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This paper presents an approach to build a multi-fidelity kriging metamodel from finite element computations on different meshes for stuctural reliability assessment. The proposed method takes advantage of the computation of bounds on the discretization error, which enables to guarantee the state (safe or failure) of each computation of the performance function. An algorithm to build the meta-model from the different levels of fidelity and estimate the failure probability is provided. Illustrations are presented on a two dimensional mechanical crack opening problem. Bounds on the failure probability are also post-processed.

Introduction

Uncertainties may arise from a lack of knowledge (for example, characterization of material properties can be improved) or from inherent variability (an example is the load due to wind flow on the blade of a wind turbine).

As a consequence, designing structures subjected to uncertainty in a deterministic framework becomes impractical. As aftermaths in case of failure are sometimes dramatic, the reliability analysis becomes crucial and sensitive. This safety analysis is usually done in a probabilistic approach that aims at estimating quantities such as the probability of failure, reliability indexes, sensitivity factors, and so on.

In the context of virtual testing for numerical certification of structures, the probability of failure is usually computed using numerical simulations of a model of the structure. Different strategies can be considered. First, sampling techniques that mainly rely on Monte Carlo or quasi Monte Carlo simulations [START_REF] Caflisch | Monte carlo and quasi-monte carlo methods[END_REF] present the advantage of being non intrusive. Besides, their efficiency does not depend on the number of random variables, making them attractive. Their main disadvantage is that the convergence rate against the number of samples is very low, so that they are computationally expensive. To tackle this issue, reduction of variance or multi level Monte Carlo approach have been proposed [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF][START_REF] Giles | Multilevel monte carlo methods[END_REF]. Secondly, approximation methods aim at searching for a random field in a given approximation space, the Galerkin method [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF] is an example of them. When the geometry of the structure is random, methods such as XSFEM have been developed [START_REF] Nouy | An extended stochastic finite element method for solving stochastic partial differential equations on random domains[END_REF][START_REF] Pasqualini | Measurements and statistical analysis of fillet weld geometrical parameters for probabilistic modelling of the fatigue capacity[END_REF]. However, those techniques can be intrusive.

The reduction of computational costs can also be done using surrogate models. First, polynomial response surfaces were developed [START_REF] Schoefs | Sensitivity approach for modelling the environmental loading of marine structures through a matrix response surface[END_REF]. Then, kriging-based metamodels [START_REF] Dg Krige | A statistical approach to some mine valuation and allied problems on the witwatersrand[END_REF][START_REF] Sacks | Design and analysis of computer experiments[END_REF] became very popular in the field of safety analysis. The most popular method was developed in [START_REF] Echard | Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation[END_REF]. It was then adapted to very low probability using important sampling or subset sampling [START_REF] Echard | A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF][START_REF] Tong | A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling[END_REF] and finally to system reliability [START_REF] Fauriat | Ak-sys: An adaptation of the akmcs method for system reliability[END_REF]. The main asset of kriging is that it offers an indicator of the quality of the meta-model. Indeed this method considers that the meta-model is a realization of a random Gaussian process, the standard deviation of this process is then computable at each point where the meta-model is evaluated.

Two components of the mechano-probabilistic problem may affect the accuracy of the reliability assessement : epistemic uncertainties on some parameters (including model parameters) and the inaccuracy of the numerical solution to the mechanical problem. To deal with epistemic uncertainties on parameter [START_REF] Zhang | A novel projection outline based active learning method and its combination with kriging metamodel for hybrid reliability analysis with random and interval variables[END_REF][START_REF] Zhang | A combined projectionoutline-based active learning kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities[END_REF] propose a projection method to propagate through the mechanical model bounds on these variable to obtain bounds on the probability of failure. Few people consider the error due to the discretization method (mainly the finite element method). Yet, this error may lead to a poor estimation of the probability of failure, as illustrated in [START_REF] Rashki | Low-cost finite element method-based reliability analysis using adjusted control variate technique[END_REF]. Performing numerical simulations on too coarse meshes might in fact lead to considering that a realization belongs to the safety domain while it actually belongs to the failure domain. Among works tackling this issue, [START_REF] Kenneth | Method for treating discretization error in nondeterministic analysis[END_REF] can be cited. It uses the discretization error introduced by meshing using the Richardson extrapolation in a non-deterministic analysis. In [START_REF] Mahadevan | Inclusion of model errors in reliability-based optimization[END_REF], the Richardson extrapolation is also used to perform reliability analysis with the First Order Reliability Method (FORM) [START_REF] Abraham | Exact and invariant second-moment code format[END_REF]. In [START_REF] Gallimard | Error bounds for the reliability index in finite element reliability analysis[END_REF], the author estimates the probability of failure using FORM while utilizing the discretization error to provide bounds on the probability of failure.

