
HAL Id: hal-02944136
https://hal.science/hal-02944136

Submitted on 21 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Group Signature without Random Oracles from
Randomizable Signatures

Rémi Clarisse, Olivier Sanders

To cite this version:
Rémi Clarisse, Olivier Sanders. Group Signature without Random Oracles from Randomizable Sig-
natures. 14th International Conference, ProvSec 2020, Singapore, November 29 – December 1, 2020,
Proceedings, Nov 2020, Singapore, Singapore. �hal-02944136�

https://hal.science/hal-02944136
https://hal.archives-ouvertes.fr

Group Signature without Random Oracles
from Randomizable Signatures

Rémi Clarisse1,2 and Olivier Sanders1

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Abstract. Group signature is a central tool for privacy-preserving pro-
tocols, ensuring authentication, anonymity and accountability. It has
been massively used in cryptography, either directly or through variants
such as direct anonymous attestations. However, it remains a complex
tool, especially if one wants to avoid proving security in the random
oracle model.
In this work, we propose a new group signature scheme proven secure
without random oracles which significantly decreases the complexity in
comparison with the state-of-the-art. More specifically, we halve both
the size and the computational cost compared to the most efficient alter-
native in the same model. Moreover, our construction is also competitive
against the most efficient ones in the random oracle model.
Our construction is based on a tailored combination of two popular sig-
natures, which avoids the explicit use of encryption schemes or zero-
knowledge proofs while signing. It is flexible enough to achieve security
in different models and is thus suitable for most contexts.

1 Introduction

Group Signature, introduced by Chaum and van Heyst [17], enables members
of a group to sign on behalf of the group. The point is that the signature is
anonymous, i.e. it cannot be traced back to its issuer, except for a specific
entity, the opening authority, which can “open” any valid group signature.

Related Works. Combining seemingly contradictory properties such as au-
thentication and anonymity has proved tricky, the first really practical solution
being provided by Ateniese et al. [2]. Few years later, Bellare, Micciancio and
Warinschi [5] proposed the first security model (BMW model) for static group
signature, which was later extended to the case of dynamic group signature by
Bellare, Shi and Zhang [6] (BSZ model). Besides providing a way to assess ex-
isting schemes, these seminal works have introduced a generic construction that
has become the implicit framework for most of the following group signatures.

Informally, a group member of this generic construction receives from a so-
called group manager a certificate (a digital signature) τ on his public key pk
when he joins the group. To compute a group signature on some message m,

he first generates a digital signature σ on m (using the corresponding signing
key sk) and then encrypts σ and τ . Finally, he provides a non-interactive zero-
knowledge (NIZK) proof that every element is well formed. This three-steps
approach is usually known as Sign-Encrypt-Prove (SEP) in the literature.

The strength of the SEP paradigm is that it is based on standard crypto-
graphic primitives for which many instantiations exist. Unfortunately, it leads
to quite complex constructions because of the security requirements placed on
each building block, but primarily because of the complexity of the resulting
NIZK proof. Indeed, the signer must prove, without revealing σ and τ , that the
group signature is a valid encryption of the signature σ that has been gener-
ated using keys certified by the group manager. Such a statement is difficult to
prove and this becomes worse if one wants to achieve security without relying on
the random oracle model (ROM). Indeed, NIZK proofs are much more complex
outside this setting and even by using the Groth-Sahai methodology [25], group
signatures still contain dozens of elements (see e.g. [23]).

A natural question arising from this observation is whether it is possible to
construct more efficient schemes by using a different paradigm. Bichsel et al. [7]
proposed an interesting answer to this question. They indeed introduced a very
efficient alternative, at the cost of a slightly weaker notion of anonymity. This
allows them to circumvent the result of Abdalla and Warinschi [1] and thus
to avoid encryption. More specifically, their idea was to remove encryption by
using re-randomizable [14] certificates τ and by merging σ with the NIZK proofs,
leading to a signature of knowledge. The resulting construction is very efficient
(see Table 4 at the end of the paper) and can be further improved by instantiating
it with the randomizable signature scheme of Pointcheval and Sanders (PS) [29].

Another alternative based on equivalence-class signature [21] has recently
been proposed by Derler and Slamanig [19]. It shares commonalities with [7],
such as the absence of explicit encryption, but manages to achieve full anonymity
at the cost of increased complexity. Unfortunately, both [7] and [19] inherently
rely on signature of knowledge and so rather fit the random oracle model.

Very recently, Backes et al. [3] proposed a different framework based on a new
primitive called signatures with flexible public keys. It yields secure constructions
without random oracles with improved efficiency compared to the state-of-the-
art in this setting. However, the resulting group signatures are three times larger
than the ones in the ROM and require more computations to be generated.

More generally, designers of group signature schemes are confronted with the
choice of either proving security without random oracles or favoring efficiency
by relying on the random oracle model whose limits are known [16].

Our Contribution. In this work, we propose a new group signature scheme
avoiding the ROM that halves the size and the computational complexity com-
pared to the state-of-the-art [3]. More specifically, our group signature only con-
sists of 2304 bits which makes it very competitive, even against constructions in
the ROM (see section 5 for more details).

2

As [3, 7, 19], our construction departs from the SEP framework and heavily
relies on the randomizability of its components. However, contrarily to those
works that assemble different building blocks (digital signature, NIZK, etc.) and
so achieve some level of genericity, we are here interested in optimizing the
combination to avoid NIZK proofs in the signature, so as to get the best possible
efficiency.

Our work results from the observation that the equivalence-class signature of
Fuchsbauer, Hanser and Slamanig (FHS) [21] nicely interacts with the Pointcheval
and Sanders (PS) signature scheme [29]. More specifically, assuming very slight
modifications of the FHS public key and of the PS signatures, we are able to
merge the verification equations of FHS signatures with the one of PS signatures.
Such a merge is crucial for our construction: it indeed means that it is no longer
necessary to provide a NIZK proof that the signatures are valid and related.
Thus, verifying our group signatures is essentially verifying FHS signatures.

Intuitively, we modify the PS signature scheme in such a way that each
signature is of the form (gr, gy·rXr/hm) where gy is the user’s secret key, r is
a random scalar, hm is a public element that depends on the message m to be
signed and X is a public element. Leaving out the term in X, one can note
that each signature contains a different representative of the same projective
equivalence class as (g, gy) and so it is quite easy, given a FHS signature on this
pair, to prove that the PS signature was generated using certified keys.

Our group signature thus only consists of a PS signature and a FHS one
which are both re-randomizable, leading to an anonymity proof under the DDH
assumption. Moreover, we can prove that a non-registered user cannot generate
a valid group signature unless he is able to forge FHS signatures. We only pay
the price for our tailored construction in the proof of non-frameability, where we
want to prove that no one can issue a forged group signature that can be traced
back to an honest user. Indeed, we would like to directly rely on the security
of PS signatures but this is impossible due to the modifications we introduced:
a PS signature is not enough to answer adversary queries in our security proof.
However, we show that we can tweak the original assumption underlying the
security of PS signatures to suit our construction and so that we can rely on
similar arguments to prove non-frameability.

