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1 Abstract
This paper presents an approach to build a multi-fidelity kriging metamodel from
finite element computations on different meshes for stuctural reliability assessment.
The proposed method takes advantage of the computation of bounds on the dis-
cretization error, which enables to guarantee the state (safe or failure) of each
computation of the performance function. An algorithm to build the meta-model
from the different levels of fidelity and estimate the failure probability is provided.
Illustrations are presented on a two dimensional mechanical crack opening prob-
lem. Bounds on the failure probability are also post-processed.

2 Introduction
Uncertainties may arise from a lack of knowledge (for example, characterization
of material properties can be improved) or from inherent variability (an example
is the load due to wind flow on the blade of a wind turbine).

As a consequence, designing structures subjected to uncertainty in a deter-
ministic framework becomes impractical. As aftermaths in case of failure are
sometimes dramatic, the reliability analysis becomes crucial and sensitive. This
safety analysis is usually done in a probabilistic approach that aims at estimating
quantities such as the probability of failure, reliability indexes, sensitivity factors,
and so on.

In the context of virtual testing for numerical certification of structures, the
probability of failure is usually computed using numerical simulations of a model
of the structure. Different strategies can be considered. First, sampling techniques
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that mainly rely on Monte Carlo or quasi Monte Carlo simulations [4] present the
advantage of being non intrusive. Besides, their efficiency does not depend on the
number of random variables, making them attractive. Their main disadvantage is
that the convergence rate against the number of samples is very low, so that they
are computationally expensive. To tackle this issue, reduction of variance or multi
level Monte Carlo approach have been proposed [19, 20]. Secondly, approximation
methods aim at searching for a random field in a given approximation space, the
Galerkin method [33] is an example of them. When the geometry of the structure
is random, methods such as XSFEM have been developed [36, 38]. However, those
techniques can be intrusive.

The reduction of computational costs can also be done using surrogate mod-
els. First, polynomial response surfaces were developed [47]. Then, kriging-based
metamodels [24, 45] became very popular in the field of safety analysis. The most
popular method was developed in [11]. It was then adapted to very low probability
using important sampling or subset sampling [12, 51] and finally to system relia-
bility [14]. The main asset of kriging is that it offers an indicator of the quality of
the meta-model. Indeed this method considers that the meta-model is a realiza-
tion of a random Gaussian process, the standard deviation of this process is then
computable at each point where the meta-model is evaluated.

Two components of the mechano-probabilistic problem may affect the accu-
racy of the reliability assessement : epistemic uncertainties on some parameters
(including model parameters) and the inaccuracy of the numerical solution to the
mechanical problem. To deal with epistemic uncertainties on parameter [54, 53]
propose a projection method to propagate through the mechanical model bounds
on these variable to obtain bounds on the probability of failure. Few people con-
sider the error due to the discretization method (mainly the finite element method).
Yet, this error may lead to a poor estimation of the probability of failure, as il-
lustrated in [41]. Performing numerical simulations on too coarse meshes might
in fact lead to considering that a realization belongs to the safety domain while it
actually belongs to the failure domain. Among works tackling this issue, [2] can be
cited. It uses the discretization error introduced by meshing using the Richardson
extrapolation in a non-deterministic analysis. In [30], the Richardson extrapo-
lation is also used to perform reliability analysis with the First Order Reliability
Method (FORM) [22]. In [16], the author estimates the probability of failure using
FORM while utilizing the discretization error to provide bounds on the probability
of failure.

In the family of kriging techniques, multi-fidelity kriging consists in using sev-
eral models with different precision to build a multi-fidelity meta-model. The main
objective of this approach is to obtain an improved trade-off between computa-
tional cost and precision by choosing to evaluate some samples on a low fidelity
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model and some others on a high fidelity one. In [7], optimization in the context
of a fluid flow problem is performed with progressively fine grids. In [8, 39], multi-
fidelity kriging is performed on a flow problems. In the context of optimization,
[5, 6] adapts the stopping criterion of the iterative contact solver to use multi-
fidelity kriging. In [35], a multi-fidelity approach is used on a elasto-viscoplasticity
problem with different proper generalized decompositions. It is to be noted that
usually, the choice of levels of discretization or grids is done a priori and the
construction of the design of experiments is based on heuristics.

In this paper, we propose an adaptive multi-fidelity kriging approach to esti-
mate the probability of failure. This method uses the estimation of the discretiza-
tion error to choose a suitable mesh for each sampling point by noting that only
the sign of the limit state function is of importance : the reliability problem is
considered as a classification problem. In addition to the estimation of the proba-
bility of failure, the method gives lower and upper bounds on the exact probability
of failure.

The paper is organized as follow. In section 3, we define the mechanical prob-
lem and recall the kriging-based meta model approach used to estimate the failure
probability. In section 4, we present the approach we propose to build a multi-
fidelity kriging meta-model and its application to compute the probability of fail-
ure. In section 5 we apply our method to a crack-opening problem. Finally, section
6 concludes the paper.

3 Settings
In this section, the continuous mechanical problem and its discretized version
are first defined. Then, the discretization error and its estimates are presented.
Finally, we define the limit-state functions and formulate the reliability assessment
in terms of estimation of the probability of failure.

