of sufficient quantities of essential micro-nutrients for bacterial 
metabolism during fermentation (such as metal ions and trace ele
ments), the enhancement efficiencies of individual or compound nutri
ents are different. 

3.2.5. Overall assessment 
As far as photo-fermentation is concerned, its negative energy bal

ance when using an artificial light source needs further investigations in 
terms of technical and economic respects. 

Biological production of H2 by dark fermentation of wastes (primary 
route) and non-food biomass (secondary route) can facilitate the pro
posed green, sustainable hydrogen economy. It is currently drawing 
great attention since no additional energy source is needed, and since 
the technique is capable of using various feedstock, such as waste water 
and process residuals. The core barrier now is the attainable yield in the 
typical mesophilic fermentation: glucose has a potential equivalent of 4 
mol H2/mol glucose. Through fermentation, between 25 and 50% of the 
available hydrogen is released as H2 [110,118]. One should moreover 
also consider that the mass balance of the reaction is not in favor of H2 
(despite its 2 mol/mol glucose), but results in a waste water with very 
high concentrations of VFA’s produced (acetate, butyrate, propionate), 
hence with a high COD, needing further treatment. Given the ideal yield 
of 4mol H2/mol glucose, provided the density of gasoline is 0.72 kg/L, 
and at a heat capacity of gasoline and hydrogen of 44 MJ/kg and 143 
MJ/kg respectively, a vehicle will consume 1.5 kg hydrogen per 100 km 
(it is equivalent to 7 L gasoline per 100 km). At the production of 4 mol 

H2/mol glucose, or 8 g/180 g glucose, the production of 1.5 kg of H2, 
needs a theoretical input of 33.8 kg of glucose. At lower conversion ef
ficiencies, the amount of glucose consumed will increase. This low ef
ficiency, together with the required further waste water treatment, will 
prevent the production of H2 to compete with fossil fuel for a long period 
in future. A better conversion and/or an efficient use of the by-products 
(mainly acetate and butyrate) are the key factor to the future bio-H2 
success. 

4. Potential solutions to overcome the bottlenecks and
recommended actions towards a better future for biochemical
hydrogen production

Although biochemical fermentation is an attractive way of producing 
bio-hydrogen since a variety of available wastes or biomass can be used, 
its industrial application is at present hampered by the low yields 
obtained. 

To improve the yield of hydrogen, studies are being conducted in 
different areas, including mainly: metabolic engineering; third stage 
fermentation of butyric/acetic acid; separation/upgrading of the acids; 
and membrane separation of hydrogen. 

4.1. Metabolic engineering 

Metabolic engineering has been recognized as having a potential to 
enhance the hydrogen yield. The key obstacles of fermentation are the 
constraints introduced by the metabolic pathways involved. The 
fundamental metabolisms leading to H2 production were outlined in 3.1. 
Current research investigates increased yields by either modifying the 
existing pathways, or by metabolic engineering to introduce new en
zymes and/or pathways to overcome thermodynamic or metabolic 
barriers to increase the yields. 

Fig. 6 below illustrates different strategies to maximize yields of 
present hydrogen synthesis pathways by eliminating reactions that 
compete for the same substrate, or by eliminating the activity of any 
uptake hydrogenases that could be present. 

Inactivating competing reactions and manipulating culture condi
tions has led to higher H2 yields, close to values predicted by metabolic 
schemes, although the final target of H2 production levels beyond pre
sent limits needs further investigation. 

H2 production when using Clostridium bacteria could be fostered by 
disabling the uptake of hydrogenase, or disabling the oxygen system. 
Such actions will result in a more robust hydrogen production, where 
the hydrogen yield of the dark-fermentation step could be enhanced 
[119–121]. 

