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Abstract
Double polycirculant codes are introduced here as a generalization of double circulant
codes. When the matrix of the polyshift is a companion matrix of a trinomial, we show that
such a code is isodual, hence formally self-dual. Numerical examples show that the codes
constructed have optimal or quasi-optimal parameters amongst formally self-dual codes.
Self-duality, the trivial case of isoduality, can only occur over F2 in the double circulant case.
Building on an explicit infinite sequence of irreducible trinomials over F2, we show that
binary double polycirculant codes are asymptotically good.

Keywords Quasi-polycyclic codes · Isodual codes · Formally self-dual codes · Double
circulant codes · Trinomials

Mathematics Subject Classification Primary 94B05 · Secondary 11C08

1 Introduction

Self-dual codes is one of the most fascinating class of codes as witnessed by their many
connections with modular forms [25], invariant theory and combinatorial designs [21]. This
class has been enlarged, in recent years, to isodual codes that is to say codes that are equivalent
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to their duals [1,7,17,21]. These constitute in turn a subclass of the larger class of formally
self-dual codes that is to say codes the weight enumerator of which is a fixed point of the
MacWilliams transform [6,8–10]. A very popular and successful construction technique for
isodual codes is the use of circulant matrices. In particular double circulant codes are easily
shown to be isodual [5]. In the present paper, we generalize this technique to polycirculant
matrices, and introduce double polycirculant codes.

In [2,20]was studied the notion of polycyclic codes, that is linear codes over a finite field F,

that are invariant under a generalized shift (called here a polyshift), and affording a structure
of ideal over a ring of the form R f = F[x]/〈 f 〉 for some f ∈ F[x] (the case f = xn − 1
is that of classical cyclic codes). While the name was coined in [20], the concept (under the
name pseudo-cyclic code) has been known for a long time [23]. As is well known, polycyclic
codes are shortened cyclic codes, and conversely shortened cyclic codes are polycyclic [23,
p .241].

In the present paper, we introduce and study a class of codes called double polycirculant
codes (DP) from the standpoint of duality, minimum distance, and asymptotic performance.
Amatrix is called polycirculant if its rows are successive polyshifts of its first row. ADP code
is then a linear codewith generatormatrix of the form (I , A)where I is an identitymatrix, and
A a polycirculant matrix. Thus DP codes reduce to double circulant codes when the polyshift
is the classical shift. When At = QAQ for Q a permutation matrix it is easy to show that the
DP code is equivalent to its dual, and is, in particular, formally self-dual (FSD). FSD codes
have been studied extensively over F2 [6,10,18], F3 [8], F4 [12], and even over F5, or F7 [9].
Indeed, we can show that DP codes can be binary self-dual only if they are double circulant.
We focus on the special case when the matrix of the polyshift is the companion matrix of a
trinomial with nonzero constant term. In that situation, every polycirculant matrix satisfies
the condition on its transpose mentioned above. For q = 2, 3, 5, 7 numerical examples in
short to medium lengths show the DP codes have parameters equal or up to one unit of the
best-known FSD codes. Further, by random coding, we can show that the relative distances
of long binary codes in that family satisfy a family of lower bounds that is, up to epsilons,
the Gilbert–Varshamov bound for linear codes of rate one half. They thus constitute a class
of asymptotically good codes. The argument relies on the construction of an infinite family
of irreducible trinomials, a fact of independent interest, and on some properties of cyclic
vectors in linear algebra [13, chap. 7]. This generalizes the asymptotic properties of self-dual
double-circulant codes [3], and of self-dual negacirculant codes [4,24]. The proof is restricted
to F2 where we can show that an infinite family of irreducible trinomials exists.

The material is arranged as follows. Section 2 collects the notations and notions needed
to follow the rest of the paper. Section 3 studies duality properties of DP codes: isoduality,
self-duality and evenness. Section 4 derives asymptotic bounds by random coding. Section 5
displays some numerical examples of parameters of DP codes. Section 6 concludes the article
and points out some significant and challenging open problems.