3.1 Continuous problem

Let Rd represent the physical space. Let us consider the static equilibrium of a
(polyhedral) structure occupying the open domain Ω Ă Rd and subjected to a
given body force f within Ω, to a given traction force F on BFΩ and to a given
displacement field ud on the complementary part BuΩ ‰ H. Let us assume the
structure undergoes small perturbations and that the material is linear elastic,
characterized by Hooke’s elasticity tensor H. Let u be the unknown displacement
field, ε puq the symmetric part of the gradient of u, σ the Cauchy stress tensor.

Two affine subspaces and a positive form are introduced:
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• The affine subspace of kinematically admissible fields (KA-fields)

KA “
!

u P
`

H1
pΩq

˘d
, u “ ud on BuΩ

)

(1)

and we note KA0 the associated vectorial space.

• Affine subspace of statically admissible fields (SA-fields)

SA “

#

τ P
`

L2
pΩq

˘dˆd

sym ; @v P KA0,

ż

Ω

τ : ε pvq dΩ “

ż

ω

f ¨ vdΩ`

ż

BFΩ

F ¨ vdS

+

(2)

• Error in constitutive equation

eCRΩ
pu, σq “ }σ ´H : ε puq }H´1,Ω (3)

where }x}H´1,Ω “

d

ż

Ω

`

x : H´1 : x
˘

dΩ

The continuous problems reads:
$

’

’

’

’

’

&

’

’

’

’

’

%

Find a displacement field u and a stress field σ such that

u “ ud on BΩ
č

BuΩ and ε puq “
1

2
pgradpuq ` gradT puqq on Ω

divpσq ` f “ 0 on Ω and σn “ F on BFΩ

σ “ H : ε puq on Ω

(4)

The solution to this problem exists and is unique. We will denote the couple
displacement field and stress field as the exact solution.

The mechanical problem can also be formulated as:

Find
´

uex, σex

¯

P KAˆ SA such that eCRΩ
puex, σexq “ 0

3.2 Discrete problem

Let ΩH be a tessellation of Ω̄ by triangles. The finite element method consists in
searching for a displacement field in the finite subspace KAH of KA where KAH

reads:
KAH “

!

u P
`

H1
pΩq

˘d
, u “ ud on BuΩH

)

(5)
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The discrete problem can be formulated as:

uH P KAH

σ
H
“ H : ε puHq

ż

ΩH

σ
H

: ε pvHq dΩ “

ż

ΩH

f ¨ vHdΩ`

ż

BFΩH

F ¨ vHdS

(6)

The solution of this discrete problem exists and is unique. However, the discrete
solution uH usually does not coincide with the continuous exact solution u.

3.3 Estimation of the discretization error

3.3.1 Generalities

Since the discrete displacement field uH is not the exact solution, the finite element
method introduces an error usually called discretization error. Results on the
convergence of the FEM offer an a priori estimate of this error. It involves problem
dependent constants that are not computable thus making this error estimate
impractical. One can also use a posteriori error estimator that rely on a post-
process of the finite element solution to derive an estimation of the discretization
error [1]. In this paper, estimators based on the error in constitutive relation (3)
were chosen as they provide guaranteed error bounds [28]. These estimators are
based on the fundamental relation:

@pû, σ̂q P KApΩq ˆ SApΩq,
›

›ε puexq ´ ε pûq
›

›

2

H,Ω `

›

›

›
σ
ex
´ σ̂

›

›

›

2

H´1,Ω
“ e2

CRΩ
pû, σ̂q

(7)

We note ~v~Ω “
›

›ε pvq
›

›

H,Ω the energy norm of the displacement. By choosing û “
uH P KApΩq, we obtain the following upper bound for the error ediscr “ uex ´ uH :

ediscr :“ ~ediscr~Ω ď eCRΩ
puH , σ̂q (8)

Computing a statically admissible stress field is a complex task but several
methods have been developed to compute σ̂ P SApΩq (see [27], [37], [40] and [42]).

However, this global energetic information on the discretization error may be
useless for practical application. Therefore, goal-oriented error aims at providing
bounds on the error on a quantity of interest. In this paper, the quantity of interest
is considered to be a linear form of the displacement field, defined by extractors
[3].
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3.3.2 Definition of the linear quantity of interest and the adjoint prob-
lem

In reliability, the quantity of interest is defined as a function of performance defin-
ing the domain of failure and of safety. This performance function is also called
limit state function and is written as a margin between a resistance R and a so-
licitation S. The resistance is either deterministic or random. This limit state
function may be written :

g “ R ´ S (9)

The sign of this function defines the failure or not of the structure. To esti-
mate bounds on the quantity g, the solicitation S needs to be defined by a linear
functional rL :

g “ R ´ rLpuq “ R ´

ż

Ω

pσ
Σ

: ε puq ` f
Σ
uqdΩ (10)

where σ
Σ
and f

Σ
are extractors. It is possible to treat non linear quantities of

interest. For some of them, there are specific methods to calculate guaranteed
bounds [49, 44]. Otherwise, this quantity would need to be linearized. It would
result in the loss of the guarantee that gex lies between estimated bounds. Finally,
the probability of failure that will later be estimated is likely to be biased. We
define the subspace of statically admissible fields for the adjoint problem:

ĂSApωq “

#

τ P
`

L2
pωq

˘dˆd

sym ; @v P KA00
pωq,

ż

ω

τ : ε pvq dω “ L̃pvq

+

(11)

