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1 Introduction

There have been numbers of papers trying to find an optimal solution for the
traffic regulation problem by implementing intelligent behaviours into traffic
lights. The goal is to obtain an intelligent infrastructure which allows the different
flow of cars to pass one or multiple intersections as efficiently as possible in terms
of waiting time, to avoid congestion and annoyance among drivers, which can
lead to road accidents.

Many have tried to develop such a behaviour in the past decades, using
various approaches, but today machine learning is mostly used. We believe that
the resulting behaviours, while having great performances theoretically, are not
applicable in real life as long as humans continue to drive cars themselves, and
that the complexity of this approach is at cause.

In this paper we will show that it is possible to design a descriptive behaviour
with performances similar to what allows machine learning, using a more sober
approach focused on the essential elements ([3], [1]). This behaviour can thus
easily be deployed on any crossroads, and is more maintainable, upgradable and
legally acceptable. This will be illustrated on an area of the city of Nice.

BEEDEnES,

Fig. 1. The area of Nice on which our work is set, on OpenStreetMap (left) and in the
SUMO simulator (right).
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2 Intelligent traffic lights: state of play

Hereafter is a list of the main approaches used by researchers during the past
design traffic light behaviours in order to solve the traffic regulation problem.

Equation-based approaches try to formalize the problem in the form of
equations, usually concerning the flow of vehicle and the different rules of the
infrastructure they travel on. The different equations are then computed in order
to find an optimal solution for the problem. Strong hypothesis are required in
order to create an equation system simple enough to be computable, and he
modeled magnitudes are purely mathematical: there is no notion of individual
vehicle, so it is impossible to obtain results on a scale more precise than global
(like the maximum waiting time of a vehicle at an intersection). [5] is a good
example of this problem.

Multi-agent simulations are capable of providing adequate tools to work
on the traffic regulation problem. They are able to overcome the limitations of
equation-based approaches. Most importantly, multi-agent simulations focus on
the essence of the problem: the behaviours, which can appear on vehicles, vehicle
generators, vehicle wells, and traffic light, and which are descriptive and thus
explainable.

Note that data-based approaches are - most of the time - a particular
case of simulation-based approaches, since they often rely on a simulation to
generate car flows from the data and to provide an accurate reward function to
the machine-learning algorithm. Simulations are also used once the behaviour
has been generated, to test it.

Data-based approaches, like machine-learning, allow to obtain behaviours
capable of following the general evolution of the traffic relatively to various
periods of time: a day (rush hour / night), a week (work days / weekends),
a year (holidays / work period). They use data usually concerning entry and
exit flux of a portion of infrastructure (a crossroads for instance), acquired by
placing sensors on the road that count the vehicles. These behaviours are unable
to follow small punctual perturbations, like road accident, or traffic caused by
exceptional events, because these event are drowned in the mass of "usual” data.
In some way we could say that these behaviours correspond to the average traffic
configurations: as you will see later, our approach try to show that there is no
necessity to use machine learning to obtain such a behaviour.

The behaviours resulting from a machine-learning approach are not explica-
ble and consequently cannot be maintained: if a problem linked to the behaviour
of the traffic light occurs, a vast part of the study has to be redone.

Our approach, in order to have the same features that one obtained via
machine-learning, require the same type of data. As a consequence, our be-
haviour shares some of its flaws that are directly linked to the usage of data ;
but we resolve the problem of the explainability, which is a major brake to the
implementation, mainly because of the jurisdiction linked to road safety.
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3 General notions for our approach '

Among the road traffic simulators in existence, we have chosen to work with
SUMO. Its microscopic approach and its focus on the traffic scale seems to
correspond perfectly to our needs, whereas other simulators like SCANNeR and
VTD, for example, have a nanoscopic approach more centered on a specific car
and the traffic around it.