2 Preliminaries

Throughout the paper the notation Mt denotes the transpose of the matrix M .
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2.1 Linear codes

Throughout, F denotes a finite field. If q is a prime power, we denote by Fq the finite field of
order q. Let N denote a nonnegative integer. A (linear) code C of length N over a finite field
Fq is a Fq vector subspace of FN

q . The dimension of the code is its dimension as a Fq vector
space, and is denoted by k. The elements of C are called codewords. Two codes C and D
are (monomially) equivalent if there is a monomial matrix M such that MC = D [14, §1.7]
(recall that a matrix is monomial if it contains exactly one nonzero element per row and
per column; in particular any permutation matrix is a monomial matrix). The (Hamming)
weight of x ∈ F

N
q is denoted by W (x). The weight distribution of a code C is the set of

numbers Ai ’s for i = 0, 1, . . . , n, where

Ai = |{x ∈ C | W (x) = i}|.

The minimum nonzero weight d of a linear code is called theminimum distance. The dual
C⊥ of a code C is understood w.r.t. the standard inner product. A code is self-dual if it is
equal to its dual, and isodual if it is equivalent to its dual. A code is formally self-dual
(FSD) if it has the same weight distribution as its dual. Thus isodual codes are FSD. A binary
code is even if the weights of all its codewords are even, and odd otherwise. If C(N ) is a
sequence of codes of parameters [N , kN , dN ], the rate r and relative distance δ are defined
as

r = lim sup
N→∞

kN
N

and δ = lim inf
N→∞

dN
N

.

A family of codes is said to be asymptotically good if it contains a sequence with rate and
relative distance such that rδ > 0. Recall the classical entropy function H(x) of the real
variable x defined for 0 < x < 1, by the formula

H(x) = −x log(x) − (1 − x) log(1 − x).

See [21, Chap. 10, §11] for background material. We recall, for context, but are not going to
invoke, the classical Gilbert–Varshamov bound

r ≥ 1 − H(δ).

2.2 Polycyclic codes

We say that a linear code C of length n over a field F is polycyclic if there exists a vector
c = (c0, c1, . . . , cn−1) ∈ Fn such that for every (a0, a1, . . . , an−1) ∈ C we have

(0, a0, a1, . . . , an−2) + an−1 (c0, c1, . . . , cn−1) ∈ C .

We refer to c as an associate vector of C . Note that such a vector may be not unique.
To an associate vector c we attach the polynomial c(x) = c0 + c1x + c2x2 + · · · +

cn−1xn−1. Let f (x) = xn − c(x). It is shown in [20] that polycyclic codes are ideals in
R f = F[x]/〈 f (x)〉 with the usual correspondence between vectors and polynomials.
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It is shown in [20], that a polycyclic code with the associate vector c is left invariant by
right multiplication of the matrix D of the form:

D =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

0 0 0 . . . 1
c0 c1 c2 . . . cn−1

⎞
⎟⎟⎟⎟⎟⎠

. (1)

We call the endomorphism of Fn with matrix Dt the polyshift associated with c, and
denote it by Tc. The matrix Dt is called in linear algebra the companion matrix of f (x) [13,
§7.1]. If c = (1, 0, . . . , 0) then Tc is just the standard cyclic shift to the right. Sometimes, to
avoid double indices, we will write T for Tc.

2.3 Double polycirculant codes

A matrix A of size n × n is polycirculant for a polyshift Tc if its rows are in succession

a, Tc(a), T 2
c (a), . . . , T n−1

c (a).

Such a matrix is uniquely determined by its first row and the associate vector c. If c =
(1, 0, . . . , 0) then A is just a circulant matrix. A linear code C of length 2n is said to be
double polycirculant (DP) if its generator matrix G is of the form G = (I , A), where I
is the identity matrix of size n × n, and A is a polycirculant matrix of the same size. If
c = (1, 0, . . . , 0), then C is a (pure) double circulant code [3].

Caveat: We use N for the length of the DP code, and n for the size of A. Thus N = 2n
in the whole paper.

3 Duality results

3.1 Isoduality

The following proposition is our main motivation to introduce double polycirculant codes.

Proposition 1 Let A be a matrix satisfying At = QAQ, with Q a monomial matrix that
satisfies Q2 = I , where I is identity of order n. The code C = 〈(I , A)〉 is an isodual code
of length 2n.

Proof The parity-check matrix of C is then H = (−At , I ). Recall that H spans C⊥. Using

the hypothesis, we have HQ = (−QA, Q),whereQ =
(
Q 0
0 Q

)
.Hence QHQ = (−A, I ),

a matrix which spans a code equivalent to C . The result follows. 	