Researchers have proposed to introduce new pathways, however all 
of them end up with low yield due to various factors. One attempt for 
E. coli. intended to express a highly active [Fe–Fe] hydrogenase (hydA)
from various sources, but it failed since E. coli. does not possess the
specific genes (which encode the required maturation factors) required
for the expression of hydA, even with the assistance of co-expressed
hydEFG [122]. Other modifications have been tried and provided

Table 4 
Effects of adding of trace elements on the H2 production.  

Elements  Remarks Ref. 

Ni2þ Within Ni2þ 0–50 mg/L, H2 production increases as Ni2þ increases, and decreases as the Ni2þ increases 
beyond 50 mg/L  

[116] 

Ni2þ H2 production was increased by 71% by adding Fe2þ and Ni2þ comparing to the blank sample and 
reached the maximum at 50 mg/L of Fe2þ and 25 mg/L of Ni2þ. 

glucose as substrate 
an anaerobic continuous flow stirred tank 

[117] 

L-cysteine Adding L-cysteine (0.1–1.0 mM) improves H2 yields   
Fe2þ and L- 

cysteine 
H2 yield is increased to maximum 1982 mL and 1.94 mol H2/mol glucose Relative enhancement effect: Fe2þ > L- 

cysteine > L-cysteine þ Ni2þ >
L-cysteine þ Fe2þ >

L-cysteine þ Mg2þ

[37] 

Ni2þ H2 production was reduced at Ni2þ concentrations above 20 mg/L  [60]  

Inoculum Substrates Maximum hydrogen 
yield 

Refs. 

C. acetobutylicum CGS2 Starch 9.95 mmol H2/g COD [104] 
Municipal sewage sludge Xylose 2.25mol H2/mol xylose [105] 
C. Pasteur CH4 Sucrose 2.07mol H2/mol hexose [92] 
C. thermolaticum Lactose 3.0 mol H2/mol lactose [61] 
Cow dung compost Cornstalk wastes 149.69 mL H2/g TVS [106] 
Class septicumM-21 Chitin wastes 2.2 mol H2/mol substrate [107] 
Cow dung compost Beer lees 68.6 mL H2/g TVS [108] 
C. thermocellum 27405 Cellulose 

biomass 
2.3mol H2/mol glucose [109] 

Anaerobic sludge Food waste 1.8mol H2/mol hexose [110] 
E. cloacae E82005 Molasses 3.5mol H2/mol sucrose [111] 
Anaerobic Sludge Dairy wastewater 31.7 mmol H2/g COD [112]  

Table 3 
Effect of different substrates on the hydrogen yield.  



negative conclusions till now. Different metabolic engineering strategies 
are summarized in Table 5. 

Using a reverse electron flow was suggested as alternative solution: 
the reduction of ferredoxin with NADH could generate enough reducing 
power to promote hydrogen production by hydrogenase [132]. In this 
process, it is necessary to overcome the thermodynamic barrier with 
energy input. A small amount of respiration could be used to overcome 
the barrier by creating an electrochemical gradient to favor the ferre
doxin reduction. This method needs further investigation. 

Conclusively, a possible modification of the system could drive it to 
higher bio-hydrogen yields. However further investigations are needed. 

4.2. Third stage fermentation of butyric/acetic acid 

As discussed above, the waste water of dark fermentation is rich in 
butyric/acetic acid and is not environmentally friendly. These volatile 
fatty acids have to be treated either by VFA recovery or by a following 
stage of photo fermentation, that can utilize the residual VFA and in
crease the cumulative yield. The overall yield of hydrogen in such a two- 
stage operation exceeded the yield of a single stage production process 
[133]. Bao et al. [37] reported a pH ~4 at the termination of the mixed 
culture fermentation. Fig. 7 summarizes the pH and the quantities of 
residual VFA. It appears that the pH is between 4 and 8 due to the 
generation of VFA. Different substrate were used, i.e. food waste [110], 
glucose [134], cornstalk waste [106], cattle dung and sludge [73], steam 
exploded corn straw [135], fruit vegetable waste [136], rice waste 

[137], and sewage sludge [138,139]. Reference effluent composition 
data are converted from mg/L, g/L, % values to total VFA concentra
tions, given in mM/L. 