Fig. 2. Our evaluations are tested on a Manhattan-style grid infrastructure. On the left
you can see three of our nine crossroads regulated by traffic lights with their sensors.
On the right, a zoom on one of the crossroads with some vehicles already engaged.

Within SUMO, our work uses a classical abstract model [2,6] but also GIS
real maps for testing. Our abstract model is parametric and consists of a grid of
n verticals x n horizontal one-way lanes, with a generator at one end (left and
top of the grid), and 1 pit at the other end (bottom and right). This implies 2n
generators and as many wells.

Each intersection is regulated by a traffic light (making n? lights to be man-
aged), knowing that in everything that follows what we call a ”traffic light” is
actually the group of lights of a given intersection, which in our case corresponds
to two real life traffic lights: one for each incoming lane. It is necessary, in our
opinion, to connect multiple traffic light in order to verify that their interactions
are not destructive, hence our n x n grid. Each traffic light has two sensors,
one on each incoming lane, that can detect the passage of a vehicle and inform
the light (they are represented in SUMO by yellow rectangles on the lanes: see
Fig.2).

The generators send their vehicles at one of the 2n pits randomly. We created
2 kinds of generators: one with a high-frequency spawn rate, and the other a low-
frequency one. Each vehicle generated also has one chance out of two to have
the ability to drive over the speed limit of the lane (and it appears red in the
simulation instead of yellow): this is useful for some behaviours we have tested,
as you will see.

We run the simulation for every possible generator combination, which allows
2(27) configuration, constituting an exhaustive set. With n = 3 this leads to 6

Hllustrated in the video on the Youtube SMAC Channel
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generators, 9 lights and 64 possible configurations, which allows us to compare
objectively.

This approach can easily be used on real maps (Fig.3), to test a behaviour
on a grid that fits more accurately the reality. But it is our opinion that this
should only serve as demonstration or validation, and not to design behaviours,
since it is impossible to obtain exact real life traffic conditions, and even if it was
the designed behaviour would only fit these particular conditions and its overall
performances would remain uncertain.

Fig. 3. On the left a simulation of an area of the city of Nice. On the right a zoom on
crowded intersections. You can see the different vehicles blocked at the traffic lights.

We have tested five traffic light behaviours named timer, timer phased,
count, punish and reward on our grid. It is important to note that for a given
traffic light, the lights on each incoming lane are linked: when one is green, the
other is red, and vice-versa. When a traffic light changes its state, it passes
briefly by a state where the previously green light turn to amber, to indicate to
the incoming cars that they need to brake, before turning to red. The behaviours
are described below:

— Timer is the current behaviour of most of the traffic lights around the world.
All the traffic lights are synchronized and change their state once a certain
time has passed.

— Timer phased is the same as timer, but one out of two traffic lights are
phased: when one is letting the horizontal lane pass, its neighbors are letting
the vertical lane pass and vice-versa.

— Count is an adaptive behaviour. It counts the number of vehicle on both
incoming lanes every given period and turns green for the lane where they
are the most. If there is the same number of vehicles on both lanes, it does
not change its state.

— Timer% is a mix of timer and count: it has the same period of operation
than timer but the portion of time it is green for a certain lane is propor-
tional to the number of cars on it. In other words, it has a finite period of
operations with green phase’s duration calculated according to the density
of vehicles on each lane.
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— Punish uses the sensors that we have put on the incoming lanes: if a vehicle
driving over the speed limit is detected, the light turns red for its lane.

— Reward is similar to punish: it turns green for the lane where vehicles
driving below the speed limit are detected.

Punish and Reward are two intelligent behaviours that are currently tested
by various towns across the world. They are not relevant for our problematic
since they do not aim at reducing traffic jams or waiting time but speeding, but
are to be mentioned.