Remark 1 In general it is known that any matrix A, invertible over some field satisfies At =
uAu, with u2 = I [11]. It is not known when u can be a monomial matrix.

Now we exhibit a class of DP codes where this proposition applies.
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Theorem 1 Given an associate vector c = (c0, c1, . . . , cn−1), and the vector a =
(a1, a2, . . . , an), define the polycirculant matrix A by the equation

A =

⎛
⎜⎜⎜⎜⎝

a
Tc(a)
T 2
c (a)
. . .

T n−1
c (a)

⎞
⎟⎟⎟⎟⎠

.

The matrix Tc is the companion matrix of some polynomial f . If f is of the form xn −axm −b
with a, b ∈ F \ {0}, then there is a monomial matrix Q of order 2 such that AQ = QAt .

Namely, one can take

Qi, j =
⎧⎨
⎩
1, if i + j = m + 1,
b, if i + j = n + m + 1,
0, otherwise.

In particular, under these hypotheses, the code C = 〈(I , A)〉 is isodual.
Proof We know that for any vector c = (c0, c1, . . . , cn−1), the matrix

Tc = T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
· · · · · · · · · · · · · · ·
0 0 · · · 0 cn−2

0 0 · · · 1 cn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and it’s the companion matrix of f (x) = xn − cn−1xn−1 − · · · − c1x − c0 over Fq . So, if
f (x) = xn − axm − b, then c0 = b, cm = a, c1 = · · · = cm−1 = cm+1 = · · · = cn−1 = 0.
If we let E = AQ, F = QAt , E = (Ei, j )n×n, F = (Fi, j )n×n , A = (Ai, j )n×n, then we

obtain Ei, j =
n∑

k=1
Ai,k Qk, j , Fi, j =

n∑
k=1

Qi,k A j,k , and, by the definition of Q, we can obtain

Ei, j =
{

Ai,m+1− j , 1 ≤ j ≤ m;
bAi,n+m+1− j , m < j ≤ n; Fi, j =

{
A j,m+1−i , 1 ≤ i ≤ m;

bA j,n+m+1−i , m < i ≤ n.

Now we have to prove Ei, j = Fi, j for i, j = 1, 2, . . . , n.
Let Tj be the j-th row of the matrix T . By the definition of A, we can get

(
Ai,1, Ai,2, . . . , Ai,n

) = Tc
(
Ai−1,1, Ai−1,2, . . . , Ai−1,n

) = (
Ai−1,1, Ai−1,2, . . . , Ai−1,n

)
T t .

Then

Ai, j = (Ai−1,1, Ai−1,2, . . . , Ai−1,n)T
t
j =

⎧⎨
⎩
bAi−1,n, j = 1;
Ai−1,m + aAi−1,n, j = m + 1;
Ai−1, j−1, otherwise.

We distinguish four cases depending on the relative positions of i and j with respect to m.

(i) If 1 ≤ i ≤ m and 1 ≤ j ≤ m, then we have Ei, j = Ai,m+1− j and Fi, j = A j,m+1−i .
In this case, 1 ≤ m + 1 − i ≤ m and 1 ≤ m + 1 − j ≤ m. If i ≥ j , when j =
m, we can get i = j = m, Ei, j = Am,i = Fi, j ; when 1 ≤ j < m, we can get
Ai,m+1− j = Ai−(i− j),m+1− j−(i− j) = A j,m+1−i . If i < j , we can get A j,m+1−i =
A j−( j−i),m+1−i−( j−i) = Ai,m+1− j . It means that Ei, j = Fi, j .
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(ii) If 1 ≤ i ≤ m and m < j ≤ n, thenwe have Ei, j = bAi,n+m+1− j and Fi, j = A j,m+1−i .
In this case 1 ≤ m + 1 − i ≤ m and m + 1 ≤ n + m + 1 − j ≤ n. Furthermore,
m + 1 − i ≤ j − i , implying A j,m+1−i = A j−(m−i),m+1−i−(m−i) = Ai+ j−m,1 =
bAi+ j−m−1,n = bAi,n+m+1− j , thus Ei, j = Fi, j .

(iii) If m < i ≤ n and 1 ≤ j ≤ m, thenwe have Ei, j = Ai,m+1− j and Fi, j = bA j,n+m+1−i .
The proof follows as in case (ii).

