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Effects of Wall Slip on Convective Heat Transfers of 
Giesekus Fluid in Microannulus

Convective heat transfer and effect of nonlinear wall slip are studied analytically in con-centric microannulus for viscoelastic fluids 
obeying the Giesekus constitutive equation. Laminar, thermally, and hydrodynamically fully developed flow is considered. A nonlin-
ear Navier model with nonzero slip critical shear stress is employed for the slip equation at both walls. Critical shear stress will cause 
three slip flow regimes: no slip condition, slip only at the inner wall, and slip at both walls. Thermal boundary conditions are assumed 
to be peripherally and axially constant fluxes at the walls. Governing equations are solved to obtain temperature profiles and Nusselt 
number and effects of slip parame-ters, elasticity, and Brinkman number are discussed. Two regimes are compared when slip occurs at 
both walls or only at the inner wall. The results indicate that by increasing slip effect and elasticity, heat transfer between wall and fluid 
is enhanced, but it decreases by increasing Brinkman number. In the case where the heat flux is dominant in the outer wall, the inner 
wall Nusselt curve shows a singularity for a critical Brinkman number because at this Brinkman number the bulk temperature will be 
equal to the wall temperature.

Keywords: microannulus, Giesekus constitutive equation, slip, elasticity, viscous dissipation

1 Introduction

Microfluidics refers to the technology of the fluid systems when
the range of flow is between microliters and picoliters inside a
microchannel [1]. Due to small scales, the Reynolds number for
microfluidics flow is low; therefore, the flow regime of these sys-
tems will be laminar [2]. Several microfluidics devices (micro-
pumps, microvalves, microreactors, mixers, measurement devices
and….) get together on a chip is fabricated a Lab-on-a-chip. Lab-
on-a-chip is a subset of microelectromechanical systems devices
which sometimes called micrototal analysis systems [3]. The use
of microfluidic devices has some advantages which can be
mentioned in the following: minimizing material and sample
consumption, reduction in power budget, faster devices, and
using for applications which demand small volume of fluid.
Microfluidics systems have a wide range of applications such
as medical science, drug delivery, DNA sequencing, bio-
microelectromechanical systems, point-of-care testing, analytical
chemistry, and biotechnology [4,5]. In most of these systems, heat
transfer between the fluid and its environment is essential. There-
fore, understanding and predicting heat transfers are of particular
interest for the manufacturing and operation of these systems. In
most cases, the fluids that flow in microdevices have non-
Newtonian rheological behavior, for example, in biomedical sys-
tems or in the bioreactors [1]. Empirical evidences [6] indicate that
the wall slip may occur in many complex fluids such as suspen-
sions, emulsions, polymer melts and solutions due to adhesive fail-
ure, cohesive failure or formation of a low viscosity layer of
solvent at wall. The three slip mechanisms are shown in Fig. 1.

Since these phenomena rely on Nano/microscale mechanisms,
most of the mathematical models used for expressing it are
strongly empirical. We have chosen in this study to employ the
nonlinear Navier slip law.

This model consists in a power law relationship between slip
velocity and shear stress at the wall as follows, which has been
used in many studies [7–12]:

uw ¼ jswj
b

� �1
s

(1)

where s is the power law index and b is slip coefficient which
depends on the temperature, the normal stress, the molecular
parameters, and properties of the fluid/wall interface [6]. The no
slip boundary condition and plug flow are recovered when b tends
to infinity and zero, respectively. Also, surveys indicate that slip
occurs only when the wall shear stress (srzw) exceeds a critical
value (sc); therefore, the nonlinear Navier slip model is employed
in the following form [7]:

uw ¼ 0 jsrz wj � sc

uw ¼ jsrz wj � sc

b

� �1
s

jsrz wj > sc

8

>

<

>

:

(2)

Extensive literature exists regarding the effect of slip condition
for Newtonian and non-Newtonian fluids [7–19] but heat transfers
in the presence of slip at walls is less studied which can be men-
tioned in the following.

Numerical approaches have been proposed to investigate circu-
lar and rectangular microchannels [20,21] for Ostwald–de Waele
power law fluid. The slip velocity is defined as a coefficient of
mean velocity of fluid in these studies.

