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Introduction

We assume that the intra-and extracellular conductivities σ i and σ e are proportional. Let the bulk conductivity tensor of the medium and the transmembrane conductivity tensor defined respectively as follows

σ h = σ i + σ e , (1.1) 
and

σ m = σ i σ -1 h σ e . (1.2) 
We assume that the cardiac domain Ω h is an open bounded subset with locally Lipschitz continuous boundary of R 3 and the torso domain is occupied by Ω t . We denote by S the interface between both domains Ω h and Ω t , by Γ ext the external boundary of Ω t and by n the outward unit normal to Ω t . Let S + (resp. S -) be the part of S corresponding to the positive (resp. negative) direction of the normal n. We define the global domain Q = Ω × (0, T ) where

Ω = Ω h ∪ Ω t . ( see figure 1.)
The system of equations modeling the electrical activity in the heart is

       ∂ t v m -div(σ m ∇v m ) = I app + I ion ( , v m , w, z) in Q h := Ω h × (0, T ), div σ h ∇u h = -div(σ i ∇v m ) in Q h , ∂ t w -F(v m , w) = 0 in Q h , ∂ t z -G( , v m , w, z) = 0 in Q h .
(1.3)

Supported by organization LAMSIN

Proceedings of CARI 2020 Bruce Watson, Eric Badouel, Oumar Niang, Eds.

Ecole Polytechnique de Thiès, October 2020

Fig. 1. The heart and torso domains.

Here, the transmembrane potential v m is defined as follows

v m = u i -u h , (1.4) 
where u i and u h are the intra-and extra-cellular potentials. The I app is an external applied electrical current and I ion is the ionic current across the membrane which is defined as follows

I ion ( , v, w, z) = N i=1 i y i (v) k j=1 ( wl ) pj,i j (v -E i (z)), (1.5) 
where

E i (z) = γ i log z e z i , z = (z 1 , . . . , z m ). (1.6)
Here γ i is a constant and we denotes by z i , i = 1, . . . , m and z e the intraand extracellular concentration.

We define the evolution of the gating variables w := (w 1 , . . . , w k ) and the ionc intacellular concentrations z := (z 1 , . . . , z m ) by the following functions F (v m , w) and G( , v m , w, z) which are defined as follows

∂ t w j = F j (v m , w j ) := α j (v m )(1 -w j ) -β j (v m )w j , j = 1, . . . , k, (1.7) 
where α j and β j are a positive function with 0 ≤ w j ≤ 1 and

∂ t z i = G i ( , v m , w, z) := -J i ( , v m , w, logz i )+H i ( , v m , w, z), ∀i = 1, . . . , m, (1.8 
) where

J i ∈ C 2 (R * + × R × R k × R), 0 < g * (w) ≤ ∂J i ∂τ (ρ, v m , w, τ ) ≤ g * (w), ∂J i ∂τ (ρ, v m , w, 0) ≤ L v (w), withg * , g * , L v belong to C 1 (R k , R + )
and (1.9)

H i ∈ C 2 (R * + × R × R k × (0, +∞) m ) ∩ Lip(R * + × R × [0, 1] k × (0, +∞) m ). (1.10)
In order that the intra cellular current does not diffuse outside the heart, we should add the following condition on the interface boundary Σ = S × (0, T )

σ m ∇v m • n = 0 on Σ. (1.11)
Our mathematical model is based on the coupling of (1.3) with the following diffusion equation in

Q t = Ω t × (0, T ) div(σ t ∇u t ) = 0 in Q t ,
(1.12)

with the following condition on the external boundary Σ ext = Γ ext ×(0, T ) which is assumed to be isolated

σ t ∇u t • n = 0 on Σ ext , (1.13) 
where u t and σ t represent the torso potential and the conductivity tensor of the torso. In order to diffuse informations potentials and currents from the heart to thorax, we need to introduce the following transmission conditions

u h = u t on Σ, σ h ∇u h • n = σ t ∇u t • n on Σ. (1.14) 
To sum up, from (1.3) -(1.11) -(1.12) -(1.13) and (1.14), we obtain the following the coupled heart-torso model

           ∂ t v m -div(σ m ∇v m ) = I app + I ion ( , v m , w, z) in Q h , div σ h ∇u h = -div(σ i ∇v m ) in Q h , div(σ t ∇u t = 0 in Q t , ∂ t w -F(v m , w) = 0 in Q h , ∂ t z -G( , v m , w, z) = 0 in Q h , (1.15) 
with the following interface conditions

   σ m ∇v m • n = 0 on Σ, u h = u t on Σ, σ h ∇u h • n = σ t ∇u t • n on Σ, (1.16)
and the following external boundary condition

σ t ∇u t • n = 0 Σ ext .
(1.17)

2 Global Carleman estimate for the coupled heart-torso system

In order to study our inverse problem, we should establish the global Carleman estimate for the coupled heart-torso model which is the key point. We consider now the following system :

