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Abstract

We consider the problem of combining belief functions in a situation where pieces of evidence
are held by agents at the node of a communication network, and each agent can only
exchange information with its neighbors. Using the concept of weight of evidence, we propose
distributed implementations of Dempster’s rule and the cautious rule based, respectively,
on average and maximum consensus algorithms. We also describe distributed procedures
whereby the agents can agree on a frame of discernment and a list of supported hypotheses,
thus reducing the amount of data to be exchanged in the network. Finally, we show the
feasibility of a robust combination procedure based on a distributed implementation of the
random sample consensus (RANSAC) algorithm.

Keywords: Dempster-Shafer theory, evidence theory, consensus, information fusion,
uncertain reasoning.

1. Introduction1

Since its development by Shafer [35] following Dempster’s seminal work on statistical2

inference [8], Dempster-Shafer (DS) theory has been widely used as a formal framework3

for uncertain reasoning [10, 11]. In the past thirty years, it has been used extensively in a4

large number of applications including information fusion [7, 33, 44], classification [14, 13],5

clustering [15], scene perception [47], etc.6

DS theory is essentially a theory of evidence: it consists in representing elementary7

pieces of evidence pertaining to a question of interest using belief functions, i.e., completely8

monotone set functions [35, 11], and pooling them using some appropriate combination9

rule. Dempster’s rule, also referred to as the product-intersection rule, occupies a central10

position in DS theory; it allows us to combine pieces of evidence that are both reliable and11

independent [35]. However, in real-world applications, it is not always possible to break down12

the available evidence into independent pieces, and the complete reliability that is called for13

in the basic theory is often an idealization. For that reason, alternative combination rules14
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have been developed over the years to handle highly conflicting [19, 31, 41, 4] or dependent15

pieces of evidence [9, 16, 5, 3].16

Most implementations of Dempster’s rule assume a centralized fusion scheme in which a17

single agent receives pieces of evidence from several sources and combines them. There are,18

however, a growing number of applications in which several agents independently collect19

evidence and exchange information via a static or dynamic communication network. In this20

case, no single agent holds the totality of the evidence, and agents typically can only access21

the information held by their neighbors in the communication graph. As typical applications,22

we can mention target classification in sensor networks [25] and information fusion in multi-23

robot systems [32]. For instance, El Zoghby et al. [20] describe a collaborative perception24

application in which a fleet of intelligent vehicles is equipped with sensors and communicates25

through an ad hoc network (see also, e.g. [28]). The overall objective of this application is26

to enhance each vehicle’s perception and situation awareness of a complex dynamic traffic27

scene through the multiplicity of sensors and the communication capabilities of the agents.28

Typically, each agent perceives a number of objects and collects sensor information about29

them. Object association and classification then have to be performed using distributed30

algorithms, which allow the agents to exchange information locally with their neighbors31

in the network and to construct, collectively, a shared representation of the environment.32

Distributed algorithms for object association are described in [32]. Here, we assume that33

the agents have already agreed on some questions of interest (such as the class of matched34

objects) and we focus on the distributed combination of evidence assumed to be represented35

by belief functions.36

A first approach to this problem has been proposed in [26], in which the authors proposed37

a distributed implementation of Dempster’s rule based on the combination of commonality38

functions, an alternative representation of belief functions. However, a problem with this39

approach is that the quantity of information to be exchanged in the network grows expo-40

nentially with the number of hypotheses. Furthermore, this approach does not easily extend41

to other combination rules. In this paper, we propose an alternative approach based on the42

combination of weights of evidence. As opposed to commonalities, weights of evidence are43

usually specified for a small number of hypotheses, which considerably reduces the amount44

of communications as well as the complexity of computations at each node. Furthermore,45

the same approach can be used to develop a distributed implementation of the cautious rule,46

an alternative to Dempster’s rule making it possible to combine dependent items of evidence.47

Finally, we propose a distributed RANSAC algorithm allowing the robust combination of48

belief functions to account, for instance, for wrong associations or faulty sensors.49

The rest of this paper is organized as follows. The necessary background on DS theory is50

first recalled in Section 2. The distributed implementations of the product-intersection and51

cautious rules are then described in Section 3. Finally, the robust combination procedure is52

presented in Section 4, and Section 5 concludes the paper.53
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2. Background on belief functions54

In this section, background knowledge on DS theory is summarized to make the paper55

self-contained. Basic notions are first recalled in Section 2.1. Weights of evidence and the56

cautious rule of combination are then introduced, respectively, in Sections 2.2 and 2.3.57

2.1. Basic notions58

We consider a question of interest having one and only one answer in a finite set Ω called59

the frame of discernment. A mass function on Ω is a mapping m ∶ 2Ω → [0,1] such that60

∑
A⊆Ω

m(A) = 1.

If m(∅) > 0, mass function m is said to be subnormal, otherwise it is said to be normalized.61

A subnormal mass function such that m(∅) < 1 can be transformed to a normalized one m∗
62

defined by m∗(∅) = 0 and63

m∗(A) = m(A)
1 −m(∅)

(1)

for all nonempty subset A ⊆ Ω. This operation is called normalization. Mass functions are64

usually assumed to be normalized, but unnormalized mass functions sometimes appear as65

intermediate results in calculations (see below).66

A mass function m represents a piece of evidence, and m(A) represents the probability67

that the evidence tells us that the truth lies in A, and nothing more specific. The subsets A68

such that m(A) > 0 are called the focal sets of m. A mass function is said to be consonant69

if, for any two focal sets A and B, we have either A ⊂ B or B ⊂ A. It is said to be Bayesian70

if all its focal sets are singletons. Finally, the vacuous mass function m? verifies m?(Ω) = 1;71

it represents complete ignorance.72

A belief function Bel ∶ 2Ω → [0,1] can be computed from a normalized mass function m∗
73

as74

Bel(A) = ∑
B⊆A

m∗(B),

for all A ⊆ Ω. The quantity Bel(A) is interpreted as the total degree of support given to the75

proposition that the truth lies in A, taking into account the support given to A and to all76

of its subsets. Obviously, Bel(∅) = 0 and Bel(Ω) = 1. A related notion is that of plausibility77

function, defined as78

Pl(A) = ∑
B∩A≠∅

m∗(B) = 1 −Bel(A),

where A denotes the complement of A. The quantity Pl(B) reflects the lack of support79

given to the proposition that the truth does not lie in A.80

Two mass functions m1 and m2 on Ω representing independent items of evidence can be81

combined by the conjunctive sum operation ⩀ [38] defined as82

(m1 ⩀m2)(A) = ∑
B∩C=A

m1(B)m2(C) (2)
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for all subset A of Ω. Obviously, m1 ⩀ m2 may be subnormal, even if m1 and m2 are
normalized. The quantity

κ(m1,m2) = (m1 ⩀m2)(∅)

is called the degree of conflict between m1 and m2. Normalizing m1⩀m2 yields a normalized83

mass function m1 ⊕m2, called the orthogonal sum of m1 and m2 and defined as84

m1 ⊕m2 = (m1 ⩀m2)∗ . (3)

The combination rule ⊕ defined by (3) is called Dempster’s rule of combination, or the85

product-intersection rule. Both the unnormalized conjunctive rule ⩀ and Dempster’s rule ⊕86

are commutative and associative, and the vacuous element m? is the neutral element of both87

operators. An important property is that, to combine several mass functions by Dempster’s88

rule, we can use the unnormalized combination operator (2) and normalize only at the end,89

i.e., for n arbitrary mass functions m1, . . . ,mn,90

m1 ⊕ . . .⊕mn = (m1 ⩀ . . . ⩀mn)∗ . (4)