The adjoint problem set on Ω reads:

Find
´

ruex, rσex

¯

P KA0
pΩq ˆ ĂSApΩq such that eCRΩ

pruex, rσexq “ 0 (12)

The solution to this problem exists and is unique.
The adjoint problem is usually solved using the finite element method. The

mesh does not need to be the same as for the forward problem. The adjoint
displacement field obtained by solving the adjoint problem with the FEM is ru

rH .
We define the discretization error of the adjoint problem as:

ediscr “ ~rediscr~Ω “ ~ruex ´ ru
rH~Ω (13)

3.3.3 Error estimation on a quantity of interest

We denote gex “ R ´ L̃puexq the unknown exact value of the limit state function.
gH “ R ´ L̃puHq is an approximation of this quantity of interest.
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Bounds from [25, 26] can be applied to the quantity of interest gex:

|gex ´ gH ` IHH | ď
1

2
eCRΩ

puH , σ̂HqeCRΩ
pru

rH , r̂σ rHq (14)

where
IHH “

ż

Ω

1

2
pr̂σ

rH `H : ε
`

ru
rH

˘

q : H´1 : pσ̂
H
´H : ε puHqqdΩ (15)

and where r̂σ
rH P

ĂSAHpΩq.
Therefore, the error on the quantity of interest can be obtained from the prod-

uct of the two errors in energy norm of both reference and adjoint problem. In this
paper, we choose to solve both reference and adjoint problems on the same mesh so
that it does not require an additional factorization of the stiffness matrix. Solving
the finite element problem is in fact simplified to a multiple (double) right-hand
side linear equation.

It is to be noted that the bounds provided here do not guarantee that gH is
inside them. In fact, for the structure studied in 5, the finite element solution is
outside the bounds. It would be absurd to use a value that is guaranteed to be
false. Therefore, it was decided to use the middle of the bounds as the output of
the finite element code :

gm “ gH ´ IHH (16)

In fact, it was observed in [31] that gm is in most cases a better approximation of
the true value gex. A bounding of gex is therefore :

g´ ď gex ď g` (17)

where
g´ :“ gm ´

1

2
eCRΩ

puH , σ̂HqeCRΩ
pru

rH , r̂σ rHq (18)

and
g` :“ gm `

1

2
eCRΩ

puH , σ̂HqeCRΩ
pru

rH , r̂σ rHq (19)

3.4 Estimation of the probability of failure

For the sake of simplicity, in the previous subsection, the mechanical problem is
presented as deterministic. In reality, the geometry, the loading or the behavior of
the structure are random and as a consequence the displacement fields u and uH
are random fields.

We gather the n random variables of the mechanical problem into a random
vector tXu with joint probability density ftXuptxuq.
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The exact probability of failure Pf,ex is defined from the exact displacement
solution uex via the exact limit state function gex:

Pf,ex “

ż

gexptXuqď0

ftXuptxuqdx1 . . . dxn (20)

The probability of failure computed using the finite element solution uH is found by
replacing the limit state function gex by gH . As a consequence, the discretization
error leads to an error on the estimation of the probability of failure since Pf,H ‰
Pf,ex.

In addition, the form of the limit-state function is usually unknown and surro-
gates techniques aim at building an approximation ĝ of g using samples. In this
paper, we will consider that ĝ is built using kriging techniques. One can define the
probability of failure computed using the surrogate model ĝ built from the exact
mechanical solutions :

P̂f,ex “

ż

ĝexptXuqď0

ftXuptxuqdx1 . . . dxn (21)

Therefore, the meta-modeling error leads to an error in the estimation of the
probability of failure as P̂f,ex ‰ Pf,ex.

Since the exact solution is almost never known, the samples used to construct
the surrogate model are computed with finite element solutions so that the prob-
ability of failure is

P̂f,H “

ż

ĝHptXuqď0

ftXuptxuqdx1 . . . dxn (22)

The only difference between integrals (20), (21) and (22) is the domain of
integration that is defined by the limit state g “ 0 . Therefore, the assessment of
the probability of failure can be seen as a classification problem for which only the
limit state needs to be precisely characterized.

4 Multi-fidelity kriging for reliability analysis
In this section, we first explain the principle of kriging and its application to the
estimation of failure probabilities P̂f,ex and P̂f,H . Then, we propose a methodology
to construct a kriging-based multifidelity surrogate model exploiting the discretiza-
tion error bounds. The objective will be to classify evaluations of g correctly (g ď 0
means the sample is failed and g ą 0 means safe).
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4.1 Kriging

Metamodeling consists in computing an estimation of a quantity of interest cheaper
to evaluate than the initial function g, where g can either be gex or gH .

Let consider that m observations (or computations) at xobs1 . . . xobsm of g are gath-
ered in a vector of observations gobs.

Kriging [24] relies on the hypothesis that the objective function g is the real-
ization of a stationary Gaussian process G

Gpxq “ ypxq ` Zpxq (23)

where x P Rn, ypxq is the mean of Gpxq and Zpxq is a random variable dis-
tributed as a centered Gaussian. Three types of kriging derive from the assumption
made on the form of y. In simple kriging, ypxq “ β0 where β0 is the mean computed
from the observations gobs. In ordinary kriging, ypxq “ β where β is an unknown
constant. In universal kriging, ypxq “ fpxqTβ where fpxq “ rf1pxq, . . . , fkpxqs is
a vector containing k basis functions generally chosen as polynomials. To remain
general, universal kriging will be considered in this paragraph.