While being non-generic, our construction remains flexible enough to comply
with different group signature models. Interestingly, the different variants we
consider achieve the same efficiency with respect to the group signature but
mostly differ in the registration procedure. This concretely means that the most
suitable setting can be chosen without any impact on the group signature itself.
This also allows us in Table 4 to fairly compare our construction with the most
relevant ones of the state-of-the-art and so to highlight the benefits of our group
signature in all cases.

Organisation. We describe in section 2 the building blocks that we need to
construct our group signature. The section 3 recalls the standard security model

3

of group signatures. We describe our construction in section 4 and compare it
with the most relevant alternatives of the state-of-the-art in section 5.

2 Preliminaries

Notations. The identity element of a group G is denoted 1G and G∗ means
G\{1G}. If the group G is of order p, then we may say interchangeably that

a ∈ Z/pZ or that a is a scalar. For a finite set X, the notation x
$← X means

that x is an element of X uniformly sampled.

2.1 Bilinear Groups

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 ×G2 → GT that is

– bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Z/pZ, e(ga, g̃b) = e(g, g̃)ab;
– non-degenerate: for any g ∈ G∗1 and g̃ ∈ G∗2, e(g, g̃) 6= 1GT ;
– efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

We will only consider bilinear groups of prime order with type-3 pairings, i.e.
there is no efficiently computable homomorphism between G1 and G2. We stress
that this yields the most efficient parameters [26]. To highlight the differences
between G1 and G2, we will denote elements of the latter with a tilde (e.g. g̃).

2.2 Digital Signature

A digital signature scheme Σ is defined by four algorithms:

– Setup(1λ): Outputs public parameters pp for security parameter λ.
– Keygen(pp): On input pp, outputs signing and verification keys (sk, pk).
– Sign(sk,m): Outputs a signature σ of message m under signing key sk.
– Verify(pk,m, σ): On input verification key pk, message m and its alleged

signature σ, outputs 1 if σ is a valid signature onm under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforge-
ability under chosen message attacks (EUF-CMA) [22]: it means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the signing oracle.

PS Signature In [29], Pointcheval and Sanders propose a randomizable signa-
ture scheme, i.e. a scheme enabling to derive re-randomized versions σ′ of any
valid signature σ. An interesting feature of their signatures is that one cannot
link σ and σ′ without knowing the corresponding message. They describe several
versions of their signature scheme, offering different features. In this work we will
use their variant supporting aggregation because it enables to decrease the size
of the public key but we will not use this aggregation feature.

4

– Setup(1λ): Outputs the parameters pp containing the description of type-3
bilinear groups (G1,G2,GT , e) along with a set of generators (g, g̃) ∈ G1×G2

and a pair (X, X̃)← (gx, g̃x) for some random scalar x.
– Keygen(pp): Generates a random scalar y and sets (sk, pk) as (gy, Ỹ = g̃y).
– Sign(sk,m): On message m, generates a signature (σ1, σ2)← (gr, Xr ·gr·y·m)

for some random scalar r.
– Verify(pk,m, (σ1, σ2)): Accepts signature (σ1, σ2) on m if the following

equality holds: e(σ1, X̃ · Ỹ m) = e(σ2, g̃).

One can note that anyone can re-randomize a signature by raising σ1 and σ2 to
the same power t. The PS signature scheme is proven EUF-CMA-secure under a
LRSW assumption customized for type-3 pairing, that we recall in subsection 2.3.

FHS Signature In [21], Fuchsbauer, Hanser and Slamanig introduce a signa-
ture on equivalence-class for the following equivalence relation on tuples in Gn1 :
(M1, . . . ,Mn) is in the same equivalence class as (N1, . . . , Nn) if there exists a
scalar a such that Ni = Ma

i for all i ∈ [1, n]. In this paper, we will only consider
the case n = 2.

– Setup(1λ): Outputs parameters pp containing the description of type-3 bi-
linear groups (G1,G2,GT , e), with generators (g, g̃) ∈ G1 ×G2.

– Keygen(pp): Generates two random scalars α1 and α2 and sets sk as (α1, α2)

and pk as (Ã1, Ã2) = (g̃α1 , g̃α2).
– Sign(sk, (M1,M2)): Selects a random scalar t and computes the signature

(τ1, τ2, τ̃)← ((Mα1
1 Mα2

2)t, g1/t, g̃1/t) on the representative (M1,M2) ∈ G2
1.

– Verify(pk, (M1,M2), (τ1, τ2, τ̃)): Accepts (τ1, τ2, τ̃) ∈ G2
1 × G2, a signature

on (M1,M2), if e(τ1, τ̃) = e(M1, Ã1) · e(M2, Ã2) and e(τ2, g̃) = e(g, τ̃) hold.

We note that the signature (τ1, τ2, τ̃) is only valid on the representative (M1,M2).
However, we can easily derive a signature on other representatives (Mr

1 ,M
r
2) of

the same equivalence class, while re-randomizing the signature, by generating a

random scalar t′ and computing (τ r·t
′

1 , τ
1/t′

2 , τ̃1/t
′
).

2.3 Computational Assumptions

SXDH assumption. For i ∈ {1, 2}, the DDH problem is hard in Gi if, given
(g, gx, gy, gz) ∈ G4

i , it is hard to distinguish whether z = x · y or z is random.
The SXDH assumption holds if DDH is hard in both G1 and G2.

PS assumption. Pointcheval and Sanders [29] introduce “Assumption 1”, here
referred to as PS assumption, to prove the security of their construction.

PS Assumption: Let (p,G1,G2,GT , e) be a bilinear group setting of type-3,

with g (resp. g̃) a generator of G1 (resp. G2). For (X̃ = g̃x, Ỹ = g̃y), where x
and y are random scalars, we define the oracle O(m) on input m ∈ Z/pZ that
chooses a random r ∈ Z/pZ and outputs the pair P = (gr, gr(x+m·y)). Given

(g, gy, g̃, X̃, Ỹ) and unlimited access to this oracle, no adversary can efficiently
generate (m∗, gr, gr(x+m

∗·y)), with r 6= 0, for a new scalar m∗, not asked to O.

5

MPS assumption. As we explain in the introduction, we would like to directly
rely on the PS assumption but this is not possible. In particular, in our group
signature construction, the user incorporates parts of the group signature in the
message to be signed. This is done by using a suitable map h that must be
taken into account by the assumption. We therefore introduce a variant of the
PS assumption that we call MPS assumption (M stands for modified).

