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Abstract. Pairings are a powerful tool to build advanced cryptographic
schemes. The most efficient way to instantiate a pairing scheme is through
Pairing-Friendly Elliptic Curves.
Because a randomly picked elliptic curve will not support an efficient
pairing (the embedding degree will usually be too large to make any
computation practical), a pairing-friendly curve has to be carefully con-
structed. This has led to famous curves, e.g. Barreto-Naehrig curves.
However, the computation of the Discrete Logarithm Problem on the
finite-field side has received much interest and its complexity has recently
decreased. Hence the need to propose new curves has emerged.
In this work, we give one new curve that is specifically tailored to be fast
over the first pairing-group, which is well suited for several cryptographic
schemes, such as group signatures, and their variants, or accumulators.

1 Introduction

Pairings and cryptography have a long common history. Initially used as
a way to shift the discrete logarithm problem from elliptic curves to finite
fields [33], it has first been used for constructive purpose by Joux [28] in
2000. Following this seminal result, pairings have been massively used in
cryptography. This is due in large part to the nice features of this math-
ematical tool but also to its apparent simplicity. Indeed, the features of
pairings can easily be abstracted so as to be used even by non-specialists.
Actually, almost all pairing-based cryptographic papers (e.g. [8,35,5]) con-
sider so-called “bilinear groups” as some kind of black box given by a set
of three groups G1, G2 and GT (usually of prime order `) along with an
efficiently-computable non-degenerate bilinear map between them

e : G1 ×G2 −→ GT .

This way, cryptographers can design their protocols without being
bothered by the technicalities of the concrete implementations of pairings.
The only subtlety considered in cryptographic papers is the existence of



efficiently computable morphisms between G1 and G2, which has led to
so called type-i pairings, for i ∈ {1, 2, 3}, according to the classification
by Galbraith et al. [21]. However, type-3 pairings are now preponderant
in cryptography because they are the most efficient ones [21] and because
they are compatible with cryptographic assumptions, such as Decisional
Diffie-Hellman in both G1 and G2, that do not hold with the other types.
Actually, some recent results [14,1] cast some doubts on the real interest
of type-1 and type-2 pairings for cryptography. For all these reasons, we
only consider type-3 pairings in this paper.

In all cases, at some point, it becomes necessary to instantiate these
bilinear groups. To date, the only secure instantiations are (to our knowl-
edge) based on elliptic curves as the constructions based on lattices [23,17]
have been proved insecure [16,15]. More specifically, on one hand, G1 and
G2 are usually defined as cyclic groups of prime order ` of some elliptic
curve E over a finite field Fq. On the other hand, GT is the group of
`-th roots of unity in Fqk , where k is the order of q in Z/`Z, called the
embedding degree of q.

It is thus important to understand that, despite being considered as
similar objects by the cryptographic abstraction of bilinear groups, the
groups G1, G2 and GT are extremely different in practice. The main
difficulty when it comes to instantiate these groups is to carefully select
the different parameters (essentially `, q and k) in order to ensure that
security holds in each group while retaining the best efficiency. Here,
by “security” we mean the hardness of the Discrete Logarithm Problem
(DLP) although cryptographic schemes usually rely on easier problems.

Actually, for a long time, the problem of selecting these parameters
was thought to be rather easy. It was indeed thought that the hardness
of the DLP problem in Fqk only depended on the bitlength of this field
(namely k log2(q)) and not on k and q themselves. Using this assumption,
it was quite simple to derive concrete bounds on `, q and k to achieve
some specific security level λ. For example, in the standard case λ = 128,
a simple look at [39, Table 4.6] reveals that we must have log2(`) > 256
(and so log2(q) > 256 because of the Hasse’s bound) and k log2(q) > 3072.
In this case, parameters q ∼ ` ∼ 2256 and k = 12 are optimal. Moreover
the choice of an even k leads to very efficient implementations of pairings
and of the arithmetic in Fqk . This largely explains the success of the
so-called Barretto-Naehrig curves (BN) [6] (that perfectly match these
parameters) which have become de facto the standard pairing curves in
the literature.
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Unfortunately, two recent papers [30,31] have shown that the assump-
tion regarding Fqk was wrong. We will discuss the details later but intu-
itively these results imply that the bitlength of the elements of Fqk is no
longer the good metric to estimate security in this group as it now depends
on the shape of both integers q and k. We now face a somewhat chaotic
situation where a 3000-bit finite field Fqk may offer the same security level
as a 5000-bit one provided that k and q have some specific properties. And
GT is not the only group concerned by these considerations as the param-
eter q has a direct impact on G1 and G2. Concretely, it is now sometimes
necessary to significantly increase the parameter q (that becomes much
larger than the advised minimal bound 2256) to remain compatible with
some values of k that enables efficient pairing computations. This is illus-
trated by the BLS12 curves promoted by Barbulescu and Duquesne’s [4]
for the standard 128-bits level of security. These curves lead to a 450-bit
prime q, i.e. 75% higher than old BN curves.

