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1) Introduction

Isoprenoid quinones are central to bioenergetics as they constitute obligate electrons and protons shuttles in the respiratory chains of most organisms. These molecules are composed of a quinone head group (in most cases a naphtho-or a benzo-ring) to which is attached a polyprenyl tail with a length that varies depending on the organisms (from 4 to 14 isoprene units, indicated as subscript, Q 4-14 ) (Figure 1) [START_REF] Nowicka | Occurrence, Biosynthesis and Function of Isoprenoid Quinones[END_REF] .

A specific number of isoprene units characterizes the quinone pool (Qn) of a given species, but several lower abundance isoprenologs, typically Qn-1 and Qn+1, are also usually produced [START_REF] Collins | Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implication[END_REF][START_REF] Hiraishi | Isoprenoid Quinones as Biomarkers of Microbial Populations in the Environment[END_REF] . The polyprenyl tail is hydrophobic and localizes isoprenoid quinones inside membranes. The polar head group is the functional part of the molecule and undergoes a two-steps redox chemistry between quinone (oxidized) and quinol (reduced) forms [START_REF] Nowicka | Occurrence, Biosynthesis and Function of Isoprenoid Quinones[END_REF] . Historically, isoprenoid quinones have been used as chemotaxonomic markers [START_REF] Collins | Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implication[END_REF][START_REF] Hiraishi | Isoprenoid Quinones as Biomarkers of Microbial Populations in the Environment[END_REF] and more recently, quinone profiles served as markers of bacterial communities in complex ecosystems [START_REF] Kunihiro | Phospholipid-Derived Fatty Acids and Quinones as Markers for Bacterial Biomass and Community Structure in Marine Sediments[END_REF][START_REF] Becker | Isoprenoid Quinones Resolve the Stratification of Redox Processes in a Biogeochemical Continuum from the Photic Zone to Deep Anoxic Sediments of the Black Sea[END_REF] .

Isoprenoid quinones are classified based on the nature of the head group and also according to their midpoint redox potential. Menaquinone (MK) belongs to naphthoquinones, whereas ubiquinone (UQ), plastoquinone (PQ) and rhodoquinone (RQ) are benzoquinones (Figure 1). Classically, MK and RQ are considered low potential quinones (E'  -70 mV), whereas UQ and PQ are high potential quinones (E'  +100 mV) [START_REF] Schoepp-Cothenet | On the Universal Core of Bioenergetics[END_REF] . The redox potential of quinones determines the protein partners with which they functionally interact in respiratory chains. For example, complex II reduces UQ in the oxidation of succinate into fumarate, and it oxidizes RQ in the reduction of fumarate into succinate [START_REF] Vanhellemond | Rhodoquinone and Complex II of the Electron Transport Chain in Anaerobically Functioning Eukaryotes[END_REF] ; the related quinol:fumarate reductase oxidizes MK [START_REF] Singh | Plasticity of the Quinone-Binding Site of the Complex II Homolog Quinol:Fumarate Reductase[END_REF] . Excellent reviews have covered the taxonomic distribution, the functions and the biosynthesis of isoprenoid quinones [START_REF] Nowicka | Occurrence, Biosynthesis and Function of Isoprenoid Quinones[END_REF][START_REF] Kawamukai | Biosynthesis and Applications of Prenylquinones[END_REF] and the case of RQ is discussed in detail by Shepherd and colleagues in this issue of BBA-Bioenergetics [START_REF] Salinas | Rhodoquinone in Bacteria and Animals: Two Distinct Pathways for Biosynthesis of This Key Electron Transporter Used in Anaerobic Bioenergetics[END_REF] . The polyprenyl chain of various lengths are in blue and the polar 63 head groups are in black. The molecules are represented in their 64 oxidized form. However, in this review, the abbreviations used 65 for quinones (UQ, RQ, MK, PQ) refer to the molecules 66 irrespective of their redox state, which will be specified in the 67 text, when necessary. 68 MK, which is present in most bacterial phyla and in archaea, was proposed to have been a component of the bioenergetic toolbox of the last universal common ancestor (LUCA) [START_REF] Schoepp-Cothenet | On the Universal Core of Bioenergetics[END_REF][START_REF] Zhi | The Futalosine Pathway Played an Important Role in Menaquinone Biosynthesis during Early Prokaryote Evolution[END_REF] . In contrast, UQ evolved later and is restricted to specific classes of proteobacteria (, , ) and to eukaryotes, in which UQ participates to oxidative phosphorylation in mitochondria. Much attention has been paid to the biosynthesis and functions of UQ (also called coenzyme Q) in eukaryotes, and these topics -including the pathologies resulting from coenzyme Q deficiencies in humans -have been covered recently in authoritative reviews [START_REF] Kawamukai | Biosynthesis and Applications of Prenylquinones[END_REF][START_REF] Stefely | Biochemistry of Mitochondrial Coenzyme Q Biosynthesis[END_REF][START_REF] Wang | The Complexity of Making Ubiquinone[END_REF][START_REF] Awad | Coenzyme Q10 Deficiencies: Pathways in Yeast and Humans[END_REF][START_REF] Salviati | Primary Coenzyme Q10 Deficiency[END_REF] .

In contrast, an update is needed for UQ in bacteria. The historical model to study bacterial UQ biosynthesis has been Escherichia coli and several recent discoveries advanced our understanding of the UQ pathway in this species. At the same time, studies on other bacterial models revealed substantial differences with the E. coli pathway and highlighted an unsuspected diversity of solutions evolved by bacteria to synthesize UQ. The numerous sequences of bacterial genomes now available in public databases also appear to be a very relevant source of information with this respect. In this review, we summarize the recent results obtained on bacterial UQ biosynthesis and functions, and we emphasize how they advanced our current understanding of the field.

2) New functions for UQ in bacteria

The functions of UQ related to respiration, gene regulation and oxidative stress have been reviewed elsewhere [START_REF] Soballe | Microbial Ubiquinones: Multiple Roles in Respiration, Gene Regulation and Oxidative Stress Management[END_REF][START_REF] Aussel | Biosynthesis and Physiology of Coenzyme Q in Bacteria[END_REF] and will not be covered here. In 2014, Sevin and Sauer reported that UQ promotes tolerance to osmotic stress in E. coli [START_REF] Sevin | Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia Coli[END_REF] . The authors showed that the growth of a UQ-deficient strain was impaired when the medium contained high concentrations of salt. Furthermore, they observed a 100 fold increase of the UQ content in response to osmotic stress [START_REF] Sevin | Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia Coli[END_REF] . In such conditions, UQ represented 1% of the lipids constituting the plasma membrane of E. coli. UQ and structural analogs had a stabilizing effect on liposomes, which led the authors to propose that the polyprenyl tail of UQ mediates a mechanical stabilization of the plasma membrane that likely explains the osmoprotective effect observed in vivo [START_REF] Sevin | Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia Coli[END_REF] .