Shjaeian and Kosar [22] studied both convective heat transfer
and entropy generation of microfluidic flow for Newtonian and
non-Newtonian fluids between parallel plates with linear Navier
slip velocity boundary condition and using analytical method. The
first and second laws of thermodynamics [22] were investigated
for power law fluids by Anand [23] in microchannel using nonlin-
ear Navier, Hatzikiriakos, and asymptotic slip laws. Kiyasatfar
[24] carried out a similar research inside both parallel plates and
circular microchannels with only nonlinear Navier slip law. For
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viscoelastic fluid, an analytical solution was presented by Norouzi
and Rezaie with Phan-Thien–Tanner model and nonlinear Navier
slip law inside microtubes. Finally, Mohseni et al. [25] proposed
an analytical approach for Giesekus viscoelastic fluids with non-
linear Navier models in pipes.

As mentioned in the literature, all of the studies about the influ-
ence of slip phenomena on heat transfer are limited to the single
wall geometry such as pipes and circular microchannels or sym-
metric double wall geometry such as parallel plates. In both of
them, there is only one shear stress at the wall; therefore, there
will be one slip regime. But in the annulus, there are two asym-
metric walls with two different wall shear stresses which lead to
two slip regimes. The investigation of heat transfer in this kind of
circumstances is missing in literature up to now. Indeed, the main
aim of this study is to present the analytical solution of forced
convection heat transfer for laminar, steady-state and fully devel-
oped flow in microannulus for nonlinear viscoelastic fluid obeying
Giesekus model accounting slip condition at walls. The slip laws
at both walls employed are nonlinear Navier with nonzero slip
critical shear stress.

2 Governing Equations

The problem is considered to be steady, laminar, and both ther-
mally and hydrodynamically fully developed flow in the
microannulus-axis direction (see Fig. 2). Axial heat conduction is
neglected compared to the heat transfer in the radial direction
from the order of magnitude analysis [26]. The effect of viscous
dissipation is included because most of viscoelastic fluids such as
polymeric melts and solutions have high viscosity.

We assume that the temperature variations are small enough to
consider that the thermophysical properties of the fluid are con-
stant [27–29]. Ri and Ro are inner and outer cylinder radiuses,
respectively. The annular gap is defined as d ¼ Ro � Ri.

The continuity, momentum, and Giesekus constitutive equa-
tions (without retardation time) are

r � u ¼ 0 (3a)

q
Du

Dt
þrP ¼ r � s (3b)

sþ ak

g
s � sð Þ þ k

#s

#t
¼ g _c (3c)

where u is the velocity field, P the pressure, s the stress tensor

_c ¼ ½ruþ ðruÞT � (4)

#s

#t
¼ Ds

Dt
� s � ruþ ruð ÞT � s
h i

(5)

Ds

Dt
¼ @s

@t
þ u � rð Þs (6)

Giesekus constitutive Eq. (3c) is a nonlinear dynamical three
parameter model of the stress tensor based on molecular
phenomenology.

g is the zero shear viscosity, k is the zero shear relaxation time,
and a is the mobility factor, lying in the range 0 � a � 1 [30,31].
The relaxation time is the time needed for the stresses to relax
after the fluid motion has stopped. It is a characteristic of visco-
elastic fluids [32]. Rigorously, the model parameters are function
of shear rate, but they approach to a constant value at very low
shear rate: so-called zero shear model parameters. We can note
that the nonlinear term containing a in Eq. (3c) is attributed to ani-
sotropy. It permits to take into account anisotropic Brownian
motion or anisotropic hydrodynamic drag on the constituent poly-
mer molecules [28].