Dempster’s rule can also be computed using the commonality function. The commonality91

function Q ∶ 2Ω → [0,1] associated to a mass function m is defined by92

Q(A) = ∑
B⊇A

m(B), (5)

for all A ⊆ Ω. Conversely, m can be recovered from Q using the following formula,93

m(A) = ∑
B⊇A

(−1)∣B∣−∣A∣Q(B) (6)

for all A ⊆ Ω. If Q1 and Q2 are the commonality functions associated with two mass functions94

m1 and m2, then the commonality function Q1 ⩀Q2 associated with m1 ⩀m2 is the product95

of Q1 and Q2:96

Q1 ⩀Q2 = Q1 ⋅Q2. (7)

Dempster’s rule can, thus, be implemented by computing the commonality functions using97

(5), multiplying them point-wise, converting the result back to a mass function using (6),98

and renormalizing using (1). However, the complexity of this procedure is O(2K), where K99

is the cardinality of the frame of discernment. In contrast, masses are often assigned to a100

small number of focal sets, which makes the computation of Dempster’s rule using (2)-(3)101

much more efficient.102

2.2. Weights of evidence and separability103

In practical applications, an elementary piece of evidence about a question of interest104

often comes as a nonempty set A ⊆ Ω of possible answers, and a degree of support s ∈ [0,1)105

for that set. Mathematically, such a piece of information can be formalized as a simple mass106

function m of the form107

m(A) = s, m(Ω) = 1 − s. (8)

4



Given two simple mass functions m1 and m2 with the same focal set A and degrees of support
s1 and s2, their orthogonal sum is

(m1 ⊕m2)(A) = 1 − (1 − s1)(1 − s2) (9a)

(m1 ⊕m2)(Ω) = (1 − s1)(1 − s2). (9b)

Denoting the simple mass function (8) by Aw, where w = − ln(1−s) is the weight of evidence1
108

for A as defined by Shafer [35, page 77], Eq. (9) becomes109

Aw1 ⊕Aw2 = Aw1+w2 ,

i.e., weights of evidence add up when combining simple mass functions with the same focus.110

The vacuous mass function can be written as A0 for any A ⊆ Ω.111

A normal mass function m is said to be separable [35] if it is the orthogonal sum of simple112

mass functions; it can be written as113

m = ⊕
∅≠A⊂Ω

Aw(A), (10)

where w(A) is the weight of evidence for subset A. As a consequence of Theorem 5.2 in [35],114

this decomposition is unique and the weights w(A) are all finite as long as m(Ω) > 0 (m is115

then said to be nondogmatic). Most mass functions used in practice are separable. This is116

the case, in particular, for consonant mass functions [9].117

If m is nondogmatic, the weights in (10) can be computed from the commonality function118

by the following equation [40]:119

w(A) = ∑
B⊇A

(−1)∣B∣−∣A∣ lnQ(B), (11)

for all A ∈ 2Ω ∖ {∅,Ω}. This equation provides a test to determine if a normalized mass120

function m is separable: the property holds iff the weights w(A) computed from (11) are all121

positive or equal to zero. For an arbitrary nondogmatic mass function, we can still define a122

corresponding weight assignment as the mapping from 2Ω ∖ {∅,Ω} to R expressed by (11).123

Let w1 and w2 be the weight assignments associated to two mass functions m1 and m2,124

and let w1⊕2 be the weight assignment corresponding to m1 ⊕m2. As a consequence of (7)125

and (11), we have126

w1⊕2 = w1 +w2, (12)

i.e., in the weight representation, Dempster’s rule is just addition. Given the weight assign-127

ment w, the corresponding mass function can be recovered from (10), but Aw(A) is only a128

valid simple mass function if w(A) ≥ 0. If w(A) < 0, the notation Aw(A) can still be used129

to designate a “generalized simple mass function” [40], defined as a mapping that assigns130

1In [9], following [40], we used the term “weight” for exp(−w), a quantity called “diffidence” in [17]. As
we will see, the additivity property is central in our analysis: we thus stick to Shafer’s terminology and
notation in this paper.
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Table 1: Two mass functions with the corresponding commonality functions and weight assignments, and
their orthogonal sum. The weight assignment of the orthogonal sum m1⊕2 = m1 ⊕m2 is the sum of the
weight assignments of m1 and m2.

∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1 ⋅ 0.5 ⋅ 0.3 ⋅ 0.1 ⋅ 0.1
Q1 1 1 0.4 0.4 0.2 0.2 0.1 0.1
w1 0.22 ⋅ 1.39 ⋅ 0.69 ⋅
m2 ⋅ ⋅ ⋅ ⋅ ⋅ 0.4 0.2 0.4
Q2 1 0.8 0.6 0.4 1 0.8 0.6 0.4
w2 ⋅ ⋅ ⋅ −0.182 0.69 0.41
m1⊕2 ⋅ 0.58 0.067 0.13 0.022 0.13 0.022 0.044
Q1⊕2 1 0.89 0.267 0.18 0.222 0.18 0.067 0.044
w1⊕2 0.22 ⋅ 1.39 −0.182 1.39 0.41

a negative mass s = 1 − e−w(A) to A, and a mass e−w(A) > 1 to Ω. Such mappings are not131

proper mass functions and they do not have a simple interpretation, but they can still be132

formally combined by Dempster’s rule using (2)-(3). This notational trick makes it possible133

to recover m from w using (10) for any arbitrary nondogmatic mass function m.134

Example 1. Let Ω = {a, b, c} be a frame of discernment with three elements. Table 1 shows135

two mass functions m1 and m2 with their corresponding commonality functions and weight136

assignments, as well as the result of the combination of m1 and m2 by Dempster’s rule. We137

can see that m1 is separable (the corresponding weights are all positive), whereas m2 is not138

(as w2({c}) < 0). A negative weight of evidence can be interpreted as the “retraction” of139

some evidence [40, 17]. The weight assignment w1⊕2 of m1⊕2 = m1 ⊕m2 is the sum of the140

weight assignments w1 and w2. We remark that m1⊕2 is not separable.141

Even though the mass functions of Example 1 are defined over a very small frame, we can142

already observe that the Q-representation is less parsimonious than the w-representation.143

This is due to the fact that the Q-representation is global : if some positive mass m(A) > 0144

is assigned to some focal set A, all subsets of A will have a strictly positive commonality. In145

contrast, the weight-of-evidence representation is local : the combination with a simple mass146

function focused on a subset A only changes the weight of A. As a consequence, weights of147

evidence are usually assigned to only a few subsets of the frame of discernment supported148

by the evidence (called supported sets in the rest of this paper), and the number of nonzero149

weights typically remains small when combining several mass functions by Dempster’s rule.150

2.3. Cautious rule of combination151

In DS reasoning, it is often useful to compare the “information content” of two mass152

functions. This allows us, in particular, to find the least-committed mass function compatible153
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with a set of constraints induced by the available evidence, a principle known as the Least-154

Commitment Principle (LCP) [39]. Several informational orderings generalizing set inclusion155

have been proposed. For instance, the q-ordering [18] is defined by156

m1 ⊑q m2 iff ∀A ⊆ Ω, Q1(A) ≤ Q2(A).