However, these results have been challenged recently [START_REF] Tempelhagen | Cultivation at High Osmotic Pressure Confers Ubiquinone 8-Independent Protection of Respiration on Escherichia Coli[END_REF] . Indeed, a new study suggests that the impaired growth of UQ-deficient E. coli cells at high osmotic pressure was simply caused by the compromised function of the respiratory chain, which affected the proton-solute symporter ProP [START_REF] Tempelhagen | Cultivation at High Osmotic Pressure Confers Ubiquinone 8-Independent Protection of Respiration on Escherichia Coli[END_REF] . ProP mediates the uptake of zwitterionic osmolytes such as proline and glycine betaine, and requires high proton-motive force for function. As the proton gradient is compromised in the absence of UQ, the function of ProP is impaired, impacting osmotic regulation [START_REF] Tempelhagen | Cultivation at High Osmotic Pressure Confers Ubiquinone 8-Independent Protection of Respiration on Escherichia Coli[END_REF] . The authors also found that UQ amounted to 1% of the total lipids, but the UQ content was not significantly modulated by the osmotic pressure of the growth medium [START_REF] Tempelhagen | Cultivation at High Osmotic Pressure Confers Ubiquinone 8-Independent Protection of Respiration on Escherichia Coli[END_REF] , consistent with unpublished results from several laboratories (personal communications of David Pagliarini and Gilles Basset) and ours. Overall, it appears that UQ levels do not respond to osmotic stress and that the decreased tolerance to osmotic stress observed in UQ-deficient E. coli cells results from an indirect effect of the inactivation of the respiratory chain [START_REF] Tempelhagen | Cultivation at High Osmotic Pressure Confers Ubiquinone 8-Independent Protection of Respiration on Escherichia Coli[END_REF] . Even though multiple in vitro studies reported that UQ modifies the mechanical and physical properties of liposomes [START_REF] Sevin | Ubiquinone Accumulation Improves Osmotic-Stress Tolerance in Escherichia Coli[END_REF][START_REF] Eriksson | Osmoprotective Effect of Ubiquinone in Lipid Vesicles Modelling the E. Coli Plasma Membrane[END_REF] and references therein), sometimes at UQ concentrations hardly compatible with biological levels, the direct impact of UQ on the properties of membranes does not seem relevant for protection against osmotic stress in vivo.

A new contribution of UQ to cell metabolism was described by Chaba and colleagues who showed that UQ is required by E. coli to grow on medium containing long-chain fatty acids (LCFAs) as a carbon source [START_REF] Agrawal | A Genome-Wide Screen in Escherichia Coli Reveals That Ubiquinone Is a Key Antioxidant for Metabolism of Long Chain Fatty Acids[END_REF] . Interestingly, mutants with intermediate UQ levels (15-20% compared to wild-type) grew normally on various non-fermentable carbon sources but not on the LCFA oleate. Thus, in addition to its role as an electron shuttle in the respiratory chain, UQ has another function in oleate metabolism. The authors suggested that the antioxidant function of the reduced form of UQ was important based on the observations that the level of reactive oxygen species (ROS) increased in cells metabolizing oleate, and that supplementation with antioxidants improved growth and decreased ROS levels of UQ-deficient mutants in oleate-containing medium [START_REF] Agrawal | A Genome-Wide Screen in Escherichia Coli Reveals That Ubiquinone Is a Key Antioxidant for Metabolism of Long Chain Fatty Acids[END_REF] . Remarkably, UQ levels increased 1.8 fold in cells metabolizing oleate. Overall, the authors proposed that UQ is the preponderant antioxidant system during LCFA degradation and acts to mitigate ROS production by the acyl-CoA dehydrogenase FadE. In this regard, UQ might be particularly important for pathogenic bacteria that use LCFAs derived from host tissues as their main nutrient [START_REF] Agrawal | A Genome-Wide Screen in Escherichia Coli Reveals That Ubiquinone Is a Key Antioxidant for Metabolism of Long Chain Fatty Acids[END_REF] .