Fig. 4. State diagrams of the different traffic light behaviours

Some natural constraints on traffic light behaviours are stated below and
need to be taken in account in order to obtain a realistically implementable
behaviour:

— A red light does not only stop vehicles, it also let pedestrians cross the road.
It is not possible, in a general case, to use behaviours that can stay in a
given state for a very long time, even more so according to the position the
traffic light (crowded town centers for example)

— Moreover, for this reason and because of the drivers reaction time, the light
must stay in a given state for a minimum time.

Consequently, a traffic light necessarily has its state bounded between a max-
imum and a minimum value.

4 Traffic configurations

In order to find a behaviour that can work with any situation, we have to test
our behaviours in different traffic configurations. It is possible to discretize the
different traffic configurations by separating them in tree distinct categories:
fluid balanced traffic, dense balanced traffic, and unbalanced traffic.

We have tested our behaviours on these different traffic configurations, to be
able to tell which one has the best results for every given situation. In order to
evaluate their performances as precisely as possible, we have used some of the
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metrics introduced in [4] and have added some of our own thanks to the data
provided by SUMO and which could be relevant for city planners, like carbon
emissions and fuel consumption.

4.1 Fluid balanced traffic

The traffic is light and similar for every incoming lane: there is no waiting queue
and few cars. Hereafter are the results for an exhaustive set of traffic configura-
tions where the traffic stays light (low frequency generators spawn a car every
20 ticks, and high-frequency ones one every 10 ticks):

Behaviour Timer|Timer phased|Count|Timer% PunishReward
Co2 emissions (g) 232.82 282.44 214.12| 261.71 | 291.09 | 298.67
Fuel consumption (ml)|100.08 121.41 92.04 | 112.50 | 125.13 | 128.39
Waiting time (s) 27.91 45.01 14.47 | 36.29 | 47.57 | 52.07
Speeding time (s) 3.88 2.83 3.12 3.34 3.30 3.37
Speeding time (%) 7.28 4.08 5.69 5.70 4.25 4.75

Table 1. Results for light traffic: 103,680 cars simulated through the exhaustive sets
for each behaviour

The count behaviour has the best overall wait time, and the lowest fuel
consumption and CO2 emissions. Even if waiting times are low in all cases (little
traffic), count surpasses all the other behaviours by far. This result is only
logical: count will always be best in light traffic situations because its ability to
adapt to the vehicles that are coming: it can let the pass as it sees them coming
without making them wait most of the time.

4.2 Dense balanced traffic

The traffic is dense and similar for every incoming lane: a lot of car are waiting
in queues on every lane. To represent this we have set our simulation as follows:
low frequency generators spawn a car every 6 ticks, and high-frequency ones one
every 3 ticks. The results are the following:

The timer behaviour has the best overall wait time, the lowest fuel con-
sumption and CO2 emissions. The reason why count is inefficient here is that
the portion of the lanes where it counts vehicles are always full: it end up switch-
ing its state repetitively as soon as a few vehicles have crossed and its measuring
period has passed (which is far shorter than the period of timer for obvious
reasons). We fall on the natural conclusion that in dense traffic conditions, the
timer behaviour is to be privileged, because there is no real decisions to make
when a crossroad is uniformly jammed.
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4.3 unbalanced traffic

These cases are the most tricky and correspond to most of the situations en-
countered in real life. They regroup all the traffic configurations where one or
more lanes are flooded by cars (dense) while at least one other isn’t (fluid). To
represent this we have set our simulation as follows: low frequency generators
spawn a car every 20 ticks, and high-frequency ones one every 5 ticks. The results
are the following;:

The timerY, behaviour has the best overall wait time, the lowest fuel con-
sumption and CO2 emissions. This is an intuitive result: the traffic configuration
is a mix of dense and fluid traffic, and consequently the most adequate behaviour
is a mix of time and count.

