
HAL Id: hal-02944217
https://hal.science/hal-02944217

Submitted on 21 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Coq Library of Undecidable Problems
Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik

Wehr, Maximilian Wuttke

To cite this version:
Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik Kirst, et
al.. A Coq Library of Undecidable Problems. CoqPL 2020 The Sixth International Workshop on Coq
for Programming Languages, Jan 2020, New Orleans, United States. �10.1017/S0960129597002302�.
�hal-02944217�

https://hal.science/hal-02944217
https://hal.archives-ouvertes.fr


A Coq Library of Undecidable Problems
Yannick Forster
Saarland University

Dominique
Larchey-Wendling
Université de Lorraine,

CNRS, LORIA

Andrej
Dudenhefner

Saarland University

Edith Heiter
Saarland University

Dominik Kirst
Saarland University

Fabian Kunze
Saarland University

Gert Smolka
Saarland University

Simon Spies
Saarland University
U. of Cambridge

Dominik Wehr
Saarland University
U. van Amsterdam

Maximilian Wuttke
Saarland University

Abstract
We propose a talk on our library of mechanised reductions to es-
tablish undecidability results in Coq. The library is a collaborative
effort, growing constantly and we are seeking more outside con-
tributors willing to work on undecidability results in Coq.

1 Introduction
Undecidability proofs are usually carried out by giving a reduction
from an undecidable problem to the problem to be shown unde-
cidable. It involves the definition of a reduction function, proving
that it is both computable and correct (as a reduction). We base our
library1 on a synthetic approach to undecidability [7], meaning we
rely on Coq’s built-in notion of computation. Since every function
on data types (such as N) definable in (axiom free) Coq is com-
putable in any standard model of computation, the computability
requirement is automatically fulfilled, and giving a reduction only
amounts to defining a Coq term and proving its correctness.

Most undecidability proofs work by many-one reductions. A
problem 𝑝 : 𝑋 → Prop is many-one reducible to 𝑞 : 𝑌 → Prop,
written 𝑝 ⪯ 𝑞, if ∀𝑥 : 𝑋, 𝑝 𝑥 ↔ 𝑞(𝑓 𝑥) holds for some 𝑓 : 𝑋 → 𝑌 ,
the correctness statement meaning that 𝑓 embeds 𝑝-validity into
𝑞-validity.2 Many-one reductions form a sub-class of Turing reduc-
tions: a problem 𝑝 is Turing-reducible to a problem 𝑞 if a decider for
𝑞 can be turned into a decider for 𝑝 , i.e. if the type dec𝑞 → dec𝑝
is inhabited, where dec𝑝 := ∀𝑥, {𝑝 𝑥} + {¬𝑝 𝑥}.

In total, our library contains more than 20 different problems
and about 70 000 lines of code. In this abstract, we give an overview
of the problems in the library, the reductions between the problems,
and sum up possible future work.

2 Problems in the Library
The problems in our library can mostly be categorized into seed
problems, advanced problems, and target problems.

As they are simple to state, seeds make for good starting points
leading to smooth reductions to other problems.

Advanced problems do not work well as seeds, but they highlight
the potential of our library as a framework for mechanically check-
ing pen&paper proofs of potentially hard undecidability results.

Target problems are very expressive and thus work well as tar-
gets for reduction, with the aim of closing loops in the reduction
graph (Figure 1) to establish the inter-reducibility of problems.

1Which can be found at https://github.com/uds-psl/coq-library-undecidability/.
2Using dependent types, one can also pack a reduction 𝑝 ⪯ 𝑞 together with its
correctness statement in a dependent pair i.e. ∀𝑥 : 𝑋, {𝑦 : 𝑌 | 𝑝 𝑥 ↔ 𝑞 𝑦 }.

CoqPL ’20, January 25, 2020, New Orleans, LA., USA
2020.

2.1 Seeds
• The Post correspondence problem (PCP), which is a matching

problems on strings, mechanised in [6]. PCP works well as seed
for target problems that can express string concatenation and
simple inductive predicates. In particular, PCP on Boolean strings
(BPCP) is simpler than most halting problems, and thus is often-
times used as the starting point of reductions.

• Halting problems for (𝑛 or just two) registers machines (MM,
MM0 and MM2), also known as Minsky machines, mechanised
in [10]. These machines have a (fixed) number of N-valued regis-
ters and can increase/decrement registers or perform conditional
jumps. The machines work well as seed for target problems based
on simple arithmetic operations e.g. +1 or −1.

• The halting problem for the FRACTRAN language, which is a
very simple language where states are natural numbers and
programs are lists of fractions, mechanised in [15]. FRACTRAN
works well as seed for target problems which can simulate more
involved arithmetic, in this case multiplication.