3) UQ biosynthesis in E. coli

Biochemical steps of the classical pathway and enzymes involved

Over a period of several decades, the UQ biosynthetic pathway has been extensively studied in E. coli, a bacterium that synthesizes UQ 8 as its main isoprenolog. Nowadays, the pathway is known to require twelve proteins (UbiA to UbiK and UbiX), most of them being involved in reactions that modify the aromatic ring originating from 4-hydroxybenzoic acid (4-HB) (Figure 2). UbiC is the first committed enzyme in the biosynthesis of UQ8, catalyzing the removal of pyruvate from chorismate to produce 4-HB [START_REF] Siebert | Formation of 4-Hydroxybenzoate in Escherichia Coli: Characterization of the UbiC Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase[END_REF] . Then, the membrane-bound UbiA prenylates 4-HB using octaprenyl diphosphate (a molecule with 40 carbon atoms) as a side chain precursor [START_REF] Melzer | Characterization of Polyprenyldiphosphate-4-Hydroxybenzoate Polyprenyltransferase from Escherichia-Coli[END_REF] . The octaprenyl diphosphate synthase IspB synthesizes the C 40 chain by successive condensation of five isopentenyl diphosphate units onto a C 15 precursor formed by the diphosphate synthase IspA [START_REF] Kainou | Dimer Formation of Octaprenyl-Diphosphate Synthase (IspB) Is Essential for Chain Length Determination of Ubiquinone[END_REF] . The length of the octaprenyl diphosphate moiety is controlled by bulky residues at the bottom of the active site tunnel, Met 123 and Met 135 in E. coli IspB [START_REF] Han | Crystal Structures of Ligand-Bound Octaprenyl Pyrophosphate Synthase from Escherichia Coli Reveal the Catalytic and Chain-Length Determining Mechanisms[END_REF] . Recent three dimensional (3D) structures of two members in the UbiA superfamily [START_REF] Huang | Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1[END_REF][START_REF] Cheng | Structural Insights into Ubiquinone Biosynthesis in Membranes[END_REF] revealed an all α-helical structure that is completely different from the α/β barrel structure of soluble aromatic prenyltransferases, in agreement with a catalysis that occurs in lipid bilayers. Both UbiA homologs contain nine transmembrane helices arranged counterclockwise in a U-shape presenting a large central cavity with an opening assimilated to a lateral portal that is largely buried in the membrane. It was proposed that this lateral portal may facilitate the binding of long-chain isoprenyl diphosphate substrates, the prenylated products being directly released into membranes through this portal [START_REF] Huang | Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1[END_REF][START_REF] Cheng | Structural Insights into Ubiquinone Biosynthesis in Membranes[END_REF] . We note that the two crystallized UbiA homologs belong to archaeal species and as such do not participate to UQ biosynthesis. However, given the conservation of important catalytic residues with E. coli UbiA [START_REF] Cheng | Structural Insights into Ubiquinone Biosynthesis in Membranes[END_REF] , we believe that the structural insights provided by these structures are largely applicable to UbiA family members involved in UQ biosynthesis. Pseudomonas aeruginosa and Archaeoglobus fulgidus, respectively. The UbiJ monomer is colored grey and the UbiK dimer is colored green in the model of the E. coli UbiK-UbiJ 2:1 heterotrimer complex [START_REF] Loiseau | The UbiK Protein Is an Accessory Factor Necessary for Bacterial Ubiquinone (UQ) Biosynthesis and Forms a Complex with the UQ Biogenesis Factor UbiJ[END_REF] . The oligomerization state of the 3D-models is indicated in brackets when it is greater than one. The ribbon diagrams were drawn using PyMOL (DeLano Scientific LLC).

Following its prenylation by UbiA, 4-HB is decarboxylated by the UbiD-UbiX system, which consists of the decarboxylase UbiD and its associated flavin prenyltransferase UbiX that produces the prenylated FMN (pFMN) used as a cofactor by UbiD [START_REF] White | UbiX Is a Flavin Prenyltransferase Required for Bacterial Ubiquinone Biosynthesis[END_REF] . Recent studies have provided structural insights into the mechanism of both enzymes, detailing unusual chemistry in each case [START_REF] Payne | New Cofactor Supports Alpha,Beta-Unsaturated Acid Decarboxylation via 1,3-Dipolar Cycloaddition[END_REF][START_REF] Marshall | Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis[END_REF][START_REF] Marshall | The UbiX Flavin Prenyltransferase Reaction Mechanism Resembles Class I Terpene Cyclase Chemistry[END_REF] . Crystal structures of UbiD from E. coli in complex or not with pFMN have been solved, showing the quarternary structure as homohexamers [START_REF] Marshall | Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis[END_REF] . The 3D-structure of UbiX from Pseudomonas aeruginosa is organized as a homododecamer [START_REF] White | UbiX Is a Flavin Prenyltransferase Required for Bacterial Ubiquinone Biosynthesis[END_REF] . Interestingly, Blue Native-PAGE of E. coli's soluble extracts showed a co-migration of UbiD and UbiX at ~700 kDa, compatible with a UbiD6-UbiX12 complex (theoretical mass of 582 kDa) suggested by the individual 3D-multimeric structures [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . The apparent difference in mass may reflect aberrant migration in native gels or the presence of additional proteins in the complex.

Both O-methylation reactions in the biosynthesis of UQ 8 are catalyzed by the S-adenosyl-Lmethionine (SAM)-dependent UbiG protein (Figure 2). Crystal structures of UbiG in complex with Sadenosyl-L-homocysteine have been determined, with the proteins organized as monomers [START_REF] Zhu | Structural Insights into the Methyl Donor Recognition Model of a Novel Membrane-Binding Protein UbiG[END_REF][START_REF] Zhu | Structural and Biochemical Studies Reveal UbiG/Coq3 as a Class of Novel Membrane-Binding Proteins[END_REF] .

Interestingly, the conserved region from amino acid 165 to 187 was identified in UbiG as essential for in vivo UQ production and for in vitro interaction with liposomes. The authors hypothesized that, upon interaction with membrane lipids, this region may promote the entrance of SAM into the protein [START_REF] Zhu | Structural Insights into the Methyl Donor Recognition Model of a Novel Membrane-Binding Protein UbiG[END_REF][START_REF] Zhu | Structural and Biochemical Studies Reveal UbiG/Coq3 as a Class of Novel Membrane-Binding Proteins[END_REF] . However, whether or not the membrane association of UbiG contributes to its catalytic activity has not yet been investigated. Moreover, UbiG purified from E. coli extracts exhibits in vitro methyltransferase activity [START_REF] Poon | Yeast and Rat Coq3 and Escherichia Coli UbiG Polypeptides Catalyze Both O-Methyltransferase Steps in Coenzyme Q Biosynthesis[END_REF] and a large part of UbiG is detected in the soluble fraction [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . Thus, the relevance of the lipid binding region of UbiG remains unclear, especially when considering that UbiG is part of the soluble Ubi complex [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] (see 3.3). The C-methylation reaction of the pathway is catalyzed by UbiE, a SAM-dependent methyltransferase that is involved in the biosynthesis of UQ and MK [START_REF] Lee | A C-Methyltransferase Involved in Both Ubiquinone and Menaquinone Biosynthesis: Isolation and Identification of the Escherichia Coli UbiE Gene[END_REF] . UbiE, for which no structural information is yet available, converts DDMQ8 to DMQ8 (2-octaprenyl-6-methoxy-1,4-benzoquinone to 2octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, Figure 2) and demethyl-menaquinone to MK [START_REF] Lee | A C-Methyltransferase Involved in Both Ubiquinone and Menaquinone Biosynthesis: Isolation and Identification of the Escherichia Coli UbiE Gene[END_REF] .