The estimation ĝ of g is chosen as a linear combination of observations:

ĝpxq “ wpxqTgobs (24)

where wpxq are the kriging coefficients to be determined.
ĝ is searched as the best linear unbiased predictor, which reads :

#

E rĝ ´Gs “ 0

β “ arg minE
“

pĝ ´Gq2
‰ (25)

where E is the expectation.
Solving system (25) using (24) and (23) enables to determine the kriging coef-

ficients. However, it requires the estimation of the covariance matrix of the data
E
´

zobszobs
T
¯

, where zobs “ gobs ´
“

ypx
obs
1 q, . . . , ypx

obs
m q

‰

. Generally, the form of the
correlation function is chosen a priori. In this paper, we use a Gaussian correla-
tion function as it was observed in [29] to give a better approximation than other
standard correlation functions for several test cases. Therefore:

E
`

zobsz
T
obs

˘

“ σ2R “ σ2

»

–

n
ź

k“1

e
´

˜

x
obs,i
k

´x
obs,j
k

θk

¸2fi

fl

i,jPJ1,mK

(26)

where σ2 and θ “ rθ1, . . . , θns are respectively the variance of the process
and the vector containing the fluctuation parameters. The fluctuation parameter,
or correlation length, can be interpreted as a smoothness parameter: the higher

9



its value, the farther two samples are correlated. These parameters are called
hyperparameters.

Several methods exist to estimate σ2 and θ: the variograms [32], the leave
one-out method [43] or the maximum likelihood estimation [46]. In this paper, the
maximum likelihood estimation is considered as it is asymptotically optimal [52,
p. 124]. The likelihood that the data is an outcome of a Gaussian process can be
written:

L
`

σ2, θ
˘

“
1

a

p2πσ2q
m detR

e´
zobsR

´1zobs
2σ2 (27)

where detR is the determinant of the correlation matrix. Then θ̂ is determined as

θ̂ “ argminθ
`

´ logpL
`

σ2, θ
˘

q
˘

(28)

Once θ̂ is known, the variance σ2 is computed by calculating stationary points
of L, which leads to:

σ2
“
zobsR

´1zobs
m

(29)

Once the hyperparameters are determined, the optimization system (25) can
be solved using the Lagrangian method.

In addition to the estimator ĝ, kriging meta-modeling provides an estimation
of the uncertainty on ĝ with the variance s2

ĝ.

4.2 Adaptive kriging

Using a kriging metamodel allows evaluating the uncertainty on the output through
s2
ĝ. Therefore, the meta-model can be improved by adding observations on points
corresponding to large uncertainty on ĝ. This strategy is developed for reliability
analysis in [13] where the learning function chosen for enrichment is:

xÑ Upxq “
|ĝpxq|

s2
ĝpxq

(30)

Low U value corresponds to samples close to the limit state (ĝ “ 0) with high
uncertainty (high s2

ĝ value). Therefore, the limit state function g can be computed
at the minimizer of the learning function and added to the observations, which
results in the construction of a better meta-model. Then, the meta-model is used
to estimate the probability of failure with Monte Carlo estimation [34]:

P̂f,H «
1

nMC

nMC
ÿ

i“1

indĝHď0pXiq (31)

Where indĝHď0 is the indicator function of the failure domain ĝH ď 0.
Further details on the algorithm can be found in [13].
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4.3 Multi-fidelity kriging

We propose a methodology to construct a multi-fidelity kriging-based meta-model
using computations from different meshes corresponding to different levels of fi-
delity. The refinement strategy is based on guaranteeing the classification of sam-
ples used to build the surrogate. For a realization xi of the random variables, the
finite element code provides the values gHpxiq “ R ´ rLpuHq and the error esti-
mation enables to obtain gmpxiq “ R ´ rLpuHq ´ Ihh and bounds on gexpxiq using
(17).

If the bounds have the same sign, the state of the point xi (safe or failure)
is guaranteed. If not, it means that the discretization error may lead to a wrong
classification of the point. Thus, a finer mesh can be defined and used for a new
finite element solving for the same random variable realization.
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The algorithm we propose is given in Algorithm 1.
Algorithm 1: MF-AK
Choose a coarsest mesh size hmax and a finest mesh size hmin ;
Generate Monte Carlo (MC) population;
Generate n1 samples for initialization;
for i “ 1..n1 do

Evaluate gH , g´ and g` on xi;
while g´g` ă 0 and hmin ď h do

Perform the remeshing stategy ;
Evaluate gH , g´ and g` on xi;

end
end
Construct the meta-model ĝ and evaluate it on the MC population;
Compute the learning function U ;
Compute the failure probability with the meta-model ĝ;
Compute the coefficient of variation COV of the failure probability;
while minpUq ď 2 or COV ą ζ do

while minpUq ď 2 do
Select the learning point xnew “ argminpUq;
Evaluate gH , g´ and g` on xnew;
while g´g` ă 0 and hmin ď h do