In particular, if there exists a mass function m such that m1 =m2⊕m and m is not conflicting157

with m2, i.e., κ(m2,m) = 0, then m1 is q-more committed than m2; in this case we have158

obviously Q1 = Q2 ⋅Q ≤ Q2. Being the orthogonal sum of m2 and another mass function m,159

m1 then clearly contains more information than m2.160

Another informational ordering, introduced in [9], is based on the comparison between161

weight assignments: for any two nondogmatic mass functions m1 and m2,162

m1 ⊑w m2 iff ∀A ⊆ Ω, w1(A) ≥ w2(A),

i.e., m1 is w-more committed than m2 if and only if it assigns larger weights of evidence to163

all hypotheses. An alternative interpretation is as follows: m1 is w-more committed than164

m2 iff there exists a separable mass function m such that m1 =m2 ⊕m.165

Let us now assume that we have two mass functions m1 and m2 from two sources that166

are not independent, and we wish to combine them conjunctively. The combined mass167

function m12 should be more committed than both m1 and m2. Let S(m1) and S(m2)168

denote the sets of mass functions that are more committed than, respectively, m1 and m2.169

We thus require that m12 ∈ S(m1) ∩ S(m2). According to the LCP, the least committed170

mass function in the set S(m1)∩S(m2), according to some ordering ⊑x, should be selected,171

if it exists. The existence of a least-committed element is not always guaranteed. If m1 and172

m2 are consonant and x = q, then the solution is the consonant mass function m12 such that173

Pl12({ω}) = Pl1({ω}) ∧ Pl2({ω}) for all ω ∈ Ω, where ∧ denotes the minimum operator.174

However, the consonance condition is quite strict. For the w-ordering, the least-committed175

mass function in S(m1)∩S(m2) exists and is unique for any nondogmatic mass function [9];176

it is given by177

m1 ?m2 = ⊕
∅≠A⊂Ω

Aw1(A)∨w2(A),

where ∨ denotes the maximum operator. The ? operation is called the (normalized) cautious178

rule of combination [9]. Denoting by w1?2 the weight function corresponding to m1 ?m2,179

we thus have180

w1?2 = w1 ∨w2, (13)

which is to be compared to (12). The cautious rule is commutative, associative and idem-181

potent, i.e., m?m = m for any nondogmatic mass function m. Also, the orthogonal sum182

is distributive with respect to ?: for any nondogmatic mass functions m1, m2 and m3, we183

have184

(m1 ⊕m2) ? (m1 ⊕m3) =m1 ⊕ (m2 ?m3). (14)

Eq. (14) lays bare an important property of the cautious rule: when combining two overlap-185

ping pieces of evidence (m1⊕m2 and m1⊕m3), the common part (m1) is not counted twice.186
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Table 2: The two mass functions of Example 1 and their combination by the cautious rule.

∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1 ⋅ 0.5 ⋅ 0.3 ⋅ 0.1 ⋅ 0.1
w1 0.22 ⋅ 1.39 ⋅ 0.69 ⋅
m2 ⋅ ⋅ ⋅ ⋅ ⋅ 0.4 0.2 0.4
w2 ⋅ ⋅ ⋅ −0.182 0.69 0.41
m1?2 ⋅ 0.4 0.12 0.24 0.04 0.08 0.04 0.08
w1?2 0.22 ⋅ 1.39 ⋅ 0.69 0.41

This property makes this rule suitable for combining nonindependent pieces of evidence. The187

cautious rule has shown good performance in many practical applications including classifier188

combination [34], visual tracking [29], face detection [21], expert opinion combination [24, 6]189

and cooperative perception in vehicular networks [20].190

Example 2. Let us consider again the two mass functions m1 and m2 of Example 1. Table191

2 shows these mass functions and their weight assignments, together with the result of their192

combination by the cautious rule. We observe that m1?2 = m1 ? m2 is separable. More193

generally, the combination of an arbitrary mass function with a separable mass function by194

the cautious rule is always separable.195

It must be noted that the decision to use Dempster’s rule or the cautious rule must be196

based on the consideration of the evidence on which agents have based the construction of197

their mass functions, Dempster’s rule requiring the bodies of evidence to be entirely distinct198

[36]. Typically, the independence assumption can be considered to hold if agents use distinct199

sensor data, and it does not hold if they share common information or knowledge. In case200

of doubt, it may be preferable to use the more conservative cautious rule, which is less likely201

to yield overconfident conclusions.202

3. Distributed orthogonal-sum and cautious combination203

In this section, we show how Dempster’s rule and the cautious rule can be implemented204

in a distributed way. We assume that n agents are located at the nodes of a communication205

graph G(t) = (V ,E(t)), where V = {1, . . . , n} is the set of vertices, E(t) ⊆ V2 is the set of206

edges and t is a discrete time index (Figure 1). Each agent i holds a mass function mi and207

can communicate only with its neighbors in the graph. The communication graph is usually208

determined by physical constraints such as spatial distance and transmitter power in the209

case of wireless communication. When agent i can receive information from agent j, it is210

often the case that agent j can also receive information from agent i, i.e., the communication211

graph is undirected. While this assumption is not necessary for the subsequent analysis, it212

is often reasonable and we will adopt it hereafter to simplify the exposition.213
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Figure 1: Example of a connected graph with five vertices.

We wish to design distributed procedures whereby each agent can combine its mass214

function with those of other agents by any of the combination rules reviewed in Section215

2. As a result, a consensus will be reached, each agent having the same mass function216

m∗ = m1 ∗ . . . ∗mn, with ∗ = ⊕ or ∗ = ?. The key observation is that, as shown in Sections217

2.2 and 2.3, combination by Dempster’s rule and the cautious rule can be achieved by com-218

puting, respectively, the sum and the maximum of the weights of evidence. Consequently,219

these rules can be implemented in a distributive way using average and maximum consensus220

algorithms [23, 32].221

We note that, in this paper, we consider only the static consensus problem in which each222

agent i first constructs a fixed mass function mi based, e.g., on sensor information in a first223

step, and then combines it with the mass functions of other agents in the network in a sec-224

ond step. A more difficult problem would be to consider situations in which agents continue225

to update their beliefs by collecting evidence from the outside world while simultaneously226

exchanging information with other agents in the network. The combination of dynamically227

changing reference signals in a decentralized fashion is referred to as the dynamic consensus228

problem [27]. This problem is more complex than the static one; in particular, the conver-229

gence of dynamic consensus algorithms can only be guaranteed under some assumptions on230

the dynamics of the individual reference signals. In practice, static consensus algorithms are231

applicable and are commonly used when the reference signals (here, individual mass func-232

tions) are either fixed, or are updated at a low frequency relative to the convergence time of233

a static consensus algorithm. This is the case, for instance, in mobile robotics application234

such as described in [32] or [20].235

In the following, static consensus algorithms will first be reviewed in Section 3.1. The236

application to belief function combination will then be exposed in Section 3.2.237
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3.1. Consensus algorithms238

Let us assume that each agent i in the network initially holds a quantity or “state”239

xi(0), and agents update their states at discrete times t = 1,2, . . ., computing xi(t + 1) from240

xi(t) using only the information from their neighbors in the communication graph G(t).241

The consensus problem is to design an update equation such that the states of all agents242

converge to the same value ξ, i.e., for all i ∈ {1, . . . , n},243

lim
t→∞

xi(t) = ξ.

The average and maximum consensus problems correspond, respectively, to the cases where244

ξ = 1
n ∑

n
i=1 xi(0), and ξ = max1≤i≤n xi(0). In the following, we focus on the average consensus245

problem first, and we address the simpler maximum consensus problem at the end of this246

section. Most of the material in this section is drawn from [23] and [32].247

Preliminary definitions. Let C = (cij) ∈ Rn×n be an n × n square matrix. It is said to be248

stochastic if cij ≥ 0 for all (i, j), and ∑n
j=1 cij = 1 for all i, i.e., each row sums to unity. If,249

additionally, ∑n
i=1 cij = 1 for all j, i.e., each column also sums to unity, then C is said to250

be doubly stochastic. Obviously, all symmetric stochastic matrices are doubly stochastic.251

The graph GC of stochastic matrix C ∈ Rn×n is defined as (V ,EC) with V = {1, . . . , n} and252

EC = {(i, j) ∈ V2 ∶ cij(t) > 0}. Matrix C is compatible with graph G = (V ,E) if its graph253

GC = (V ,EC) is a subgraph of G, i.e., EC ⊆ E . A graph G = (V ,E) is undirected if (i, j) ∈ E254

implies (j, i) ∈ E . An undirected graph is connected if there is a path from any node to any255

other node in the graph. The set of neighbors of vertex i ∈ V in undirected graph G = (V ,E)256

is defined as N (i) = {j ∈ V ∖ {i} ∶ (i, j) ∈ E}. The union of two graphs G1 = (V ,E1) and257

