Yannick Forster

Dominique Larchey-Wendling

Andrej Dudenhefner

Edith Heiter

Dominik Kirst

Fabian Kunze

Gert Smolka

Simon Spies

Dominik Wehr

Maximilian Wuttke

A Coq Library of Undecidable Problems

We propose a talk on our library of mechanised reductions to establish undecidability results in Coq. The library is a collaborative effort, growing constantly and we are seeking more outside contributors willing to work on undecidability results in Coq.

Introduction

Undecidability proofs are usually carried out by giving a reduction from an undecidable problem to the problem to be shown undecidable. It involves the definition of a reduction function, proving that it is both computable and correct (as a reduction). We base our library1 on a synthetic approach to undecidability [START_REF] Forster | On synthetic undecidability in Coq, with an application to the Entscheidungsproblem[END_REF], meaning we rely on Coq's built-in notion of computation. Since every function on data types (such as N) definable in (axiom free) Coq is computable in any standard model of computation, the computability requirement is automatically fulfilled, and giving a reduction only amounts to defining a Coq term and proving its correctness.

Most undecidability proofs work by many-one reductions. A problem 𝑝 : 𝑋 → Prop is many-one reducible to 𝑞 : 𝑌 → Prop, written 𝑝 ⪯ 𝑞, if ∀𝑥 : 𝑋, 𝑝 𝑥 ↔ 𝑞(𝑓 𝑥) holds for some 𝑓 : 𝑋 → 𝑌 , the correctness statement meaning that 𝑓 embeds 𝑝-validity into 𝑞-validity. 2 Many-one reductions form a sub-class of Turing reductions: a problem 𝑝 is Turing-reducible to a problem 𝑞 if a decider for 𝑞 can be turned into a decider for 𝑝, i.e. if the type dec 𝑞 → dec 𝑝 is inhabited, where dec 𝑝 := ∀𝑥, {𝑝 𝑥 } + {¬𝑝 𝑥 }.

In total, our library contains more than 20 different problems and about 70 000 lines of code. In this abstract, we give an overview of the problems in the library, the reductions between the problems, and sum up possible future work.

Problems in the Library

The problems in our library can mostly be categorized into seed problems, advanced problems, and target problems.

As they are simple to state, seeds make for good starting points leading to smooth reductions to other problems.

Advanced problems do not work well as seeds, but they highlight the potential of our library as a framework for mechanically checking pen&paper proofs of potentially hard undecidability results.

Target problems are very expressive and thus work well as targets for reduction, with the aim of closing loops in the reduction graph (Figure 1) to establish the inter-reducibility of problems.

CoqPL '20, January 25, 2020, New Orleans, LA., USA 2020.

Seeds

• The Post correspondence problem (PCP), which is a matching problems on strings, mechanised in [START_REF] Forster | Verification of PCP-related computational reductions in Coq[END_REF]. PCP works well as seed for target problems that can express string concatenation and simple inductive predicates. In particular, PCP on Boolean strings (BPCP) is simpler than most halting problems, and thus is oftentimes used as the starting point of reductions. • Halting problems for (𝑛 or just two) registers machines (MM, MM 0 and MM2), also known as Minsky machines, mechanised in [START_REF] Forster | Certified undecidability of intuitionistic linear logic via binary stack machines and Minsky machines[END_REF]. These machines have a (fixed) number of N-valued registers and can increase/decrement registers or perform conditional jumps. The machines work well as seed for target problems based on simple arithmetic operations e.g. +1 or -1. • The halting problem for the FRACTRAN language, which is a very simple language where states are natural numbers and programs are lists of fractions, mechanised in [START_REF] Larchey | Hilbert's Tenth Problem in Coq[END_REF]. FRACTRAN works well as seed for target problems which can simulate more involved arithmetic, in this case multiplication. • Satisfiability of Diophantine equations (H10) or elementary Diophantine constraints (H10 c), which are equivalent formulations of Hilbert's tenth problem, mechanised in [START_REF] Larchey | Hilbert's Tenth Problem in Coq[END_REF].

Advanced Problems

• The halting problems for single-tape (TM 𝑠) and multi-tape Turing machines (TM 𝑚), mechanised in [START_REF] Forster | Verified Programming of Turing Machines in Coq[END_REF]. Turing machines are the standard model of computation, but their formal definition is quite involved compared to e.g. PCP. 3• The halting problem for binary stack machines (BSM), which are simple machines working with stacks of Booleans, mechanised in [START_REF] Forster | Certified undecidability of intuitionistic linear logic via binary stack machines and Minsky machines[END_REF]. They can push and pop Booleans, and conditionally jump. • Standard first-order string rewriting (SR), mechanised in [START_REF] Forster | Verification of PCP-related computational reductions in Coq[END_REF].

• Entailment in (elementary and standard) intuitionistic linear logic (EILL and ILL), mechanised in [START_REF] Forster | Certified undecidability of intuitionistic linear logic via binary stack machines and Minsky machines[END_REF]. • Provability and satisfiability for intuitionistic and classical firstorder logic (FOL), mechanised in [START_REF] Forster | On synthetic undecidability in Coq, with an application to the Entscheidungsproblem[END_REF]. • Type inhabitation for System F (Γ ⊢ F ? : 𝐴), described in [START_REF] Dudenhefner | A Simpler Undecidability Proof for System F Inhabitation[END_REF].