           ∂ t v m -div(σ m ∇v m ) = g in Q h , div σ h ∇u h = f h in Q h , div(σ t ∇u t = f t in Q t , ∂ t w -F(v m , w) = 0 in Q h , ∂ t z -G( , v m , w, z) = 0 in Q h , (2.1)
with the following interface conditions

   σ m ∇v m • n = 0 on Σ, u h = u t on Σ, σ h ∇u h • n = σ t ∇u t • n on Σ, (2.2)
and the following external boundary condition

σ t ∇u t • n = 0 Σ ext .
(2.3) Theorem 1. (Carleman estimate) There exists λ 0 > 0 such that for any λ ≥ λ 0 there exist s 0 := s 0 (λ) > 0 and C λ > 0 such that the solution

(v m , u) ∈ H 1,2 (Q h ) × H 1 (Q) to the system (1.15)-(1.16)-(1.17) satisfies Q h (sϕ)(|∂ t v m | 2 + |div(σ m ∇v m )| 2 ) + (sϕ) 5 |v m | 2 + (sϕ) 3 |∇v m | 2 e -2sη dxdt + Q (sϕ) 3 |u| 2 + (sϕ)|∇u| 2 e -2sη dxdt ≤ C λ Q h (sϕ) 2 |g| 2 e -2sη dxdt + Q |f | 2 e -2sη dxdt + Σext (sϕ)|∇ τ u t | 2 e -2sη dxdt + ω×(0,T ) (sϕ) 5 |v m | 2 + (sϕ) 3 |u h | 2 e -2sη dxdt , (2.4) 
for any s > s 0 , g ∈ L 2 (Q h ) and f = (f h χ h + f t χ t ) ∈ L 2 (Q).

Inverse problem for conductivity coefficients

Let ω ⊂ Ω h be a non-empty subdomain of Ω h , then there exists a weight function β ∈ C 0 (Ω),

β i = β |Ω i ∈ C 2 (Ω i
) with i = h or t satisfied some conditions. We denote t ∈ (0, T ) and t 0 = T /2. and we consider two sets of coefficients (σ m , σ h , σ i , σ t ) and ( σ m , σ h , σ i , σ t ) and the corresponding solutions (u, v m , w, z) and ( u, v m , w, z) of (1.15)-(1.16)-(1.17). Let α be a given smooth positive function α(x) ≥ α 0 , x ∈ Ω h we define the the following sets of admissible coefficients :

A h α = {(σ i , σ e ) ∈ C 2 (Ω h ), σ i ≥ c i > 0, σ e ≥ c e > 0 and σ i = ασ e }, (3.1) 
A t α = {σ t ∈ C 2 (Ω t ), σ t ≥ c t > 0}, (3.2) 
for some positive constants c i , c e and c t . In order to formulate our stability and uniqueness results of conductivities, we need to introduce the following assumptions :

Assumption (A.1) There exists a constants c 0 > 0 such that

0 < c 0 < |∇β(x) • ∇ d(x, t 0 )|, in Ω\ω 0 , ω 0 ⊂ ω, (3.3) 
with d ∈ { v m , u h , u t }.

Assumption (A.2)

There exists a constants M > 0 such that

v m W 2,∞ (0,T ;W 2,∞ (Ω h )) + u h W 2,∞ (0,T ;W 2,∞ (Ω h )) + u t W 2,∞ (0,T ;W 2,∞ (Ωt)) ≤ M. (3.4) 
Theorem 2. (Stability) We assume that (A.1) and (A.2) are satisfied. Then, there exists a positive constant C > 0 depending on Ω, T, t 0 , M , such that

σ i -σ i H 1 (Ω h ) + σ e -σ e H 1 (Ω h ) + σ t -σ t H 1 (Ωt) ≤ C (v m -v m )(•, t 0 ) H 2 (Ω h ) + (u t -u t )(•, t 0 ) H 2 (Ωt) + (w -w)(•, t 0 ) H 1 (Ω h ) + (z -z)(•, t 0 ) H 1 (Ω h ) + σ i -σ i H 2 (ω) + v m -v m H 2 (0,T ;L 2 (ω)) + u h -u h H 2 (0,T ;L 2 (ω)) + u t -u t H 2 (0,T ;H 1 (Γext)) , (3.5) 
for any (σ i , σ e ), ( σ i , σ e ) ∈ A h α , σ t , σ t ∈ A t α satisfying (∂ α σ i , ∂ α σ e ) = (∂ α σ i , ∂ α σ e ) on S, |α| ≤ 1 and σ t > σ h on S.

As a consequence, we can drive the following uniqueness result Corollary 1. (Uniqueness) Let us consider the same assumptions in Theorem 2 and let (v m , u t , w, z) = ( v m , u t , w, z) at a fixed time t 0 , (v m , u h ) = ( v m , u h ) in ω × (0, T ), u t = u t in the external boundary Σ ext and σ i = σ i in ω 0 . Then, we have the following uniqueness result (σ i , σ e ) = ( σ i , σ e ) in Ω h , and σ t = σ t in Ω t .

(3.6)
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