MPS Assumption: Let (p,G1,G2,GT , e) a bilinear group setting of type-3,
with g (resp. g̃) a generator of G1 (resp. G2), and h : {0, 1}∗ → Z/pZ a function.
For random scalars x, y and z, we define the oracleO(m) on inputm ∈ Z/pZ that
picks random r, s ∈ Z/pZ and outputs the tuple P = (s, g̃r·s, gr, gr·z, gr(x+t·y))

with t = h(g̃r·s||gr||m). Given (g, gy, gz, gz·x, g̃, X̃, Ỹ) and unlimited access to
this oracle, no adversary can efficiently generate (t∗, gr, gr(x+t

∗·y)) with r 6= 0
and a value t∗ different from those involved in the answers from O.

The validity of the output can easily be checked thanks to the pairing e:
e(gr(x+t

∗·y), g̃) ?= e(gr, X̃ · Ỹ t∗). We note that the adversary’s goal is still to
output a valid PS signature but it now has access to additional elements that do
not seem helpful to create forgeries, as we discuss below. A proof that the MPS
assumption holds in the generic group model is given in the full version [18].

Remark 1. – Our new oracle still returns a PS signature (gr, gr(x+ty)) but on
a scalar t = h(g̃r·s||gr||m) instead of m. However, we define much harder
success conditions for the adversary: it can only win if the scalar t used in
its forgery is different from the ones used by O (in particular a forgery on
a new message m∗ is not valid if it leads to an already used t). Intuitively,
this rules out any strategy based on the properties of h (such as collisions).
We will therefore assume (and prove in the generic group model) that the
MPS assumption holds for any3 function h : {0, 1}∗ → Z/pZ. From the
security point of view, this therefore does not change anything compared to
an assumption where O would return (gr, gr(x+my)).

– This slight modification induces another one: we now need to provide the
pair (gz, gz·x), for some random scalar z, in the assumption. In [29], this
pair is exactly a signature on 0 and so is directly generated by the reduction
in the security proof by running O on 0. This is no longer possible here,
and we then need to explicitly add these elements in the definition of the
assumption. In any case, this does not provide more power to the adversary
than in the PS assumption.

– The element gr·z is the only one involving the secret z in P . It seems therefore
useless to combine it with the other elements of P to derive a new valid tuple.

– The last difference with the PS assumption is the pair (s, g̃r·s) that must
be added to the oracle answers. However, we note that g̃r·s is an element of
G2 and so is intuitively useless to forge a PS signature (gr, gr(x+ty)) ∈ G2

1,

3 We nevertheless note that the hardness of the corresponding problem depends on
the function h. For example, if h is constant then no adversary can succeed as soon
as it makes (at least) one query to O.

6

thanks to the asymmetry of the pairing. The same holds true for s that is
not one of the secret values used to compute the PS signature.

3 Group Signature

For completeness, we recall here the security model for dynamic group signature
from the BSZ model [6]. We introduce some minor syntactic changes and discuss
popular variants of the original security notions introduced by Bellare et al. [6].
A reader familiar with group signature can safely jump to Remark 2.

Syntax. A group signature scheme is defined by the following algorithms that
involve three types of entities: a group manager, an opening authority and users.
Each of the latter is identified by a public index i ∈ N∗.

– Setup(1λ): Outputs public parameters pp for security parameter λ.
– UKeygen(pp): Returns a user’s key pair (sk, pk) on public parameter pp. We

assume that pk is public and anyone can get an authentic copy of it.
– OKeygen(pp): Returns the opening authority’s key pair (osk, opk) under pp.
– GKeygen(pp): Returns the group manager’s key pair (gsk, gpk) along with a

public register Reg, on public parameters pp.
– Join: This is a two-party interactive protocol between the group manager

and a user i who wants to join the group. The input of the former is
(gsk,Reg, opk, pki) whereas the user takes as input (gpk, opk, ski). If the
protocol does not fail, then the user gets a group signing key uski whereas
the group manager updates Reg. Else, both parties return ⊥.

– Sign(uski,m): Returns a group signature σ of m under signing key uski.
– Verify(gpk, σ,m): On input the group manager’s public key, a group signa-

ture σ and a message m, returns a bit b ∈ {0, 1}.
– Open(osk, gpk,Reg, σ,m): On input the opening authority’s secret key, the

group manager’s public key, the register Reg, a group signature σ and a
message m, returns either 0, ⊥ or an index i ∈ N∗ along with a proof π.

– Judge(gpk,Reg, σ,m, i, π): On input the group manager’s public key, the
register Reg, a group signature σ, a message m, an index i ∈ N∗ and a proof
π, returns a bit b ∈ {0, 1}.

Security Model. A group signature should achieve correctness, anonymity,
traceability and non-frameability. We refer to [6] for a formal definition of cor-
rectness, but informally it means that any user who has joined the group should
be able to produce valid signatures σ (i.e. one for which Verify outputs 1) on
any message m. Moreover, it should be possible to open such signatures, i.e. to
recover the identity i of the signer, and to produce publicly verifiable proofs that
user i has indeed issued these signatures.

Anonymity requires that group signatures should be anonymous, except for
the opening authority. Traceability requires that no one can produced a valid
signature that cannot be traced back to some user through the Open procedure.

7

ExpanA (1λ) – Anonymity Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)

4. b
$← {0, 1}, O← {OAdd,OJU ,
OCor,OSign,OOpen,OChb}

5. b∗ ← AO(gsk, opk)
6. If OOpen is queried on the output of
OChb, then return 0

7. Return (b = b∗)

Exp
nf
A (1λ) – NF Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)
4. (σ,m, i, π)
← AOAdd,OJU ,OCor,OSign(gsk, osk)

5. If OSign returned σ, then return 0
6. If i is corrupt, then return 0
7. Return Judge(gpk,Reg, σ,m, i, π)

ExptraA (1λ) – Traceability Security Game

1. pp← Setup(1λ)
2. (osk, opk)← OKeygen(pp)
3. (gsk, gpk)← GKeygen(pp)
4. (σ,m)← AOAdd,OJGM ,OCor,OSign(gpk, osk)
5. If ⊥← Open(osk, gpk,Reg, σ,m), then return 1
6. If (i, π)← Open(osk, gpk,Reg, σ,m)

and 0← Judge(gpk,Reg, σ,m, i, π), then return 1
7. Return 0

Fig. 1. Security Games for Group Signature

Finally, non-frameability means that no one can be falsely accused of having
produced a signature. The corresponding security games, outlined in Figure 1,
make use of the following oracles:

– OAdd(i) is an oracle that can be used to add a new user i. It then runs
UKeygen(pp) to get (ski, pki) and returns pki. If i has already been used in
a previous query, then it returns ⊥.

– OJU (i) is an oracle that plays the user’s side of the Join protocol. It can
be used by an adversary A playing the role of a corrupt group manager. It
returns ⊥ if i has already joined the group or if user i does not exist.