Finally, three related class A flavoprotein monooxygenases (FMOs) -UbiH, UbiI and UbiF -catalyze hydroxylation reactions on the aromatic ring at carbon atoms C-1, C-5, and C-6, respectively [START_REF] Kwon | Ubiquinone (Coenzyme Q) Biosynthesis in Escherichia Coli: Identification of the UbiF Gene[END_REF][START_REF] Hajj Chehade | a New Gene in Escherichia Coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-Hydroxylation[END_REF] (Figure 2). These FMOs use dioxygen as a source of hydroxyl [START_REF] Alexander | Three Hydroxylations Incorporating Molecular Oxygen in the Aerobic Biosynthesis of Ubiquinone in Escherichia Coli[END_REF] and use the flavin adenine dinucleotide (FAD) to activate O2. UbiI and UbiH seem specific of the position that they modify, whereas UbiF has a broader regio-selectivity since it has a limited ability to hydroxylate C-5 in addition to C-6 [START_REF] Hajj Chehade | a New Gene in Escherichia Coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-Hydroxylation[END_REF] . The 3D-structure of a truncated form of UbiI revealed an association as a tetramer, with each monomer containing a typical FADbinding domain with a Rossman-like β/α/β-fold [START_REF] Hajj Chehade | a New Gene in Escherichia Coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-Hydroxylation[END_REF] . It is important to note that in vitro assays have still not been developed for most Ubi enzymes, owing in part to the difficulty to obtain isolated purified proteins and to manipulate highly hydrophobic substrates.

Accessory proteins in UQ biosynthesis

Besides the enzymes discussed above, accessory proteins are also involved in UQ biosynthesis.

UbiB is an important accessory factor given the nearly complete absence of UQ in E. coli mutants lacking a functional ubiB gene [START_REF] Poon | Identification of Escherichia Coli UbiB, a Gene Required for the First Monooxygenase Step in Ubiquinone Biosynthesis[END_REF] . UbiB was originally assigned to the C5-hydroxylation step [START_REF] Poon | Identification of Escherichia Coli UbiB, a Gene Required for the First Monooxygenase Step in Ubiquinone Biosynthesis[END_REF] , which is now known to depend on UbiI [START_REF] Hajj Chehade | a New Gene in Escherichia Coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-Hydroxylation[END_REF] . The UbiB family, composed of bacterial UbiB proteins and of the eukaryotic homologs Coq8-ACDK3/4, belongs to the atypical protein kinase-like family [START_REF] Stefely | Mitochondrial ADCK3 Employs an Atypical Protein Kinase-like Fold to Enable Coenzyme Q Biosynthesis[END_REF] . Biochemical studies of Coq8 and ADCK3 showed that these proteins interact with UQ intermediates and possess ATPase activity but lack kinase activity in trans [START_REF] Stefely | Mitochondrial ADCK3 Employs an Atypical Protein Kinase-like Fold to Enable Coenzyme Q Biosynthesis[END_REF][START_REF] Stefely | Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity[END_REF] . Furthermore, the ATPase activity is stimulated by the interaction with membranes containing cardiolipin and by compounds that resemble UQ intermediates [START_REF] Reidenbach | Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinaselike UbiB Family[END_REF] . Overall, UbiB family members were hypothesized to couple the hydrolysis of ATP to the extraction of UQ precursors out of the membrane in order to make them available for UQ biosynthetic enzymes [START_REF] Reidenbach | Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinaselike UbiB Family[END_REF] , but this hypothetical role remains to be confirmed.

Two other accessory factors, UbiJ and UbiK (formerly YigP and YqiC), were identified recently [START_REF] Loiseau | The UbiK Protein Is an Accessory Factor Necessary for Bacterial Ubiquinone (UQ) Biosynthesis and Forms a Complex with the UQ Biogenesis Factor UbiJ[END_REF][START_REF] Aussel | a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia Coli and Salmonella Enterica Serovar Typhimurium[END_REF] .

Cells lacking ubiJ show a complete absence of UQ, while ubiK mutants retain ~ 20% UQ compared to wildtype. The UQ deficiency is apparent only when the cells are grown in oxic conditions, suggesting that UbiJ and UbiK do not play important functions for UQ biosynthesis under anoxic conditions [START_REF] Loiseau | The UbiK Protein Is an Accessory Factor Necessary for Bacterial Ubiquinone (UQ) Biosynthesis and Forms a Complex with the UQ Biogenesis Factor UbiJ[END_REF][START_REF] Aussel | a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia Coli and Salmonella Enterica Serovar Typhimurium[END_REF][START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . Purified UbiJ and UbiK interact and form an elongated UbiJ1:UbiK2 complex [START_REF] Loiseau | The UbiK Protein Is an Accessory Factor Necessary for Bacterial Ubiquinone (UQ) Biosynthesis and Forms a Complex with the UQ Biogenesis Factor UbiJ[END_REF] (Figure 2). UbiJ is able to bind UQ biosynthetic intermediates via its Sterol Carrier Protein 2 (SCP2) domain , which crystal structure was solved recently [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . The current hypothesis is that UbiJ and UbiK assist several steps of UQ biosynthesis by presenting UQ intermediates to Ubi enzymes inside the Ubi complex (see 3.3) [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . In addition to producing a protein, the ubiJ locus was proposed to encode a small non-coding RNA (sRNA) termed EsrE [START_REF] Chen | Esre: A Novel Essential Non-Coding RNA in Escherichia Coli[END_REF][START_REF] Xia | EsrE-A YigP Locus-Encoded Transcript-Is a 3' UTR SRNA Involved in the Respiratory Chain of E. Coli[END_REF] . EsrE is composed of 252 nucleotides and resides in the 3' half of the ubiJ gene [START_REF] Xia | EsrE-A YigP Locus-Encoded Transcript-Is a 3' UTR SRNA Involved in the Respiratory Chain of E. Coli[END_REF] . Our group showed that the Cterminal part of the UbiJ protein is sufficient to maintain a minimal level of UQ biosynthesis and we provided evidence to rule out the implication of a sRNA [START_REF] Aussel | a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia Coli and Salmonella Enterica Serovar Typhimurium[END_REF] . In contrast, another group reported that both the UbiJ protein and the sRNA EsrE are involved in UQ biosynthesis [START_REF] Xia | EsrE-A YigP Locus-Encoded Transcript-Is a 3' UTR SRNA Involved in the Respiratory Chain of E. Coli[END_REF][START_REF] Tang | Differential Quantitative Proteomics Reveals the Functional Difference of Two YigP Locus Products, UbiJ and EsrE[END_REF] . While some controversy remains, data from both groups agree that the main contribution of the ubiJ locus to UQ biosynthesis is carried out by the UbiJ protein rather than by the sRNA EsrE [START_REF] Aussel | a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia Coli and Salmonella Enterica Serovar Typhimurium[END_REF][START_REF] Tang | Differential Quantitative Proteomics Reveals the Functional Difference of Two YigP Locus Products, UbiJ and EsrE[END_REF] .