• Satisfiability of Diophantine equations (H10) or elementary Dio-
phantine constraints (H10c), which are equivalent formulations
of Hilbert’s tenth problem, mechanised in [15].

2.2 Advanced Problems
• The halting problems for single-tape (TM𝑠 ) andmulti-tape Turing
machines (TM𝑚), mechanised in [9]. Turing machines are the
standard model of computation, but their formal definition is
quite involved compared to e.g. PCP.3

• The halting problem for binary stack machines (BSM), which are
simple machines working with stacks of Booleans, mechanised
in [10]. They can push and pop Booleans, and conditionally jump.

• Standard first-order string rewriting (SR), mechanised in [6].
• Entailment in (elementary and standard) intuitionistic linear

logic (EILL and ILL), mechanised in [10].
• Provability and satisfiability for intuitionistic and classical first-

order logic (FOL), mechanised in [7].
• Type inhabitation for System F (Γ ⊢F ? : 𝐴), described in [5].
• Finite satisfiability in (classical) first-order logic, known as Trakht-

enbrot’s theorem (Trakht.)
• The termination problem for `-recursive algorithms (`-rec), a

standard class of formal algorithms, mechanised in [14].
• The intersection problem (CFI) and palindrome problem (CFP)

for context-free grammars, mechanised in [6].
• 2nd-order (2oUnif), 3rd-order (3oUnif) and thus higher-order uni-

fication in the simply-typed _-calculus, mechanised in [20].

3Turing machines are often used as seeds in the literature but we found that using
alternative seeds makes for simpler mechanised reductions in many instances.

1

https://github.com/uds-psl/coq-library-undecidability/


CoqPL ’20, January 25, 2020, New Orleans, LA., USA
Y. Forster, D. Larchey-Wendling, A. Dudenhefner, E. Heiter,

D. Kirst, F. Kunze, G. Smolka, S. Spies, D. Wehr, and M. Wuttke

Γ ⊢∩ ? : 𝐴

SSTS

Tiling

3oUnif

Tag Sys.

Trakht.

FOL

TM𝑚

TM𝑠

SR

mPCP

PCP

BPCP ILL

wCBV

`-rec

MM

BSM

MM0 EILL

H10

DIOsingle

DIOelem

DIOlogic

FRACTRAN MM2

MELL3

Γ ⊢F ? : 𝐴

H10c

2oUnif

F≤

Figure 1. Graph of reductions contained in the library, dashed lines are future work.

2.3 Target Problems
• The halting problem for the weak call-by-value _-calculus L
(wCBV), mechanised in [11]. In order to reduce a problem 𝑝 to
L-halting, one first shows that the problem is enumerable in Coq,
i.e. that there is a term 𝑓 : N→ list 𝑋 s.t. ∀𝑥, 𝑝 𝑥 ↔ ∃𝑛, 𝑥 ∈ 𝑓 𝑛.
As a second step, one can use the automatic translation of Coq
terms to L from [8] to immediately obtain a reduction from 𝑝 to
L-halting. This technique is used to obtain a compact reduction
from provability in first-order logic to L-halting in [6].

• Provability or satisfiability in first-order logic, mechanised in [7].
If a problem is expressible with a first-order formula, this imme-
diately serves as reduction to provability on first-order logic.

3 Future Work
First, we would like to strengthen the theoretical basis our work is
built on, i.e. the folklore fact that every function of type e.g.N→ N
definable in (axiom free) Coq can be shown computable in a model
of computation. A mechanised proof of this could for instance be
carried out based on MetaCoq [19]. We also want to analyse which
classical axioms are compatible with this computability assumption.

Secondly, we would like to include existing mechanisations of
undecidability results in a uniform fashion, for instance [3] or [4].

Thirdly, there are many undecidability proofs we would like to
mechanise in the future. Several known undecidability results build
on the undecidability of unification problems we already include
(2oUnif or 3oUnif), such as typability in the _Π-calculus [2] or type
inference in Curry-style System F𝜔 [21]. The intersection problem
for two-way-automata [18] is shown undecidable by reduction
from PCP. Tiling problems are often used in undecidability proofs
for logic and shown undecidable by reduction from TM𝑠 . Post’s
tag systems (Tag Sys.) can be shown undecidable by e.g. reduction
from PCP [17]. Concerning linear logic, the reduction fromMM2 to
MELL3 (with 3 !-modalities) is a priority [1]. Deductive consequence
in axiomatic systems such as Peano arithmetic or ZF set theory can
be shown undecidable by reduction from e.g. PCP, H10 or H10c.