– OCor(i) is an oracle that returns all the secret keys of the user i. The user
i is then said to be corrupt. Any non-corrupt user is considered honest.

– OJGM () is the counterpart of the OJU oracle that can be used by a corrupt
user to join the group.

– OSign(i,m) is an oracle that returns Sign(uski,m), provided that i is an
honest user that has already joined the group.

– OOpen(σ,m) is an oracle that returns Open(osk, gpk,Reg, σ,m).
– OChb(i0, i1,m) is an oracle that takes as inputs the index of two honest users

and returns Sign(uskib ,m).

Let A be a probabilistic polynomial adversary. A group signature scheme is

– anonymous if Advan(A) = |Pr[ExpanA (1λ) = 1]− 1/2| is negligible for any A;
– traceable if Advtra(A) = Pr[ExptraA (1λ) = 1] is negligible for any A;

– non-frameable if Advnf (A) = Pr[ExpnfA (1λ) = 1] is negligible for any A.

8

The security model introduced by Bellare, Shi and Zhang [6] places no re-
striction on the OCor queries in the anonymity experiment. This means that the
adversary is allowed to corrupt the “challenge” users (i.e. those that are involved
in OCh queries). This corresponds to the strongest notion of anonymity, some-
times called full anonymity or CCA-2 anonymity (see e.g. [19]), where anonymity
holds even if the users’ secret keys are leaked.

Remark 2. The BSZ model [6] defines strong security properties that are suffi-
cient in most contexts. However, it may be possible in some situations to relax
some of them, usually leading to more efficient constructions. This is particularly
true for the anonymity property for which popular variants exist, such as CPA
anonymity [8, 13] or selfless anonymity [7, 9, 29]. The former removes the oracle
OOpen in the anonymity game but the users remain anonymous even if their
secret keys leak. Contrarily, selfless anonymity allows OOpen queries but users
are no longer anonymous when their secret keys leak. These two notions are
incomparable and so fit different contexts. The construction we describe in the
next section achieves both of them. Interestingly, it also achieves full anonymity
in the model introduced by Bellare, Micciancio and Warinschi [5] (BMW model),
where the group manager is also the opening authority.

4 Our Group Signature

4.1 The Construction

Intuition. A group signature usually contains two kinds of digital signatures
that we will denote by σ and τ . The first one is issued on the message to be signed
by the user using his own key pair (usk, upk). Intuitively, the unforgeability of
the digital signature ensures that no adversary is able to produce a forged group
signature which can be traced back to upk (non-frameability). The second one is
issued by the group manager on usk (or upk) to differentiate key pairs of group
members from those of unregistered users. Here, unforgeability ensures that only
users that have joined the group can issue group signature, which is necessary
to achieve traceability.

If non-frameability and traceability were the only two conditions expected
from a group signature, then the latter would simply be (τ, σ, upk,m). However,
this cannot work when anonymity is also required so the standard practice has
been to encrypt/commit at least τ and upk and then provide zero-knowledge
proofs that these elements are well-formed.

The work of Bichsel et al [7] has shown that we can do better when τ is
randomizable. Indeed, in such a case there is no need to encrypt τ , the latter
can simply be re-randomized and sent unencrypted, leading to significant gains
in efficiency. Their group signature can only achieve a weaker selfless anonymity
notion in the ROM, but it seems a reasonable price to pay in view of the benefits.

Despite its novelty, [7] still shares commonalities with the standard frame-
work of the BSZ model [6]. There is indeed still a modular composition of two
signatures τ and σ with a proof of knowledge. The latter two can be merged

9

(leading to a signature of knowledge) using the Fiat-Shamir heuristic [20] in the
ROM, but the spirit remains the same. Modular systems are interesting since
they can leverage any advance in the construction of their building blocks. For
example, the scheme of [7] can straightforwardly be improved by using PS signa-
tures [29] to instantiate τ , instead of Camenisch-Lysyanskaya signatures [14] in
the original construction. Unfortunately, the complexity of a modular construc-
tion is the sum of all its parts, so a natural question is whether it is possible to
improve efficiency by optimizing the combination of the different building blocks
for some specific instantiations.

In this section we construct the most efficient group signature without ran-
dom oracles by noticing that FHS equivalence-class signatures [21] nicely interact
with PS signatures [29]. Indeed let us recall the latter, and more specifically its
variant designed to support aggregation. A (non-aggregated) signature on a mes-
sage m in this case is given by (σ1, σ2) = (gr, Xr(gy·m)r) where r is some random
scalar, X = gx is a public element and y is the signer’s secret key. One can note

that we can alternatively define σ2 as σ
1/m
2 = Xr/m(gy)r: any adversary able to

forge such a signature can trivially be converted into an adversary against the
original PS-signature scheme.

Therefore, any signature issued by a user will be of the form (σ1, σ2) =
(gr, Xr/m(gy)r). If we applied the standard methodology here, we would provide
a signature τ on y (or gy) and then prove in a zero-knowledge way that τ is valid
on the key that has been used to generate (σ1, σ2). However, we can do better
if we directly use the FHS-signature scheme [21].

Indeed, for all r, if we discard the term Xr/m in σ2, it only remains (gr, gy·r)
which are different representatives of the same equivalent class. Thus, if we
provide a FHS signature on (gr, gr·y) one can directly check that (σ1, σ2) was
generated using a certified key, without any proof of knowledge. Anonymity of
the resulting construction simply follows from the ability to re-randomize FHS
signature while changing the representative of the class.

It then only remains to explain how to remove Xr/m. Recall that a FHS
signature on (gr, gr·y) is a tuple (τ1, τ2, τ̃) such that

e(τ1, τ̃) = e(gr, Ã1) · e(gr·y, Ã2) and e(τ2, g̃) = e(g, τ̃),

where (Ã1, Ã2) = (g̃α1 , g̃α2) is the public key. Assume that we add B̃ = X̃α2 to

this public key (X̃ = g̃x is a part of the public key of the PS-signature scheme).

Then, e(σ1, Ã1) · e(σ2, Ã2) · e(σ1, B̃−1/m) = e(gr, Ã1) · e(gy·r, Ã2) = e(τ1, τ̃),
and the second equation remains unchanged. This means that we can check the
validity of both FHS and PS signatures at essentially the cost of verifying a FHS
signature. Moreover, the fact that we merge the verification of these signatures
makes zero-knowledge proofs unnecessary. Concretely, this means that our group
signature only consists of (σ1, σ2, τ1, τ2, τ̃), i.e. four elements of G1 and one
element of G2, and can be verified with merely two pairing equations.

Interestingly, the fact that we avoid the classical signature of knowledge of y
allows to achieve both CPA anonymity and selfless anonymity. Indeed, schemes
based on randomizable signatures (see e.g. [14,29]) are usually proven anonymous

10

under the DDH assumption in G1. Therefore, to enable opening, they usually
force the users to provide some “trapdoor” g̃y ∈ G2 that allows the opening
authority to break DDH on their specific signatures. When y is part of the user’s
signing key usk (which is necessary for a signature of knowledge of y), leakage of
the latter means that the adversary can recover y and thus g̃y. Anonymity can
then no longer hold in this case leading to the selfless anonymity notion.