Perform the remeshing stategy;
Evaluate gH , g´ and g` on xnew;

end
Construct the meta-model ĝ and evaluate it on the MC population;
Compute the learning function U ;

end
Compute the failure probability with the meta-model ĝ;
Compute the coefficient of variation COV of the failure probability;
if COV ą ζ then

Enrichment of the Monte Carlo population;
Evaluate the meta-model on the population;
Compute the learning function U ;

end
end

This algorithm requires two new parameters compared to classical AK-MCS :
the size of the coarsest mesh and the size of the finest mesh. Moreover, a remeshing
strategy has to be defined. Several methods can be proposed. The first strategy is
to create a family of meshes ranked from coarsest to finest prior to the reliability

12



analysis. A second strategy would be to exploit the error maps provided by the
error estimation procedure to generate adaptive mesh. Yet, for quantity of interest,
this procedure is not straightforward, as illustrated in [10]. If the convergence rate
with respect to the mesh size α is known, a third strategy can be defined. From
an error estimation on a mesh of size lc and by doing the hypothesis that reducing
the mesh size reduces the interval at a convergence rate l2αc but does not translate
the error interval, then, the optimal mesh size lopt can be computed as

lc,opt “ lc

˜

2 |gm|

eCRΩ
puH , σ̂HqeCRΩ

pru
rH , r̂σ rHq

¸
1

2α

(32)

The meta-model is updated using the learning function defined in (30), as it
is done in AK-MCS. Once the meta-model is built, the probability of failure is
computed through Monte Carlo sampling.

4.4 Bounds on the probability of failure

For several mechanical problems, the limit state function is known a priori as
monotonic against random variables, which enables to compute bounds on the
probability of failure as presented in [9]. Let assume that there is only one random
variable x and that the limit state function decreases against x (for example see
Figure 1). If the bounds calculated for a given realization x´ guarantee that it is in
the failure domain (respectively in the safe domain for x`), then, any sample with
a greater value (respectively lower value) of the realization of the random variable
is known to be in the failure domain (respectively safe). For Figure 1, these two
samples would be x´ “ x1 and x` “ x4. Indeed, even on the finest mesh, the state
of x2 and x3 cannot be guaranteed. Bounds on Pf,ex can then be computed using
the cumulative probability function F associated to the joint probability density
function f of the random variable x:

F px´q ą Pf,ex ą F px`q (33)

5 Numerical assessment

5.1 Description of the structure

We consider a cracked plate of width w “ 7m and length L “ 16m. The length
of the crack tip is a, as illustrated on Figure 2. We suppose a linear elastic
homogeneous isotropic behavior characterized by the Hooke tensor H. We assume
small perturbations, plane strains. Therefore, the mechanical problem is 2D (d “
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(a) (b) Zoom

Figure 1: Exact limit state and multifidelity metamodel built with two level of
fidelity gH and gh (respectively mesh size 0.5m and 0.05m - Number indicates
sample index

2). E “ 210 GPa is the Young’s modulus and ν “ 0.3 is the Poisson ratio. The
structure undergoes traction with P “ 1Pa, which corresponds to mode I opening.

The stress intensity factorKI is computed using auxiliary solutions and integral
over a crown (represented in orange in Figure 2) [48, 17]. KI is therefore a linear
functional of the displacement u and this linear functional defines the loading of
the adjoint problem. The Griffith criterion [21] is used as the limit state function
G “ Klim ´ KI where Klim is the critical value. For this structure, empirical
expressions of the stress intensity factor KI are provided in [50]. The following is
guaranteed with at most 0.5% error:

KI,ex “

˜

c

2w

πa
tan

πa

2w

0.752` 2.02 a
w
` 0.37

`

1´ sin πa
2w

˘3

cos πa
2w

¸

P
?
πa (34)

This expression will be used to compute the reference exact solution of the problem
gex.

14



Figure 2: Cracked plate with loading of the reference problem (blue) and of the
adjoint problem (orange)

The length a is modeled as a random variable with beta distribution bounded
between 1.6m and 4.25m and of shape parameters both equal to 2.

5.2 Illustration of the influence of the discretization error
on estimation of the probability of failure

Considering Klim deterministic, the exact probability of failure is computed from
(34) knowing the cumulative distribution function of a. The lack of precision
of formula (34) (0.5%) is propagated on the probability of failure. These two
probabilities obtained are referred as mesh size 0´ and 0` in Table 2. The middle
of these bounds is 0m. We note ε “ Pf´Pf p0

mq

Pf p0mq
the relative error.

The algorithm AK-MCS is used to estimate the failure probability for different
mesh sizes l and for two values of Klim : Klim “ 14Pa

?
m and Klim “ 9Pa

?
m for

considering two order of magnitude of Pf namely 10´3 and 10´1. The parameters
of AK-MCS are depicted in Table 1. All the metamodels are built using the DACE
toolbox [29]. The same Monte Carlo population is used for every simulation.