These examples are representative of the current strategy to select
pairing parameters [4]. The goal is indeed to find a nice compromise be-
tween the complexity of the different groups/operations. More specifically,
it aims at providing parameters that would not significantly penalize one
particular operation. This strategy thus makes the implicit assumption
that cryptographic protocols present some kind of symmetry, between the
groups G1, G2 and GT , but also between the entities that will perform the
operations in these groups. This may be true in some specific scenarios
but there are many others were this assumption is false.

As an example, let us consider the case of Enhanced Privacy ID
(EPID) scheme introduced by Brickell and Li [12] and now massively used
to secure Intel SGX enclave [2]. EPID is a variant of Direct Anonymous
Attestation (DAA) [10] with enhanced revocation capabilities, meaning
that it is possible to revoke a secret key sk by simply adding a signa-
ture generated using sk to a revocation list. The next signatures will then
have to contain a proof that they were issued using a different secret key.
This is a nice feature but it implies to perform a high number of expo-
nentiations in G1 [11], linear in the number n of revoked signatures, as
illustrated in Table 1. Actually, this table shows a clear imbalance be-
tween the different groups as soon as the revocation list contains dozens
of elements, a threshold that should be quickly reached in most scenarios.
In those cases, we note that trying to stick to the minimal bound for q
(thus decreasing the complexity of operations in G1), even if it signifi-
cantly deteriorates the computational cost of a pairing, is a worthwhile
goal as there is only one pairing to compute against roughly 6n expo-
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nentiations to generate or to verify the signature. This is all the more
true since this pairing is only computed by the verifier, an entity that
is assumed, in the context of DAA, to be much more powerful than the
signer (usually a constrained device). To put it differently, we here need
a curve that will optimize operations in G1 even if it is at the cost of a
much more expensive pairing.

This scenario illustrates the limits of the global strategy for selecting
parameters. The mainstream curves do not seem suitable here and we can
hope for dramatic performance improvements by using a tailored curve.
And this is not an isolated case as we explain in section 3.

Our contribution. The contribution of our paper is twofold. First, we
investigate a different approach for selecting curve parameters. We in-
deed believe that standard families of curves, like BLS12, do not fit all
cryptographic protocols and in particular impose a tradeoff (between the
complexities of the different groups and operations) that is irrelevant in
many contexts. Realizing that the era of optimality using Barreto-Naehrig
curves is over, we choose to focus on the family of cryptographic protocols
whose practicality depends on the implementation of the group G1. This
family is quite large because cryptographers usually try to avoid as much
as possible the other groups (G2 and GT ) as the latter are much less effi-
cient and even incompatible with some constrained devices (see e.g. [5]).
We then look for curves with minimal G1 scalar multiplication complex-
ity, which leads us to the case of prime embedding degree k, a setting
that has been overlooked for a long time despite being immune to Kim’s
and Barbulescu’s attacks [30,31] mentioned above. We provide a security
assessment, some benchmarks and a complexity evaluation of some curves
from this setting that we compare to the most known alternatives. Our
results show that the computational complexity of the operations on the
first pairing group is 65% higher for the standard curves (with composite
embedding degrees) comparing to our proposal (with prime embedding
degrees), while yielding elements in G1 that are 20% larger. Of course,
those composite-embedding-degree curves come at the cost of a less ex-
pensive pairing but our analysis shows that this overhead is acceptable
in the context we consider.

Based on these results we investigate new curves that would match
our need. We find a new one that goes one step further in the quest
for optimizing the performance of G1. We call this new curve, which
constitutes our second contribution, BW19-P286 as it was generated using
the Brezing-Weng strategy [9], has embedding degree 19 and is defined
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over a 286-bit field Fq. The use of such a small q, which is close to the
optimal bound 2256, is particularly interesting for constrained devices
(more specifically those with 32 -or less- bits of architecture) as it reduces
the number of machine-words compared to the state-of-the-art.

In the end, our results show that Kim’s and Barbulescu’s attacks do
not necessarily imply a large increase of the complexity of pairing-based
protocols that would in particular rule out the latter for constrained de-
vices. On the contrary, we prove that we can retain the original efficiency
for some parties. Of course, this is done to the detriment of the other
parties but we argue that there are few use-cases where all entities are
equally powerful. We nevertheless do not claim that our curves fit all
contexts and in particular we do believe that standard curves still remain
relevant, in particular when a large number of pairings is to be computed.

Roadmap. In section 3 we describe some examples that justify our strat-
egy for selecting curves. In section 4 we outline the strategy to assess the
cost of the Discrete Logarithm Problem and the security of our curves
and provide two tailored curves in section 5. Finally, we compared an
implementation of the proposed curves with other curves in section 6.

2 Preliminaries

Let q > 3 be a prime number. The field having q elements is noted Fq
and, for n > 1, the extension field having qn elements is noted Fqn . When
we compute discrete logarithms in Fqn , we mean solving the Discrete
Logarithm Problem in the group (Fqn\{0},×).