In our case, we note that gy ∈ G1 is enough to issue group signatures,
meaning that users can discard y after generating their keys. In case usk leaks,
the adversary now recovers gy, which is useless to break DDH. We can thus
retain some level of anonymity (at least CPA anonymity) in this case.

The Protocol. We now formalize the previous intuition by describing the algo-
rithms constituting our scheme. As we explain above, we manage to avoid NIZK
proofs and explicit encryption in our signature. However, we still need such prim-
itives for some algorithms such as Join and Open. Fortunately, the latter are in
practice subject to less constraints that Sign as they have less impact on the
user’s experience (in particular because they are run far less often than Sign).
Our construction therefore also makes use of a public key encryption scheme Γ
and of a NIZK proof system. The latter will concretely be the Groth-Sahai proof
system [25] that allows to prove most common relations in bilinear groups by
using a common reference string crs. Additional details on these two primitives
are provided in the full version [18].

– Setup(1λ): Let (G1,G2,GT , e) be the description of type-3 bilinear groups

of prime order p, this algorithm first selects g
$← G∗1 and g̃

$← G∗2, and then

computes (X, X̃)← (gx, g̃x) for some random scalar x. It also generates the
public parameters ppΣ for a digital signature scheme4 Σ and selects a hash
function h : {0, 1}∗ → Z/pZ. Finally, it generates a common reference string
crs for the Groth-Sahai proof system [25] in the SXDH setting and then sets

the public parameters as pp = (G1,G2,GT , e, g, g̃, X, X̃, crs, ppΣ , h).
– UKeygen(pp): The user defines his own key pair as (sk, pk)← Σ.Keygen(ppΣ).
– OKeygen(pp): The opening authority generates a key pair (osk, opk) for a

public key encryption scheme Γ .
– GKeygen(pp): The group manager selects two random scalars α1 and α2 and

then computes (Ã1, Ã2, B̃) ← (g̃α1 , g̃α2 , X̃α2). He then initializes a public

register Reg and returns (gsk, gpk)← ((α1, α2), (Ã1, Ã2, B̃)).
– Join: To join the group, a user i first selects two random scalars, u and
y, and computes (gu, gu·y) along with C ← Γ.Encrypt(opk, g̃y). He then
generates a NIZK proof π that C encrypts an element g̃y ∈ G2 such that
e(gu, g̃y) = e(gu·y, g̃). Finally, he generates µ← Σ.Sign(ski, (g

u||gu·y||C||π))
and sends it, along with (gu, gu·y, C, π), to the group manager.
Upon receiving these elements, the group manager checks the validity of the
proof π and that Σ.Verify(pki, µ, (g

u||gu·y||C||π)) = 1. If π and µ are both

4 Any EUF-CMA signature scheme can be selected here, without any impact on the
complexity of the group signatures.

11

valid, then he stores (gu, gu·y, C, π, pki, µ) in Reg[i], generates a t
$← Z/pZ

and returns τ ′1 ← ((gu)α1(gu·y)α2)t, τ2 ← g1/t and τ̃ ← g̃1/t.
Finally, the user computes τ1 ← (τ ′1)1/u and sets uski = (τ1, τ2, τ̃ , g

y).
– Sign(uski,m): To sign a message m, the user first selects two random scalars
r and s, and generates the following elements:

τ ′1 ← τ r·s1 , (τ ′2, τ̃
′)← (τ

1/s
2 , τ̃1/s), (σ1, σ2)← (gr, Xr/h(τ̃ ′||σ1||m) · (gy)r).

The group signature σ on m is then defined as σ = (τ ′1, τ
′
2, τ̃
′, σ1, σ2).

– Verify(gpk, σ,m): To verify a group signature σ on m, one checks that none
of its elements is 1G1

or 1G2
and that the following equalities hold:

e(σ1, Ã1B̃
−1/h(τ̃ ||σ1||m)) · e(σ2, Ã2) = e(τ1, τ̃) and e(τ2, g̃) = e(g, τ̃),

in which case one outputs 1. Otherwise, one returns 0.
– Open(osk, gpk, σ,m): Before opening a signature, the opening authority first

checks that it is valid. Otherwise, he returns 0. By using its secret key osk,
the opening authority has the ability to decrypt any ciphertext Ci stored in
Reg[i] and thus recover the elements g̃yi ∈ G2 for all registered users. He
can then check, for each of them, whether the following equality holds:

e(σ2, g̃) · e(σ1, X̃−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yi).

If there is no match, then the opening authority returns⊥. Otherwise, let j be
the corresponding user. The opening authority recovers the data (guj , guj ·yj ,
Cj , πj , pkj , µj) stored in Reg[j], commits to g̃yj and then outputs j along
with a Groth-Sahai proof π that:

e(σ2, g̃) · e(σ1, X̃−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yj) and e(guj ·yj , g̃) = e(guj , g̃yj).

– Judge(gpk, σ,m, i, π): To verify an opening, one checks that π is valid, Verify(gpk,
σ,m) = 1 and Σ.Verify(pki, µi, (g

ui ||gui·yi ||Ci||πi)) = 1. If all conditions are
satisfied, then one returns 1. Otherwise, one returns 0.

Correctness. First note that at the end of the Join protocol, the user gets
a FHS equivalence-class signature [21] on the representative (g, gy). Indeed,
(τ1, τ2, τ̃) = ((gα1gy·α2)t, g1/t, g̃1/t). To issue a group signature on m, the user
first re-randomizes (τ1, τ2, τ̃) using s while updating the representative to (gr, gr·y).
The resulting tuple (τ ′1, τ

′
2, τ̃
′) is ((gr·α1gr·y·α2)t·s, g1/(t·s), g̃1/(t·s)) and is still a

FHS signature on the same equivalent class. He then generates a pair (σ1, σ2)
where (σ1, σ

m′

2) is a PS signature [29] on m′ = h(τ̃ ′||σ1||m) using the same
randomness r. Therefore, such a group signature satisfies:

e
(
σ1, Ã1B̃

−1/m′
)
· e(σ2, Ã2) = e

(
gr, g̃α1− x·α2

m′
)
· e
(
gr(

x
m′+y), g̃α2

)
,

= e(g, g̃)r(α1+y·α2) = e(τ ′1, τ̃
′),

and e(τ ′2, g̃) = e(g1/(t·s), g̃) = e(g, g̃1/(t·s)) = e(g, τ̃ ′).