The results in terms of probability of failure are gathered in Table 2.
Firstly, we observe that the probability of failure depends on the discretization

size l. Secondly, as a too coarse mesh leads to an overestimation of the stiffness of
the structure, the probability of failure is underestimated, which may be dramatic
in the context of uncertainty qualification through virtual testing. Finally, to
obtain less than 40% error on the probability of failure, a mesh size of l “ 0.5m
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Stopping criterion on learning 2
Coefficient of Variation criterion ζ 10´2

Size of initial Monte-Carlo population 1000
Type of initialization Factorial experiment

Initial correlation length 0.55m
Number of samples to build initial metamodel 5

Maximal factor to multiply PMC between two iterations 5

Table 1: AK-MCS parameters

Klim “ 9Pa
?
m Klim “ 14Pa

?
m

l Pf ε Pf ε
0´ 2.23 10´1 0.02 5.27 10´3 0.12
0m 2.27 10´1 0 5.98 10´3 0
0` 2.31 10´1 0.02 6.72 10´3 0.12

0.5m 1.40 10´1 0.38 0 1
0.4m 1.71 10´1 0.25 0 1
0.3m 1.82 10´1 0.20 3.79 10´5 0.99
0.2m 1.94 10´1 0.14 1.10 10´4 0.90
0.1m 2.11 10´1 0.07 2.46 10´3 0.59
0.05m 2.19 10´1 0.03 3.91 10´3 0.35
0.02m 2.24 10´1 0.01 4.93 10´3 0.17

Table 2: Probabilities of failure and relative error for different mesh sizes and
resistance values

would be sufficient for the case Klim “ 9Pa
?
m while a mesh size l “ 0.05m

would be needed for the case Klim “ 14Pa
?
m. This can be explained by two

reasons: the discretization error does not depend linearly on the crack length
a and, for comparable precisions, the distribution of a has an influence on the
obtained value of failure probability. The latter is depicted by the fact that an
error of 0.5% with the empirical formula on KI leads to a relative error of 12%
on the failure probability for the case Klim “ 14Pa

?
m and only 2% for the case

Klim “ 9Pa
?
m. Therefore, as the conception point is unknown, doing an a priori

choice of the discretization size is impossible. Moreover, using the same mesh for
different safety studies may still lead to errors.

5.3 Multi-fidelity kriging

In this subsection, we apply the new Algorithm 1 with the same parameters as
for AK-MCS (see Table 1). The size of the coarsest mesh is 0.5m and the size of
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the finest mesh is 0.05m. In the first subsection we compare different refinement
strategies. In the second subsection, we compare our metamodel to a multi-fidelity
meta-model built by evofusion [15] in terms of estimated failure probability and
computational time. Each strategy is simulated on 5 different Monte-Carlo popu-
lations in order to assess the robustness of the method.

5.3.1 Comparison of refinement strategies

Several simulations were done with different sets of intermediate mesh sizes be-
tween the coarsest (0.5m) and the finest (0.05m). The five different Monte Carlo
populations are denoted by P1 to P5 in Table 3. The table reads as follows. Let
us take the example of simulation 6 on population P5. There were 10 calls to the
FEM solver on mesh size 0.5m, among them 4 had two bounds of different sign.
The FEM solver was called on mesh size 0.2m for these 4 samples. Three samples
among those 4 had an undetermined state, the FEM was called on the finest mesh
(0.05m) for each of them.

Mesh size
0.5m 0.3m 0.2m 0.1m 0.05m Pf ˆ10´3 CPU time ˆ103s

S P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
1 10 7 7 7 10 4 3 3 3 4 3 3 3 3 4 3 2 2 2 3 3 2 2 2 3 5.1 for all 8 6 6 6 9
2 7 7 7 7 10 3 3 3 3 4 2 2 2 2 3 2 2 2 2 3 5.1 for all 6 5 6 6 8
3 10 6 6 6 6 4 2 2 2 2 3 2 2 2 2 3 1 1 1 1 5.1 for all 8 3 6 3 3
4 10 7 7 7 10 4 3 3 3 4 3 3 3 3 4 3 2 2 2 3 5.1 for all 7 5 5 5 7
5 10 7 7 7 7 4 3 3 3 3 3 3 3 3 3 5.1 for all 7 6 6 4 6
6 7 7 7 7 10 3 3 3 3 4 2 2 2 2 3 5.1 for all 5 5 5 5 7
7 6 6 7 6 6 2 2 3 2 2 1 1 2 1 1 5.1 for all 3 3 5 3 3
8 7 7 7 6 7 3 3 3 2 3 5.1 for all 6 6 6 4 6
9 7 for all 5.1 for all 13 for all

Table 3: Comparison of refinements strategies - P stands for population - S stands
for simulation

Simulation 1 considers 5 meshes of size l “ r0.5m, 0.4m, 0.3m, 0.2m, 0.1m, 0.05ms.
Simulation 2 to 4 correspond to reductions in the number of intermediary meshes
between the coarsest and the finest of one level. In a same way, simulation 5 to 7
corresponds to a reduction of two in the number of intermediary meshes between
the coarsest and the finest. Simulation 8 considers only two possible meshes, the
coarsest and the finest. Finally, simulation 9 considers only one possible mesh,
which is the finest.

To begin with, whatever the intermediate meshes and the Monte Carlo popula-
tion, the method converges to the same probability of failure as the one with only
the finest mesh, thus proving the robustness of the method. One will note that
this probability of failure is different from the one with the same mesh presented
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in Table 2. The reason is that the metamodel is built with the values gm. It has
been observed that gm is usually a better approximation than gH .

Moreover, whatever the intermediate mesh sizes and population, the method
is faster than AK-MCS on the finest mesh using gm (Simulation 9).