The energy equation with considering assumptions is repre-
sented as follows:

q cpu
@T

@z
¼ k

r

@

@r
r
@T

@r

� �

þ U (7)

where k, q, and cp are thermal conductivity, density, and specific
heat capacity of the fluid, respectively. T is the temperature and U

is the dissipation function which includes only the shear stress and
the shear rate for this flow, and described as follows:

U ¼ srz
@u

@r
(8)

The thermal boundary conditions are peripherally and axially con-
stant heat fluxes at both walls as follows:

r ¼ Ri � k
@T

@r
¼ qi (9a)

r ¼ Ro k
@T

@r
¼ qo (9b)

Axially, we consider [33]

@

@z

Tw � T

Tw � Tb

� �

¼ 0 (10)

where Tw and Tb represent the wall and bulk temperatures, respec-
tively. Bulk temperature is defined as follows:

Tb ¼

ðRo

Ri

2p ruTdr

ðRo

Ri

2p rudr

(11)

For the imposed heat flux case, Eq. (10) reduces to

@T

@z
¼ @Tw

@z
¼ @Tb

@z
(12)

Fig. 1 Schematic diagram of slip mechanism: (a) adhesive failure, (b) cohesive failure, and (c) skimming
layer formation
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This value, fixing the thermal axial dependency, can be deter-
mined by applying energy balance over an infinitesimal slice of
fluid of thickness, dz in the axial direction. The following equation
is obtained for axial gradient of fluid bulk temperature

@Tb
@z

¼ 2

qUcp R2
o � R2

i

� � qiRi þ qoRo þ
ðRo

Ri

rszr
@uz
@r

dr

" #

(13)

Let us now turn out the problem dimensionless by defining the
following variables:

r ¼ r

d
; z ¼ z

d
; u ¼ u

U
; c ¼ c

U=d
; s ¼ s

gU=d
;

w ¼ d2

gU

dp

dz

� �

; H ¼ k T � Tbð Þ
2d q8

where p, u, and c are the pressure, velocity, and shear rate, respec-
tively. Also, w is the dimensionless group for pressure gradient
and U is the average velocity over a cross section of the microan-
nulus, which is described as follows:

U ¼

ðRo

Ri

2p r u dr

ðRo

Ri

2p r dr

(14)

H is dimensionless local temperature. q8 is the perimeter average
wall heat flux and is defined as follows:

q8 ¼ qiRi þ qoRo

Ri þ Ro

¼ Ri þ /Ro

Ri þ Ro

(15)

where / is the ratio of outer and inner wall heat fluxes,
/ ¼ qo=qi.

We define as well the Brinkman number Br, which is a measure
of importance of the viscous dissipation term

Br ¼ gU2

2d q8
(16)

By combining Eqs. (7), (12), and (13) and using dimensionless
terms, the dimensionless differential energy equation is obtained

1

r

@

@r
r
@H

@r

� �

¼ X u � BrU (17)

where

X ¼
1þ 2Br

ðRo

R i

rs
@u

@ r
d r

R
2

o � R
2

i

� � (18a)

U ¼ s
@u

@ r
(18b)

Details regarding X are presented in the Appendix. Moreover,
dimensionless thermal boundary conditions are

@H

@r
¼ � 1

2

Ri þ Ro

Ri þ /Ro

r ¼ Ri (19a)

@H

@r
¼ /

2

Ri þ Ro

Ri þ /Ro

r ¼ Ro (19b)

Also, the dimensionless form of the slip boundary conditions is as
follows:

r ¼ Ri

uwi ¼ 0 srz Ri

� �

� Bc

uwi ¼
srz R i

� �

� Bc

B

� �1
s

srz Ri

� �

> Bc

8

>

<

>

:

(20a)

r ¼ Ro

uwo ¼ 0 � srz Ro

� �

� Bc

uwo ¼
�srz Ro

� �

� Bc

B

� �1
s

� srz Ro

� �

> Bc

8

>

<

>

:

(20b)

Fig. 2 Schematic diagram of the annulus and its slip and thermal boundary conditions
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B and Bc are dimensionless slip number and dimensionless slip
critical shear stress number, respectively, and are defined as
follows:

B ¼ bdUs�1

g
Bc ¼

scd

gU

3 Analytical Solution

In this study, we assume that the temperature variations are
small enough such that the thermophysical proprieties remain con-
stant. This allows a decoupling between thermal and hydrody-
namic solution. Once the velocity profile is known, the
temperature profile can be deduced.

3.1 Hydrodynamic Solution. The shear stress equation for
annular geometry is derived from Eq. (3b) after integration in the
z direction as follows:

srz ¼
wRm

2

r

Rm

� Rm

r

!