G2 = (V ,E2) with the same set of vertices is defined as G1 ∪ G2 = (V ,E1 ∪ E2).258

Linear consensus algorithm. We consider the following linear update equation259

x(t + 1) =C(t)x(t), (15)

where x(t) = (x1(t), . . . , xn(t))T is the column vector of states at time t and C(t) ∈ Rn×n is
a stochastic matrix compatible with the communication graph. Eq. (15) can be written as:

xi(t + 1) =
n

∑
j=1

cij(t)xj(t) = xi(t) + ∑
j∈N (i)

cij(t)(xj(t) − xi(t))

for i = 1, . . . , n. Each agent i thus updates its state based on the states on its neighbors in260

the communication graph.261

Several theoretical results guarantee the convergence to the average of the initial quan-262

tities xi(0). Let us first consider the case where the communication graph (assumed to be263

undirected) remains fixed during the execution of the algorithm and C(t) =C is a constant264

matrix. Then, the following result holds [23, Theorem 3.1].265
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Proposition 1. If C is symmetric, stochastic and such that cii > 0 for all i, and if GC is266

connected, then267

lim
t→∞

Ct = 1

n
1,

where 1 = (1, . . . ,1)T ∈ Rn, t is a positive integer and268

Ct =C . . .C
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
t times

.

Consequently, the linear update equation (15) solves the average consensus problem.269

As shown by Xiao and Boyd [45], the convergence rate of the linear consensus algorithm270

(15) with constant weight matrix C(t) =C, defined as271

r(C) = sup
x(0)≠x

lim
t→∞

(∥x(t) −x∥2

∥x(t) −x∥2

)
1/t

,

where x is the n-vector whose components are the average (1/n)∑n
i=1 xi(0), is equal to the272

spectral radius of matrix C − (1/n)11T . A method to design matrix C so as to maximize273

r(C) is described in [45].274

If the communication connectivity varies over time, then convergence to the average can275

still be guaranteed provided the union of the communication graphs G(t) over a time window276

of given length is connected. This is expressed by the following proposition [23, Theorem277

3.2].278

Proposition 2. Consider a sequence of symmetric stochastic matrices {C(t)}+∞t=0 verifying279

cii(t) > 0 for all i. Let G(t) denote the graph of C(t). Then the sequence C(t) solves the280

average consensus problem if and only if there exists a positive integer T such that the graphs281

G(t) = G(t) ∪ G(t + 1) ∪ . . . ∪ G(t + T − 1) for t = 0,1, . . . are all connected.282

When the weight matrix varies, the analysis of the convergence rate has to be based283

on worst-case analysis [23]. Bounds on the rate of convergence subject to constraints on284

the topological properties of the communication graphs and on the numerical values for the285

entries of C(t) are given in [1]. Other theoretical results pertain to the case where matrices286

{C(t)} are generated randomly. The reader is referred to [23] for a review of these results.287

Design of matrices C(t). To implement a consensus strategy, we need to design either a288

single matrixC in the case of a fixed communication network, or a sequence of matricesC(t)289

if the connectivity changes. Optimal design methods, maximizing some global performance290

criterion, often require a centralized mechanism taking into account the topology of the291

whole network [45]. Here, we focus on local design methods, in which each agent can design292

its consensus update weights using only information provided by its neighbors.293

A common choice for the weight matrix C when the network topology is fixed and agents294

update their state in a synchronized way is the matrix of Metropolis-Hastings weights [46],295

cij =
⎧⎪⎪⎨⎪⎪⎩

1
max(d(i),d(j))+1 if (i, j) ∈ E and i ≠ j
1 −∑n

j=1,i≠j cij if i = j,
(16)
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Figure 2: Convergence of states to the average using Metropolis-Hastings weights (Example 3). Each of the
five curves represents the state of one of the five nodes as a function of the number of iterations. All states
converge to the average (1 + 2 − 1 + 0 − 2)/5 = 0 of the initial values.

where d(i) = ∣N (i)∣ is the number of neighbors of node i (called the degree of node i).296

Clearly, this matrix is symmetric, stochastic and its diagonal elements are strictly positive.297

Furthermore, GC = G. It thus satisfies the condition of Proposition 1 as long as G is connected,298

and it ensures average consensus.299

Example 3. For the graph of Figure 1, the matrix of Metropolis-Hastings weights is300

C =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0.667 0.333 0 0 0
0.333 0.417 0.25 0 0

0 0.25 0.25 0.25 0.25
0 0 0.25 0.75 0
0 0 0.25 0 0.75

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (17)

Figure 2 shows the convergence of states to the average using the update rule (15) with this301

weight matrix, starting from the initial condition x(0) = (1,2,−1,0,−2).302

In some real applications such as, e.g., those involving mobile robots exchanging infor-303

mation through an ad hoc network, the assumptions of fixed communication graph and syn-304

chronous communication cannot be made. As an example of a consensus strategy allowing305

for time-varying graphs and asynchronous communication, we can mention the symmetric306

gossip scheme [2, 23], in which at each time step a node i transmits its information to one307

of its neighbors j, which in turn transmits back its information to i. After this information308

exchange, both nodes update their state using a consensus scheme. More formally, given a309
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communication graph G = (V ,E), assume that at each time t a link (i, j) ∈ E with i ≠ j is310

selected, and matrix C(t) is defined as311

C(t) =Cij = In −
1

2
(ej − ei)(ej − ei)T , (18)

where In is the identity matrix of dimension n, and ei is the n-vector (i.e., column vector of312

dimension n) containing only zeros except for the i-th entry, which is set to one. MatricesCij
313

verify the conditions stated in Proposition 2. If there exists an integer T such that all links314

are selected at least once in every time window of length T , the joint graphs G(t) = ⋃i<jCij
315

are connected, and the sequence of matrices C(t) solves the average consensus problem.316

Example 4. The graph of Figure 1 has four links, with the following corresponding matrices:317

C12 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0.5 0.5 0 0 0
0.5 0.5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, C23 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 0.5 0.5 0 0
0 0.5 0.5 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

318

C34 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0.5 0.5 0
0 0 0.5 0.5 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, C35 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0.5 0 0.5
0 0 0 1 0
0 0 0.5 0 0.5

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Figure 3 shows the convergence of states to the average using the update rule (15), starting319

from the same initial condition as in Example 3, and defining C(t) as one of the above four320

matrices picked in a random order.321

Maximum consensus. Solving the maximum consensus problem means ensuring that the322

states xi(t) of all of the n agents converge to the maximum of the initial states x1(0), . . . , xn(0).323

This can be achieved by the following nonlinear update rule:324

xi(t + 1) = max
j∈{i}∪N (i)

xj(t), (19)

i.e., at each time step, each agent updates its state by the maximum of its previous state and325

the states of its neighbors [42, 32]. This algorithm solves the maximum consensus problem326

in a finite number of iterations under any of the following two conditions, which mirror the327

conditions of Propositions 1 and 2:328

1. The communication graph G is fixed and connected.329

2. There exists a positive integer T such that the graphs G(t) = G(t)∪G(t+1)∪ . . .∪G(t+330

T − 1) for t = 0,1, . . . are all connected.331

Example 5. Coming back to the network of Figure 1, assume that the initial condition is332

the initial condition x(0) = (1,2,−1,0,−2). Assuming the five agents update their states in a333

synchronized way, we have x(1) = (2,2,2,0,−1) and x(2) = (2,2,2,2,2), i.e., the procedure334

converges in only two iterations.335
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Figure 3: Convergence of states to the average using a symmetric gossip scheme (Example 4). Each of the
five curves represents the state of one of the five nodes as a function of the number of iterations. All states
converge to the average (1 + 2 − 1 + 0 − 2)/5 = 0 of the initial values.