2.1 Elliptic Curves

An elliptic curve E is the set of points (x, y) satisfying y2 = x3 + ax+ b,
where a, b ∈ Fq and 4a3 +27b2 6= 0, enlarged with another point∞, called
point at infinity. This equation is called the Short Weierstrass Model of
the curve. For n > 1, the set of point (x, y) ∈ (Fqn)2 on E is noted E(Fqn).
The set E(Fqn) can be equipped with a commutative internal law, with∞
as identity element. We follow the convention of cryptographic literature
and denote this group multiplicatively. For an integer ` coprime to q, we
note E(Fqn)[`] the subgroup of E(Fqn) formed by points of order dividing
`, i.e. all points g such that g` = ∞. The group E(Fqn)[`] is called the
`-torsion over Fqn . When we compute discrete logarithms in E(Fqn)[`], we
mean solving the Discrete Logarithm Problem in the group (E(Fqn)[`], ·),
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i.e. if h is a power of g, find x such that h = gx. There is a minimal k > 1
such that E(Fqk)[`] is isomorphic to (Z/`Z)2, this integer is called the
embedding degree of q (with respect to `), it is the order of q (mod `).

The Frobenius endomorphism is defined as (x, y) 7→ (xq, yq) ∈ End(E).
Its minimal polynomial is X2 − tX + q, where t is aptly called the trace
of the Frobenius, and the number of Fq rational points is q − t + 1. The
discriminant ∆ of that polynomial is ∆ = t2 − 4q. We can always write
∆ = Df2, where D < 0 is square-free. D is called the Complex Multipli-
cation discriminant.

When the CM discriminant is small enough, there exists an endomor-
phism φ easily computable and an integer λ > 0 such that φ(g) = gλ for
all g ∈ E(Fq)[`]. The main advantage of using the endomorphism φ is to
roughly halve the computational cost of an exponentiation in E(Fq)[`] as
evaluating φ is much more efficient than directly raising to the power λ.
This is called the GLV method [22]. Suppose we want to compute ga for a
point g ∈ E(Fq)[`] and a random scalar a (mod `). We proceed as follow:
compute a0 and a1 such that a = a0 + a1λ (e.g. the Euclidean division of
a by λ) and compute ga0 · φ(g)a1 . The result is ga:

ga0 · φ(g)a1 = ga0 · ga1λ = ga0+a1λ = ga.

The size of a0 and a1 is expected to be half the size of ` as λ is a root of a
degree 2 polynomial. The point φ(P ) can be precomputed (if needed) and
ga0 · φ(g)a1 can be computed with any multi-exponentiation algorithm.

2.2 Bilinear Groups

Pairing-based cryptographic protocols consider a setting defined by three
cyclic groups, G1, G2, and GT , of prime order ` (with respective identity
element 1G1 , 1G2 and 1GT

), along with a bilinear map e : G1 ×G2 → GT

with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Z/`Z, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT

;
3. the map e is efficiently computable.

As all these groups are of the same prime order, we know that there exist
non-trivial homomorphisms ϕ1 : G1 → G2 and ϕ2 : G2 → G1. However,
the latter may not be efficiently computable, which has a strong impact on
cryptographic protocols and more specifically on the underlying compu-
tational assumptions. Following Galbraith, Paterson and Smart [21], this
has led cryptographers to distinguish types of pairings: type-1, where both
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ϕ1 and ϕ2 are efficiently computable; type-2, where only ϕ2 is efficiently
computable; and type-3, where no efficiently computable homomorphism
exists between G1 and G2, in either direction. All these types can be in-
stantiated with elliptic curves but type-3 pairings are preferred in practice
both for their efficiency and their ability to support some useful crypto-
graphic assumptions, e.g. decisional Diffie-Hellman in groups G1 and G2.

We also note that it is possible to consider bilinear groups of composite
order. However, prime order bilinear groups are much more efficient [24]
and can actually emulate most features of their composite-order counter-
parts [19].

Usually, when bilinear groups are instantiated over an elliptic curve,
q−t+1 is a multiple of ` but not of `2, G1 = E(Fq)[`], G2 ⊂ E(Fqk)[`]\G1
and GT ⊂ Fqk . And that will be our case here.

3 Schemes with numerous computations in G1

Before providing details on the way we select elliptic curve parameters,
we elaborate on the motivation of our work, namely the benefits of se-
lecting such parameters based on the characteristics of the cryptographic
protocols. We are more specifically interested in the family of crypto-
graphic protocols whose complexity essentially depends on the efficiency
of G1. This family may include protocols requiring to perform many expo-
nentiations in G1, as is the case with the EPID scheme we discuss in the
introduction, but also schemes where the most constrained entity only has
to compute operations in G1, as in Direct Anonymous Attestation. These
two primitives are today massively used in industrial products [40,2] and
are thus meaningful examples of this family of cryptographic protocols.
To illustrate that the latter is not restricted to authentication algorithms
we will also consider the case of two cryptographic accumulators that
would benefit from the tailored curves we propose in our paper.