(21)

Rm refers to the radius where the srz ¼ 0.
Following Yoo and Choi [34], we obtain the shear rate equation

crz ¼
du

dr
¼ 2asrz

16 2a� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q

2a� 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q

� �2
(22)

where De is the Deborah number, defined as (De ¼ kU=R) and
related to the level of fluid elasticity.

Schleiniger and Weinacht [35], using linear stability analysis
and Yoo and Choi [34] by employing thermodynamic considera-
tions, have indicated that for the case of no-solvent viscosity of
Giesekus model, only the positive sign will result in a physically
realistic solution. Therefore, the positive sign will be considered
for continuing of solution. In the following, we will consider an
approximate solution approach [7,36,37] for deriving the velocity
profile in order to obtain the analytic expression for temperature
profile. Indeed, it is not possible when the exact velocity profile is

coupled in energy equation. To do so, the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q

in Eq. (22) is expressed by a power series using the binominal
expansion as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q

ffi 1� 2a2De2s2rz (23)

where all terms of higher order have been neglected compared to
the leading term in the approximation which is valid for small val-
ues of 4a2De2s2rz. Truncation error is less than 6% when
4a2De2s2rz is less than 1/2. The Truncation error is obtained from
percentage error formula as follows:

PE% ¼ japproximate value � exact valuej
jexact valuej

¼
j1� 2a2De2s2rz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4a2De2s2rz

q � 100% (24)

Since the slip effect reduces jsrzj which causes 4a2De2s2rz to
decrease hence, accuracy of approximation will be higher than
94% for the wide range of a and De. Also, by moving away from
the walls of annulus, jsrzj and subsequently 4a2De2s2rz decrease
which causes to increase accuracy [7].

By substituting Eq. (23) in Eq. (22) and integrating in the radial
direction, dimensionless velocity profile can be obtained as
follows:

ð

R ir

crzd r ¼ V jr
R i

(25)

Then after integrating from Eq. (25), the velocity profile can be
obtained as follows:

u ¼ V jR ir
þ uwi ¼ Vðr Þ � VðRi Þ þ uwi (26)

The first term of right-hand side of Eq. (26) is defined as follows:

V ðrÞ ¼ � w

2P1

V 1 ðrÞ þ V 2 ðrÞ þ V 3 ðrÞ
� �

(27a)

V 1 ¼
4 a� 1ð Þ P1R

4

m � 1þ 3P2ð Þ r2
h i

P2 P1 R
4

m þ r4
� �

� 2 1þ P2ð Þ r2
h i (27b)

V2 ¼
P3 þ 2a� 1ð ÞP2

ffiffiffiffiffi

P2

p

P2

ffiffiffiffiffi

P2

p ln P1 r2 � R
2

m

� �

þ 2
ffiffiffiffiffi

P2

p
� 1

� �

h i

(27c)

V3 ¼
2a� 1ð ÞP2

ffiffiffiffiffi

P2

p
� P3

P2

ffiffiffiffiffi

P2

p ln P1 r2 � R
2

m

� �

� 2
ffiffiffiffiffi

P2

p
þ 1

� �

h i

(27d)

Expressions of P1, P2 are reported in the Appendix.
The second term, i.e., VðRi Þ, is a constant value and is derived

by substituting by Ri in Eq. (27), and the third term is the slip
velocity at the inner wall and it is equal to

uwi¼
wRm R i=Rm � Rm=Ri

� �

� 2Bc

2B

� �1
s

(28)

w and Rm are two unknown parameters in the velocity profile. To
determine them, two independent equations are required.

One of these two equations is the velocity at the outer wall

V jRo

R i
¼ uwo � uwi (29a)

where

uwo¼
wRm Ro=Rm � Rm=Ro

� �

� 2Bc

2B

� �1
s

(29b)

The second independent equation is obtained prescribing the mass
flux, i.e., using the dimensionless average velocity definition.