3.2. Application to belief function combination336

Let us now assume that agents have collected evidence about some question, and they337

wish to combine this evidence by exchanging information through the network without any338

centralized mechanism. To reach this goal, the agents must first agree on the frame of339

discernment and on a common representation of the available evidence, which can then be340

combined using the cautious rule or Dempster’s rule. These different steps are described341

below.342

Frame of discernment. The first problem to solve is the definition of the frame of discernment343

Ω. In some applications, this frame is fixed: for instance, in an intrusion detection problem,344

the frame has only two elements corresponding to the presence or absence of an intruder. In345

other applications, the frame may potentially be very large, and it may be computationally346

advantageous to restrict it to as few hypotheses as possible, by discarding hypotheses that347

are deemed impossible by all agents. For instance, assume that a fleet of mobile robots is348

searching for a lost object, and the search space is divided into a finite, but large number349

of cells. If all agents agree that some cells are impossible, then the frame of discernment350

should include only those cells that are considered possible by at least one agent. Let351

Θ = {θ1, . . . , θN} be an ordered set containing all hypotheses possible a priori, shared by all352

agents. Initially, each agent i defines a set Ωi(0) ⊆ Θ containing the hypotheses it considers353

possible, given its own evidence. Then the update rule can be354

Ωi(t + 1) = ⋃
j∈{i}∪N (i)

Ωj(t) (20)
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for j = 1, . . . , n. This “disjunctive” procedure will converge to Ω = ⋃ni=1 Ωi in a finite number355

of iterations. We note that a less conservative approach would be to replace union by356

intersection in (20), which would amount to discarding any hypothesis considered impossible357

(or maybe only forgotten or neglected) by even a single agent. This “conjunctive” procedure358

will then converge to ⋂ni=1 Ωi. While this approach may be preferred in some applications359

in which the agents’ opinions are not expected to be conflicting, it is less robust than the360

previous one, and the disjunctive approach is arguably safer in many applications.361

Evidence representation. After agents have agreed on an ordered frame of discernment Ω =362

{ω1, . . . , ωK}, they can represent their evidence by nondogmatic mass functions mi on Ω363

corresponding to weight assignments wi ∶ 2Ω ∖ {∅,Ω} → R. A simple approach would be to364

represent each weight assignment by a vector of length 2K − 2 but, as mentioned in Section365

2.2, most of the weights w(A) will usually be null, except for a small number of supported366

sets. For large K, agents can limit the amount of communication by first sharing their367

collections of supported sets, which can be done as follows. Each subset A ⊆ Ω can be368

represented by a binary vector a = (a1, . . . , aK) ∈ {0,1}K such that aj = 1 if ωj ∈ A and aj = 0369

otherwise. This vector can alternatively be coded as an integer α = ∑K
j=1 aj2

j−1. Let Fi(0)370

denote the set of integers representing the supported sets of agent i, i.e., the subsets A ⊆ Ω371

such that wi(A) > 0. The consensus algorithm based on the following update rule372

Fi(t + 1) = ⋃
j∈{i}∪N (i)

Fj(t) (21)

converges to F = {α1, . . . , αr} = ⋃ni=1Fi(0). Each weight assignment wi can then be coded373

as an r-vector wi⋅(0) = (wi1(0), . . . ,wir(0))T , where wij(0) is the weight intially assigned by374

agent i to subset Aj represented by integer αj.375

Example 6. Consider again five agents at the nodes of the graph of Figure 1. Assume that376

Θ = {θ1, . . . , θ100}. Representing the evidence of each agent by a vector of 2100 masses or377

commonalities would obviously be infeasible. Assume that the initial sets of possibilities of378

the five agents are379

Ω1(0) = {θ10, θ11, θ13, θ14}, Ω2(0) = {θ12, θ13, θ14, θ15}
380

Ω3(0) = {θ11, θ12, θ13, θ14}, Ω4(0) = {θ12, θ13, θ15, θ16}
381

Ω5(0) = {θ11, θ13, θ15, θ16}.

After a finite number t of iterations, the consensus algorithm defined by (20) converges to382

Ωi(t) = Ω = {θ10, θ11, θ12, θ13, θ14, θ15, θ16}

for i = 1, . . . ,5. Let us rename the elements of Ω as Ω = {ω1, . . . , ω7}. This is now the common383

frame of discernment for the five agents. Assume that the agents assess the evidence known384

to them and represent it by the following separable mass functions:385

m1 = {ω4}0.5 ⊕ {ω2, ω4}0.8, m2 = {ω3}1 ⊕ {ω3, ω4}1.2
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386

m3 = {ω3, ω4}0.3 ⊕ {ω3, ω4, ω5}0.9, m4 = {ω4, ω6, ω7}0.2

387

m5 = {ω2, ω4}0.7 ⊕ {ω2, ω4, ω6, ω7}1.1.

For m1, the supported sets are {ω4} and {ω2, ω4}. Their binary representations are, re-388

spectively, a1 = (0,0,0,1,0,0,0) and a2 = (0,1,0,1,0,0,0), and their corresponding integer389

representations are α1 = 23 = 8 and α2 = 21 + 23 = 10. Consequently, F1(0) = {8,10}. Simi-390

larly, F2(0) = {4,12}, F3(0) = {12,28}, F4(0) = {104} and F5(0) = {10,106}. The consensus391

algorithm based on update equation (21) converges after a finite number of iterations to the392

union of the Fi(0), i.e.,393

F = {4,8,10,12,28,104,106}.

The weight assignments can, thus, be represented as vectors of length r = ∣F ∣ = 7 as follows:394

αj
4 8 10 12 28 104 106

w1⋅(0) 0 0.5 0.8 0 0 0 0
w2⋅(0) 1 0 0 1.2 0 0 0
w3⋅(0) 0 0 0 0.3 0.9 0 0
w4⋅(0) 0 0 0 0 0 0.2 0
w5⋅(0) 0 0 0.7 0 0 0 1.1

Cautious combination. As explained in Section 2.3, the cautious rule consists in computing
the maximum of weights of evidence. This can be done in a distributed way by applying
the update rule (19) to each components of vectors wi in parallel. More precisely, at each
time t + 1, each agent i updates its weights wij(t) as

wij(t + 1) = max
j∈{i}∪N (i)

wij(t), j = 1, . . . , r.

Each iteration of this maximum consensus algorithm thus requires rdi maximum operations395

at each node i, where di = ∣N (i)∣ is the degree of note i. Under the conditions specified in396

Section 3.1, this algorithm converges in finite number t of iterations to397

w1j(t) = w2j(t) = . . . = wnj(t) = w∨j = max
i
wij(0), j = 1, . . . , r.

Each agent can then compute the mass function m? =m1 ? . . .?mn as398

m? =
r

⊕
j=1

A
w∨j
j , (22)

where Aj denotes the subset corresponding to αj. The number of operations needed to399

compute the orthogonal sum of r mass functions, each having two focal sets in a frame of400

size K, is bounded upwards by K2r+1, but it is often much less, as the number of focal sets401

of the final combined mass function is often much less than 2r [43].402
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Example 7. Continuing Example 6, let us assume that the five agents update the weight403

vectors xi(t) synchronously. The sequence of states is as follows:404

αj
4 8 10 12 28 104 106

w1⋅(1) 1 0.5 0.8 1.2 0.0 0.0 0.00
w2⋅(1) 1 0.5 0.8 1.2 0.9 0.0 0.0
w3⋅(1) 1 0.0 0.7 1.2 0.9 0.2 1.1
w4⋅(1) 0 0.0 0.0 0.3 0.9 0.2 0.0
w5⋅(1) 0 0.0 0.7 0.3 0.9 0.0 1.1

αj
4 8 10 12 28 104 106

w1⋅(2) 1 0.5 0.8 1.2 0.9 0.0 0.0
w2⋅(2) 1 0.5 0.8 1.2 0.9 0.2 1.1
w3⋅(2) 1 0.5 0.8 1.2 0.9 0.2 1.1
w4⋅(2) 1 0.0 0.7 1.2 0.9 0.2 1.1
w5⋅(2) 1 0.0 0.7 1.2 0.9 0.2 1.1