Experiments revealed that malate and lactate were the most favor
able substrates, with the highest H2 production rates in photo- 
production [140]. Uyar et al. [141] investigated the growth and 
hydrogen production of Rhodobacter sphaeroides O.U. 001 in media 
containing mixed VFAs (malate, acetate, propionate, butyrate and 
lactate): their results demonstrate that the highest H2 production rates 
during of dark fermentation were obtained in malate (24 mL hydrogen/L 
reactor h). It was moreover observed that the bacteria sequentially 
consumed acetate, propionate and then butyrate. For the different VFAs 
tested, the butyrate H2-efficiency was lower due to the competitive 
production of PHB. The substrate conversion efficiencies were globally 
between 14 and 50% [142]. 

4.3. Upgrading of the VFAs 

VFAs are obtained as key intermediates in dark fermentation pro
cesses. As discussed previously, acetate is the most favorable for VFA 
fermentation, which makes the upgrading of volatile fatty acids a 
possible pretreatment or biological facilitation to hydrogen production. 
The upgrading of acids mainly targets on the low or even negative cost of 
feedstock, such as sludge, organic wastes, meaning the required cost is 
low, the target end product being VFAs, for example acetate via an 
anaerobic process. Fig. 8 summarizes literature data for soluble 

Fig. 6. Targets of genetic modification of common pathways.  

Table 5 
Different metabolic engineering strategies to increase hydrogen production.  

Strains Metabolic engineering strategy Improved H2 production (%) 

E. coli K–I2 BW25113 [123] Protein engineering of large subunit of hydrogenase 3 (hycE) 800 (compared with wild-type strain) 
E. coli K–I2 BW25113 [124] Inactivation of hydrogenase 1 and hydrogenase 2 200 
Caldicellulosiruptor bescii [125] Deletion of lactate dehydrogenase gene (ldh) 21–34 
E. coli [126] Heterologous expression of HupSL hydrogenase from Rhodobacter sphaeroides 209 
Enterobacter aerogenes [127] Homologous overexpression of NAD synthetize gene hadE) and deletion of phosphoenolpyruvate  

carboxylase gene (ppc and hybO) 
301 

Klebsiella oxytoca HP1 [128] Homologous overexpression of two hydrogenase subunits (hycE and hycG) 90.5 
Clostridium tyrobutyricum [129] Homologous overexpression of hydrogenase gene (hydA) 150 
C. pasteurianum [130] Homologous overexpression of hydrogenase (hydA) and glycerol dehydrogenase (dhaDI and dhaK) 170 
C.tyrobutyricum [131] Inactivation of acetate kinase (ack) 150  



metabolites, produced during dark fermentation. 
The anaerobic process can be described by four steps, being (i) hy

drolysis, where larger polymers are decomposed by enzymes; (ii) 
fermentation, where acidogenic fermentation is dominant and acetate is 
the main end product (VFAs are also produced along with CO2 and H2); 
(iii) the breakdown of VFAs to acetate and H2 by acetogenesis; and
finally (iv) the conversion of acetate, formaldehyde, hydrogen and
carbon dioxide into methane, carbon dioxide and water by
methanogenesis.

One of the two most important threats is the suppression of the 
methanogenesis step. Dictor et al. [146] found that methanogenesis can 
be inhibited during anaerobic electro-stimulation (application of a weak 
current to hydrogen producing bacteria) with promoted degradation of 
organic waste, thus leading to an enhanced hydrogen production. 

Dark fermentation is an alternative of the common anaerobic 
digestion but where anaerobic fermentation is stopped by suppressing 
methanogenesis, hence not converting VFA to methane or to hydrogen. 