In the family of kriging techniques, multi-fidelity kriging consists in using several models with different precision to build a multi-fidelity meta-model. The main objective of this approach is to obtain an improved trade-off between computational cost and precision by choosing to evaluate some samples on a low fidelity model and some others on a high fidelity one. In [START_REF] Dadone | Progressive optimization of inverse fluid dynamic design problems[END_REF], optimization in the context of a fluid flow problem is performed with progressively fine grids. In [START_REF] De Baar | Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging[END_REF][START_REF] Perdikaris | Multi-fidelity modelling via recursive co-kriging and gaussian-markov random fields[END_REF], multifidelity kriging is performed on a flow problems. In the context of optimization, [START_REF] Courrier | The use of partially converged simulations in building surrogate models[END_REF][START_REF] Courrier | Variable-fidelity modeling of structural analysis of assemblies[END_REF] adapts the stopping criterion of the iterative contact solver to use multifidelity kriging. In [START_REF] Nachar | Coupling multi-fidelity kriging and model-order reduction for the construction of virtual charts[END_REF], a multi-fidelity approach is used on a elasto-viscoplasticity problem with different proper generalized decompositions. It is to be noted that usually, the choice of levels of discretization or grids is done a priori and the construction of the design of experiments is based on heuristics.

In this paper, we propose an adaptive multi-fidelity kriging approach to estimate the probability of failure. This method uses the estimation of the discretization error to choose a suitable mesh for each sampling point by noting that only the sign of the limit state function is of importance : the reliability problem is considered as a classification problem. In addition to the estimation of the probability of failure, the method gives lower and upper bounds on the exact probability of failure.

The paper is organized as follow. In section 3, we define the mechanical problem and recall the kriging-based meta model approach used to estimate the failure probability. In section 4, we present the approach we propose to build a multifidelity kriging meta-model and its application to compute the probability of failure. In section 5 we apply our method to a crack-opening problem. Finally, section 6 concludes the paper.

Settings

In this section, the continuous mechanical problem and its discretized version are first defined. Then, the discretization error and its estimates are presented. Finally, we define the limit-state functions and formulate the reliability assessment in terms of estimation of the probability of failure.

Continuous problem

Let R d represent the physical space. Let us consider the static equilibrium of a (polyhedral) structure occupying the open domain Ω Ă R d and subjected to a given body force f within Ω, to a given traction force F on B F Ω and to a given displacement field u d on the complementary part B u Ω ‰ H. Let us assume the structure undergoes small perturbations and that the material is linear elastic, characterized by Hooke's elasticity tensor H. Let u be the unknown displacement field, ε puq the symmetric part of the gradient of u, σ the Cauchy stress tensor.

Two affine subspaces and a positive form are introduced:

• The affine subspace of kinematically admissible fields (KA-fields)

KA "

! u P `H1 pΩq ˘d , u " u d on B u Ω ) (1) 
and we note KA 0 the associated vectorial space.

• Affine subspace of statically admissible fields (SA-fields)

SA "

# τ P `L2 pΩq ˘dˆd sym ; @v P KA 0 , ż Ω τ : ε pvq dΩ " ż ω f ¨vdΩ `ż B F Ω F ¨vdS + (2) 
• Error in constitutive equation

e CR Ω pu, σq " }σ ´H : ε puq } H ´1,Ω (3) 
where }x} H ´1,Ω "

d ż Ω `x : H ´1 : x ˘dΩ
The continuous problems reads:

$ ' ' ' ' ' & ' ' ' ' ' %
Find a displacement field u and a stress field σ such that u " u d on BΩ č B u Ω and ε puq " 1 2 pgradpuq `grad T puqq on Ω divpσq `f " 0 on Ω and σn " F on B F Ω σ " H : ε puq on Ω

The solution to this problem exists and is unique. We will denote the couple displacement field and stress field as the exact solution.

The mechanical problem can also be formulated as:

Find ´uex , σ ex ¯P KA ˆSA such that e CR Ω pu ex , σ ex q " 0

Discrete problem

Let Ω H be a tessellation of Ω by triangles. The finite element method consists in searching for a displacement field in the finite subspace KA H of KA where KA H reads:

KA H " ! u P `H1 pΩq ˘d , u " u d on B u Ω H ) (5) 
The discrete problem can be formulated as:

u H P KA H σ H " H : ε pu H q ż Ω H σ H : ε pv H q dΩ " ż Ω H f ¨vH dΩ `żB F Ω H F ¨vH dS (6) 
The solution of this discrete problem exists and is unique. However, the discrete solution u H usually does not coincide with the continuous exact solution u.

Estimation of the discretization error

Generalities

Since the discrete displacement field u H is not the exact solution, the finite element method introduces an error usually called discretization error. Results on the convergence of the FEM offer an a priori estimate of this error. It involves problem dependent constants that are not computable thus making this error estimate impractical. One can also use a posteriori error estimator that rely on a postprocess of the finite element solution to derive an estimation of the discretization error [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF]. In this paper, estimators based on the error in constitutive relation [START_REF] Becker | A feed-back approach to error control in finite element methods: Basic analysis and examples[END_REF] were chosen as they provide guaranteed error bounds [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF]. These estimators are based on the fundamental relation:

@pû, σq P KApΩq ˆSApΩq,

› › ε pu ex q ´ε pûq › › 2 H,Ω `› › ›σ ex ´σ › › › 2 H ´1,Ω " e 2 CR Ω pû, σq (7) 
We note ~v~Ω " › › ε pvq › › H,Ω the energy norm of the displacement. By choosing û " u H P KApΩq, we obtain the following upper bound for the error e discr " u ex ´uH :

e discr :" ~ediscr ~Ω ď e CR Ω pu H , σq (8) 
Computing a statically admissible stress field is a complex task but several methods have been developed to compute σ P SApΩq (see [START_REF] Ladevèze | Error estimate procedure in the finite element method and application[END_REF], [START_REF] Parés | Subdomain-based flux-free a posteriori error estimators[END_REF], [START_REF] Pled | On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples[END_REF] and [START_REF] Rey | Study of the strong prolongation equation for the construction of statically admissible stress fields: Implementation and optimization[END_REF]).