Dimensionless form of Eq. (14) is

ðRo

R i

r ud r ¼ R
2

o � R
2

i

2
(30)

After substituting the velocity equation in Eq. (30) and integrating
the second equation will derive as follows:

w

2P2
1P2

U1 þ U2 þ U3 þ U4ð ÞjRo

R i
¼ R

2

o � R
2

i (31a)

U1 ¼ 2 1 � að Þ
ffiffiffiffiffi

P5

p P5 arctan
2P1 rð Þ2 � 2 1 þ P2ð Þ

ffiffiffiffiffi

P5

p
" #

� 1 þ 3P2ð Þ ln P1 rð Þ4 þ R
4

m

� �

� 2 1 þ P2ð Þ rð Þ2
h i

�

(31b)
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U2 ¼ �
ffiffiffiffiffiffiffiffi

P�1
2

q
�

P3 þ ð2a� 1ÞP2

ffiffiffiffiffi

P2

p ��

�P1 ðrÞ2

þ ðP6 þ P1ðrÞ2Þ ln ½P6 þ P1ðrÞ2�
�

(31c)

U3 ¼
ffiffiffiffiffiffiffiffi

P�1
2

q

ð�P3 þ ð2a� 1ÞP2

ffiffiffiffiffi

P2

p
Þ

� ðP7 � P1ðrÞ2Þ ð ln ½P1ðrÞ2 � P7� � 1 Þ (31d)

U4 ¼ ðVðR i Þ þ uwiÞ ðrÞ
2=2 (31e)

Expressions of P3 to P7 are reported in the Appendix.

3.2 Thermal Solution. Once the velocity profile is available,
we can determine the dimensionless temperature profile (H). It
can be obtained by integration of Eq. (17)

H ¼ XU� � BrU� þ C1lnðr Þ þ C2 (32)

U� ¼
ð

1

r

ð

u rd rd r (33a)

U
� ¼

ð

1

r

ð

U rd rd r � (33b)

Expressions of U and U are presented in the Appendix.
Since both boundary conditions are of second type,H is defined

up to a constant and C2 cannot be determined directly. Hence, C2

is eliminated from Eq. (32) by subtracting dimensionless wall
temperatures (Hi and Ho) from dimensionless temperature profile
(H)shown as follows:

H�Hi ¼ X U� � U�jR i

� �� Br U
� � U

�jR i

� �þ C1ln
r

R i

� �

(34a)

H�Ho ¼ X U� � U�jRo

� �� Br U
� � U

�jRo

� �þ C1ln
r

Ro

� �

(34b)

C1 can be obtained by injecting the boundary conditions Eq. (19a)
or (19b) as follows:

C1 ¼ Ri Br
dU�

d r
jr¼R i

� X
dU�

d r
jr¼R i

� 1

2

R i þ Ro

R i þ uRo

" #

(35a)

or equivalently

C1 ¼ Ro Br
dU�

d r
jr¼Ro

� X
dU�

d r
jr¼Ro

� u

2

Ri þ Ro

Ri þ uRo

" #

(35b)

By substitution of temperature (T) from dimensionless local tem-
perature expression into the bulk temperature equation and after
simplifications, the following expressions for dimensionless wall
temperatures are obtained:

Hi ¼
2

Ro
2 � Ri

2

ðRo

R i

r u Hi �Hð Þ d r (36a)

Ho ¼
2

Ro
2 � Ri

2

ðRo

R i

r u Ho �Hð Þ d r (36b)

After numerical integration of Eqs. (36a) and (36b), the convec-
tive heat transfer from walls to the fluid is quantified by the Nus-
selt number at inner (Nui) and outer (Nuo) walls. Based on the

hydraulic diameter (DH ¼ 2d), the Nusselt number is defined as
(Nu ¼ 2d h=k). The heat transfer coefficient (h) at the walls is
obtained from (qw ¼ hðTw � TbÞ). By using dimensionless tem-
perature definition, the Nusselt number becomes (Nu ¼ qw=q8Hw)
and after substituting q8 from Eq. (15), the following expression is
obtained for inner and outer Nusselt numbers:

Nui ¼
Ri þ Ro

R i þ uRo

1

Hi

(37a)

Nuo ¼
u R i þ Ro

� �

R i þ uRo

1

Ho

(37b)

4 Results and Discussion

Three different values for the ratio between outer and inner
wall heat flux (u) are chosen for analysis which corresponds to
the following situations:

u ¼ 0:001, the inner wall heat flux is very large compared to
the outer wall heat flux; thus, fluid thermal behavior is similar
to the one of an insulated outer wall.
u ¼ 1000, the heat flux at outer wall is much higher than the
inner wall heat flux and the fluid thermal behavior is similar to
that of an insulated inner wall.
u ¼ 1, the heat fluxes at both walls have a similar importance.