Subtyping in F≤ was shown undecidable in [16], and typability
and type checking for System F were shown undecidable in [22]. By
including those problems in the library, we might be able to connect
the mechanised undecidability of type checking in 𝐷<: [12].

Lastly, the undecidability proof of semi-unification [13] is by
reduction from the mortality problem of Turing machines. It would
be a challenge to find a different starting point for this proof to
make it suitable for mechanisation in Coq.

References
[1] Kaustuv Chaudhuri. 2018. Expressing additives using multiplicatives and subex-

ponentials. Mathematical Structures in Computer Science 28, 5 (2018), 651–666.
[2] Gilles Dowek. 1993. The undecidability of typability in the lambda-pi-calculus.

In International Conference on Typed Lambda Calculi and Applications. Springer.
[3] Andrej Dudenhefner and Jakob Rehof. 2017. Rank 3 Inhabitation of Intersection

Types Revisited (Extended Version). arXiv preprint arXiv:1705.06070 (2017).
[4] Andrej Dudenhefner and Jakob Rehof. 2018. Lower End of the Linial-Post Spec-

trum. In 23rd International Conference on Types for Proofs and Programs (TYPES
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[5] Andrej Dudenhefner and Jakob Rehof. 2019. A Simpler Undecidability Proof for
System F Inhabitation. In 24th International Conference on Types for Proofs and
Programs (TYPES 2018) (LIPIcs), Vol. 130.

[6] Yannick Forster, Edith Heiter, and Gert Smolka. 2018. Verification of PCP-related
computational reductions in Coq. In International Conference on Interactive Theo-
rem Proving. Springer, 253–269.

[7] Yannick Forster, Dominik Kirst, and Gert Smolka. 2019. On synthetic undecidabil-
ity in Coq, with an application to the Entscheidungsproblem. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs.

[8] Yannick Forster and Fabian Kunze. 2019. A Certifying Extraction with Time
Bounds from Coq to Call-By-Value Lambda Calculus. In 10th International Con-
ference on Interactive Theorem Proving (LIPIcs), Vol. 141. 17:1–17:19.

[9] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. 2020. Verified Pro-
gramming of Turing Machines in Coq. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs.

[10] Yannick Forster and Dominique Larchey-Wendling. 2019. Certified undecidability
of intuitionistic linear logic via binary stack machines and Minsky machines.
In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs. ACM, 104–117.

[11] Yannick Forster and Gert Smolka. 2017. Weak call-by-value lambda calculus as a
model of computation in Coq. In International Conference on Interactive Theorem
Proving. Springer, 189–206.

[12] Jason Hu and Ondřej Lhoták. 2019. Undecidability of 𝐷<: and Its Decidable
Fragments. arXiv preprint arXiv:1908.05294 (2019).

[13] Assaf J Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. 1993. The undecidability of
the semi-unification problem. Information and Computation 102, 1 (1993).

[14] Dominique Larchey-Wendling. 2017. Typing Total Recursive Functions in Coq.
In International Conference on Interactive Theorem Proving. Springer, 371–388.

[15] Dominique Larchey-Wendling and Yannick Forster. 2019. Hilbert’s Tenth Problem
in Coq. In 4th International Conference on Formal Structures for Computation and
Deduction (LIPIcs), Vol. 131. 27:1–27:20.

[16] Benjamin C Pierce. 1994. Bounded quantification is undecidable. Information
and Computation 112, 1 (1994), 131–165.

[17] Emil L Post. 1943. Formal reductions of the general combinatorial decision
problem. American journal of mathematics 65, 2 (1943), 197–215.

[18] Michael O. Rabin and Dana Scott. 1959. Finite automata and their decision
problems. IBM journal of research and development 3, 2 (1959), 114–125.

[19] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster,
Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. 2019.
The MetaCoq Project. (June 2019). https://hal.inria.fr/hal-02167423

[20] Simon Spies and Yannick Forster. 2020. Undecidability of Higher-Order Unifi-
cation Formalised in Coq. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs.

[21] Pawel Urzyczyn. 1997. Type Reconstruction in F𝜔 . Mathematical. Structures in
Comp. Sci. 7, 4 (Aug. 1997), 329–358. https://doi.org/10.1017/S0960129597002302

[22] Joe B Wells. 1999. Typability and type checking in System F are equivalent and
undecidable. Annals of Pure and Applied Logic 98, 1-3 (1999), 111–156.

2

https://hal.inria.fr/hal-02167423
https://doi.org/10.1017/S0960129597002302

	Abstract
	1 Introduction
	2 Problems in the Library
	2.1 Seeds
	2.2 Advanced Problems
	2.3 Target Problems

	3 Future Work
	References