However, this global energetic information on the discretization error may be useless for practical application. Therefore, goal-oriented error aims at providing bounds on the error on a quantity of interest. In this paper, the quantity of interest is considered to be a linear form of the displacement field, defined by extractors [START_REF] Becker | A feed-back approach to error control in finite element methods: Basic analysis and examples[END_REF].

Definition of the linear quantity of interest and the adjoint problem

In reliability, the quantity of interest is defined as a function of performance defining the domain of failure and of safety. This performance function is also called limit state function and is written as a margin between a resistance R and a solicitation S. The resistance is either deterministic or random. This limit state function may be written :

g " R ´S (9) 
The sign of this function defines the failure or not of the structure. To estimate bounds on the quantity g, the solicitation S needs to be defined by a linear functional r L :

g " R ´r Lpuq " R ´żΩ pσ Σ : ε puq `f Σ uqdΩ (10) 
where σ Σ and f Σ are extractors. It is possible to treat non linear quantities of interest. For some of them, there are specific methods to calculate guaranteed bounds [START_REF] Strouboulis | A posteriori estimation and adaptive control of the error in the quantity of interest. part i: A posteriori estimation of the error in the von mises stress and the stress intensity factor[END_REF][START_REF] Rüter | Goal-oriented a posteriori error estimates in linear elastic fracture mechanics[END_REF]. Otherwise, this quantity would need to be linearized. It would result in the loss of the guarantee that g ex lies between estimated bounds. Finally, the probability of failure that will later be estimated is likely to be biased. We define the subspace of statically admissible fields for the adjoint problem:

Ă SApωq " # τ P `L2 pωq ˘dˆd sym ; @v P KA 00 pωq, ż ω τ : ε pvq dω " Lpvq + (11) 
The adjoint problem set on Ω reads:

Find ´r u ex , r σ ex ¯P KA 0 pΩq ˆĂ SApΩq such that e CR Ω pr u ex , r σ ex q " 0 (12) 
The solution to this problem exists and is unique.

The adjoint problem is usually solved using the finite element method. The mesh does not need to be the same as for the forward problem. The adjoint displacement field obtained by solving the adjoint problem with the FEM is r u r H . We define the discretization error of the adjoint problem as:

e discr " ~r e discr ~Ω " ~r u ex ´r u r H ~Ω (13) 

Error estimation on a quantity of interest

We denote g ex " R ´Lpu ex q the unknown exact value of the limit state function. g H " R ´Lpu H q is an approximation of this quantity of interest.

Bounds from [START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF][START_REF] Ladevèze | Strict upper error bounds on computed outputs of interest in computational structural mechanics[END_REF] can be applied to the quantity of interest g ex :

|g ex ´gH `IHH | ď 1 2 e CR Ω pu H , σH qe CR Ω pr u r H , r σ r H q (14) 
where

I HH " ż Ω 1 2 p r σ r H `H : ε `r u r H ˘q : H ´1 : pσ H ´H : ε pu H qqdΩ (15) 
and where r σ r H P Ă SA H pΩq. Therefore, the error on the quantity of interest can be obtained from the product of the two errors in energy norm of both reference and adjoint problem. In this paper, we choose to solve both reference and adjoint problems on the same mesh so that it does not require an additional factorization of the stiffness matrix. Solving the finite element problem is in fact simplified to a multiple (double) right-hand side linear equation.

It is to be noted that the bounds provided here do not guarantee that g H is inside them. In fact, for the structure studied in 5, the finite element solution is outside the bounds. It would be absurd to use a value that is guaranteed to be false. Therefore, it was decided to use the middle of the bounds as the output of the finite element code :

g m " g H ´IHH (16) 
In fact, it was observed in [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF] that g m is in most cases a better approximation of the true value g ex . A bounding of g ex is therefore :

g ´ď g ex ď g `( 17 
)
where

g ´:" g m ´1 2 e CR Ω pu H , σH qe CR Ω pr u r H , r σ r H q (18) 
and

g `:" g m `1 2 e CR Ω pu H , σH qe CR Ω pr u r H , r σ r H q (19)

Estimation of the probability of failure

For the sake of simplicity, in the previous subsection, the mechanical problem is presented as deterministic. In reality, the geometry, the loading or the behavior of the structure are random and as a consequence the displacement fields u and u H are random fields. We gather the n random variables of the mechanical problem into a random vector tXu with joint probability density f tXu ptxuq.

The exact probability of failure P f,ex is defined from the exact displacement solution u ex via the exact limit state function g ex :

P f,ex " ż gexptXuqď0 f tXu ptxuqdx 1 . . . dx n (20) 
The probability of failure computed using the finite element solution u H is found by replacing the limit state function g ex by g H . As a consequence, the discretization error leads to an error on the estimation of the probability of failure since P f,H ‰ P f,ex .