Since jswij > jswoj and according to Eqs. (20a) and (20b), slip first
occurs at the inner wall therefore there are two slip flow regimes,
slip only at the inner wall and slip at both walls which are detected
by Bc with the following process. First, we assume the no slip
boundary conditions are ruling at both walls and then the shear
stress at inner wall is calculated and compare between the values
of jswij and Bc. If jswij< Bc, the no slip boundary conditions at
both walls have been a correct assumption but if jswij> Bc, the
slip certainly will occur at the inner wall or at both walls. It should
be noted that the slip condition affects the value of w; thus, the
shear stress at walls will change and should be calculated again.
Since the slip first occurs at the inner wall, in this step just the slip
velocity at inner wall is considered in equations and this time the
values of shear stress at both walls should be calculated. If jswoj<
Bc <jswij, the inner wall slip regime is dominated but if jswoj> Bc,
slip occurs at both walls which in this case the values of w and Rm

should be calculated with including both slip velocities in
Eqs. (29a) and (31a).

Fig. 3 Dimensionless temperature profile: blue line and (�)
symbol—at Br5 2, B51, s5 1, Bc5 1, u51 and slip at both
walls and red line and (�) symbol—at Br5 1, B5 0.5, s5 0.5, Bc

5 5, u51000 and slip just at inner wall
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4.1 Validation. Since the Newtonian fluid has a simple rheo-
logical model, the hydrodynamics and heat transfer equations
which derived for it can be followed easily. Due to the fact that by
putting a and De in the Giesekus equation to zero, the model sim-
plifies to the Newtonian; thus, it is anticipating that if the values
of a and De become insignificant, the results achieved for visco-
elastic fluid tend to those of Newtonian fluid. By this way, we can
validate the Newtonian limit of the derived equations for complex
fluids.

The shear rate equation for Newtonian fluid is derived as
follows:

crz ¼
du

dr
¼ srz ¼

wRm

2

r

Rm

� Rm

r

!

(38)

By integrating from Eq. (38) and substituting the boundary condi-
tions, velocity profile will be derived as follows:

u ¼ V jr
R i
þ uwi ¼

w

4
r2 � R2

i

� �

� w

2
R2
m ln

r

Ri

� �

þ uwi (39)

uwi is presented in Eq. (28).
By substituting Eq. (39) in Eq. (17) and twice integrating, the

dimensionless heat profile can be obtained as follows:

H ¼ Xw r2
r2

64
� R2

i

16
þ R2

m

8
1� ln

r

Ri

� �� �

 !

� Brw2 r4

64
� r2R2

m

8
þ R4

m

8
ln2 rð Þ

� �

þ C1 ln rð Þ þ C2 þ
uwi r

2

4

(40)

X¼1� 2Brw2

8 R2
i �R2

o

� � R2
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Fig. 4 Variation of Nui versus Br and (a) dimensionless slip number (B) at s5 1 and Bc50 (b) power law index of slip (s) at
B5 5 and Bc50 (c) dimensionless slip critical shear stress number (Bc) at B52 and s51 in the case of slip at both walls for
a5 0:1, De5 1, and /51

Table 1 Comparison between the obtained Nusselt number value from this study and Pinho and Coelho study [38]

Newt (no slip) [38] Newt (B¼ 10,000) a¼ 0.01 De¼ 0.01 (B¼ 10,000)

Nui (u¼ 1) 1.17229 1.17279 1.17270
Nuo (u¼ 1) 1.07233 1.07572 1.07585
Nuo (u¼ 1000) 1.39547 1.39930 1.39945
Nui (u¼ 0.001) 2.37452 2.37520 2.37508
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As can be seen from Fig. 3 and Table 1, a very good agreement
has been found between the results of Newtonian fluid and visco-
elastic model with small value of elasticity which confirm the
accuracy of obtained equations for the Giesekus model employed
in this study.