Table 1 highlights the specific need of two anonymous authentication
schemes [5,11] that are, to our knowledge, the most efficient of their kind.
For [11], we use the proof of non-revocation described by the same au-
thors in [12]. We note that most alternatives and variants (e.g. [35] for
group signature) present similar features so our conclusions also apply to
them. Table 1 shows that the size of the signature only depends on the
one of G1 elements (and on `) and that the signer only has to perform
operations in G1. There are few pairings and operations in G2 to com-
pute and only on the verifier side, which is usually considered as more
powerful than the signer in those contexts. Cryptographic protocols with
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such features are thus a good incentive for designing curves with efficient
computations/elements in G1.

Table 1. Complexity of some anonymous authentication schemes. ei refers to an expo-
nentiation in Gi and P to a pairing computation, n is the number of revoked signatures.

Operation Counts
Primitive Ref. Signature elements Sign Verify

DAA [5] 5G1 + 2Z/`Z 6e1 4e1 + 3P

EPID [11] 3G1 + 6Z/`Z
+n(3G1 + Z/`Z)

3e1 + 4eT

+6ne1

4e1 + 2e2 + 4eT

+1P + 6ne1

In Table 2, we consider two pairing-based accumulator schemes [13,20].
We recall that the point of an accumulator system is to project a large
number of elements into a single short value, called the accumulator. Ad-
ditionally, for each of these elements, it is possible to generate a short
evidence, called witness, that the element has indeed been accumulated.
In practice, there are essentially two kinds of entities, the one that needs
to prove that an element has been accumulated (by computing the corre-
sponding witness) and the one that checks this proof. We will then divide
the public parameters of such systems between the ones (pk) necessary
for the proof and the ones (vk) necessary for the verification. Here again,

Table 2. Complexity of some accumulators schemes. The latter are called set com-
mitment schemes in [20]. Here m1 refers to a group operation in G1, n is a bound
on the number of values to be accumulated and j is the number of values currently
accumulated. The other notations are those from the previous table.

Public Parameters Operation Counts
Ref. pk vk Sign Verify

[13] 2nG1 nG2 jm1 2P

[20] nG1 nG2 (j − 1)e1 1e2 + 2P

Table 2 shows a clear asymmetry between the prover and the verifier. The
former is only impacted by the performance of G1 and so would clearly
benefit from a curve tailored to optimize this group. This is all the more
true that in the applications considered in [13] and [20], the prover is
usually a user’s device whereas the verifier is some service provider that
can reasonably be considered as more powerful.

8



4 Attacks solving the DLP

Most cryptographic schemes using bilinear groups rely on problems that
are easier than the Discrete Logarithm Problem (DLP). Unfortunately,
the concrete hardness of these problems is not known so the common
approach to generate bilinear groups is to select parameters that yield
three groups G1, G2 and GT where the DLP is believed to be hard. The
latter problem has indeed been extensively studied over the last 40 years
and several algorithms were proposed to solve it.

The DLP on elliptic curves is called ECDLP (EC stands for Elliptic
Curve) and is considered the hardest discrete logarithm problem to solve
as only generic algorithms [38] are known and used [36,37]. Moreover,
the Pohlig-Hellman method [34] reduces an instance of the DLP in a
cyclic group of composite order n to several easier instances of the DLP
in cyclic groups of order strictly dividing n. Hence, for efficiency and
security reasons, the groups G1 and G2 must be of prime order, i.e. ` is
a prime number. And since the best variant of Pollard-rho [7] compute
a discrete logarithm in at most

√
π`/4 ≈ 0.886

√
` steps, ` of 2λ bits is

enough for a security of λ bits.
A well-known value, called ρ-value, is used to describe the efficiency of

the representation of elements of G1. It is computed as ρ = log(q)/ log(`)
or as ρ = deg(q)/ deg(`) when q and ` are polynomial in Q[X]. When
ρ = 1, the curve is of prime order `, this is the best case for the arithmetic
efficiency on the curve (and so for G1).

While determining the size of G1 and G2 over the elliptic curve is
pretty straightforward, doing the same for GT over the finite field Fqk

is much harder! Indeed, discrete logarithms in Fqk are computed in sub-
exponential time (and sometimes even in quasi-polynomial time) by Num-
ber Field Sieve (NFS) algorithms. In the general case, it is difficult to eval-
uate the complexity of the NFS algorithm, and of its variants (see [27] for
more details). To give an idea of the time-complexity of NFS algorithms,
we need to introduce the L-notation, which is defined by:

Lqk [α, c] = exp
(
(c+ o(1))(ln qk)α(ln ln qk)1−α

)
with α ∈ [0, 1] and c > 0. Intuitively, if α = 1 then Lqk [α, c] is exponential
in log2(qk) whereas it is polynomial in log2(qk) if α = 0. NFS-type algo-
rithms (of our concern) all have time-complexity Lqk [1/3, c] for c ranging
from 3

√
32/9 to 3

√
96/9. The constant c plays an important role in the

concrete (i.e. not asymptotic) world, as between 20 and 30 bits of secu-
rity can be lost for the same size of Fqk depending on the choices of q
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and k [4]. Two criteria determine which NFS-variant to use: whether q is
special, i.e. if q is computed as the image of a polynomial of degree at
least 3, and whether k is composite. Until recently, only curves with spe-
cial q and composite k were consider as they offer the best performance
for pairing computations. Barbulescu and Duquesne updated key size es-
timations in [4]. For a 128-bit security level, they urge to use a finite field
of size at least k log2(q) = 2930 (respectively 3618, 5004) if NFS (respec-
tively exTNFS, SexTNFS) is the best algorithm for computing discrete
logarithms in Fqk (the common practice was k log2(q) = 3072 [39]). To
access curves’ security, we will use the algorithm provided by Guillevic at
https://gitlab.inria.fr/tnfs-alpha/alpha.