In addition, the form of the limit-state function is usually unknown and surrogates techniques aim at building an approximation ĝ of g using samples. In this paper, we will consider that ĝ is built using kriging techniques. One can define the probability of failure computed using the surrogate model ĝ built from the exact mechanical solutions :

Pf,ex " ż ĝexptXuqď0 f tXu ptxuqdx 1 . . . dx n (21) 
Therefore, the meta-modeling error leads to an error in the estimation of the probability of failure as Pf,ex ‰ P f,ex .

Since the exact solution is almost never known, the samples used to construct the surrogate model are computed with finite element solutions so that the probability of failure is

Pf,H " ż ĝH ptXuqď0 f tXu ptxuqdx 1 . . . dx n (22) 
The only difference between integrals (20), ( 21) and ( 22) is the domain of integration that is defined by the limit state g " 0 . Therefore, the assessment of the probability of failure can be seen as a classification problem for which only the limit state needs to be precisely characterized.

Multi-fidelity kriging for reliability analysis

In this section, we first explain the principle of kriging and its application to the estimation of failure probabilities Pf,ex and Pf,H . Then, we propose a methodology to construct a kriging-based multifidelity surrogate model exploiting the discretization error bounds. The objective will be to classify evaluations of g correctly (g ď 0 means the sample is failed and g ą 0 means safe).

Kriging

Metamodeling consists in computing an estimation of a quantity of interest cheaper to evaluate than the initial function g, where g can either be g ex or g H .

Let consider that m observations (or computations) at x obs 1 . . . x obs m of g are gathered in a vector of observations g obs .

Kriging [START_REF] Dg Krige | A statistical approach to some mine valuation and allied problems on the witwatersrand[END_REF] relies on the hypothesis that the objective function g is the realization of a stationary Gaussian process G Gpxq " ypxq `Zpxq [START_REF] Marc | Predicting the output from a complex computer code when fast approximations are available[END_REF] where x P R n , ypxq is the mean of Gpxq and Zpxq is a random variable distributed as a centered Gaussian. Three types of kriging derive from the assumption made on the form of y. In simple kriging, ypxq " β 0 where β 0 is the mean computed from the observations g obs . In ordinary kriging, ypxq " β where β is an unknown constant. In universal kriging, ypxq " f pxq T β where f pxq " rf 1 pxq, . . . , f k pxqs is a vector containing k basis functions generally chosen as polynomials. To remain general, universal kriging will be considered in this paragraph.

The estimation ĝ of g is chosen as a linear combination of observations:

ĝpxq " wpxq T g obs [START_REF] Dg Krige | A statistical approach to some mine valuation and allied problems on the witwatersrand[END_REF] where wpxq are the kriging coefficients to be determined. ĝ is searched as the best linear unbiased predictor, which reads :

# E rĝ ´Gs " 0 β " arg min E " pĝ ´Gq 2 ‰ ( 25 
)
where E is the expectation.

Solving system (25) using ( 24) and ( 23) enables to determine the kriging coefficients. However, it requires the estimation of the covariance matrix of the data E ´zobs z obs T ¯, where z obs " g obs ´"y p x obs 1 q, . . . , y p x obs m q ‰ . Generally, the form of the correlation function is chosen a priori. In this paper, we use a Gaussian correlation function as it was observed in [START_REF] Nymand Lophaven | Aspects of the matlab toolbox DACE[END_REF] to give a better approximation than other standard correlation functions for several test cases. Therefore:

E `zobs z T obs ˘" σ 2 R " σ 2 » - n ź k"1 e ´˜x obs,i k ´xobs,j k θ k ¸2 fi fl i,jP 1,m (26) 
where σ 2 and θ " rθ 1 , . . . , θ n s are respectively the variance of the process and the vector containing the fluctuation parameters. The fluctuation parameter, or correlation length, can be interpreted as a smoothness parameter: the higher its value, the farther two samples are correlated. These parameters are called hyperparameters.

Several methods exist to estimate σ 2 and θ: the variograms [START_REF] Matheron | Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature[END_REF], the leave one-out method [START_REF] Rippa | An algorithm for selecting a good value for the parameter c in radial basis function interpolation[END_REF] or the maximum likelihood estimation [START_REF] Sacks | Design and analysis of computer experiments[END_REF]. In this paper, the maximum likelihood estimation is considered as it is asymptotically optimal [52, p. 124]. The likelihood that the data is an outcome of a Gaussian process can be written:

L `σ2 , θ ˘" 1 a p2πσ 2 q m det R e ´zobs R ´1z obs 2σ 2 (27) 
where det R is the determinant of the correlation matrix. Then θ is determined as

θ " argmin θ `´logpL `σ2 , θ ˘q˘( 28 
)
Once θ is known, the variance σ 2 is computed by calculating stationary points of L, which leads to:

σ 2 " z obs R ´1z obs m (29) 
Once the hyperparameters are determined, the optimization system (25) can be solved using the Lagrangian method.

In addition to the estimator ĝ, kriging meta-modeling provides an estimation of the uncertainty on ĝ with the variance s 2 ĝ.