12

Remark 3. Group signatures following the classical Sign-Encrypt-Prove frame-
work usually provide an efficient opening procedure. Indeed, the opening author-
ity knows the corresponding decryption key and so can decrypt the ciphertext
included in the group signature and then identify the signer. Unfortunately, there
is no equivalent for constructions without encryption and in particular there is
no longer a “master” key that the opening authority can use to break anonymity.

Constructions based on randomizable signatures [7,19] circumvent this issue
by forcing each user to provide to the opening authority a way to open their
signatures. Concretely, during the Join protocol, each user must transmit some
elements depending on their secret keys to this authority. Unfortunately this
requirement does not fit the BSZ model [6] where Join is a two-party protocol
between the user and the group manager. There are then two ways to solve
this problem. Either we add the opening authority as an acting party in Join

or we require that the user sends these elements to the group manager. The
first solution is conceptually the simplest but modifies the original BSZ model.
The second one does not but requires additional primitives to ensure security.
Indeed, the user cannot transmit such elements in clear (otherwise the group
manager could break anonymity) so he must send them encrypted and prove (in
a zero-knowledge way) that the resulting ciphertext is well-formed.

In this paper we choose to describe the most complex (second) solution since
one can easily derive from it a group signature scheme complying with the first
option. We will then need an IND-CCA2 secure public key encryption scheme
that is compatible with NIZK proofs. In practice, one can choose for instance [28]
that nicely interacts with Groth-Sahai proofs [25]. We note that efficiency is not
really a concern here since this step of the Join protocol has no impact on the
group signatures themselves.

Remark 4. We note that the security model of Bellare et al [6] already assumes
a trusted Setup phase, so our construction perfectly fits this model on this
point. However, this does not explain how to generate the public parameters
in real-world conditions. In practice, it would be natural that the opening au-
thority generates them. Regarding security, it would only be problematic for
non-frameability if corruption of this entity occurred before Setup, but this is
excluded by the model of [6]. We can also mitigate the risks by relying on a
cooperative generation of the parameters, as in [15].

4.2 Security Results.

Theorem 1. Our group signature is:

– traceable under the EUF-CMA security of the FHS signature scheme;
– non-frameable under the MPS assumption, the collision-resistance of the

function h and the EUF-CMA security of Σ;
– CPA anonymous under the SXDH assumption and the IND-CCA2 of Γ ;
– selfless anonymous if it is non-frameable, if Γ is IND-CCA2 secure and if

the SXDH assumption holds;

13

– fully anonymous, with merged opening authority and group manager, if it is
traceable and if the SXDH assumption holds.

Theorem 1 shows that our scheme retains some security properties (namely
CPA security) even when users’ secret keys are leaked, contrarily to the ones
of [7,29]. The fact that selfless anonymity depends on the non-frameability may
seem surprising but this is due to the special opening process that the reduction
R uses in our security proof. Informally, R is able to open all signatures but the
ones generated by the “challenge” user. To circumvent this problem R stores all
the signatures it has produced on behalf of this user so that it will be able to
recognize them if they are later submitted to the OOpen oracle. However, this
works as long as the adversary is unable to forge signatures for this user, hence
the non-frameability requirement.

The last statement of the theorem shows that we can achieve the strongest
notion of anonymity if we additionally assume that the opening authority is also
the group manager, as in the model of Bellare, Micciancio and Warinschi [5].

The theorem is proved below, except the part regarding non-frameability
that we only provide in the full version of this work [18] due to space limitation.

Proof of Anonymity. Our proofs of CPA anonymity and selfless anonymity
are very similar and only differ by one game. We will then consider an adversary
against “anonymity” without specifying which property we consider except in
Game 5 where the distinction is necessary. We discuss the case of full anonymity
in Remark 5.

Let A be an adversary against the anonymity of our construction succeeding
with probability ε. We define a sequence of games to show that this advantage
is negligible. For each Game i we define Advi = |Pr(Si) − 1/2|, where Si is the
event “A succeeds in Game i”. We additionally define AdvSXDH as the advantage
against the SXDH problem.

Game 1. Our first game is exactly the one of anonymity of Figure 1 where the
reduction R generates normally all the secret values and so is able to answer
any oracle query. By definition, we have Adv1 = ε.

Game 2. In our second game, R selects a random index i∗ ∈ [1, qA], where qA
is a bound on the number of OAdd queries. R proceeds as usual but aborts if
A queries (i0, i1,m) to the OCh oracle with ib 6= i∗. The advantage of A in this
new game is then at least ε

qA
.

Game 3. In the third game, R generates a simulated common reference string
crs and simulates all the zero-knowledge proofs. Any change in the behaviour of
A can then be used against the zero-knowledge property of these proofs, which
rely on SXDH in our setting. Therefore, Adv3 ≥ Adv2 − AdvSXDH.

Game 4. In the fourth game, R sets opk as the public key of a IND-CCA 2
experiment. It then uses the decryption oracle to decrypt the ciphertext Ci
stored in Reg[i] for all users i and so can answer any query as usual. However,

14

upon receiving the OJU query on i∗ (this query necessarily occurs because of
Game 2), it proceeds normally except that it generates C as an encryption of
a random element of G2 and simulates the proof. A change in the behaviour
of A would imply an attack against the IND-CCA2 security of Γ , so we get
Adv4 ≥ Adv3 − AdvIND−CCA2.

Game 5. In the fifth game, R stores every signature it generates on behalf of i∗

in some register Sig. Upon receiving a Open query for some pair (σ,m), it first
checks whether σ ∈ Sig in which case it returns i∗ along with a simulated proof.
Otherwise, it returns Open(σ,m).

We note that Game 5 is the same as Game 4 when we consider CPA anonymity
since there is no OOpen query in this case. For selfless anonymity, a difference
only occurs when the adversary manages to submit a forged signature that can be
traced back to i∗. However, such an adversary can straightforwardly be converted
into an adversary against non-frameability. We then have Adv5 ≥ Adv4 − Advnf .

Game 6. In the sixth game, R proceeds as in the previous game except that
it answers to the OCh query by returning a signature generated using a random
key. The advantage of A can then only be 0. We prove below that the Games
5 and 6 cannot be distinguished under the SXDH assumption and we then have
Adv6 ≥ Adv5 − AdvSXDH.

Proof (of indistinguishability between anonymity Games 5 and 6). R receives a
DDH challenge (g, ga, gb, gz) in G1 and must then decide whether z = a ·b. It will
then act as if y = a for the secret key uski∗ of user i∗. This is not a problem since
ga is sufficient to issue group signatures and to join the group since Game 4.
Moreover Game 5 ensures R is able to answer any OOpen query, even without
knowing g̃a.

To answer the OCh query for a message m, it selects a random scalar t and
computes a group signature σ as follows:

• τ1 ← ((gb)α1 · (gz)α2)t;
• (τ2, τ̃)← (g1/t, g̃1/t);
• (σ1, σ2)← (gb, (gb)x/h(τ̃ ||σ1||m) · (gz)).