The only known methods for constructing curves with ρ close to 1 give
the characteristic of the finite field as a polynomial (thus q is special), like
Brezing-Weng constructions [9]; other general methods having ρ close
to 2, like Cocks-Pinch constructions (see [26]). In this context, we will
consider the recent bounds [3072, 5376] on the finite field size provided
by Guillevic [25] to achieve 128 bits of security.

If we have log2(`) = 256 to satisfy 128 bits of security on the curve
side, we then know that log2(q) = 256ρ and the finite field Fqk has size
256ρk. Guillevic’s bounds then give us:

3072 6 256ρk 6 5376,

which, together with the inequalities 1 6 ρ 6 2, allows us to derive the set
of potential values for k : 6 6 k 6 21. Concretely, this means that there
is no point in considering values k < 6 as they are incompatible with the
targeted 128-bit security level (for the range of ρ-values we consider) and
selecting a value k > 21 would be an overkill.

So far, we have just managed to derive some bounds on the different
parameters of the curves. Unfortunately, as we explain above, there is no
simple choice within these bounds as security and efficiency of the result-
ing bilinear groups may significantly differ from one set of parameters
to another. In particular, there is no linearity in the security evaluation
as, for instance, the security of Fqk is significantly higher in the “prime”
cases k ∈ {11, 13} than in the case k = 12. This means that we can se-
lect smaller q values (which improves performance of G1) in the former
case. Unfortunately, a similar issue arises regarding efficiency of Fqk , but
with opposite conclusions, as non-prime k (especially even ones) yield
more efficient pairings and group operations. It is thus necessary to make
a choice between these different parameters, in particular in the case of
cryptographic protocols with unbalanced complexities, such as the ones
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we consider in section 3. As the latter would benefit of fast G1 compu-
tations and short representations of its elements, we dedicate the next
section to the selection of parameters that will optimize the performance
of this group.

5 Curves optimizing operation in G1

The first group of the pairing G1 is defined as E(Fq)[`]. We have an
incentive to reduce the size of q as computations in G1 would be faster.
To ensure security on the elliptic curve, we need log2(q) > log2(`) > 256.
Thus q is at least a 5-machine-word on a 64-bit computer. Indeed, q has
more than 257 bits, because a 256-bit field would imply ρ = 1 and, the
biggest known k ∈ [6, 21] for that ρ-value is 12, which does not ensure a
128-bit security in GT [4].

We would like to be able to use the GLV method [22], that is, our
curves should have a small Complex Multiplication discriminant. When
curves are chosen either in the form y2 = x3 + ax with a primitive fourth
root of unity in Fq and CM discriminant−1, or in the form y2 = x3+b with
a primitive third root of unity in Fq and CM discriminant −3, the GLV-
endomorphism is easy to write down and relatively cheap to compute.

As explained above, we cannot hope for better than 5 machine-words
for q on 64-bit architecture. A 5-machine-word q means that 1 < ρ 6 1.25.
Searching in the Taxonomy by Freeman, Scott and Teske [18], the curve
we are looking for has embedding degree k ∈ {8, 11, 13, 16, 17, 19}.

The embedding degree 8 does not provide a secure finite field Fqk , as it
is of at most 8×1.25×256 = 2560 bits, and so is discarded. The embedding
degree 16 corresponds to the well-known KSS family of pairing-friendly
curves [29]. Barbulescu and Duquesne [4] state that q must be at least a
330-bit prime, i.e. a 6-machine-word prime, and they give such primes.

Thus we focus our search for curves from [18] having embedding degree
k ∈ {11, 13, 17, 19}. All those curves correspond to Freeman, Scott and
Teske Construction 6.6, which is a generalization of the Brezing and Weng
construction [9]. It defines the prime q, the Frobenius trace t and the order
` as polynomials in Q[X], where `(X) is a cyclotomic polynomial dividing
both q(X)− t(X) + 1 and q(X)k − 1.

5.1 Curves over a five-64-bit-machine-word prime field

Construction 6.6 from [18] is different given the residue k (mod 6). Since
we have 13 ≡ 19 ≡ 1 (mod 6) and 11 ≡ 17 ≡ 5 (mod 6), we only give the
relevant cases of Construction 6.6.
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In the case k ≡ 1 (mod 6), the prime q(X), the Frobenius trace t(X)
and the order `(X) are given as:

q(X) = 1
3(X + 1)2(X2k −Xk + 1)−X2k+1,

t(X) = −Xk+1 +X + 1 and `(X) = Φ6k(X),

and in the case k ≡ 5 (mod 6), they are given as:

q(X) = 1
3(X2 −X + 1)(X2k −Xk + 1) +Xk+1,

t(X) = Xk+1 + 1 and `(X) = Φ6k(X),

Plugging in the different values of k gives Table 3. Note that to find a
curve, we need to find a x0 ∈ Z such that `(x0) and q(x0) are prime
integers. We choose x0 satisfying x0 ≡ 2 (mod 3) so q(x0) is an in-
teger. The last column of Table 3 is the search range of log2(|x0|) in
[256/ deg(`), 320/ deg(q)[ so that q(x0) is a 5-machine-word integer and
`(x0) is at least a 256-bit integer (for readability, the interval is given with
rounded integer values).