(iv) If m < i ≤ n and m < j ≤ n, then we have Ei, j = bAi,n+m+1− j and Fi, j =
bA j,n+m+1−i . In this case m + 1 ≤ n+m + 1− i ≤ n and m + 1 ≤ n+m + 1− j ≤ n.
The proof follows as in case (i).

The last assertion follows by Proposition 1. This completes the proof. 	


3.2 Self-duality criterion when q = 2

In this subsection, and the next one, we work over F2. Given the vector c = (c1, c2, . . . , cn)
where c1 = cm = 1, ci = 0, i �= 1,m, and the first row a = (a1, a2, . . . , an) define the

matrix A =

⎛
⎜⎜⎜⎜⎝

a
Tc(a)
T 2
c (a)
. . .

T n−1
c (a)

⎞
⎟⎟⎟⎟⎠
. When c satisfies the above conditions, Tc is the companion matrix

of the trinomial f (x) = xn − xm−1 − 1.

Theorem 2 With the above notation, the code C = 〈(I , A)〉 where I is identity matrix of
order n is a binary self-dual code if and only if A = I . In other words, a binary DP code
with a trinomial induced polyshift is a self-dual code iff it is equivalent to a direct sum of
repetition codes of length 2.

Proof The code C = 〈(I , A)〉 is a self-dual code iff AAt = −I = I over F2, where At is the
transpose of A. Now we need to prove AAt = I iff A = I . On the one hand, let B = AAt ,

B = (Bi, j )n×n , A = (Ai, j )n×n , then Bi, j =
n∑

k=1
Ai,k A j,k .

With the definition of A, we can get the i-th row of A is

(Ai,1, Ai,2, . . . , Ai,n) = (0, Ai−1,1, Ai−1,2, . . . , Ai−1,n−1) + Ai−1,nc

= (0, Ai−1,1, Ai−1,2, . . . , Ai−1,n−1) + Ai−1,n(1, 0, . . . , 0, 1, 0, . . . , 0),

then

A2
i,1 + A2

i,2 + · · · + A2
i,n = A2

i−1,1 + A2
i−1,2 + · · · + A2

i−1,n−1 + A2
i−1,n + A2

i−1,n,

n∑
k=1

Ai,k =
n∑

k=1

Ai−1,k + Ai−1,n .
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With the definition of B, we have

B1,1 =
n∑

k=1

A2
1,k =

n∑
k=1

A1,k = a1 + a2 + · · · + an−1 + an;

B2,2 =
n∑

k=1

A2
2,k =

n∑
k=1

A2,k = B1,1 + A1,n;

B3,3 =
n∑

k=1

A2
3,k =

n∑
k=1

A3,k = B2,2 + A2,n;

. . .

Bn−1,n−1 =
n∑

k=1

A2
n−1,k =

n∑
k=1

An−1,k = Bn−2,n−2 + An−2,n;

Bn,n =
n∑

k=1

A2
n,k =

n∑
k=1

An,k = Bn−1,n−1 + An−1,n .

If B = I , B1,1 = B2,2 = · · · = Bn,n = 1, thenwe can get A1,n = A2,n = · · · = An−1,n = 0.
Let Tj be the j-th row of matrix T . Since the vector c = (c1, c2, . . . , cn) with c1 = cm = 1,
ci = 0, i �= 1,m, we have

Tj =
⎧⎨
⎩
en, j = 1;
em−1 + en, j = m;
e j−1, otherwise.

where ei , i = 1, 2, . . . , n is the canonical basis of Fn, defined by (ei ) = δi j , i, j =
1, 2, . . . , n. Thus, by computations similar to those in the proof of Theorem 1, we have

Ai, j = Tj

⎛
⎜⎜⎝
Ai−1,1

Ai−1,2

. . .

Ai−1,n

⎞
⎟⎟⎠ =

⎧⎨
⎩

Ai−1,n, j = 1; (1)
Ai−1,m−1 + Ai−1,n, j = m; (2)
Ai−1, j−1, otherwise (3)

If 1 ≤ t ≤ n − m, by (3) we can get

At,n = At−(t−1),n−(t−1) = A1,n−t+1 = an−t+1.

So for each m + 1 ≤ j ≤ n we have

a j = An− j+1,n .

If n − m + 1 ≤ t ≤ n, by (3) we can get

At,n = At−(n−m),n−(n−m) = At+m−n,m .