Finally, a new E. coli gene (named pasT in the uropathogenic strain CFT073, and ratA in the MG1655 laboratory strain) was very recently connected to aerobic respiration and UQ functioning in ETC [START_REF] Fino | PasT of Escherichia Coli Sustains Antibiotic Tolerance and Aerobic Respiration as Bacterial Homolog of Mitochondrial Coq10[END_REF] . CFT073 cells lacking PasT exhibited a mild defect for de novo UQ biosynthesis in early exponential growth phase but had normal steady state levels of UQ. The pasT/ratA mutant cells displayed several phenotypes consistent with impaired aerobic respiration, among which decreased membrane potential, sensitivity to H 2 O 2 and small colony size [START_REF] Fino | PasT of Escherichia Coli Sustains Antibiotic Tolerance and Aerobic Respiration as Bacterial Homolog of Mitochondrial Coq10[END_REF] . These phenotypes were complemented with Coq10, the eukaryotic homolog of PasT/RatA, which was proposed to function as a lipid chaperone that facilitates the implementation of UQ in the electron transport chain [START_REF] Zampol | Over-Expression of COQ10 in Saccharomyces Cerevisiae Inhibits Mitochondrial Respiration[END_REF][START_REF] Allan | A Conserved START Domain Coenzyme Q-Binding Polypeptide Is Required for Efficient Q Biosynthesis, Respiratory Electron Transport, and Antioxidant Function in Saccharomyces Cerevisiae[END_REF] . Overall, PasT/RatA do not seem important for UQ biosynthesis, but rather act to promote the function of UQ in aerobic respiration [START_REF] Fino | PasT of Escherichia Coli Sustains Antibiotic Tolerance and Aerobic Respiration as Bacterial Homolog of Mitochondrial Coq10[END_REF] .

Supramolecular organization of the E. coli UQ biosynthetic pathway

Since UbiA adds the polyprenyl tail onto 4-HB early on (Figure 2), most biosynthetic intermediates of the UQ pathway contain the octaprenyl tail and are therefore highly hydrophobic. Surprisingly, Ubi proteins acting downstream of UbiA are mostly soluble and the last six reactions of the pathway take place in soluble extracts, and not in the membrane fraction as the hydrophobicity of the biosynthetic intermediates would predict [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . In fact, we showed that a ~1 MDa Ubi complex composed of seven proteins (UbiE-K) exists in the soluble fraction of E. coli extracts [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . This complex contains the five enzymes (UbiE-I) that catalyze the reactions downstream of OPP (Figure 2) and the accessory factors UbiJ and UbiK, the former being essential to the stability of the Ubi complex [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . We also demonstrated that the biosynthetic intermediates OPP and DMQ 8 are bound in the Ubi complex and we proposed that the N-terminal SCP2 domain of UbiJ mediates the interaction [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . Altogether, the current model is that the Ubi complex forms a soluble metabolon that synthesizes UQ from OPP (Figure 2). The trafficking of these two hydrophobic molecules between the membrane and the Ubi complex might involve the UbiB protein with its ATPase activity and its predicted C-terminal transmembrane domain [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF][START_REF] Reidenbach | Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinaselike UbiB Family[END_REF] .

Interestingly, a similar organization of the UQ pathway has also been described in eukaryotes with complex Q (also termed the 'CoQ-synthome'). Complex Q groups the enzymes of the late steps [START_REF] Stefely | Biochemistry of Mitochondrial Coenzyme Q Biosynthesis[END_REF][START_REF] Tsui | Ubiquinone Biosynthetic Complexes in Prokaryotes and Eukaryotes[END_REF] , but it is associated to the membrane, contrary to the Ubi complex which is soluble. Outstanding questions remain regarding the supramolecular assembly of the UQ pathway, notably the conservation of the Ubi complex in other bacterial species, the exact composition and stoichiometry of the complexes, their 3D structures, their potential dynamic nature and their cellular localization. A recent study began to address the two latter points in yeast [START_REF] Subramanian | Coenzyme Q Biosynthetic Proteins Assemble in a Substrate-Dependent Manner into Domains at ER-Mitochondria Contacts[END_REF] .

Discovery of a conserved O2-independent pathway

Based on the observation that E. coli was able to synthesize UQ under anoxic conditions, the existence of a UQ biosynthesis pathway independent from O2 had long been hypothesized [START_REF] Alexander | Alternative Hydroxylases for the Aerobic and Anaerobic Biosynthesis of Ubiquinone in Escherichia Coli[END_REF] . This pathway remained uncharacterized until 2019, when we identified three genes, ubiT, ubiU and ubiV which are required for UQ biosynthesis under anoxic conditions but are dispensable under oxic conditions [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . The only reactions that differ between the O 2 -dependent and O 2 -independent pathways are the three hydroxylation steps catalyzed by the O2-consuming flavin hydroxylases UbiI, UbiH and UbiF [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . UbiU and UbiV, which belong to the U32 peptidase family, form a heterodimer that is required for the hydroxylation of DMQ 8 in vivo. This result is in line with the demonstration that UbiU from P. aeruginosa co-purifies with UQ 8 and DMQ 8 [START_REF] Vo | The O2-Independent Pathway of Ubiquinone Biosynthesis Is Essential for Denitrification in Pseudomonas Aeruginosa[END_REF] . Besides obtaining evidence for a role of UbiU and UbiV in the hydroxylation of DMQ 8 46 , we also hypothesized that UbiU and UbiV may participate in the two other hydroxylation steps of the anaerobic UQ pathway, thus substituting for UbiI and UbiH of the O2-dependent pathway (Figure 3A) [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF][START_REF] Vo | The O2-Independent Pathway of Ubiquinone Biosynthesis Is Essential for Denitrification in Pseudomonas Aeruginosa[END_REF] .