• Finite satisfiability in (classical) first-order logic, known as Trakhtenbrot's theorem (Trakht.) • The termination problem for 𝜇-recursive algorithms (𝜇-rec), a standard class of formal algorithms, mechanised in [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF].

• The intersection problem (CFI) and palindrome problem (CFP)

for context-free grammars, mechanised in [START_REF] Forster | Verification of PCP-related computational reductions in Coq[END_REF]. • 2 nd -order (2oUnif), 3 rd -order (3oUnif) and thus higher-order unification in the simply-typed 𝜆-calculus, mechanised in [START_REF] Spies | Undecidability of Higher-Order Unification Formalised in Coq[END_REF].

Target Problems

• The halting problem for the weak call-by-value 𝜆-calculus L (wCBV), mechanised in [START_REF] Forster | Weak call-by-value lambda calculus as a model of computation in Coq[END_REF]. In order to reduce a problem 𝑝 to L-halting, one first shows that the problem is enumerable in Coq, i.e. that there is a term 𝑓 : N → list 𝑋 s.t. ∀𝑥, 𝑝 𝑥 ↔ ∃𝑛, 𝑥 ∈ 𝑓 𝑛. As a second step, one can use the automatic translation of Coq terms to L from [START_REF] Forster | A Certifying Extraction with Time Bounds from Coq to Call-By-Value Lambda Calculus[END_REF] to immediately obtain a reduction from 𝑝 to L-halting. This technique is used to obtain a compact reduction from provability in first-order logic to L-halting in [START_REF] Forster | Verification of PCP-related computational reductions in Coq[END_REF]. • Provability or satisfiability in first-order logic, mechanised in [START_REF] Forster | On synthetic undecidability in Coq, with an application to the Entscheidungsproblem[END_REF].

If a problem is expressible with a first-order formula, this immediately serves as reduction to provability on first-order logic.

Future Work

First, we would like to strengthen the theoretical basis our work is built on, i.e. the folklore fact that every function of type e.g. N → N definable in (axiom free) Coq can be shown computable in a model of computation. A mechanised proof of this could for instance be carried out based on MetaCoq [START_REF] Sozeau | The MetaCoq Project[END_REF]. We also want to analyse which classical axioms are compatible with this computability assumption. Secondly, we would like to include existing mechanisations of undecidability results in a uniform fashion, for instance [START_REF] Dudenhefner | Rank 3 Inhabitation of Intersection Types Revisited (Extended Version)[END_REF] or [START_REF] Dudenhefner | Lower End of the Linial-Post Spectrum[END_REF].

Thirdly, there are many undecidability proofs we would like to mechanise in the future. Several known undecidability results build on the undecidability of unification problems we already include (2oUnif or 3oUnif), such as typability in the 𝜆Π-calculus [START_REF] Dowek | The undecidability of typability in the lambda-pi-calculus[END_REF] or type inference in Curry-style System F 𝜔 [START_REF] Pawel Urzyczyn | Type Reconstruction in F 𝜔[END_REF]. The intersection problem for two-way-automata [START_REF] Michael | Finite automata and their decision problems[END_REF] is shown undecidable by reduction from PCP. Tiling problems are often used in undecidability proofs for logic and shown undecidable by reduction from TM 𝑠 . Post's tag systems (Tag Sys.) can be shown undecidable by e.g. reduction from PCP [START_REF] Post | Formal reductions of the general combinatorial decision problem[END_REF]. Concerning linear logic, the reduction from MM2 to MELL 3 (with 3 !-modalities) is a priority [START_REF] Chaudhuri | Expressing additives using multiplicatives and subexponentials[END_REF]. Deductive consequence in axiomatic systems such as Peano arithmetic or ZF set theory can be shown undecidable by reduction from e.g. PCP, H10 or H10 c .

Subtyping in F ≤ was shown undecidable in [START_REF] Benjamin | Bounded quantification is undecidable[END_REF], and typability and type checking for System F were shown undecidable in [START_REF] Joe | Typability and type checking in System F are equivalent and undecidable[END_REF]. By including those problems in the library, we might be able to connect the mechanised undecidability of type checking in 𝐷 <: [START_REF] Hu | Undecidability of 𝐷 <: and Its Decidable Fragments[END_REF].

Lastly, the undecidability proof of semi-unification [START_REF] Assaf | The undecidability of the semi-unification problem[END_REF] is by reduction from the mortality problem of Turing machines. It would be a challenge to find a different starting point for this proof to make it suitable for mechanisation in Coq.

CoqPL ' 20 ,Figure 1 .

 201 Figure 1. Graph of reductions contained in the library, dashed lines are future work.

Which can be found at https://github.com/uds-psl/coq-library-undecidability/.

Using dependent types, one can also pack a reduction 𝑝 ⪯ 𝑞 together with its correctness statement in a dependent pair i.e. ∀𝑥 : 𝑋 , {𝑦 : 𝑌 | 𝑝 𝑥 ↔ 𝑞 𝑦 }.

Turing machines are often used as seeds in the literature but we found that using alternative seeds makes for simpler mechanised reductions in many instances.