In any case, σ is a valid group signature on m, i.e. Verify(gpk, σ,m) outputs
the bit 1. If z = a · b, then σ s a valid signature issued by user i∗ and A is still
playing Game 5. Else, σ is a signature issued with a random key, independent
of a and A is playing Game 6. Any change of behavior of A between these two
games can then be used against the DDH assumption in G1 and so against the
SXDH assumption. ut

We get the following result, which proves both CPA anonymity and selfless
anonymity of our construction:

• ε/qA ≤ 2 AdvSXDH + AdvIND−CCA2 for any adversary succeeding against CPA
anonymity with probability ε;
• ε/qA ≤ 2 AdvSXDH+AdvIND−CCA2+Advnf for any adversary succeeding against

selfless anonymity with probability ε.

15

Remark 5. Let us now consider the case where the group manager and the open-
ing authority are merged, as in the BMW model [5]. As explained in Remark 3,
the use of IND-CCA2 encryption during the Join protocol is only necessary
when the opening authority is not involved in this process, which is no longer
the case here. We can then discard Γ and remove Game 4 in the security proof.

In Game 5, R proceeds as follows. It still stores the signatures generated on
behalf of i∗ in Sig but now answers OOpen queries on (σ,m) as follows:

– if σ ∈ Sig, then it returns i∗ along with a simulated proof π;
– if Open(σ,m) returns (i, π) or 0, then it forwards this answer to the adversary;
– if Open(σ,m) returns ⊥, then it returns i∗ along with a simulated proof π.

We note that a problem only occurs in the third case if the adversary managed
to submit a group signature that cannot be traced back to a registered user. How-
ever, this would mean that A is a valid adversary against traceability, which is
unlikely. All the other games remain unchanged so ε/qA ≤ 2 AdvSXDH+Advtra for
any adversary succeeding against full anonymity with probability ε in BMW [5].

Proof of Traceability. We prove that any untraceable group signature can be
used to construct a forgery against the FHS equivalence-class signature scheme.
More specifically, let A be an adversary against traceability succeeding with
probability ε, then A can be converted into an adversary succeeding against the
EUF-CMA security of FHS signature with the same probability.

Technically, A can succeed by returning a valid signature σ on m that either
foils the opening process or that can be opened but for which it is impossible to
produce a valid proof of opening. We can exclude the latter in our construction
because of the correctness and of the soundness of Groth-Sahai proofs.

Our reduction R generates the public parameters as usual except that it does
not discard x after generating X and X̃. It then gets the public key Ã1 and Ã2

from the EUF-CMA challenger and sets gpk as (Ã1, Ã2, Ã
x
2). By using its signing

oracle, it is able to handle Join query so the simulation is perfect. At the end
of the game, A then outputs with probability ε an untraceable group signature
σ on m. If we parse σ as (τ1, τ2, τ̃ , σ1, σ2), this means that:

(1.) e
(
σ1, Ã1B̃

−1/h(τ̃ ||σ1||m)
)
· e(σ2, Ã2) = e(τ1, τ̃);

(2.) e(τ2, g̃) = e(g, τ̃);

(3.) e(σ2, g̃) · e
(
σ1, X̃

−1/h(τ̃ ||σ1||m)
)
6= e(σ1, g̃

yi) for all g̃yi stored (encrypted).

Equation (1.) is equivalent to: e(σ1, Ã1) ·e
(
σ2 ·σ−x/h(τ̃ ||σ1||m)

1 , Ã2

)
= e(τ1, τ̃),

which means (together with equation (2.)) that (τ1, τ2, τ̃) is a valid FHS signature

on
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
. However, (τ1, τ2, τ̃) will be considered as a valid

forgery only if
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
does not belong to the equivalence class

of a message submitted to the signing oracle.
Let S = {(hi, hyii)}qi=1, for hi ∈ G1 be the set of queried messages. All these

messages were involved in a Join query during which the group manager received

16

(and stored) g̃yi (encrypted). Therefore, if (µ1, µ2) belongs to the equivalent class
of an element of S, then there exists i ∈ [1, q] such that e(µ1, g̃

yi) = e(µ2, g̃).

Let us then assume that
(
σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)

1

)
satisfies the previous condi-

tion, i.e. that there is i such that: e(σ1, g̃
yi) = e

(
σ2 · σ−x/h(τ̃ ||σ1||m)

1 , g̃
)
. We then

have e(σ1, g̃
yi) = e(σ2, g̃) · e

(
σ
−x/h(τ̃ ||σ1||m)
1 , g̃

)
= e(σ2, g̃) · e

(
σ1, X̃

−1/h(τ̃ ||σ1||m)
)
,

which contradicts equation (3.). The pair
(
σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)

1

)
has then never

been signed, nor any representative of the same equivalence class, which means

that (τ1, τ2, τ̃) along with
(
σ1, σ2 · σ−x/h(τ̃ ||σ1||m)

1

)
is a valid forgery against the

EUF-CMA security of the FHS scheme.

5 Efficiency comparison

We compare the signing algorithm of our scheme with the ones of other construc-
tions of the state-of-the-art. All of them are proven under interactive assumptions
(or directly in the generic group model) so we do not take this point into account
in our comparison. In Table 4, we enumerate the number of expensive operations,
i.e. exponentiations in G1, G2 and GT (denoted by e1, e2 and eT respectively).
Regarding signing cost, our scheme is the most efficient one whenever computing
3e1 + 1e2 is cheaper than computing 1eT .

To compare these operations, we choose a common metric. We aim at the 128-
bit security. Following the incentive of Barbulescu and Duquesne [4], we select
Barreto-Lynn-Scott curves with k = 12 that now seem more appropriate than
Barreto-Naehrig ones, considering the recent attacks on pairings [27]. Moreover,
they are getting involved in more implementations, e.g. in Zexe [12], a ledger-
based system, and in ZCash [11] for zk-SNARKs.

Like in [4], we select a prime q ≡ 3 (mod 4) and construct the tower of fields:

Fq2 =
Fq[U]

(U2 + 1)
, Fq6 =

Fq2 [V]

(V 3 − U − 1)
and Fq12 =

Fq6 [W]

(W 2 − V)
.

This choice yields the costs in Table 1, where m is the cost of one multiplication
in Fq (we make the rough assumption that squaring is the same cost as multi-
plying in Fq). The last line of Table 1 represents costs in the so-called cyclotomic
subgroup GΦ12(q) ⊂ Fq12 of order Φ12(q) (where Φ12(q) is the 12th cyclotomic
polynomial evaluated at q, see [4]). This is of interest to us since GT ⊂ GΦ12(q)

and squaring in GΦ12(q) are twice faster.