A different route that certainly merits further investigation is the 
recovery and separation of the VFAs, for use in chemical transformations 
or as raw material. Both acetates and butyrates can be transformed into 
esters, then separated and purified as chemical feedstock. 

4.4. Membrane purification of hydrogen 

As the last step of hydrogen production, its purification is very 
important with Pressure Swing Adsorption, cryogenic distillation, and 
membrane separation as possible solutions. The first two processes are 
energy intensive [147], and current research focuses on membrane 
separation with polymeric and non-polymeric materials [110,148–152]. 

If proven to be viable in real operating conditions, membrane sepa
ration will attractively compete with the more mature technologies of 
pressure swing adsorption and cryogenic distillation. Apart from the 
high energy consumption, a cryogenic system can only practically ach
ieve moderate hydrogen purities (~95%) [153]. 

Hydrogen separation membranes were previously reviewed [149], 
and the operating conditions and performance of different membranes is 
illustrated in Fig. 9. Inorganic membranes can cope with more severe 
operating conditions their organic counterparts. 

As illustrated in the figure, the selectivity and working flux both are 
low for dense polymer membrane. Metallic membranes have a very high 
selectivity and flux. Highly pure hydrogen can be obtained through 
using dense metallic membranes. However the metal Pd is expensive, 
though thin film membranes can to some degree reduce the cost. Thin 

Fig. 7. VFA composition of the effluent.  

Fig. 8. Soluble metabolite products of effluent from dark hydrogen fermentation. Carboxymethyl-cellulose [143], Xylan [143], Cellulose [144], Palm oil mill effluent 
[39], Cassava starch Wastewater [33], Mixture of sewage sludge and food waste (1:3) [145]. 



membranes also increase the hydrogen flux. The drawback of a metallic 
membrane is its sensitivity to some gases, such as CO, H2S, thus needing 
gas pretreatment. Ceramic membranes are inert to hazardous gases, are 
resistant to high pressure and temperature, thus making it attractive to 
systems that operate at increased pressures, where permeabilities are 
considerably increased. However, due to its working mechanism, 
microporous ceramic membranes can never reach the 100% purity ob
tained by thin-film-palladium or ion-transport membranes. 

4.5. Potential and challenges 

Bio-hydrogen production through fermentation has advantages over 
other approaches, because abundant waste biomass can be used without 
increasing the amount of greenhouse gases in the atmosphere, and 
moving closer to a “hydrogen economy”. If 88% of the cost of bio
hydrogen through fermentation of glucose is attributed to the feedstock 
[154,155]. It is important to utilize cost-effective substrates. 

The low substrate conversion (usually <30%) and low hydrogen 
yield which is thermodynamically limited to maximum of 4 mol H2/mol 
hexose, are considered to be the main limitations of biohydrogen [156]. 
The energy conversion efficiency can be improved by integrating 
fermentation with other techniques such as anaerobic digestion or effi
ciency can be improved by integrating fermentation with other tech
niques such as anaerobic digestion or bio-electrochemical systems. To 
improve the performance of an integrated system in using wasted 
biomass, the selection of effective bacteria, construction of efficient 
strains and optimization of the process conditions have been studied, i. 
e., the utilization of high productive bacteria like E.coli or R.sphaeroides 
[157]. 

Currently, most of studies on dark-fermentation were conducted at 
lab scale. However, from an economic point of view, a continuous 
process is required for constant biohydrogen production at large scale. 
Additional research is also required (1) to explore cost-effective bio
hydrogen using abundant wasted biomass, (2) to develop an energy 
efficient, environmentally friendly and inhibitor-free pretreatment ap
proaches when cellulosic materials are used as feedstock, (3) to isolate 
new bacterial species or obtain robust microbes by modifying the 
pathways of present microorganisms using genetic methods, (4) to 
assess the economic feasibility of biohydrogen production from waste 

biomass (i.e., life cycle analysis), (5) to integrate the up- and down- 
stream technologies for multi-outputs from waste biomass. The most 
possible commercial establishment for biohydrogen production can be 
at a position near to a wastewater treatment plant, with stable and 
sufficient supply of feedstock. However, only wastewater supply will not 
be enough for continuous biohydrogen production since the content of 
organic substrate of wastewater will be insufficient for dark- 
fermentation. Thus addition of other organic substrates such as agri
cultural wastes and municipal organic wastes will be required. 