A role for UbiU and UbiV in O2-independent hydroxylation reactions is supported by recent studies showing that two other U32 peptidase family members -RlhA and TrhP -are required for the hydroxylation of C2501 on 23S rRNA [START_REF] Kimura | Biogenesis and Iron-Dependency of Ribosomal RNA Hydroxylation[END_REF] and of U34 on some tRNAs [START_REF] Lauhon | Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus Subtilis and Escherichia Coli TRNA[END_REF][START_REF] Sakai | Dual Pathways of TRNA Hydroxylation Ensure Efficient Translation by Expanding Decoding Capability[END_REF] , respectively. The source of oxygen used in the hydroxylation reactions involving U32 peptidase family members is unknown at this stage but prephenate, a metabolite of the shikimate pathway, is a candidate since it is required for the function of RlhA and TrhP [START_REF] Kimura | Biogenesis and Iron-Dependency of Ribosomal RNA Hydroxylation[END_REF][START_REF] Sakai | Dual Pathways of TRNA Hydroxylation Ensure Efficient Translation by Expanding Decoding Capability[END_REF] . The presence of an iron-sulfur cluster might be another feature common to U32 proteins. Indeed, we showed that UbiU and UbiV each carry a 4Fe-4S cluster ligated by a motif of conserved cysteine residues, which is found in most U32 peptidase family members [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . Interestingly, the function of RlhA and TrhP depends on these Cys residues and on the genes of the isc operon that catalyze the biogenesis of Fe-S clusters [START_REF] Kimura | Biogenesis and Iron-Dependency of Ribosomal RNA Hydroxylation[END_REF][START_REF] Sakai | Dual Pathways of TRNA Hydroxylation Ensure Efficient Translation by Expanding Decoding Capability[END_REF] . Some additional players may also be involved in the function of UbiU and UbiV, like the low potential ferredoxin YhfL, which is required for the hydroxylation of tRNAs by TrhP [START_REF] Lauhon | Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus Subtilis and Escherichia Coli TRNA[END_REF] . Overall, the U32 peptidase family emerges as a new class of O 2 -independent hydroxylases and additional work is required to elucidate the mechanism of these enzymes and the precise function of UbiU and UbiV in UQ biosynthesis.

The role of UbiT in the O2-independent UQ biosynthetic pathway is still unclear. Yet, the presence of a SCP2 domain in the sequence of UbiT and the demonstration that UbiT binds the lipid phosphatidic acid [START_REF] Groenewold | A Phosphatidic Acid Binding Protein Is Important for Lipid Homeostasis and Adaptation to Anaerobic Biofilm Conditions in Pseudomonas Aeruginosa[END_REF] suggests that UbiT's function is linked to lipids. Moreover, we recently showed that UbiT from P. aeruginosa binds UQ8 by recognizing its isoprenoid tail [START_REF] Vo | The O2-Independent Pathway of Ubiquinone Biosynthesis Is Essential for Denitrification in Pseudomonas Aeruginosa[END_REF] , suggesting that UbiT may perform a role similar to UbiJ in presenting the hydrophobic intermediates of the UQ pathway to Ubi enzymes. Interestingly, UbiJ is important for UQ biosynthesis only in oxic conditions, whereas the role of UbiT is limited to anoxic conditions [START_REF] Aussel | a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia Coli and Salmonella Enterica Serovar Typhimurium[END_REF][START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . The possibility that UbiJ and UbiT may functionally replace each other depending on environmental conditions is an appealing hypothesis, given that both SCP2 proteins need to assist different sets of UQ biosynthetic enzymes, the O 2 -dependent hydroxylases (UbiI, UbiH, UbiF) in one case, and the O 2 -independent hydroxylases (likely UbiU and UbiV) in the other case.

The ubiT, ubiU and ubiV genes are widespread in proteobacterial genomes that possess the O 2dependent UQ pathway, suggesting that numerous bacteria have the previously unrecognized capacity to synthesize UQ over the entire O2 range [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . The low potential quinones MK and RQ are typically involved in transferring electrons in anaerobic respiratory chains, thus the physiological function(s) of UQ synthesized in anoxic conditions remains to be clarified in proteobacteria possessing both UQ and MK pathways.

Whether bacteria synthesizing RQ possess or not the O 2 -independent UQ biosynthesis pathway is an interesting question, which has not been investigated yet. Several gram-negative bacteria, such as P. aeruginosa, contain UQ as sole quinone [START_REF] Collins | Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implication[END_REF] . We found that the ubiT, ubiU and ubiV genes are essential for UQ production by P. aeruginosa in anoxic conditions and that these genes are required for denitrification [START_REF] Vo | The O2-Independent Pathway of Ubiquinone Biosynthesis Is Essential for Denitrification in Pseudomonas Aeruginosa[END_REF] , a metabolism on which P. aeruginosa heavily relies to develop in the lungs of cystic fibrosis patients.

Overall, the discovery of a widespread UQ pathway independent of O 2 certainly changes our perspective of the relative contribution of various quinones to bacterial metabolism under hypoxic and anoxic conditions. Interestingly, substantial amounts of UQ were reported lately in the anoxic zone of the water column of the Black Sea 5 , suggesting that an O 2 -independent pathway could have been at work in this ecosystem. It remains to be investigated whether or not bacteria containing ubiT, ubiU and ubiV genes are found in this ecological niche. By extension, assessing the contribution of the O2-independent UQ pathway to anaerobiosis constitutes an exciting new research avenue.

4) Variations in UQ biosynthesis pathways across bacteria

Our current view of the biosynthesis of UQ in bacteria is mostly based on the E. coli pathway [START_REF] Aussel | Biosynthesis and Physiology of Coenzyme Q in Bacteria[END_REF] .

Even though numerous discoveries on E. coli are applicable to other bacterial species, recent studies using other bacterial models revealed an unsuspected diversity in the composition of the UQ biosynthesis pathway across bacteria.