αj
4 8 10 12 28 104 106

w1⋅(3) 1 0.5 0.8 1.2 0.9 0.2 1.1
w2⋅(3) 1 0.5 0.8 1.2 0.9 0.2 1.1
w3⋅(3) 1 0.5 0.8 1.2 0.9 0.2 1.1
w4⋅(3) 1 0.5 0.8 1.2 0.9 0.2 1.1
w5⋅(3) 1 0.5 0.8 1.2 0.9 0.2 1.1

The network thus converges in only three iterations to the weight assignment vector w∨ =
(1,0.5,0.8,1.2,0.9,0.2,1.1), which corresponds to the following mass function:

m? = {ω3}1 ⊕ {ω4}0.5 ⊕ {ω2, ω4}0.8 ⊕ {ω3, ω4}1.2⊕
{ω3, ω4, ω5}0.9 ⊕ {ω4, ω6, ω7}0.2 ⊕ {ω2, ω4, ω6, ω7}1.1,

equal to405

m?({ω3}) = 0.1132, m?({ω4}) = 0.7697, m?({ω2, ω4}) = 0.0297
406

m?({ω3, ω4}) = 0.0460, m?({ω3, ω4, ω5}) = 0.0118, m?({ω4, ω6, ω7}) = 0.0054
407

m?({ω2, ω4, ω6, ω7}) = 0.0162, m?(Ω) = 0.0081.

Combination by Dempster’s rule. As shown in Section 2.2, Dempster’s rule can be imple-408

mented by summing the weight assignment vectors. In order to use the linear average409

consensus algorithm based on update rule (15) for that purpose, agents need to know the410

total number n of nodes (vertices) in the network. This number can be set in advance in the411

case of a fixed communication network, but it needs to be estimated in the case of a dynamic412

time-varying network. Distributed methods for counting the number of nodes in a network413
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are described in [23] and [32, pages 61–62]. We only give the former simpler method here.414

Assume that the initial conditions are x1(0) = 1 and xi = 0 for i = 2, . . . , n (i.e., the initial415

states are 1 for one agent and 0 for the others). If the state variables xi(t) are updated416

using the average consensus algorithm, we have417

lim
t→∞

xi(t) =
1

N

n

∑
i=1

xi(0) =
1

n
.

Denoting n̂i(t) = 1/xi(t), we thus have limt→∞ n̂i(t) = n.418

Once the number of nodes has been estimated, the algorithm defined by update equation419

(15) can be used to compute the average weights of evidence assigned to each supported420

set in a distributed way. After convergence, the average weights will be multiplied by n to421

obtain the sum of the weights. Let w⋅j(0) = (w1j(0), . . . ,wnj(0))T be the n-vector of weights422

of evidence for supported set Aj initially held by the n agents. The partial state vectors423

w⋅j(t) for j = 1, . . . , r can be updated in parallel at time t + 1 using linear equations424

w⋅j(t + 1) =Cw⋅j(t). (23)

Let w(t) = (w⋅1(t)T , . . . ,w⋅r(t)T )T be the rn-vector obtained by concatenating the r vectors425

w⋅j(t), j = 1, . . . , r, and let C be the rn × rn matrix C = Ir ⊗C, where Ir is the identity426

matrix of size r and ⊗ is the Kronecker product. Then, the r update equations (23) can be427

written more compactly as428

w(t + 1) =Cw(t). (24)

Under the conditions of Propositions 1 or 2, we have429

lim
t→∞

nwij(t) =
n

∑
i=1

wij(0),

i.e., each agent i holds after convergence the r-vector of sums wΣ = (∑n
i=1wi1, . . . ,∑n

i=1wir),430

which makes it possible to compute the orthogonal sum431

m⊕ =m1 ⊕ . . .⊕mn =
r

⊕
j=1

A
wΣj

j . (25)

The amount of computation of the distributed Dempster’s rule is similar to that of the432

distributed cautious rule. During the first run of the average consensus to compute the433

number of nodes, the amount of arithmetic operations at each node i during each iteration434

is proportional to di. During the second run to sum up the weights, it is proportional to rdi.435

The computation of m⊕ from the weight vector wΣ requires O(K2r+1) arithmetic operations436

in the worst case.437

Example 8. Considering again the data of Example 6, Figure 4 shows the convergence of
quantities nwij(t) to ∑n

i=1wij(0), using the Metropolis-Hastings matrix (17) in the update
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Figure 4: Distributed implementation of Dempster’s rule: convergence of nwij(t) to the sum ∑n
i=1wij(0)

of initial weights (Example 8). There are n = 5 agents and r = 7 supported sets Aj , which makes 5 ×
7 = 35 curves. We used separate color for each supported set. The values at convergence are wΣ =
(1.0,0.5,1.5,1.5,0.9,0.2,1.1).

equations (23). The network converges to wΣ = (1.0,0.5,1.5,1.5,0.9,0.2,1.1), corresponding
to the orthogonal sum

m⊕ = {ω3}1 ⊕ {ω4}0.5 ⊕ {ω2, ω4}1.5 ⊕ {ω3, ω4}1.5⊕
{ω3, ω4, ω5}0.9 ⊕ {ω4, ω6, ω7}0.2 ⊕ {ω2, ω4, ω6, ω7}1.1,

equal to438

m⊕({ω3}) = 0.0596, m⊕({ω4}) = 0.8644, m⊕({ω2, ω4}) = 0.0329
439

m⊕({ω3, ω4}) = 0.0269, m⊕({ω3, ω4, ω5}) = 0.0046, m⊕({ω4, ω6, ω7}) = 0.0021
440

m⊕({ω2, ω4, ω6, ω7}) = 0.0063, m⊕(Ω) = 0.0031.

4. Robust combination441

Both Dempster’s rule and the cautious rule assume the combined pieces of evidence to442

be reliable. For this condition to hold, it is necessary, in particular, that the different agents443

address the same question. There are, however, situations in which this assumption cannot444

be guaranteed to be verified. Consider, for instance, the data association problem [12, 30], in445

which agents collect sensor information about a set of objects. Before this information can be446

combined, we need to match the objects perceived by each pair of agents. If matching errors447

occur, then the beliefs held by one agent about some object may be erroneously combined448
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with the beliefs held by the other agent about another object. If the number of agents is large449

enough and if the matching error probability is small, we can expect to observe consensus450

among a majority of agents and a few outliers. A robust combination procedure should451

be able to exclude those outliers and combine only information from consistent sources. In452

this section, we describe such a procedure based on the RANSAC algorithm [22]. The idea453

of applying a RANSAC-like algorithm to robust combination of belief functions was first454

proposed by Zair et al. [49, 48]. Our proposal is closer to the original RANSAC algorithm455

and lends itself to distributed implementation using some ideas from [32, Chapter 4].456

In the following, we first recall the RANSAC algorithm and discuss its application to457

belief function combination in Section 4.1. The distributed implementation is then described458

in Section 4.2 and an illustrative example is presented in Section 4.3.459

4.1. RANSAC algorithm and application to evidence combination460

The random sample consensus (RANSAC) algorithm [22] aims to estimate the parame-461

ters of a model from a dataset containing a limited number of outliers. There exist several462

variants of this algorithm, but the method basically consists in randomly selecting a sub-463

sample of the dataset and using it to fit a model. All data items then “vote” for that model464

if they are well explained by it (i.e., if the model error is less than some threshold). The pro-465

cess is repeated a given number of times, and the model with the largest number of votes is466

selected. Finally, a better model is fitted by including in the subsample all the observations467

that voted for the winning model.468

The algorithm has three parameters: the size ν of each random subsample, the error469

threshold τ used in the voting process, and the number N of generated models. In ap-470

plications such as least-squares estimation, ν is usually chosen as the minimum number of471

observations to fit a model (i.e., ν = 2 for a straight line). The threshold parameter τ is472

application-specific and reflects how well the user expects a correct model to explain “in-473

liers”. To fix N , Fischler and Bolles [22] propose the following line of reasoning. Assume474

that each observation has a probability pin to be an inlier. The probability that a subsample475

of size ν is composed of only inliers is pνin and, consequently, the probability that a sample476

of size ν contains at least one outlier is 1 − pνin. If N samples are generated, the probability477

that at least one of them contains only inliers is, thus, 1− (1− pνin)N . For this probability to478

be larger that some predefined value psuc, N has to verify the following inequality:479