Although the present review focused on the bio-hydrogen produc
tion, it is interesting to compare these current lab-scale systems with 
commercial or significantly developed H2 production systems that uti
lize renewable and non-renewable resources. Fig. 10 illustrates the 3 
different strategies, using fossil fuels, nuclear energy and bio-energy 
resources. Within the fossil fuel solutions, hydrocarbon reforming and 
pyrolysis/gasification are widely applied on a commercial scale. Nuclear 
energy applications consider high temperature water splitting and 
electrolysis. The renewable energy routes comprise two alternative 
pathways for using diverse biomass species in either thermo-chemical 
processes (mostly pyrolysis, gasification and liquefaction), or in 
fermentation processes (indirect bio-photolysis, dark fermentation, 
photo-fermentation, sequential dark and photo-fermentation). While the 
thermo-chemical processes can be considered of commercial scale, 
fermentation could see enhanced development on a medium term. 
Electrolysis, associated with some of the renewable electricity genera
tion is commercially proven. 

Although costing data are scarce and widely differing among pub
lished data, a tentative comparison is presented in Table 6. Cost com
ponents related to H2 storage, transportation and utilization are not 
included. It should be remembered that efficiencies for steam reforming 
are 70–85%, 60–75% for coal gasification, 50–70% for electrolysis and 
35–50% for biomass gasification. Efficiencies of fermentation processes 
are still below 5%. 

It is clear that currently the most economic sources of H2 are fossil 
fuels and biomass. A kilogram of hydrogen has nearly the energy content 
of one gallon of gasoline. The cost of hydrogen per kilogram is hence 
directly comparable to the cost of a gallon of gasoline. From the data, it 
is clear that advanced nuclear techniques need major improvements to 
be economically viable. Also renewable energy (wind, solar) driven 

Fig. 9. The operating conditions and performance of different membranes.  



techniques are still too expensive, despite being currently promoted on a 
large scale to utilize excess electricity produced by wind turbines or 
photovoltaics in periods of low electricity demand of the grid. Gasifi
cation and pyrolysis of biomass in its different forms can be attractive, 

especially due to the volatility of fossil fuel prices. Bio-hydrogen pro
duction by fermentation is still rather expensive, but one should 
remember that only lab-scale data are currently available. 

Fig. 10. Technologies for producing H2 from fossil fuel, nuclear energy or renewable energy resources or feedstock.  

Table 6 
Operating and cost data for hydrogen production from renewable and non-renewable resources.  

Processes Energy 
source 

References Feedstock Cost Plant Output (t 
H2/h) 

H2 cost 
($/kg) 

Steam Methane Reforming 
(SMR) 

Natural gas Dincer and Acar, 2014 [158]; Acar and Dincer, 2015 [159]; Kalamaras, 
2013 [160]; Penner 2006 [161]; Rutkowski, 2005 [162] 

9.48 $/GJ 9.8–14.2 1.8–3.0 

SMR with CO2 sequestration Natural gas Rutkowski, 2005 [162]; 9.48 $/GJ 14.2 2.3 
Coal Gasification (CG) Coal Kreutz et al., 2002 [163]; 

Rutkowski, 2005 [162] 
1.15–1.26 $/GJ 10.6–32.1 0.8–1.3 

CG with CO2 sequestration Coal Kreutz et al., 2002 [163]; Rutkowski, 2005 [162]; Dincer and Acar, 2014 
[158]; Acar and Dincer, 2015 [159] 