5 Our proposition: slot-based meta behaviour

By synthesizing the optimal behaviours we got for every type of traffic configura-
tion we are able to approach the type of performances that a behaviour obtained
using a machine-learning algorithm would give, as described in part 2.3, using
the same type of data in a simpler manner. We use the following method for the
crossroads where the intelligent traffic light is to be implemented:

— Using the flow data for each incoming lane, we calculate the average density
of vehicles for each given time slot (15min for example). The smaller the
time slot the smaller the granularity of the behaviour will be: it will react to
changes in traffic density more quickly, but will be more prompt to untimely
changes of state.

— We form the different periods of operation of the traffic light by regrouping
the average densities of every lane for each time slot and determining to
which traffic configuration it corresponds: fluid, unbalanced or dense.

— We attribute every period of operation its optimal behaviour according to
its traffic configuration(see 10.1).

We obtain a meta behaviour that is able to switch between optimal be-
haviours according to the traffic configuration every time slot: we call this be-
haviour slot-based meta behaviour.

Note that the slot-based meta behaviour can, in very much the same way
as a reinforcement-learning algorithm would, use sensors to continue to acquire
data and thus improving its capacity to follow the changes in the traffic. However
we also find the same liability in its incapacity to take in account punctual
variations in the traffic, like accidents or exceptional events.

We have tested our slot-based meta behaviour on a crossroads of the city
of Nice and have calibrated the flow of vehicles using data from the TomTom
map API (Fig.5). We obtain a flow of vehicles with a density that follows to real-
life variations: between 8pm-7am there are practically no cars in circulation, and
between 7Tam-9am and 5pm-8pm there are rushes on work days. We have chosen
to work on a Monday to limit the simulation time.
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Fig. 5. The crossroads where the implementation of an intelligent traffic light will be
tested in SUMO (left) and the data from the TomTom API we used to calibrate the
vehicle flows trough Nice (right).

The test we have conducted is simple: first, we have tested the timer be-
haviour on our crossroads, with the traffic configuration described above. Addi-
tionally to the gathering of the results of the timer behaviour, we have measured
the density of vehicles for each entry lane of the crossroads. We have then used
this measured density to determinate the time slots and the periods of operations
for our slot-based meta behaviour. We have found that the traffic becomes
unbalanced for the two daily rushes (approximately 7am-9am and 5pm-8pm)
and is fluid the rest of the time. Finally, we have tested our slot-based meta
behaviour, with these periods of operations, and with the same traffic configu-
ration. The results are shown in Fig.6.

Traffic density for each lane (Monday)

Waiting Time for each lane
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Fig. 6. Some results from our experiment on a crossroads of the city of Nice: the
density of vehicles for each lane (left) and their average waiting time for the classic
timer behaviour and our slot-based meta behaviour (right).
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We see that our slot-based meta behaviour has divided the waiting time
of lanes 3 and 2 by half compared to the timer behaviour. For the lanes 1 and
4 the time saving is less pronounced, because it is already low, making it more
difficult to reduce.

6 Conclusion

We believe that the question of the explainability is a major brake to the imple-
mentation of intelligent traffic lights, whatever the performances, the same way
it currently is a major brake for the deployment of autonomous vehicles. For
this reason, among others, until this day only a few intelligent traffic lights exist
on the field: we can cite punish and reward behaviours, which aim at reducing
speeding and are currently being tested near critical areas like schools. Their
success is simple to explain: they have a simple, local objective, do not need
any massive change in the infrastructure to function and their behaviour is fully
explainable.

In these few pages we have shown that by aggregating the optimal simple
behaviours obtained for every traffic configuration we are able to design a be-
haviour capable of following the variations in the traffic from the data, like an
behaviour obtained via machine-learning would, but that is fully explainable,
and so easier to implement, maintain and upgrade. We hope that our work has
convinced you that there is not so much the need of great complexity to work
on traffic regulation problems on the scale of one or multiple successive cross-
roads, if you want to obtain a behaviour that is realistically implementable, and
that more sober approaches, that focus on the essential elements of the problem
should be privileged accordingly to the KISS/Occam’s razor principle ([1], [3]).
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