Field Mult. (M) Squaring (S)

Fq m m

Fq2 3m 2m

Fq12 54m 36m

GΦ12(q) 54m 18m
Table 1. Costs of arithmetic operations in the tower extension as in [4]

For simplicity, we take our BLS12 curve in the short Weierstrass model, that
is y2 = x3 + b with b ∈ Fq, and use the Jacobian coordinate system: representing

17

(x, y) as (X,Y, Z) and satisfying the equations x = X/Z2 and y = Y/Z3. This
is the most efficient for pairings, without changing models (see [10]): it takes
11 field multiplications and 5 field squarings to add two distinct points and 2
field multiplications and 5 field squarings to double a point. After converting
squarings to multiplications (see Table 1), we end up with Table 2. Note that a
point in G2 is on the degree-6 twist curve, i.e. over Fq2 .

Group
Addition Doubling

11M + 5S 2M + 5S

G1 16m 7m

G2 43m 16m
Table 2. Costs of arithmetic operations in the pairing groups G1/Fq and G2/Fq2 , when
modeling the curve with a short Weierstrass equation and using Jacobian coordinates

Now, to compare exponentiation, let n be a positive integer. Think of n as one
of the random scalars in our Sign procedure. A double-and-add algorithm will,
on average, double log2 n times and add (log2 n)/2 times. It means, for instance,
that an exponentiation by n in G1 costs 15(log2 n) field multiplications. In the
following, we bound n by p (the order of G1, G2 and GT) and so get Table 3,
where k = log2 p.

Group G1 G2 GT
Cost 15k ·m 38k ·m 45k ·m

Table 3. Upper-bounded cost of one group exponentiation

Using BLS12 curves leads to a 256-bit representation of scalars and at least
384-bit (resp. 768-bit) for the elements of G1 (resp. G2). We summarize our
comparison in Table 4, indicating if the constructions follow the BMW model [5]
or the BSZ one [6] (see section 3). We note that [19] also considers outlying
properties, such as opening soundness, that have no impact on the group signa-
ture itself. The last line of the table corresponds to our construction where the
opening authority and the group manager are merged, which impacts security
but not efficiency.

Scheme
Size Cost in Cost with

ROM?
GS

Anonymity
in bit grp. exp. BLS12 model

BCNSW [7] 1664 3 e1 + 1 eT 90k ·m yes BMW selfless

PS [29] 1280 2 e1 + 1 eT 75k ·m yes BMW selfless

DS [19] 2816 5 e1 + 1 e2 113k ·m yes BSZ CPA

DS* [19] 4608 5 e1 + 6 e2 303k ·m yes BSZ full

BHKS [3] 4992 9 e1 + 2 e2 211k ·m no BMW full

Ours 2304 5 e1 + 1 e2 113k ·m no BSZ CPA & selfless

Ours* 2304 5 e1 + 1 e2 113k ·m no BMW full
Table 4. Efficiency and security comparisons using BLS12 curves (m represents the
cost of one multiplication in the base field of the curve and k = dlog2 pe)

If we focus on constructions without random oracles, our group signature
outperforms the recent construction of [3]: it halves both the signature size and
the signature cost. We also note that it is competitive against the most efficient
construction [29] in the random oracle model (ROM). Indeed, while the signature
size remains larger (double the size), the computational cost is quite similar and,

18

more importantly, our signer no longer needs to perform operation in GT and
so, does not need to implement the arithmetic in Fq12 , which is noticeable.

We would like to add that this comparison was made targeting the 128-bit
security level. At higher security levels, BLS12 curves might not be relevant any-
more. For instance, at 256 bits of security, the authors from [10] choose a BLS24
curve and different curve models for G1 and G2, thus satisfying the condition
3e1 + 1e2 < 1eT . In that case, our group signature scheme is computationally
the most efficient, even compared to the best alternative in the ROM [29].

Conclusion

In this paper, we have introduced the most efficient group signature scheme
proved secure without random oracles. Our construction is based on a tailored
combination of the PS signature scheme and the FHS equivalence-class signature
scheme, leading to a group signature consisting only of four elements in G1 and
one in G2. Its security mostly relies on the one of these signature schemes which
have been widely used in cryptographic protocols, although we need to adapt
the proof of PS signature to fit our construction.

Our scheme halves both the size and the computational cost compared to the
most efficient alternative in the same model. It also significantly closes the gap
with constructions in the ROM, showing that we can avoid this model without
dramatically increasing complexity.

Acknowledgements

The authors are grateful for the support of the ANR through project ANR-16-
CE39-0014 PERSOCLOUD and project ANR-18-CE-39-0019-02 MobiS5.

References

1. Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group
signature schemes. ICICS 04.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. CRYPTO 2000.

3. Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. Signa-
tures with flexible public key: Introducing equivalence classes for public keys. ASI-
ACRYPT 2018, Part II.

4. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pair-
ings. J. Cryptology, 2019.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. EUROCRYPT 2003.

6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. CT-RSA 2005.

7. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. SCN 10.

19

8. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
CRYPTO 2004.

9. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
ACM CCS 2004.

10. Joppe W. Bos, Craig Costello, and Michael Naehrig. Exponentiating in pairing
groups. SAC 2013.

11. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. https:

//electriccoin.co/blog/new-snark-curve/, 2017.
12. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and

Howard Wu. Zexe: Enabling decentralized private computation. IACR Cryptology
ePrint Archive, 2018.

13. Xavier Boyen and Brent Waters. Compact group signatures without random ora-
cles. EUROCRYPT 2006.

14. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. CRYPTO 2004.

15. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Divis-
ible E-cash made practical. PKC 2015.

16. Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology
as applied to length-restricted signature schemes. TCC 2004.

17. David Chaum and Eugène van Heyst. Group signatures. EUROCRYPT’91.
18. Remi Clarisse and Olivier Sanders. Group Signature without Random Oracles

from Randomizable Signatures (full version of this work). IACR Cryptol. ePrint
Arch., 2018-1115.

19. David Derler and Daniel Slamanig. Highly-efficient fully-anonymous dynamic
group signatures. ASIACCS 18.

20. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. CRYPTO’86.

21. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 2019.

22. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
1988.

23. Jens Groth. Fully anonymous group signatures without random oracles. ASI-
ACRYPT 2007.

24. Jens Groth. On the size of pairing-based non-interactive arguments. EURO-
CRYPT 2016, Part II.

25. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. EUROCRYPT 2008.

26. Aurore Guillevic. Comparing the pairing efficiency over composite-order and
prime-order elliptic curves. ACNS 13

27. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. CRYPTO 2016, Part I.

28. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from
malleability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure en-
cryption from homomorphic signatures. EUROCRYPT 2014.

29. David Pointcheval and Olivier Sanders. Short randomizable signatures. CT-
RSA 2016.

20

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/

	Group Signature without Random Oracles from Randomizable Signatures
	Introduction
	Preliminaries
	Bilinear Groups
	Digital Signature
	Computational Assumptions

	Group Signature
	Our Group Signature
	The Construction
	Security Results.

	Efficiency comparison