Adaptive kriging

Using a kriging metamodel allows evaluating the uncertainty on the output through s 2 ĝ. Therefore, the meta-model can be improved by adding observations on points corresponding to large uncertainty on ĝ. This strategy is developed for reliability analysis in [START_REF] Echard | Assessment by kriging of the reliability of structures subjected to fatigue stress[END_REF] where the learning function chosen for enrichment is:

x Ñ U pxq " |ĝpxq| s 2 ĝpxq ( 30 
)
Low U value corresponds to samples close to the limit state (ĝ " 0) with high uncertainty (high s 2 ĝ value). Therefore, the limit state function g can be computed at the minimizer of the learning function and added to the observations, which results in the construction of a better meta-model. Then, the meta-model is used to estimate the probability of failure with Monte Carlo estimation [START_REF] Metropolis | The monte carlo method[END_REF]:

Pf,H « 1 n M C n M C ÿ i"1 ind ĝH ď0 pX i q (31)
Where ind ĝH ď0 is the indicator function of the failure domain ĝH ď 0.

Further details on the algorithm can be found in [START_REF] Echard | Assessment by kriging of the reliability of structures subjected to fatigue stress[END_REF].

Multi-fidelity kriging

We propose a methodology to construct a multi-fidelity kriging-based meta-model using computations from different meshes corresponding to different levels of fidelity. The refinement strategy is based on guaranteeing the classification of samples used to build the surrogate. For a realization x i of the random variables, the finite element code provides the values g H px i q " R ´r Lpu H q and the error estimation enables to obtain g m px i q " R ´r Lpu H q ´Ihh and bounds on g ex px i q using [START_REF] Gallimard | Error estimation of stress intensity factors for mixed-mode cracks[END_REF].

If the bounds have the same sign, the state of the point x i (safe or failure) is guaranteed. If not, it means that the discretization error may lead to a wrong classification of the point. Thus, a finer mesh can be defined and used for a new finite element solving for the same random variable realization. This algorithm requires two new parameters compared to classical AK-MCS : the size of the coarsest mesh and the size of the finest mesh. Moreover, a remeshing strategy has to be defined. Several methods can be proposed. The first strategy is to create a family of meshes ranked from coarsest to finest prior to the reliability analysis. A second strategy would be to exploit the error maps provided by the error estimation procedure to generate adaptive mesh. Yet, for quantity of interest, this procedure is not straightforward, as illustrated in [START_REF] Díez | Remeshing criteria and proper error representations for goal oriented h-adaptivity[END_REF]. If the convergence rate with respect to the mesh size α is known, a third strategy can be defined. From an error estimation on a mesh of size l c and by doing the hypothesis that reducing the mesh size reduces the interval at a convergence rate l 2α c but does not translate the error interval, then, the optimal mesh size l opt can be computed as

l c,opt " l c ˜2 |g m | e CR Ω pu H , σH qe CR Ω pr u r H , r σ r H q ¸1 2α (32) 
The meta-model is updated using the learning function defined in [START_REF] Mahadevan | Inclusion of model errors in reliability-based optimization[END_REF], as it is done in AK-MCS. Once the meta-model is built, the probability of failure is computed through Monte Carlo sampling.

Bounds on the probability of failure

For several mechanical problems, the limit state function is known a priori as monotonic against random variables, which enables to compute bounds on the probability of failure as presented in [START_REF] De Rocquigny | Structural reliability under monotony: Properties of form, simulation or response surface methods and a new class of monotonous reliability methods (mrm)[END_REF]. Let assume that there is only one random variable x and that the limit state function decreases against x (for example see Figure 1). If the bounds calculated for a given realization x ´guarantee that it is in the failure domain (respectively in the safe domain for x `), then, any sample with a greater value (respectively lower value) of the realization of the random variable is known to be in the failure domain (respectively safe). For Figure 1, these two samples would be x ´" x 1 and x `" x 4 . Indeed, even on the finest mesh, the state of x 2 and x 3 cannot be guaranteed. Bounds on P f,ex can then be computed using the cumulative probability function F associated to the joint probability density function f of the random variable x:

F px ´q ą P f,ex ą F px `q (33) 
5 Numerical assessment

Description of the structure

We consider a cracked plate of width w " 7m and length L " 16m. The length of the crack tip is a, as illustrated on Figure 2. We suppose a linear elastic homogeneous isotropic behavior characterized by the Hooke tensor H. We assume small perturbations, plane strains. Therefore, the mechanical problem is 2D (d "

(b) Zoom 2). E " 210 GPa is the Young's modulus and ν " 0.3 is the Poisson ratio. The structure undergoes traction with P " 1P a, which corresponds to mode I opening. The stress intensity factor K I is computed using auxiliary solutions and integral over a crown (represented in orange in Figure 2) [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF][START_REF] Gallimard | Error estimation of stress intensity factors for mixed-mode cracks[END_REF]. K I is therefore a linear functional of the displacement u and this linear functional defines the loading of the adjoint problem. The Griffith criterion [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] is used as the limit state function G " K lim ´KI where K lim is the critical value. For this structure, empirical expressions of the stress intensity factor K I are provided in [START_REF] Tada | The stress analysis of cracks[END_REF]. The following is guaranteed with at most 0.5% error:

K I,ex " ˜c2w πa tan πa 2w 0.752 `2.02 a w `0.37 `1 ´sin πa 2w ˘3 cos πa 2w ¸P ? πa (34) 
This expression will be used to compute the reference exact solution of the problem g ex .