Table 3. Parameters and search range for curves with k ∈ {11, 13, 17, 19}

k deg(q) deg(`) ρ log2(|x0|)

11 24 20 1.20 [12, 14[

13 28 24 1.167 [10, 12[

17 36 32 1.125 [8, 9[

19 40 36 1.111 [7, 8[

After a computer search, we have found no solution for k ∈ {11, 17}.
For k = 13, we found x0 = −2224 and for k = 19, we found x0 = −145.
Inferring the naming convention used in relic-toolkit [3], the first curve is
named BW13-P310 and the second one BW19-P286. As Construction 6.6
curves have CM discriminant −3, both curves are of the form y2 = x3 +b.

Curve BW13-P310 Setting k = 13 into Construction 6.6 [18] gives:

q(X) = 1
3(X + 1)2(X26 −X13 + 1)−X27,

t(X) = −X14 +X + 1 and `(X) = Φ78(X).
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Plugging in x0 = −2224 yields a q(x0) of 310 bits and a `(x0) of 267 bits,
thus ρ = 1.161. The corresponding Fq13 is a 4027-bit finite field.

To look for a b, we increase the value of |b|, check that the number of
points on the curve y2 = x3 + b is equal to q(x0) − t(x0) + 1. We found
b = −17. So we defined the curve BW13-P310 by the equation y2 = x3−17.

We also point out that the exact same curve has been given by Aurore
Guillevic in [25]. She made a thorough security analysis and estimated
that the cost of the DLP in the finite field Fq13 is 140 bits. Hence, the
curve BW13-P310 has a security of at least 128 bits.

Curve BW19-P286 Setting k = 19 into Construction 6.6 [18] gives:

q(X) = 1
3(X + 1)2(X38 −X19 + 1)−X39,

t(X) = −X20 +X + 1 and `(X) = Φ114(X).

Plugging in x0 = −145 yields a q(x0) of 286 bits and a `(x0) of 259 bits,
thus ρ = 1.105. The corresponding Fq19 is a 5427-bit finite field.

To look for a b, we do the same as before. The smallest |b| is b = 31.
So we defined the curve BW19-P286 by the equation y2 = x3 + 31. To our
knowledge, this curve has never been proposed in the literature.

To evaluate the cost of the DLP in Fq19 , we follow the work of Guille-
vic [25], the same she did for the previous curve BW13-P310. To find the
curve BW19-P286 using Guillevic’s Algorithm 3.1 [25], we plugged in the
parameters k = 19, D = 3, e0 = 13 and use the substitution X 7→ −X.

Before running the estimating program on our parameters, we applied
Variant 4 [25] to the polynomial q(−X), yielding a polynomial Q(X) such
that Q(u3) = 3q(−u), for u = −x0 = 145 and

Q(X) = (u+ 1)X13 + u2X12 +X7 + u(1− 2u)X6 + u2 − 2u+ 1.

Then we obtain that the cost of the DLP in Fq19 is 160 bits, thus
providing BW19-P286 with a security of at least 128 bits.

5.2 GLV endomorphism on BW13-P310 and BW19-P286

As stated in the preliminaries, the discriminant of the minimal polynomial
of the Frobenius endomorphism can be written as Df2 = t2 − 4q, where
D < 0 is the CM discriminant and t is the trace of the Frobenius. The
endomorphism φ : (x, y) 7→ (ωx, y), with ω a primitive third root of unity,
corresponds to an exponentiation (ωx, y) = (x, y)λ in G1 = E(Fq)[`] for
q and ` distinct primes.
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For both our curves, the CM discriminant is D = −3, thus we have
4q = t2 + 3f2. Since ω ∈ Fq is a primitive third root of unity, ω satisfies
ω2 + ω + 1. We can take ω = (

√
−3 − 1)/2, where

√
−3 ≡ t/f (mod q).

Thus ω ≡ (t− f)/(2f) (mod q).
Similarly, since φ3 = idE in End(E), we know that λ ∈ Z/`Z satisfies

the equation λ2 +λ+1, i.e. it can also be taken as (
√
−3−1)/2. However,

here,
√
−3 ≡ (t − 2)/f (mod `). Indeed, ` divides the number of points

on the curve, so q ≡ t− 1 (mod `) and 4(t− 1) ≡ t2 + 3f2 (mod `). Thus
λ ≡ (t− f − 2)/(2f) (mod `).