So for each 1 ≤ i ≤ m we have

Ai,m = An−m+i,n .

By applying (2) and then (3), it follows that for each 1 < i ≤ m we have

Ai,m = Ai−1,m−1 + Ai−1,n = A1,m−i+1 + Ai−1,n = am−i+1 + Ai−1,n .

Then for 1 ≤ j < m we have

a j = Am− j+1,m − Am− j,n = An− j+1,n − Am− j,n .
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What’s more, am = A1,m = An−m+1,n .

Because A1,n = A2,n = · · · = An−1,n = 0, so an = an−1 = · · · = a2 = 0; further,
B1,1 = 1, yielding a1 = 1. Then with a = (a1, a2, . . . , an) = (1, 0, . . . , 0), we check from

its definition the matrix A =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

= I .

On the other hand, if A = I , it is immediate that AAt = I . 	


3.3 Even isodual codes

An important class of binary isodual codes is the class of even isodual codes that is those
isodual codes all weights of which are even [10,18]. The next result shows that over F2 many
isodual codes coming from our construction are odd.

Theorem 3 Let A be a polycirculant matrix of size n × n, for a polyshift Tc. If c is an even
weight vector, then the binary code C = 〈(I , A)〉 is an even code if and only if the first row
of A is a = (1, 0, . . . , 0).

Proof If C = 〈(I , A)〉 is an even code, then each row of A has an odd weight.
Firstly, suppose the weight of a is W (a) = 1, namely, a = (a1, a2, . . . , an) with only

am = 1. By the definition of A, we can get the first n − m + 1 rows of A as:

a = (0, . . . , 0, 1, 0, 0, 0, . . . , 0, 0);
Tc(a) = (0, . . . , 0, 0, 1, 0, 0, . . . , 0, 0);
T 2
c (a) = (0, . . . , 0, 0, 0, 1, 0, . . . , 0, 0);

. . .

T n−m
c (a) = (0, . . . , 0, 0, 0, 0, 0, . . . , 0, 1).

Then the (n − m + 2)-th row is

T n−m+1
c (a) = (0, 0, . . . , 0, 0) + 1 · c,

and the weight of this row is W (T n−m+1
c (a)) = W (c) ≡ 0 (mod 2). So in this case, if we

expect that the weight of each row of A is odd, it requires n − m = n − 1, then m = 1 and
a = (1, 0, . . . , 0).

More generally, suppose that the weight of a is odd, with rightmost nonzero ai for i = t .
If we let W (a) = 2k + 1, k ≥ 0, and a = (0, . . . , 1, 0, . . . , 1, 0, . . . , 1, 0, . . . , 0) with
rightmost nonzero at = 1, reasoning as before, by the definition of A, we can get the first
n − t + 1 rows of A as:

a = (0, . . . , 1, 0, . . . , 1, 0, . . . , 1, 0, 0, 0, . . . , 0);
Tc(a) = (0, 0, . . . , 1, 0, . . . , 1, 0, . . . , 1, 0, 0, . . . , 0);
T 2
c (a) = (0, 0, 0, . . . , 1, 0, . . . , 1, 0, . . . , 1, 0, . . . , 0);

. . .

T n−t
c (a) = (0, . . . , 0, 0, 0, 0, . . . , 1, 0, . . . , 1, 0, . . . , 1).
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Then the (n − t + 2)-th row is

T n−t+1
c (a) = (0, 0, . . . , 0, 0, 0, 0, . . . , 1, 0, . . . 1, 0, . . . , 0) + 1 · c,

and the weight of this row is W (T n−t+1
c (a)) = 2k + W (c). Because W (c) ≡ 0 (mod 2), in

this case, if we expect that the weight of each row of A is odd, it requires n − t = n − 1,
then t = 1. It means that a1 = 1 is the rightmost nonzero element of a. Therefore, a =
(1, 0, . . . , 0).

On the other hand, if the vector a = (1, 0, . . . , 0), then we can check from the definition
of A that A = I . It is immediate to check that C = 〈(I , A)〉 = 〈(I , I )〉 is an even code. 	

Remark 2 When c has odd weight, we can get that the weight of each row of A is odd if and
only if the weight of a is odd by a similar argument as in the proof of Theorem 3. Namely,
the binary code C = 〈(I , A)〉 is even if and only if a has odd weight. This extension is left
to the reader.