Synthesis of the aromatic ring precursor

So far, only 4-HB has been described as an aromatic ring precursor for UQ in bacteria. In contrast, the eukaryote Saccharomyces cerevisiae is able to use additional molecules like para-aminobenzoic acid (pABA) [START_REF] Pierrel | Involvement of Mitochondrial Ferredoxin and Para-Aminobenzoic Acid in Yeast Coenzyme Q Biosynthesis[END_REF][START_REF] Xie | Resveratrol and Para-Coumarate Serve as Ring Precursors for Coenzyme Q Biosynthesis[END_REF] . Note that pABA was shown to be processed through several steps of the UQ pathway in E. coli [START_REF] Xie | Resveratrol and Para-Coumarate Serve as Ring Precursors for Coenzyme Q Biosynthesis[END_REF] . However, the amino-substituted intermediates were not converted into UQ [START_REF] Xie | Resveratrol and Para-Coumarate Serve as Ring Precursors for Coenzyme Q Biosynthesis[END_REF] , thus pABA is not considered a precursor for UQ in E. coli. The first gene identified to synthesize 4-HB for bacterial UQ biosynthesis was ubiC, which encodes a chorismate pyruvate-lyase [START_REF] Siebert | Formation of 4-Hydroxybenzoate in Escherichia Coli: Characterization of the UbiC Gene and Its Encoded Enzyme Chorismate Pyruvate-Lyase[END_REF] . The xanB2 gene of Xanthomonas campestris was later shown to encode a chorismatase that produces 4-HB for UQ biosynthesis and 3hydroxybenzoic acid for the biosynthesis of pigments from the xanthomonadin family [START_REF] Zhou | The Diffusible Factor Synthase XanB2 Is a Bifunctional Chorismatase That Links the Shikimate Pathway to Ubiquinone and Xanthomonadins Biosynthetic Pathways[END_REF] . Even though UbiC and XanB2 use the same substrate -chorismate, the end product of the shikimate pathway -they do not share sequence or structural identities and belong to different protein families, chorismate pyruvate-lyase and chorismatase, respectively [START_REF] Zhou | The Diffusible Factor Synthase XanB2 Is a Bifunctional Chorismatase That Links the Shikimate Pathway to Ubiquinone and Xanthomonadins Biosynthetic Pathways[END_REF] . xanB2 is present in several proteobacterial genera that do not contain ubiC [START_REF] Zhou | The Diffusible Factor Synthase XanB2 Is a Bifunctional Chorismatase That Links the Shikimate Pathway to Ubiquinone and Xanthomonadins Biosynthetic Pathways[END_REF] , supporting a strong anti-occurrence of the two genes, although this has not been analyzed in detail.

It is currently unclear if all UQ producing bacteria contain UbiC or XanB2 or if additional unidentified 4-HB

generating systems might also be involved in some species. Interestingly, a new subfamily of chorismatase (type IV) was shown to produce only 4-HB (and not a mixture of 3-HB and 4-HB as the type III chorismatase XanB2) [START_REF] Grueninger | Chorismatases -the Family Is Growing[END_REF] and may therefore represent a new candidate to produce 4-HB for UQ biosynthesis.

Hydroxylases

Three hydroxylation reactions on contiguous positions of the aromatic ring are required during the biosynthesis of UQ. The enzymes (UbiI, UbiH and UbiF) involved in the O2-dependent E. coli pathway each hydroxylate one position and belong to the same family of flavin monooxygenases. An unrelated diiron monooxygenase Coq7 is implicated in the C-6 hydroxylation instead of UbiF in some bacterial species [START_REF] Stenmark | A New Member of the Family of Di-Iron Carboxylate Proteins. Coq7 (Clk-1), a Membrane-Bound Hydroxylase Involved in Ubiquinone Biosynthesis[END_REF][START_REF] Jiang | Coenzyme Q Biosynthesis in the Biopesticide Shenqinmycin-Producing Pseudomonas Aeruginosa Strain M18[END_REF][START_REF] Zhou | Biosynthesis of Coenzyme Q in the Phytopathogen Xanthomonas Campestris via a Yeast-Like Pathway[END_REF] . In 2016, a search for these four monooxygenases over representative proteobacterial genomes led to the identification of two new flavin monooxygenases, UbiL and UbiM [START_REF] Pelosi | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions[END_REF] . This study revealed an astonishing diversity of combinations of monooxygenases used by bacteria to synthesize UQ (19 combinations in 67 species) [START_REF] Pelosi | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions[END_REF] . Interestingly, some genomes contained less than three UQ monooxygenases [START_REF] Pelosi | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions[END_REF] . We demonstrated that the UbiL protein from Rhodospirillum rubrum hydroxylates two positions (C-1 and C-5) and that the UbiM protein from Neisseria meningitidis hydroxylates three positions, rationalizing the presence of respectively two and one UQ monooxygenase genes in these species. Some genes are restricted to specific classes (ubiL to and ubiF to -proteobacteria), while the distribution of ubiM across , , -proteobacteria is likely the result of horizontal gene transfer [START_REF] Pelosi | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions[END_REF] .

Intriguingly, some species such as Xanthomonas campestris or Alteromonas macleodii contain four UQ monooxygenases [START_REF] Pelosi | Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions[END_REF] . The reason as to why bacteria evolved such a diversity of O 2 -dependent UQ monooxygenases is still unknown. Of note, the putative hydroxylases of the O 2 -independent pathway show probably less diversity since a very high co-occurrence of UbiU and UbiV was observed [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] .

Incomplete UQ biosynthesis pathways

The decarboxylation step of the pathway seems also variable. Indeed, the only enzyme implicated so far is the UbiD decarboxylase assisted by the prenyl-transferase UbiX [START_REF] Marshall | The UbiX-UbiD System: The Biosynthesis and Use of Prenylated Flavin (PrFMN)[END_REF] . However, several authors recently noticed the absence of ubiX-ubiD genes from genomes containing most of the other ubi genes, suggesting that another enzymatic system could be involved in the decarboxylation reaction [START_REF] Zhou | Biosynthesis of Coenzyme Q in the Phytopathogen Xanthomonas Campestris via a Yeast-Like Pathway[END_REF][START_REF] Degli Esposti | A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria[END_REF][START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] . A candidate gene ubiZ was proposed based on its co-localization with ubiE and ubiB in the genomes of Acinetobacter spp. and Psychrobacter sp. PRwf-1 [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] . However, the sequence of UbiZ is quite short ( 160 aa) and does not resemble any known decarboxylases, so a careful investigation of its potential role as a decarboxylase is needed. In any case, the fact that the ubiZ gene is not conserved in all the genomes lacking ubiD and ubiX suggests the existence of yet another decarboxylation system in UQ biosynthesis (Table 1).