Note that in practice, adjustments may be needed as (ωx, y) = (x, y)±λ

or (ω2x, y) = (x, y)±λ.
In the case of BW13-P310, λ has bit-length 146, whereas it is only 137

in the case of BW19-P286.

Comments on BW13-P310 and BW19-286. We provide in the next sec-
tion several benchmarks to compare our new curve with BW13-P310 but
also with other curves from popular families. However, we can already
note that BW13-P310 and BW19-P286 clearly match our strategy of opti-
mizing the group G1 to the detriment of the other groups. In this respect,
our new curve BW19-P286 goes one step further than BW13-P310 by re-
ducing the size of q by roughly 25 bits. This difference is significantly am-
plified in the context of constrained devices as it results in less machine
words. Indeed, even for 32-bit architecture, BW19-P286 yields a prime q
with one less machine-word than BW13-P310, which clearly impacts per-
formance, as illustrated below.

6 Implementation and comparison

We implemented the G1 arithmetic of both curves using relic-toolkit [3],
and made some comparison with other curves already implemented in
relic-toolkit and aiming the 128-bit security.

The curves selected from the framework are BN-P446, a Barreto-
Naehrig curve [6] over a 446-bit prime field; K16-P339, a Kachisa-Schaefer-
Scott curve of embedding degree 16 over a 339-bit field; B12-P446, a
Barreto-Lynn-Scott curve of embedding degree 12 over a 446-bit field;
and CP8-P544, a Cocks-Pinch curve [26] of embedding degree 8 over a
544 prime field. We chose the last curve as it is coming from recent
works [26,25] that promote them for the 128-bit security level. We in-
cluded a BN, BLS and KSS curves in our table as those families of curves
are well-known and were updated by Barbulescu and Duquesne [4]. Also
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note that, setting aside our curves, only the curve K16-P339 was imple-
mented by us in the framework.

All curves enjoy a speedup using GLV endomorphisms.

6.1 Operation in G1

In Table 4 we compare the cost of one exponentiation in the group G1
by compiling the relic-toolkit either for x64 architecture or for x86 archi-
tecture with a word size of 32 bits. Times are given in microseconds (the
number of iterations was 106) and computations were done on a laptop
equipped with a Intel Core i7-6600u CPU at 2.60 GHz.

Table 4. Benchmark for one exponentiation in G1.

Curve BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

prime q bit size 286 310(+8%) 339(+19%) 446(+56%) 446(+56%) 544(+90%)

64-bit words 5 5 6 7 7 9

time (µs) 293 304(+4%) 482(+65%) 611(+109%) 855(+192%) 1058(+261%)

32-bit words 9 10 11 14 14 17

time (µs) 1010 1220(+21%) 1664(+65%) 2510(+149%) 3600(+256%) 4180(+314%)

This table shows a clear relation, almost quadratic, between complex-
ity and the number of words necessary to represent q. It also highlights the
downside of Barreto-Naehrig curves that generate elliptic curves of prime
order ` ∼ q. Indeed, what was considered as an advantage (prime order
curves make group membership tests trivial) turns out to be a strong lim-
itation as it forces ` to grow unnecessarily. This negatively impacts both
exponentiation (as the exponents are roughly 75% greater than those of
the other curves) and the size of scalars.

In all cases, this table shows that our curve BW19-P286 offers the best
performance for G1, in particular for architecture smaller than 64 bits.
It at least halves the complexity of exponentiations in G1 compared to
mainstream curves such as B12-P446 and also significantly decreases the
size of group elements, which clearly fits the needs of some cryptographic
protocols such as the ones we presented in section 3.

6.2 Operation in G2

The operations in G2 are unfortunately the ones that are the most im-
pacted by our choice of prime embedding degree. Indeed, BW13-P310
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and BW19-P286 have G2 defined over Fq13 and Fq19 respectively, whereas
B12-P446, BN-P446 and CP8-P544 all have G2 defined over Fq2 thanks to
quartic or sextic twists, and K16-P339 has G2 defined over Fq4 thanks to
a quartic twist. As all curves are usually expressed with the same model
using the same system of coordinates, only the cost of the multiplica-
tion in the extension impacts the cost of the operations in G2. Using a
Karatsuba-like implementation, the multiplication in Fqk is roughly klog3 2

times as expensive as the one in Fq.

6.3 Pairing computation

The computation of the pairing is usually split between two parts: the
evaluation of the Miller loop and the final exponentiation. Here we give
computation for a multiple of the Optimal Ate Pairing [41], since we
picked the final exponentiation from Kim, Kim and Cheon [32]. The values
in Table 5 are from [25,26], completed with the ones from below.

Let mk, sk, ik, fk respectively denote a multiplication, a square, an
inversion, a Frobenius map (i.e. the q-th power map) over Fqk . We drop
the index when the operation is over Fq (i.e. m = m1). As k ∈ {13, 19}
is prime, we estimate mk = sk = klog2 3m with a Karatsuba-like imple-
mentation and fk = (k − 1)m as in [26].

Miller loop Using Equation (7) from [25], Guillevic gives a lower bound
on the cost of the Miller loop. For both BW13-P310 and BW19-P286, the
optimal ate Miller loop has length u2 +up+p2, as it is a multiple of ` [41].