4 Asymptotic performance

We prepare for the main result of the section by the following lemma. Recall that the Cyclo-
tomic polynomial of index m denoted here by Qm(.), is the Z-polynomial with roots all the
elements of order m in the algebraic closure of Q [19].

Lemma 1 ([19, Exercise 3.96]) For any positive integer n, the trinomial Hn(x) = x2 · 3n +
x3

n + 1 is irreducible over F2.

Proof The cyclotomic polynomial Qm(x) is irreducible over F2 iff its degree φ(m) is equal
to the order of 2 (mod m), that is the minimal positive integer k such that 2k ≡ 1 (mod m)

[19, Th. 2.47 (ii)]. Let m = 3n+1. Thus, by [19, Ex. 2.46], we know that Qm(x) = Hn(x) =
x2 · 3n +x3

n +1, and well-known properties of Euler totient function show that φ(m) = 2 ·3n .
By [16, Thm 1], because 2 is a primitive root (mod 3), it is a primitive root (mod 3n) for
all n ≥ 1. Thus Qm(x) = Hn(x) is irreducible. 	

The number of DP codes of length 2n is important to count.

Proposition 2 For a given polyshift, the number of DP codes of length 2n over Fq is qn .

The easy proof is omitted. We prepare for the proof of the next theorem by a lemma from
linear algebra.

Lemma 2 Let 0 �= w ∈ F
n
q . Let R be a matrix of size n× n over Fq with an irreducible char-

acteristic polynomial. The matrix with successive rows w, Rw, . . . , Rn−1w is nonsingular.

Proof The result is immediate from [13, Chap. 7, Theorem 1 (ii)]. We give an alternative
proof as follows. Consider the Fq vector space

V = {Riw | i = 0, 1, . . . , n}.
This vector space is invariant by R. Let h (resp.χ) denote the minimal (resp. characteristic)
polynomial of R restricted to V . Let g be the characteristic polynomial of R on the whole
spaceFn

q .Then by the lemmaof [13, p. 200], the polynomialχ divides g.ByCayley-Hamilton
theorem, h divides χ. Hence h divides g. By [13, §7, Theorem 1] the degree of h equals
the dimension of V . Since g is irreducible, this means that h = g and V = F

n
q . The result

follows. 	
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Theorem 4 Let u, v ∈ F
n
q . For a given polyshift, the matrix of which is the companion matrix

of an irreducible trinomial, the number of DPs of length 2n over Fq that contains the vector
(u, v) �= 0 is at most one.

Proof We need to solve Atut = vt , when At = QAQ, and Q is as in Theorem 1. Letting
u′ = Qut and v′ = Qvt , v′ = (v′

1, v
′
2, . . . , v

′
n)

t , we obtain the system of n equations

v′
1 = a · u′, . . . , v′

i = T i−1
c (a) · u′, . . . , v′

n = T n−1
c (a) · u′.

By transposition, we obtain a system in the ai ’s whose matrix has successive columns

u′, . . . , T t
c u

′, . . . , (T t
c )n−1u′.

By the lemma this matrix is non singular. The result follows. 	

We are now in a position to state and prove the main result of this section. The proof

technique is the classical method of expurgated random coding.

Theorem 5 For all 0 < δ < H−1( 12 ), there are sequences of binary DP codes of relative
distance δ with a polyshift whose matrix is the companion of an irreducible trinomial.

Proof By Lemma 1, there are infinitely many irreducible trinomials over F2. For a given n,

by Proposition 2 there are �n = 2n DP codes of length 2n w.r.t. a polyshift whose matrix
is the companion matrix of a given irreducible trinomial. We will require the following
entropic estimate. The total number of binary vectors of length 2n, and Hamming weight
< dn = �2δn�, Vn say, is at most

Vn ≤ 22nH(δ) (2)

by [21, Chap. 10, Cor. 9 ].
By Theorem 4, a nonzero vector (u, v) with weight < dn can be contained in at most one

such code. If

�n > Vn, (3)

then there is at least one such DP code of length 2n with minimum distance ≥ dn . (Note that
it is essential that inequality (3) be strict to derive that conclusion).

By (2) we see that inequality (3) will hold for n large enough if

22nH(δ) = o(2n),

which will hold in particular if H(δ) < 1/2. 	