From Table 3, we can observe that on average, increasing the number of possi-
ble meshes improves the repartition of simulations between the different levels of
fidelity. However, it also increases the average CPU time as some evaluations may
not be useful to determine the sign of the limit state function. This is highlighted
by simulation 5 on population 1 (S5P1) where only necessary levels of fidelity ac-
cording to S1P1 are considered. The difference in CPU time is also attributable
to a greater number of samples being evaluated during enrichment. It is to be
noticed that S2P1 is shorter than simulation S3P1 and S4P1. The reason is a
smaller number of calls to the finest mesh.

Figure 3 shows the limit state function against the crack length. It shows
that samples close to the limit state are calculated on the finest mesh, which is
paramount when building a multifidelity metamodel for reliability purposes. It is
to be noted that every sample added during enrichment phase is calculated on the
finest mesh.

As highlighted, it is not trivial to choose more than two levels of fidelity as
the best repartition depends on the quality of bounds, the limit state function and
samples for which the finite element solver will be called. It is therefore suggested
to only use the coarsest and finest mesh.

This strategy is compared to the one exploiting the computation of an optimal
mesh size lopt. The results are presented in Table 4. This table is presented in
a different way than Table 3. Each column corresponds to one sample added to
the metamodel and each row within each column corresponds to the intermediate
mesh sizes used for this sample. For example, for the strategy with optimal mesh
size on population 1, the four first samples used to initialize the metamodel are
guaranteed by the bounds on the coarsest mesh. However, the fifth sample is not
guaranteed and is therefore calculated on a finer mesh (i.e. 0.21m) and its state
is then guaranteed. During the enrichment phase, two samples were added to
the metamodel and were both calculated on mesh size 0.059m and 0.05m (finest
mesh). The second part of Table 4 presents simulation 8 from Table 3 and serves
as a reference for comparaison with the optimal mesh size estimation strategy.

First, it is to be noted that whatever the Monte Carlo population, the optimal
mesh size estimation strategy converges to the same probability of failure as the
reference simulation. For most samples, the first optimal mesh size estimation
allows to guarantee its state and the strategy finds a coarser mesh than the finest
one. The finest mesh is always reached allowing to estimate the same probability
of failure as the reference simulation. The finding of a good mesh compromise

18



(a) (b) Zoom

Figure 3: Exact limit state and multifidelity metamodel built with two level of
fidelity gH and gh (respectively mesh size 0.5m and 0.05m

allows to reduce CPU time on all populations.
In most engineering problems the mesh size convergence rate is not known a

priori. It is therefore not possible to use the optimal mesh size estimation strategy
to compute the probability of failure. In this case, it is recommended to only
choose a coarse mesh and the fine one.

5.3.2 Comparison with a meta-model built by evofusion

In [15], authors propose an approach named evofusion to construct a meta-model
from data for multiple levels of fidelity (at least two). Let g2 and g1 denote the
functions estimated respectively from a high and low fidelity model. g2 may be
written as:

g2 “ g1 ` g2 ´ g1
loomoon

gerr

(35)

The principle consists in creating a first kriging metamodel for g1 and a second
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Pop. Mesh size (m) Pf
pˆ10´3q

CPU time
pˆ103sq

W
it
h

op
ti
m
al

m
es
h
si
ze

1 0.5 (7) 0.21 (1) 0.095 (1) 0.059 (1) 0.05 (1) 5.1 4.1
2 0.5 (7) 0.21 (1) 0.094 (1) 0.062 (1) 0.05 (1) 5.1 4.3
3 0.5 (7) 0.21 (1) 0.094 (1) 0.062 (1) 0.05 (1) 5.1 4.2
4 0.5 (7) 0.21 (1) 0.15 (1) 0.069 (1) 0.05 (2) 5.1 5.9
5 0.5 (7) 0.21 (1) 0.098 (1) 0.055 (1) 0.05 (1) 5.1 4.0

W
it
ho

ut
op

ti
m
al

m
es
h
si
ze

1 0.5 (7) 0.05 (3) 5.1 5.8
2 0.5 (7) 0.05 (3) 5.1 5.6
3 0.5 (7) 0.05 (3) 5.1 5.6
4 0.5 (7) 0.05 (2) 5.1 3.8
5 0.5 (7) 0.05 (3) 5.1 5.7

Table 4: Comparison of strategy between two levels of fidelity (same as Set 8 in
Table 3) and optimal mesh size estimation

for gerr . The sum of the two metamodels is an evofused metamodel that is built
from 2 levels of fidelity. The advantage of using such a metamodel is that the
global trend may be captured thanks to low fidelity data. The error metamodel
between level 1 and 2 may then be built thanks to a few calls to both g1 and
g2. A measure of the uncertainty on the evofused meta-model is computed from
the standard deviations of the low-fidelity metamodel and the error metamodel by
considering that gerr and g1 are uncorrelated, which gives:

s2
ĝ2
“ s2

ĝ1
` s2

ĝerr (36)

For readers familliar with co-kriging [23], equation (35) is very similar to the
co-kriging formulation:

g2 “ ρ1 ˆ g1 ` δ1 (37)

Where ρ1 and δ1 are unknowns.
Actually, evofusion might be seen as the particular case of co-kriging where

ρ1 “ 1 and δ1 “ gerr.
In this paper, we consider an adaptation of evofusion to AK-MCS. For this

purpose, a learning function needs to be introduced. The U function is adapted:

xÑ Upxq “
|ĝ1pxq ` ĝerrpxq|

s2
ĝ1
pxq ` s2

ĝerr
pxq

(38)

Given xi with Upxiq ă 2, a refinement strategy is to use the decomposition of s2
ĝ

as a sum for every level of fidelity. g1pxiq could be simulated and added to ĝ1 thus
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reducing s2
ĝpxiq (as s2

ĝ1
pxiq “ 0). If s2

ĝpxiq is still smaller than 2 then a call to the
high-fidelity model is necessary.