N ≥ log(1 − psuc)
log(1 − pνin)

. (26)

When applying the RANSAC approach to evidence combination, the dataset is a set480

M = {m1, . . . ,mn} of n mass functions. Given a subset of indices I ⊂ {1, . . . , n} of cardinality481

ν, a model is the mass function mI obtained by combining the mass functions {mi ∶ i ∈ I}.482

Assuming, as in [49, 48], the mass functions to be combined by Dempster’s rule, we have483

mI =⊕
i∈I
mi (27)
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As a measure of discrepancy between a model mI and a mass function mj, we can use the484

degree of conflict between mj and mI as485

κ(mI ,mj) = (mI ⩀mj)(∅). (28)

In [49, 48], the authors do not select a random subset I as in the original RANSAC algorithm,486

but they search the space 2M of all models, adding or removing one mass function at a time.487

This approach is interesting but it is difficult to implement in a distributed way. For this488

reason, we stick to the standard RANSAC algorithm in this paper. The centralized (non489

distributed) procedure is described in Algorithm 1.490

Remark 1. When n is small, the random sampling can be replaced by an exhaustive enu-491

meration of all subsets I of {1, . . . , n} of cardinality ν.492

Remark 2. The same approach can be used with the cautious rule instead of Dempster’s493

rule. In that case, (27) is replaced by494

mI = ?i∈I mi (29)

and the degree of conflict between mI and mj is computed as495

κ?(mI ,mj) = (mI .mj)(∅),
where . denotes the unnormalized cautious rule [9].496

Example 9. Figure 5 shows n = 40 mass functions on Ω = {ω1, ω2} in barycentric coordi-497

nates. The bottom left, bottom right and top vertices correspond, respectively, to focal sets498

{ω1}, {ω2} and Ω. Thirty “inlier” mass functions support {ω1} while 10 outliers (in the499

lower-left corner) support {ω2}. Algorithm 1 was run with τ = 0.3 and ν = 5. Choosing500

psuc = 0.9999 and pin = 0.75 in (26) gave us N = 34. Figures 5a and 5b show two subsamples501

I (marked by crosses), with the corresponding sets of outliers (filled circles) and inliers (un-502

filled circles). The solution of Figure 5a has a score of 30 and is the optimal solution found503

by the algorithm. In contrast, Figure 5b shows a suboptimal solution with a score of 6. The504

intermediate mass functions mI and the final mass functions m are shown, respectively, as505

squares and triangles.506

4.2. Distributed implementation507

The RANSAC procedure described above can be implemented in a distributed way using508

ideas introduced in [32, Chapter 4]. As in Section 3.2, we assume n agents to be located509

at the nodes of a network with fixed or time-varying connectivity and verifying the condi-510

tions of Propositions 1 or 2, respectively. We assume that the agents have already agreed511

on the frame of discernement and the list of supported sets using the distributed proce-512

dure described in Section 3.2, and that each agent j holds a weight assignment vector wj513

representing some piece of evidence. We wish to design a robust distributed procedure for514

combining this evidence using either Dempster’s rule or the cautious rule. Dempster’s rule515

will be assumed in the rest of this section for ease of exposition. To this end, the following516

three steps have to be performed without any centralized mechanism: (1) generation of517

models from random subsamples, (2) voting process and (3) combination of inliers. These518

steps are described below.519
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Algorithm 1 Centralized RANSAC algorithm for combining belief functions by Dempster’s
rule.

Require: Set of mass functions M = {m1, . . . ,mn}, subsample size ν, conflict threshold τ ,
sucess probability psuc, inlier probability pin

1: N ← ⌈ log(1−psuc)
log(1−pνin)

⌉
2: best.score← 0
3: for i = 1 to N do
4: Draw a set I of ν elements from {1, . . . , n}
5: score← 0
6: Maybe.Inliers← ∅
7: mI ←⊕i∈Imi

8: for j = 1 to n do
9: κ(mI ,mj)← (mI ⩀mj)(∅)

10: if κ(mI ,mj) ≤ τ then
11: score← score + 1
12: Maybe.Inliers←Maybe.Inliers ∪ {j}
13: end if
14: end for
15: if score > best.score then
16: best.score← score
17: Inliers←Maybe.Inliers
18: end if
19: end for
20: m←⊕i∈Inliersmi

Ensure: m, Inliers
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Figure 5: Mass functions of Example 9 in barycentric coordinates, for two different subsamples I of size ν = 5
shown as crosses. Outliers and inliers are shown, respectively, as filled and unfilled circles. The intermediate
mass functions mI and the final mass functions m are shown, respectively, as squares and triangles. The
solution on the left-hand side (a) is optimal and has a score of 30. It is the final result of the algorithm.
The solution on the right-hand side (b) is suboptimal and has a score of 6.
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Model generation. This step can be carried out using a random number generation procedure520

and the maximum consensus algorithm. Initially, each agent i generates a random number521

βi. Let522

β(1) > β(2) > . . . > β(n)
be the n numbers βi (assumed to be distinct) in decreasing order. We need a distributed523

mechanism for computing the ν largest elements β(1), . . . , β(ν). This can be achieved by524

defining initial sets βj(0) = {βj} and using the following update equation:525

βj(t + 1) = max ν

⎡⎢⎢⎢⎢⎣
βj(t) ∪

⎛
⎝ ⋃
k∈N (j)

βk(t)
⎞
⎠

⎤⎥⎥⎥⎥⎦
, (30)

where max ν selects the ν largest in a set. By iteratively applying (30), each βj(t) converges526

to the set β = {β(1), . . . , β(ν)}, and the subsample I is defined as I = {j ∶ βj ∈ β}. Each agent527

knows whether it belongs to I or not. Let528

wj(0) =
⎧⎪⎪⎨⎪⎪⎩

wj if j ∈ I,
0 otherwise,

where 0 = (0, . . . ,0) is a vector of zeros, which is the weight assignment vector of the vacuous529

mass function m?. The average consensus algorithm described in Section 3.2 converges530

to the average 1
n ∑j∈Iwj, which after multiplication by n gives us the weight assignment531

vector wI = ∑j∈Iwj corresponding to mI = ⊕j∈Imj. The process can be executed in532

parallel to generate N subsamples I1, . . . ,IN and the corresponding combined weight vectors533

wI1 , . . . ,wIN .534

Voting. After the N models have been generated, each agent j votes for them by computing535

the mass functions mIi and the degrees of conflict κ(mIi ,mj). The votes of agent j may be536

encoded in the binary N -vector vj(0) = (vj1(0), . . . , vjN (0)) defined as537

vji(0) =
⎧⎪⎪⎨⎪⎪⎩

1 if κ(mIi ,mj) ≤ τ
0 otherwise.

The vote vectors are then updated using the average consensus algorithm, which after con-538

vergence allows each agent to compute the score of each of the N models:539

scorei =
n

∑
j=1

vji.

The winning model is the one with the largest of votes and, in case of ties, the smallest540

index:541

i∗ = min(arg max
1≤i≤N

scorei) .
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Combination of the inliers. The final step of the RANSAC algorithm is the combination of542

the inlier mass functions. Each agent knows whether it voted for model i∗ and thus belongs543

to the inlier set:544

Inliers = {j ∈ {1, . . . , n} ∶ vji∗ = 1} .