4.2 Slip at Both Walls. Since the Bc¼ 0 is always lower than
the shear stress at both walls therefore, in this study Bc¼ 0 is inves-
tigated. That corresponds to slip at both walls. Figure 4(a) shows
the effects of the Brinkman number and dimensionless slip num-
bers on the inner wall Nusselt number for u ¼ 1. It is seen that the

Fig. 5 Variation of Nui versus Br and (a) Deborah number (De) and a5 0:1 (b) mobility parameter (a) and De5 1 in the case of
slip at both walls for B5 10, s5 1, Bc50, and u5 0:001

Fig. 6 Variation of Nui versus Br and (a) dimensionless slip number (B) at s5 1 and Bc5 0 (b) power law index of slip (s) at
B5 1 and Bc5 0 (c) dimensionless slip critical shear stress number (Bc) at B51 and s51 in the case of slip at both walls for
a50:1, De5 1, and u5 1000
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Nusselt number decreases by raising the Brinkman number because
the heat generation by viscous dissipation increases in that case.
This behavior is stronger near the walls and is expected because,
according to the viscous dissipation function (Eq. (8)), both shear
stress and velocity gradient attain their maximum values adjacent
to the walls [7]. Therefore, the difference between wall temperature
and bulk temperature increases, and as a result, the Nusselt number
decreases. Also, the effect of slip on the Nusselt number is noticea-
ble, so that by increasing the slip effect (decreasing slip number)
the Nusselt number increases. Indeed, by decreasing slip number
both shear stress and velocity gradient decrease and therefore vis-
cous dissipation is reduced, thereby Nusselt number increases.

Figures 4(b) and 4(c) present the influence of power law index
of slip (s) and dimensionless slip critical shear stress number (Bc)
on the inner wall Nusselt number at u ¼ 1. Slip critical shear
stress numbers are chosen such that the slip always occurs at both
walls. As increasing s and decreasing Bc cause an increase in wall
slip velocity, the behavior of Nusselt number by increasing s and
decreasing Bc is similar to the one when decreasing slip number.
The effect of elasticity (a, De) on Nusselt number is shown in
Fig. 5 for the case of u ¼ 0:001. Increasing the elasticity due to
shear-thinning behavior of the fluid decreases the internal heat
produced by viscous dissipation and therefore causes the enhance-
ment of Nusselt number.

The trend for inner Nusselt number is different for u ¼ 1000,
as indicated in Fig. 6. The Nusselt number is negative for low

Brinkman numbers. By increasing the Brinkman number, a singu-
larity appears in the Nusselt curve which is called critical Brink-
man number and finally becomes positive for high Brinkman
numbers. In the case of u ¼ 1000 because of insulating circum-
stances at the inner wall, the wall temperature is lower than the
bulk temperature and according to the dimensionless temperature
and Nusselt number expressions, Nusselt becomes negative. As
by increasing the Brinkman number due to the higher heat genera-
tion near the wall, the difference between the bulk temperature
and the wall temperature reduces, and at a critical Brinkman num-
ber, this difference vanishes. As a result, the Nusselt number
diverges. If the Brinkman number increases even more, the inner
wall temperature will be higher than the bulk temperature and
then the Nusselt becomes positive.

Increasing slip effect by increasing s or decreasing B and Bc due
to the reduction of the heat generation by viscous dissipation
increases the critical Brinkman number. In other words, the singu-
larity in Nusselt curve occurs at higher Brinkman number because
by decreasing viscous dissipation, the reduction of the difference
between the bulk temperature and the wall temperature will be
slower.

4.3 Slip Only at the Inner Wall. The shear stress for Bc¼ 2.2
and a ¼ 0:1, De ¼ 1 is always lower than jswij and higher than
jswoj and slip occurs only at the inner wall for any value of B and s.

Fig. 7 Variation of Nui versus Br and (a) dimensionless slip number (B) at s51, Bc52.2 and u51 (b) power law index of slip
(s) at B51, Bc52.2 and u51000 (c) dimensionless slip number (B) at s5 1, Bc52.2, and u50:001 in the case of slip only at
inner wall for a5 0:1 and De51
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Therefore, in this study Bc¼ 2.2 is considered. This corresponds to
a regime where the slip occurs only at the inner wall. Figure 7
shows the effect of B and s on the inner wall Nusselt number.