Figure 2: Cracked plate with loading of the reference problem (blue) and of the adjoint problem (orange)

The length a is modeled as a random variable with beta distribution bounded between 1.6m and 4.25m and of shape parameters both equal to 2.

Illustration of the influence of the discretization error on estimation of the probability of failure

Considering K lim deterministic, the exact probability of failure is computed from [START_REF] Metropolis | The monte carlo method[END_REF] knowing the cumulative distribution function of a. The lack of precision of formula (34) (0.5%) is propagated on the probability of failure. These two probabilities obtained are referred as mesh size 0 ´and 0 `in Table 2. The middle of these bounds is 0 m . We note " P f ´Pf p0 m q P f p0 m q the relative error. The algorithm AK-MCS is used to estimate the failure probability for different mesh sizes l and for two values of K lim : K lim " 14P a ? m and K lim " 9P a ? m for considering two order of magnitude of P f namely 10 ´3 and 10 ´1. The parameters of AK-MCS are depicted in Table 1. All the metamodels are built using the DACE toolbox [START_REF] Nymand Lophaven | Aspects of the matlab toolbox DACE[END_REF]. The same Monte Carlo population is used for every simulation.

The results in terms of probability of failure are gathered in Table 2. Firstly, we observe that the probability of failure depends on the discretization size l. Secondly, as a too coarse mesh leads to an overestimation of the stiffness of the structure, the probability of failure is underestimated, which may be dramatic in the context of uncertainty qualification through virtual testing. Finally, to obtain less than 40% error on the probability of failure, a mesh size of l " 0.5m would be sufficient for the case K lim " 9P a ? m while a mesh size l " 0.05m would be needed for the case K lim " 14P a ? m. This can be explained by two reasons: the discretization error does not depend linearly on the crack length a and, for comparable precisions, the distribution of a has an influence on the obtained value of failure probability. The latter is depicted by the fact that an error of 0.5% with the empirical formula on K I leads to a relative error of 12% on the failure probability for the case K lim " 14P a ? m and only 2% for the case K lim " 9P a ? m. Therefore, as the conception point is unknown, doing an a priori choice of the discretization size is impossible. Moreover, using the same mesh for different safety studies may still lead to errors.

Multi-fidelity kriging

In this subsection, we apply the new Algorithm 1 with the same parameters as for AK-MCS (see Table 1). The size of the coarsest mesh is 0.5m and the size of the finest mesh is 0.05m. In the first subsection we compare different refinement strategies. In the second subsection, we compare our metamodel to a multi-fidelity meta-model built by evofusion [START_REF] Alexander Ij Forrester | Optimization using surrogate models and partially converged computational fluid dynamics simulations[END_REF] in terms of estimated failure probability and computational time. Each strategy is simulated on 5 different Monte-Carlo populations in order to assess the robustness of the method.

Comparison of refinement strategies

Several simulations were done with different sets of intermediate mesh sizes between the coarsest (0.5m) and the finest (0.05m). The five different Monte Carlo populations are denoted by P1 to P5 in Table 3. The table reads as follows. Let us take the example of simulation 6 on population P5. There were 10 calls to the FEM solver on mesh size 0.5m, among them 4 had two bounds of different sign. The FEM solver was called on mesh size 0.2m for these 4 samples. Three samples among those 4 had an undetermined state, the FEM was called on the finest mesh (0.05m) for each of them. Mesh size 0.5m 0.3m 0.2m 0.1m 0.05m Table 3: Comparison of refinements strategies -P stands for population -S stands for simulation Simulation 1 considers 5 meshes of size l " r0.5m, 0.4m, 0.3m, 0.2m, 0.1m, 0.05ms. Simulation 2 to 4 correspond to reductions in the number of intermediary meshes between the coarsest and the finest of one level. In a same way, simulation 5 to 7 corresponds to a reduction of two in the number of intermediary meshes between the coarsest and the finest. Simulation 8 considers only two possible meshes, the coarsest and the finest. Finally, simulation 9 considers only one possible mesh, which is the finest.

P f ˆ10 ´3 CPU time ˆ10 3 s S P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3
To begin with, whatever the intermediate meshes and the Monte Carlo population, the method converges to the same probability of failure as the one with only the finest mesh, thus proving the robustness of the method. One will note that this probability of failure is different from the one with the same mesh presented in Table 2. The reason is that the metamodel is built with the values g m . It has been observed that g m is usually a better approximation than g H .

Moreover, whatever the intermediate mesh sizes and population, the method is faster than AK-MCS on the finest mesh using g m (Simulation 9).

From Table 3, we can observe that on average, increasing the number of possible meshes improves the repartition of simulations between the different levels of fidelity. However, it also increases the average CPU time as some evaluations may not be useful to determine the sign of the limit state function. This is highlighted by simulation 5 on population 1 (S5P1) where only necessary levels of fidelity according to S1P1 are considered. The difference in CPU time is also attributable to a greater number of samples being evaluated during enrichment. It is to be noticed that S2P1 is shorter than simulation S3P1 and S4P1. The reason is a smaller number of calls to the finest mesh.

Figure 3 shows the limit state function against the crack length. It shows that samples close to the limit state are calculated on the finest mesh, which is paramount when building a multifidelity metamodel for reliability purposes. It is to be noted that every sample added during enrichment phase is calculated on the finest mesh.