The low fidelity model is built from the finite element solution for a mesh size
of 0.5m (no error estimation is performed) and the high fidelity model is built
from gm (obtained after error estimation) on a mesh size of 0.05m : the same high
fidelity is chosen as the finest mesh from 5.3.1 to be able to compare results.

To build an initial metamodel, 5 samples are selected with a factorial experi-
ment over the whole space on which xi is defined. g1 is called for each of them.
Three samples are selected among them to calculate g2 and be able to compute
gerr. These samples are selected by picking the three values closest to the limit
state g1 “ 0.

Parameters of the evofusion metamodel are shown in Table 5.

Stopping criterion on learning 2
Coefficient of Variation criterion ζ 10´2

Size of initial Monte-Carlo population 1000
Type of initialization Factorial experiment

Initial correlation length for g1 and for ger 0.55m
Number of sample to build initial metamodel 5

Maximal factor to multiply PMC between two iterations 5

Table 5: Evofusion parameters

Results The obtained probabilities of failure and CPU time for both evofusion
and multi-fidelity kriging are given in Table 6.

As shown in Table 6, evofusion does not reduce the number of evaluations
needed to estimate the probability of failure. Actually, in simulations for which
the method converges, the number of FEM evaluations is still higher than the
reference simulation of multifidelity kriging.

For some Monte-Carlo populations, the method using evofusion does not con-
verge. The metamodel and the samples used to build it were inspected. When
too many samples are added to the metamodel, it becomes likely that two of them
have very close input values. In order to fit those two samples, the metamodel
needs to bend sharply thus making the correlation length drop. Finally, the meta-
model uncertainty increases and the number of samples needed to improve its
quality plumets: the method never converges. It is possible that the trigger of
this problem is the learning function U . Actually, it was seen to call for too many
enrichment in [18].
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Mesh size (m)
Pop. 0.5 0.05 Pf CPU time

K
ri
gi
ng

1 7 3

5.
1
fo
r
al
l 6

2 7 3 6
3 7 3 6
4 6 2 4
5 7 3 6

E
vo

fu
si
on

1 28 5 5.1 6
2 128 5 5.1 11

3
Error

metamodel
not converged

4 Low fidelity metamodel
not converged

5 97 6 5.1 13

Table 6: Comparison between evofusion and multi-fidelity kriging

5.3.3 Bounds on the probability of failure

Bounds on Pf can be computed using samples that are guaranteed to be in the
failure domain as highlighted in 4.4. Table 7 shows bounds added to simulations
from Table 3. Bounds can be thin, in the same range as the one provided in Table
2 with the empirical formula. However, for some cases there is no guaranteed
sample close to the limit state. Nothing guarantees a priori that bounds of good
quality will be computed with this method. The best practice would be to add
with expertise a few samples close enough to the limit state and with guaranteed
sign. In any case, this post-process is extremely cheap and offer an estimation of
safety margins.

6 Conclusion
In this article, we presented the construction of a multi-fidelity kriging-based meta-
model for the estimation of the probability of failure. By exploiting discretization
error estimators, it is possible to ensure the state (safe or failure) of the points used
to build the meta-model. Therefore, the correct classification of those points is
guaranteed. It allows to define a strategy to build the meta-model from computa-
tions on different mesh sizes thus adapting the discretization to the objective. Such
a strategy allows to reduce total computational cost compared to a strategy using a
unique mesh size and to focus expensive computations on critical points. Results
using a kriging metamodel were compared to the ones using evofusion, a more
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P´f pˆ10´3q P`f pˆ10´2q

Set P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
1 3.8 0 0 0 0 5.7 16 16 16 16
2 3.8 0 0 0 4.0 5.7 16 16 16 16
3 3.8 0 0 0 0 16 16 16 16 16
4 4.1 0 0 0 0 16 16 16 16 16
5 0 0 0 0 0 16 16 16 16 16
6 4.1 0 0 0 4.0 5.7 16 16 16 16
7 3.8 0 0 0 0 5.7 16 16 16 16
8 3.8 0 0 0 0 5.7 16 16 16 16

Table 7: Bounds on the probability of failure depending on the refinement strategy
and Monte Carlo population (P1 to P5)

evolved multifidelity kriging-based metamodel. The initial metamodel appears to
be more effective than evofusion as it allows to calculate the same probability of
failure with smaller CPU time. When the convergence rate is known, the estima-
tion of an optimal mesh size for classification is proposed. Results obtained were
quite similar, thus highlighting the very good performance of the initial strategy.

Future work will consist in extending this approach to more complex reliability
problems. Indeed, an increased number of random variables, three dimensional
problems with non linear mechanics or a non linear quantity of interest will be
considered.
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