It can be shown that the shape of the Nusselt curve is almost
similar to the case of slip at both walls. However, we can notice a
difference between the two former cases: in the case of slip only
at the inner wall the variation of Nusselt number with slip parame-
ters is weaker because the plug flow never occurs. It means that
the pressure gradient and the shear stress will not reduce signifi-
cantly by wide decrease in B or increasing s; therefore, the effect
of slip parameters on the viscous dissipation in the case of slip
only at the inner wall is weaker than when slip occurs at both
walls. As a result, the thermal behavior of the fluid is less affected
by the viscous dissipation effects. Because of the weak effect of
slip parameters on viscous dissipation function, the critical Brink-
man number will be lower than the one in situation of slip at both
walls. With a comparison between the Nusselt profiles for u ¼
0:001 and u ¼ 1, it can be understood that the Nusselt number for

u ¼ 0:001 is lower than u ¼ 1. In the case of u ¼ 0:001, because
the heat flux dominates at the inner wall, which causes be higher
wall temperature and according to Eq. (37a), inner wall Nusselt
number for u ¼ 0:001 is lower than inner wall Nusselt number
for u ¼ 1. Figure 8 shows the effects of slip parameters and
Brinkman number on dimensionless temperature distribution at
three selected u values. It can be seen from Fig. 8(a) that for the
negligible viscous dissipation, the process of fluid temperature
increasing occurs uniformly from colder wall to the warmer wall
but by increasing Brinkman number the temperature profile shows
a maximum. As explained before, this behavior is due to the stron-
ger effect of viscous dissipation near the walls which increases the
temperature difference the wall and the fluid by increasing Brink-
man number. Therefore, a maximum point appears in the tempera-
ture profile. The effect of slip parameters on the temperature
profile is the opposite than the effect of the Brinkman number.
Indeed, by increasing the slip effect, the internal heat generation
by viscous dissipation is reduced, and therefore, the

Fig. 8 Dimensionless temperature profile with variation of (a) Brinkman number (Br) at B5 1, s51, Bc5 2.2, and
u5 0:001 (b) dimensionless slip number (B) at Br5 1, B5 1, Bc5 2.2, and u5 1 (c) power law index of slip (s) at
Br5 1, B5 1, Bc5 2.2, and u51000 in the case of slip only at inner wall for a5 0:1, De5 1
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difference between the wall temperature and the fluid temperature
decreases.

5 Conclusion

Forced convection heat transfer for viscoelastic fluid obeying
Giesekus model is investigated analytically in coaxial microannu-
lus geometry under steady, laminar, thermal, and hydrodynamical
fully developed conditions. The nonlinear Navier slip law was
employed at both walls when the wall shear stresses reach a criti-
cal value which is known as the slip critical shear stress. Since the
shear stress at inner walls is always higher than the one at the
outer wall, there are two possible slip flow regimes, namely slip
only at the inner wall and slip at both walls. Thermal boundary
conditions were peripherally and axially constant heat flux. Vari-
ous inner–outer wall heat flux ratios were analyzed in the study.
The effects of slip parameters (B, Bc, s), elasticity (a, De), and vis-

cous dissipation (Br) on the Nusselt number and the temperature
profile were investigated. Results for heat flux dominant at the
inner wall (u ¼ 0:001 ) and same heat flux at both walls (u ¼ 1)
highlight that increasing the slip effect and the elasticity or
decreasing the Brinkman number tends to increase the Nusselt
number. But in the case of a heat flux dominant at the outer wall
(u ¼ 1000), the Nusselt curve shows a singularity at a critical
Brinkman number because the wall temperature will be equal
to the bulk temperature by internal viscous dissipation. Increasing
the slip effect delays this critical Brinkman number by reducing
the shear stresses and shear rates.

Appendix

This appendix details the expressions of the coefficients pre-
sented along the paper.
The hydrodynamic solution coefficients are

P1 ¼ De2aw2; P2 ¼ 1þ R
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with the following subexpressions:
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