As highlighted, it is not trivial to choose more than two levels of fidelity as the best repartition depends on the quality of bounds, the limit state function and samples for which the finite element solver will be called. It is therefore suggested to only use the coarsest and finest mesh.

This strategy is compared to the one exploiting the computation of an optimal mesh size l opt . The results are presented in Table 4. This table is presented in a different way than Table 3. Each column corresponds to one sample added to the metamodel and each row within each column corresponds to the intermediate mesh sizes used for this sample. For example, for the strategy with optimal mesh size on population 1, the four first samples used to initialize the metamodel are guaranteed by the bounds on the coarsest mesh. However, the fifth sample is not guaranteed and is therefore calculated on a finer mesh (i.e. 0.21m) and its state is then guaranteed. During the enrichment phase, two samples were added to the metamodel and were both calculated on mesh size 0.059m and 0.05m (finest mesh). The second part of Table 4 presents simulation 8 from Table 3 and serves as a reference for comparaison with the optimal mesh size estimation strategy.

First, it is to be noted that whatever the Monte Carlo population, the optimal mesh size estimation strategy converges to the same probability of failure as the reference simulation. For most samples, the first optimal mesh size estimation allows to guarantee its state and the strategy finds a coarser mesh than the finest one. The finest mesh is always reached allowing to estimate the same probability of failure as the reference simulation. The finding of a good mesh compromise In most engineering problems the mesh size convergence rate is not known a priori. It is therefore not possible to use the optimal mesh size estimation strategy to compute the probability of failure. In this case, it is recommended to only choose a coarse mesh and the fine one.

Comparison with a meta-model built by evofusion

In [START_REF] Alexander Ij Forrester | Optimization using surrogate models and partially converged computational fluid dynamics simulations[END_REF], authors propose an approach named evofusion to construct a meta-model from data for multiple levels of fidelity (at least two). Let g 2 and g 1 denote the functions estimated respectively from a high and low fidelity model. g 2 may be written as:

g 2 " g 1 `g2 ´g1 loomoon gerr (35) 
The principle consists in creating a first kriging metamodel for g 3) and optimal mesh size estimation for g err . The sum of the two metamodels is an evofused metamodel that is built from 2 levels of fidelity. The advantage of using such a metamodel is that the global trend may be captured thanks to low fidelity data. The error metamodel between level 1 and 2 may then be built thanks to a few calls to both g 1 and g 2 . A measure of the uncertainty on the evofused meta-model is computed from the standard deviations of the low-fidelity metamodel and the error metamodel by considering that g err and g 1 are uncorrelated, which gives:

s 2 ĝ2 " s 2 ĝ1 `s2 ĝerr (36) 
For readers familliar with co-kriging [START_REF] Marc | Predicting the output from a complex computer code when fast approximations are available[END_REF], equation ( 35) is very similar to the co-kriging formulation:

g 2 " ρ 1 ˆg1 `δ1 (37) 
Where ρ 1 and δ 1 are unknowns. Actually, evofusion might be seen as the particular case of co-kriging where ρ 1 " 1 and δ 1 " g err .

In this paper, we consider an adaptation of evofusion to AK-MCS. For this purpose, a learning function needs to be introduced. The U function is adapted:

x Ñ U pxq " |ĝ 1 pxq `ĝ err pxq| s 2 ĝ1 pxq `s2 ĝerr pxq (38) 
Given x i with U px i q ă 2, a refinement strategy is to use the decomposition of s 2 ĝ as a sum for every level of fidelity. g 1 px i q could be simulated and added to ĝ1 thus reducing s 2 ĝpx i q (as s 2 ĝ1 px i q " 0). If s 2 ĝpx i q is still smaller than 2 then a call to the high-fidelity model is necessary.

The low fidelity model is built from the finite element solution for a mesh size of 0.5m (no error estimation is performed) and the high fidelity model is built from g m (obtained after error estimation) on a mesh size of 0.05m : the same high fidelity is chosen as the finest mesh from 5.3.1 to be able to compare results.

To build an initial metamodel, 5 samples are selected with a factorial experiment over the whole space on which x i is defined. g 1 is called for each of them. Three samples are selected among them to calculate g 2 and be able to compute g err . These samples are selected by picking the three values closest to the limit state g 1 " 0.

Parameters of the evofusion metamodel are shown in Table 5. 

Stopping criterion on learning

Results

The obtained probabilities of failure and CPU time for both evofusion and multi-fidelity kriging are given in Table 6.

As shown in Table 6, evofusion does not reduce the number of evaluations needed to estimate the probability of failure. Actually, in simulations for which the method converges, the number of FEM evaluations is still higher than the reference simulation of multifidelity kriging.