Remark Thus this theoremmeans that for every ε > 0, there are sequences of DP codes with
a relative distance > H−1( 12 ) − ε. Note, for sake of comparison, that the quantity H−1( 12 )

is the Gilbert–Varshamov bound on the relative distance of linear binary codes of rate 1/2.

5 Numerics

In Tables 1, 2 and 3, 4, for, respectively, q = 2, 3, 5, 7 we denote by

• dF (q, 2n) the highest minimumweight of formally self-dual codes overFq as per [6,8,9],
• d∗

F (q, 2n) the highest minimum weight of FSD DP codes constructed over Fq .
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Table 1 The highest minimum
weight for F2

Length 2n d∗
F (2, 2n) dF (2, 2n)

4 2∗ 2

6 3∗ 3

8 3∗ 3

10 3 4

12 4∗ 4

14 4∗ 4

16 5∗ 5

18 5∗ 5

20 5 6

22 6 7

24 6 7

26 6 7

28 6 7

30 7∗ 7 or 8

32 7 8

34 7 8

36 8∗ 8

38 8∗ 8 or 9

40 8 9 or 10

Table 2 The highest minimum
weight for F3

Length 2n d∗
F (3, 2n) dF (3, 2n)

4 3∗ 3

6 3∗ 3

8 4∗ 4

10 4 5

12 5 6

14 5 6

16 6∗ 6

18 6∗ 6

20 6 7

22 7 8

24 8 9

26 8∗ 8 or 9

28 8 9 or 10

30 8 9, 10 or 11

We put a star exponent on the entry d∗
F (q, 2n) whenever d∗

F (q, 2n) = dF (q, 2n). In Table 5
we denote by d f sdao(4, 2n) the highest minimum weight of formally self-dual additive odd
codes over F4 ( [12]); and by d∗

f sdao(4, 2n) the highest minimum weight of FSD DP codes
that we can find over F4. We put a star exponent on the entry d f sdao(4, 2n)∗ whenever
d f sdao(4, 2n)∗ = d f sdao(4, 2n). We constructed a large number of random DP codes with
trinomial polyshifts as in Theorem 1, and the Tables collect the best found. All binary codes
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Table 3 The highest minimum
weight for F5

Length 2n d∗
F (5, 2n) dF (5, 2n)

4 3∗ 3

6 4∗ 4

8 4∗ 4

10 5∗ 5

12 6∗ 6

14 6∗ 6

16 7∗ 7

18 7∗ 7 or 8

20 7 8 or 9

22 8∗ 8, 9 or 10

24 8 9 or 10

Table 4 The highest minimum
weight for F7

Length 2n d∗
F (7, 2n) dF (7, 2n)

4 3∗ 3

6 4∗ 4

8 4 5

10 5∗ 5

12 6∗ 6

14 6 7

16 7∗ 7 or 8

18 7 8 or 9

20 8 9 or 10

22 8 9, 10 or 11

24 9 10, 11 or 12

Table 5 The highest minimum
weight for F4

Length 2n d∗
f sdao(4, 2n) d f sdao(4, 2n)

4 3∗ 3

6 3∗ 3

8 4∗ 4

10 5∗ 5

12 5 6

14 6∗ 6 or 7

constructed are odd. All the DP codes constructed in this section are FSD codes by Theorem
1. All computations were performed in Magma [15].
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6 Conclusion and open problems

In this work we have introduced a new class of codes of rate one half: double polycirculant
codes. These codes are the natural generalization of double circulant codes when going
from standard shift to the polyshift of polycylic codes. When the matrix of the polyshift is
the companion matrix of a trinomial of the form xn + axm + b, these codes are isodual,
and in particular formally self-dual. In short lengths, their parameters are optimal or quasi-
optimal amongst FSD codes. More importantly, when q = 2, we could show that they are
asymptotically good.

Many open problems remain. Characterizing the matrices over finite fields that are mono-
mially equivalent to their transpose could lead to new constructions of isodual codes. At a
more structural level, it might be possible to derive isoduality for a larger class of polyshifts.
The characterization of evenness is only done for half the associate vectors. It would be worth
constructing even FSD codes over F2, the first studied class of FSD codes [10,18], by DP
codes, or to prove they do not exist. Eventually, DP codes over finite rings is a wide open
area, which is well worth investigating, in view of the double circulant codes over rings of
[5].
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