To combine the mass functions mj for j ∈ Inliers, we initialize the weight assignment vectors545

as546

wj(0) =
⎧⎪⎪⎨⎪⎪⎩

wj if j ∈ Inliers,
0 otherwise,

and execute one more time the average consensus algorithm. After convergence and mul-547

tiplication by n, each agent gets the weight vector w = ∑j∈Inlierswj, from which the mass548

function m can be computed as549

m =
r

⊕
k=1

Awkk ,

where A1, . . . ,Ar are the r supported sets identified at the beginning of the process.550

4.3. Illustrative example551

As an example, we consider an idealized distributed classification problem in which552

each agent observes a feature vector whose distribution depends on the class variable Y ∈553

Ω = {ω1, ω2, . . . , ωK}. Let Xi be the feature vector observed by agent i and let fik be its554

conditional probability density given Y = ωk. After observing Xi = xi, agent i can use the555

Generalized Bayesian Theorem (GBT) [39, 14] to derive a mass function mi on Ω defined as556

mi =
K

⊕
k=1

({ωk})− lnγifik(xi), (31)

where γi is a constant such that557

γi ≤ [max
k

sup
x
fik(x)]−1,

which ensures that γifik(xi) ≤ 1 for all k and all xi. The meaning of (31) is clear: a small558

value of the density fik(xi) is evidence against ωk or, equivalently, for the complement {ωk}559

of ωk. The weight assignment function corresponding to mi is, thus,560

wi(A) =
⎧⎪⎪⎨⎪⎪⎩

− lnγifik(xi) if A = {ωk}
0 otherwise.

(32)

It can be represented by a K-vector wi = −(ln fi1(xi), . . . , ln fiK(xi)) − lnγi.561

Now, assume that the features describe some object but, because of incorrect data as-562

sociation for instance, a minority of agents actually observe a different object belonging to563

a different class. In that case, the agents’ mass functions will be highly conflicting and a564

robust combination rule must be able to identify and discard outliers.565
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Figure 6: Normal conditional densities of features Xi for the five classes, and example of a dataset. Fifteen
observations are drawn from N(−2,1) (unfilled circles) and five are drawn from N(2,1) (filled circles).

Numerical simulations. We performed simulations with K = 5 classes and n = 20 agents.566

Without loss of generality, we assumed that each agent i observes a scalar feature Xi567

whose conditional distribution given class ωk was assumed to be normal with mean µk ∈568

{−2,−1,0,1,2} and standard deviation σ = 1 (Figure 6). We considered a scenario in which569

the object actually belongs to class ω1 and 15 agents observe a feature xi drawn for the570

normal distribution with µ1 = −2, whereas five agents observe the feature of a class ω5 object571

drawn from a normal distribution with mean µ5 = +2. An example of a dataset x1, . . . , x20572

is shown in Figure 6. The mass function mi obtained by the GBT (31) is illustrated in573

Figure 7. The mass assigned to the singletons as well as some of the masses assigned to574

pairs and triples are shown, respectively, in Figures 7a, 7b and 7c, as functions of x. We575

applied the RANSAC algorithm to 100 datasets. The number N of samples was computed576

from (26) with psuc = 0.9999 and pin = 0.75 in (26), giving us N = 34. We considered values577

of ν ∈ {3,5,10} and τ ∈ {0.2,0.3, . . . ,0.8}. Table 3 shows the false positive rate (proportion578

of inliers wrongly labeled as outliers, Table 3a) and the false negative rate (proportion of579

outliers wrongly labeled as inliers, Table 3b) in percent, averaged over the 100 datasets. Pa-580

rameter ν seems to have a negligible influence on the performance of the procedure. Larger581

valued of τ induce smaller false positive rates but larger false negative rates. However, the582

procedure is not too sensitive to τ and values in the range [0.4,0.6] appear to yield good583

results.584
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Figure 7: Mass function obtained by the GBT vs. feature value x: masses assigned to the singletons {ωk},
1 ≤ k ≤ 5 (a), to the pairs {ωk, ωk+1} for 1 ≤ k ≤ 4 (b) and to the triples {ωk, ωk+1, ωk+2} for 1 ≤ k ≤ 3 (c).
The notations ωkl and ωklp stand, respectively, for {ωk, ωl} and {ωk, ωl, ωp}. This figure is better viewed in
color.
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Table 3: False positive rates (a) and false negative rates (b) in % of the RANSAC algorithm with different
values of parameters ν and τ .

(a) False positive rates

τ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

3 20.2 11.6 6.67 3.20 1.53 0.87 0.93
ν 5 23.5 14.5 8.20 3.67 1.67 0.67 0.60

10 24.6 15.6 8.27 4.07 1.87 0.80 0.80

(b) False negative rates

τ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

3 0 0.4 1.0 1.8 4.0 9.2 18.0
ν 5 0 0.2 0.4 1.8 3.4 7.0 14.8

10 0 0.2 0.6 1.4 3.4 7.6 14.40

5. Conclusions585

The DS theory of belief functions has been widely used for information fusion, due to586

its ability to represent and combine elementary pieces of information such as provided by587

sensors or expert judgements. A large body of work has been devoted to the development of588

procedures making it possible to combine belief functions in a wide range of settings, includ-589

ing conflicting or dependent evidence. Most of these procedures, however, assume that all590

the belief functions to be combined are available at a single central location. This assump-591

tion is not verified in applications such as data fusion in sensor networks or collaborative592

perception in multi-robot systems. In these applications, information is local, each agent593

holding only a piece of the available evidence representable by a belief function, and agents594

can only exchange information with their neighbors in a communication network. We then595

need distributed fusion procedures allowing the combination of belief functions without any596

centralized mechanism.597

Such procedures have been proposed in this paper, based on the notion of weight of598

evidence. An important observation, already made by Shafer in [35] but often overlooked,599

is that evidence can usually be broken down into elementary pieces, each one supporting a600

single hypothesis to some degree. A mass function can, thus, be represented as a collection601

of subsets of the frame of discernment, with associated weights of evidence. The weight rep-602

resentation has several advantages: it is sparse (most of the propositions usually have zero603

weight) and it lends itself to easy calculation, as Dempster’s rule boils down to addition in604

weight space. The cautious rule, an idempotent combination operator suitable for combining605

dependent evidence, replaces summation by the maximum operation. Adopting the weight606

representation thus turns the distributed combination problem into the computation of the607
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sum or the maximum of some quantities in a network, which can be solved using existing av-608

erage and maximum consensus algorithms. Although the amount of communication needed609

to perform these operations is, in the worst case, exponential in the size of the frame of dis-610

cernement, we have shown that it is usually much less thanks to the sparsity of the weight611

representation, and we have described distributed procedures allowing agents to agree on612

the smallest possible frame and list of supported hypotheses. We have also demonstrated613

the feasibility of a robust combination procedure based on a distributed implementation of614

the RANSAC algorithm introduced in [32].615

Although we have focussed on conjunctive combination in this paper, as this is what is616

mostly needed in applications, the same principles could be applied to disjunctive combina-617

tion, using the notion of disjunctive weights introduced in [9]. Another direction of research618

is to consider situations in which the agent’s beliefs vary in time as they continue to col-619

lect sensor information while they exchange information in the communication network. To620

model such situations, we may need to use dynamic consensus algorithms such as reviewed621

in [27]. Even more fundamentally, we have only considered the simple situation in which622

all agents hold evidence pertaining to the same question. While this situation is common623

in many applications, an interesting extension of this work would be to consider the more624

complex case in which agents hold evidence about different variables and share common625

knowledge about the relations between these variables. This knowledge could be assumed626

to be formalized as a valuation-based system (VBS) [37]. We would then have to combine627

distributed computation in the communication network with local computation in the VBS628

hypergraph. This challenging problem is left for further research.629
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