1.15–1.26 $/GJ 10.6–32.1 0.9–1.7 

Nuclear Energy and Electrolysis Nuclear Petri et al., 2006 [164]; Dincer and Acar, 2014 [158]; Acar and Dincer, 
2015 [159] 

~0.048 $/kW h 0.04 4.2–7 

Sulphur-iodine thermo- 
chemical water splitting 

Nuclear Richards et al., 2006 [165]; 
Schultz, 2003 [166] 

Not available 24.3–30.1 1.75–2.01 

Wind turbines and electrolysis Wind Bockris & Veziroglu, 2006 [167]；Levene et al., 2006 [168]; Dincer and 
Acar, 2014 [158]; Acar and Dincer, 2015 [159] 

0.038 to 0.045 
$/kW h 

0.04 5.6–7.5 

Photovoltaics and electrolysis Solar Glatzmaier et al., 2010 [169]; Dincer and Acar, 2014 [158]; Acar and 
Dincer, 2015 [159] 

0.03 to 0.05 
$/kWh 

0.06–14.8 6.1–9.0 

Solar Power Tower and 
electrolysis 

Solar Glatzmaier et al., 2010 [169] 
Kolb et al., 2007 [170] 

0.08 to 0.10 
$/kWh 

16–26.3 5.1–6.5 

Gasification Biomass Mann, 2005 [171]; Dincer and Acar, 2014 [158]; Acar and Dincer, 2015 
[159] 

16.5–46.3 $/t 0.08–8.1 1.0–2.0 

Pyrolysis Biomass Padro and Putsche, 1999 [172] 16.5–46.3 $/t 0.11–30.4 1.0–2.0 
Dark Fermentation Biomass Jeffrey, 2010 [173] Various 

resources 
Lab-scale only 2.6 

Photo Fermentation Solar Demirbas MF, 2006 [174] Various 
resources 

Lab-scale only 2.8  



5. Conclusions and recommendations

Large industrial-scale of hydrogen production from biomass or car
bohydrates by fermentation, though undoubtedly desirable and favored, 
is however still at the level of laboratory or pilot scale. Strategies for 
industrial-scale production, at an economically viable level, need to be 
developed, and further research is still needed. A wide spectrum of 
wasted biomass of industrial, agricultural, municipal and forestry ori
gins can be considered to be used as substrate. Although results are 
interesting, and confirm the possibility of generating bio-hydrogen, all 
techniques suffer from 3 main drawbacks, i.e. (i) a low production yield 
of H2 (a few mol H2/per mol of equivalent glucose only in the case of 
fermentation; (ii) the production of a liquid waste stream rich in VFAs 
and hence needing further treatment when fermentation is used. 

The present work reviewed the literature relative to dark fermenta
tion, photo-fermentation, and combined processes. Dark-fermentation is 
an environment-friendly and cost effective approach of used for waste 
biomass. To improve the performance of dark-fermentation, it is 
essential to use several microorganisms capable of high hydrogen yield 
such as Bacillus amyloliquefaciens and C. pasteurianum and to use some 
advanced techniques of co-culture fermentation. The application of 
mutant strain obtained from genetic engineering becomes a promising 
trend in dark-fermentation. The development of integrated systems of 
dark-fermentation with other technologies such as anaerobic digestion is 
important for valorization of dark-fermentation effluent, making the 
production of biohydrogen profitable and sustainable. 

Although literature offers some solutions to the problems, as outlined 
in Section 4, these solutions are either incomplete, economically 
debatable, or in initial stages of assessment. 

To enhance the future of bio-hydrogen, an important step forward 
would involve the further use and valorization of the residual waste 
streams produced by fermentation. At current market values of C2, C3 
and C4 chemicals, it is certainly worth focusing research efforts on the 
recovery and additional use of VFAs and minor organic compounds 
formed by bio-H2 fermentation. 
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