For BW13-P310, the length of the Miller loop is u2 + up + p2, where
u = 2224 is a 12-bit integer with Hamming weight 4 and p is a 310-bit
prime. From her Equation (7) [25], Guillevic obtains 949m + 313m13 +
177s13 + 5f13 + 2i13. Substituting m13 = s13 = 59m and f13 = 12m in
that formula yields a lower bound on the cost of the optimal ate Miller
loop, i.e. 29919m + 2i13.

For BW19-P286, the length of the Miller loop is u2 + up + p2, where
u = 145 is a 8-bit integer with Hamming weight 3 and p is a 286-bit prime.
From the same equation as Guillevic [25], we obtain 912m + 212m19 +
115s19 + 5f19 + 2i19. Substituting m19 = s19 = 107m and f19 = 18m in
that formula yields a lower bound on the cost of the optimal ate Miller
loop, i.e. 35991m + 2i19.

Final exponentiation As usual, the final exponentiation (qk − 1)/` of
the Optimal Ate Pairing is split between an easy part (qk − 1)/Φk(q)
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and a hard part Φk(q)/`. Since k ∈ {13, 19} is prime, the easy part is
simply q−1, costing fk + ik. For the hard part, Kim, Kim and Cheon [32]
noticed that Φk(q)/` can be decompose in base q to make use of the
Frobenius and the coefficients can be reduced by looking for a short vector
in a specifically designed lattice. However, instead of raising to the power
Φk(q)/`, this method [32] raises to a multiple power mΦk(q)/`.

More precisely, they write

m
Φk(q)
`

=
k−2∑
i=0

aiq
i

and find the k − 1 coefficients (ai)06i6k−2 as the shortest vector in the
dim-(k − 1) lattice spanned by the lines of the following matrix:

Φk(q)
` 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0
...

...
−qk−2 0 · · · 0 1

 .

Then, they compute the Frobenius of the element they want to exponent,
up to the (k − 1)-th q-power, costing (k − 2)fk.

If the exponents ai’s were longer, we would have needed (2k−1−k)mk

to compute all combinations of (k − 1) Frobenius powers. However, we
do not use all of these combinations, only roughly O(log2 q) of them.
Finally the length of the multi-exponent is maxi{blog2 aic}, resulting in
an average final exponentiation costing

(k − 1)fk + (O(log2 q) + max
i
{blog2 aic})mk + max

i
{blog2 aic}sk + ik,

omitting some inversion due to the sign of some ai’s.
For BW13-P310, the value of maxi{blog2 aic} is 287 and 8 of the 12

ai’s are negative. Only 191 different combinations of Frobenius powers are
used and it costs 341m13 to compute them. Also, there are 5 positions
(in the binary expansion) where all the ai’s have their bit set to 0, result-
ing in no multiplication at those positions for the multi-exponentiation,
that thus requires 282m13 + 287s13. Combining everything yields an final
exponentiation cost of 12f13 +623m13 +287s13 +9i13, i.e. 53 834m+9i13.

For BW19-P286, the value of maxi{blog2 aic} is 271 and 12 of the 18
ai’s are negative. Only 222 different combinations of Frobenius powers are
used and it costs 1028m19 to compute them. The multi-exponentiation
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Table 5. Operation count for Miller loop, final Exponentiation and Total pairing

BW19-P286 BW13-P310 K16-P339 B12-P446 BN-P446 CP8-P544

M. 35991m + 2i19 29919m + 2i13 7691m 7805m 11620m 4502m

E. 160824m + 13i19 53834m + 9i13 18235m 7723m 5349m 7056m

T. 196815m + 15i19 83753m + 11i13 25926m 15528m 16969m 11558m

requires 271(m19 + s19). Combining everything yields an final exponenti-
ation cost of 18f19 + 1299m19 + 271s19 + 13i19, i.e. 160 824m + 13i19.

From Table 5, the cost of the pairing for BW19-P286 is roughly 12
times higher than the one for B12-P446. However, doing the benchmark
on both finite field gives a multiplication twice faster on the 286-bit finite
field (90 ns) than the 446-bit one (190 ns). Hence, we estimate that the
pairing over BW19-P286 is 6 times slower than the pairing over B12-P446.

Conclusion

In this paper, we have given an incentive to change the way pairing-
friendly elliptic curve are constructed by shifting the optimization away
from the balance between all operations (group exponentiation and pair-
ing) towards only some operations (that might be used by constrained
entities involved in cryptographic protocols).

Thus, we focused on elliptic curves with a fast exponentiation in the
first pairing group upon noticing that the instantiation of some crypto-
graphic protocols, e.g. Group Signature-like schemes, would benefit from
such curves.

Along the way, we have described a new curve that is particularly
relevant for cryptographic protocols extensively using exponentiation in
the first pairing group. That curve is twice faster in that group and its
pairing computation is reasonably six times slower compared to a BLS
curve over a 446-bit field.

We leave to future work the investigation of other protocol-curve de-
pendencies.
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