For some Monte-Carlo populations, the method using evofusion does not converge. The metamodel and the samples used to build it were inspected. When too many samples are added to the metamodel, it becomes likely that two of them have very close input values. In order to fit those two samples, the metamodel needs to bend sharply thus making the correlation length drop. Finally, the metamodel uncertainty increases and the number of samples needed to improve its quality plumets: the method never converges. It is possible that the trigger of this problem is the learning function U . Actually, it was seen to call for too many enrichment in [START_REF] Gaspar | A study on a stopping criterion for active refinement algorithms in kriging surrogate models. Safety and reliability of complex engineered systems[END_REF]. Bounds on P f can be computed using samples that are guaranteed to be in the failure domain as highlighted in 4.4. Table 7 shows bounds added to simulations from Table 3. Bounds can be thin, in the same range as the one provided in Table 2 with the empirical formula. However, for some cases there is no guaranteed sample close to the limit state. Nothing guarantees a priori that bounds of good quality will be computed with this method. The best practice would be to add with expertise a few samples close enough to the limit state and with guaranteed sign. In any case, this post-process is extremely cheap and offer an estimation of safety margins.

Conclusion

In this article, we presented the construction of a multi-fidelity kriging-based metamodel for the estimation of the probability of failure. By exploiting discretization error estimators, it is possible to ensure the state (safe or failure) of the points used to build the meta-model. Therefore, the correct classification of those points is guaranteed. It allows to define a strategy to build the meta-model from computations on different mesh sizes thus adapting the discretization to the objective. Such a strategy allows to reduce total computational cost compared to a strategy using a unique mesh size and to focus expensive computations on critical points. Results using a kriging metamodel were compared to the ones using evofusion, a more evolved multifidelity kriging-based metamodel. The initial metamodel appears to be more effective than evofusion as it allows to calculate the same probability of failure with smaller CPU time. When the convergence rate is known, the estimation of an optimal mesh size for classification is proposed. Results obtained were quite similar, thus highlighting the very good performance of the initial strategy. Future work will consist in extending this approach to more complex reliability problems. Indeed, an increased number of random variables, three dimensional problems with non linear mechanics or a non linear quantity of interest will be considered.
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 1 Figure 1: Exact limit state and multifidelity metamodel built with two level of fidelity g H and g h (respectively mesh size 0.5m and 0.05m -Number indicates sample index

Figure 3 :

 3 Figure3: Exact limit state and multifidelity metamodel built with two level of fidelity g H and g h (respectively mesh size 0.5m and 0.05m

  The algorithm we propose is given inAlgorithm 1. Algorithm 1: MF-AK Choose a coarsest mesh size h max and a finest mesh size h min ; Generate Monte Carlo (MC) population; Generate n 1 samples for initialization; for i " 1..n 1 do Evaluate g H , g ´and g `on x i ; while g ´g`ă 0 and h min ď h do Perform the remeshing stategy ; Evaluate g H , g ´and g `on x i ; end end Construct the meta-model ĝ and evaluate it on the MC population; Compute the learning function U ; Compute the failure probability with the meta-model ĝ; Compute the coefficient of variation COV of the failure probability; while minpU q ď 2 or COV ą ζ do while minpU q ď 2 do Select the learning point x

	end
	Construct the meta-model ĝ and evaluate it on the MC population;
	Compute the learning function U ;
	end
	Compute the failure probability with the meta-model ĝ;
	Compute the coefficient of variation COV of the failure probability;
	if COV ą ζ then
	Enrichment of the Monte Carlo population;
	Evaluate the meta-model on the population;
	Compute the learning function U ;
	end
	end

new " argminpU q; Evaluate g H , g ´and g `on x new ; while g ´g`ă 0 and h min ď h do Perform the remeshing stategy; Evaluate g H , g ´and g `on x new ;

Table 1 :

 1 AK-MCS parameters ´1 0.20 3.79 10 ´5 0.99 0.2m 1.94 10 ´1 0.14 1.10 10 ´4 0.90 0.1m 2.11 10 ´1 0.07 2.46 10 ´3 0.59 0.05m 2.19 10 ´1 0.03 3.91 10 ´3 0.35 0.02m 2.24 10 ´1 0.01 4.93 10 ´3 0.17

	´2

Table 2 :

 2 Probabilities of failure and relative error for different mesh sizes and resistance values

Table 4 :

 4 Comparison of strategy between two levels of fidelity (same as Set 8 in Table

	1 and a second

Table 5 :

 5 Evofusion parameters

	2

Table 6 :

 6 Comparison between evofusion and multi-fidelity kriging5.3.3 Bounds on the probability of failure

			Mesh size (m)		
		Pop. 0.5	0.05	P f CPU time
	Kriging	1 2 3 4	7 7 7 6	3 3 3 2	5.1 for all	6 6 6 4
		5	7	3		6
		1 28	5	5.1	6
	Evofusion	2 128 3	5 metamodel 5.1 Error not converged	11
		4	Low fidelity metamodel not converged
		5 97	6	5.1	13

Table 7 :

 7 Bounds on the probability of failure depending on the refinement strategy and Monte Carlo population (P1 to P5)

				f pˆ10 ´3q		P f pˆ10 ´2q
	Set P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
	1 3.8 0	0	0	0	5.7 16 16 16 16
	2 3.8 0	0	0 4.0 5.7 16 16 16 16
	3 3.8 0	0	0	0	16 16 16 16 16
	4 4.1 0	0	0	0	16 16 16 16 16
	5	0	0	0	0	0	16 16 16 16 16
	6 4.1 0	0	0 4.0 5.7 16 16 16 16
	7 3.8 0	0	0	0	5.7 16 16 16 16
	8 3.8 0	0	0	0	5.7 16 16 16 16
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