Another intriguing possibility is that incomplete quinone biosynthesis pathways might nevertheless be functional. Indeed, organisms with incomplete pathways might be able to scavenge particular metabolites from their environment rather than to synthesize them intracellularly. As such, genetic gaps in Wolbachia for the biosynthesis of 4-HB and of isopentenyl diphosphate (one of the building blocks of the polyprenyl tail of UQ), led the authors to propose that these compounds might be acquired exogenously in order to support UQ biosynthesis [START_REF] Jimenez | A Systems Biology Approach for Studying Wolbachia Metabolism Reveals Points of Interaction with Its Host in the Context of Arboviral Infection[END_REF] . Remarkably, Streptococcus agalactiae synthesizes its demethylmenaquinone thanks to a partial MK biosynthesis pathway and the uptake of the late intermediate 1,4-dihydroxy-2-naphthoic acid (DHNA) from the extracellular environment [START_REF] Franza | A Partial Metabolic Pathway Enables Group b Streptococcus to Overcome Quinone Deficiency in a Host Bacterial Community[END_REF] . Several Lactobacillus species also contain a partial MK pathway [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] , suggesting that these bacteria might also rely on the import of exogenous intermediates to synthesize MK. Exchanges of metabolites between species are common in bacterial communities as in the gut of vertebrates, and small soluble components like DHNA are likely exchanged more easily than the large hydrophobic intermediates of the UQ pathway.

Therefore, this strategy of complementing a partial pathway by importing extracellular intermediates is certainly more applicable to quinone pathways with a prenylation reaction occurring at a late stage (like the MK pathway in which most intermediates are small and hydrophilic [START_REF] Kawamukai | Biosynthesis and Applications of Prenylquinones[END_REF] ) rather than to UQ and PQ pathways with early prenylation steps, and consequently large and hydrophobic intermediates.

Overall, the large diversity of combination of enzymes used to synthesize UQ in various environmental conditions (Table 1) leads us to refer to UQ biosynthesis pathways and not anymore to a single pathway, as already proposed by Degli Esposti [START_REF] Degli Esposti | A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria[END_REF] . We envision that even more UQ pathways will be revealed by systemic bioinformatic approaches aimed at studying the variations of UQ biosynthesis in the ever expanding diversity of bacterial genomes available. Let's mention here that the task faces several difficulties, one of which is that only some ubi genes tend to group into operonic structures whereas others are dispersed around the chromosome [START_REF] Aussel | Biosynthesis and Physiology of Coenzyme Q in Bacteria[END_REF] .

Table 1: Protein composition of the bacterial UQ biosynthetic pathways. green: proteins involved only in the O 2 -independent pathway; red: proteins involved only in the O 2 -dependent pathway, ?: suspected existence of unidentified alternative proteins

5) An evolutionary perspective on (ubi)quinone biosynthetic pathways

The rise of O2 concentrations on Earth caused a shift from globally reducing to oxidizing conditions around 2.4 billion years ago [START_REF] Fischer | How Did Life Survive Earth's Great Oxygenation?[END_REF] . This transition had far-reaching consequences, notably for quinones. Indeed, the low potential MK, which was present at the time of the great oxidation event, is readily oxidized by O 2 [START_REF] Schoepp-Cothenet | Menaquinone as Pool Quinone in a Purple Bacterium[END_REF] . Thus, it was proposed that microorganisms had to evolve higher potential quinones, like UQ and PQ, to sustain electron transport in bioenergetic chains operating under oxidizing conditions [START_REF] Schoepp-Cothenet | Menaquinone as Pool Quinone in a Purple Bacterium[END_REF] .

Step 

E. coli pathways Alternative proteins in other bacteria

This scenario is in line with the presence of O2-requiring steps, respectively three and one, in the biosynthetic pathways for UQ and PQ (Figure 3). However, our recent discovery of an O2-independent pathway for UQ production, widespread across proteobacterial lineages, suggests that UQ biosynthesis might have emerged in a less favorable O 2 context than previously thought [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . One way to tackle the question of the relative origins of the quinone pathways is to study the evolution of the involved enzymes provided homologs are shared between pathways. 

Evolution of the UQ and PQ pathways

It should be possible to address the relative appearance of the UQ and the PQ pathways since they share several homologs. Here, we consider only the cyanobacterial PQ pathway which consist of six reactions (Figure 3), as opposed to the pathway found in plants which is entirely different [START_REF] Nowicka | Cyanobacteria Use Both P-Hydroxybenozate and Homogentisate as a Precursor of Plastoquinone Head Group[END_REF] . In the cyanobacterium Synechocystis sp., the first three steps of PQ biosynthesis involve homologs to UbiC, UbiA, and UbiD -UbiX of the UQ pathway: respectively, the chorismate lyase Sll1797, the 4-HB prenyltransferase Slr0926, and the decarboxylase -flavin prenyltransferase Sll0936 -Slr1099 77,78 (Figure 3). The following hydroxylation and methylation steps are still to be experimentally validated, but candidates have been proposed (Slr1300 and Sll0418) based on their homology to UbiH and UbiG enzymes of the UQ pathway [START_REF] Sakuragi | Cyanobacterial Quinomics[END_REF] . Degli Esposti conducted a phylogenetic analysis of the UbiA, -C, -D, -H homologs and proposed that the UQ pathway derived from the PQ pathway and appeared twice independently in Alphaproteobacteria and in Zetaproteobacteria [START_REF] Degli Esposti | A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria[END_REF] . Yet the trees built in this study are missing outgroups to root the phylogenies and as such do not definitively address the question of the relative origins of the UQ and PQ pathways [START_REF] Degli Esposti | A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria[END_REF] .

Relationships between the UQ and the MK pathways

Two pathways are known for the biosynthesis of MK 9 : a fully characterized, long-known "classical MK pathway" and a still incomplete, more recently identified "futalosine pathway" [START_REF] Hiratsuka | An Alternative Menaquinone Biosynthetic Pathway Operating in Microorganisms[END_REF] . The classical MK pathway has only two steps related to the UQ pathway: the prenylation step catalyzed by the prenyltransferase MenA (homologous to UbiA) and the methylation of the aromatic ring catalyzed by the literally shared enzyme MenG/UbiE. The characterized mqnA-E genes are specific to the futalosine pathway [START_REF] Joshi | Novel Enzymology in Futalosine-Dependent Menaquinone Biosynthesis[END_REF] , but the still putative MqnP, MqnL, MqnM, and UbiE/MenG have homologs in the UQ pathway (UbiA, UbiD and UbiX, respectively) [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF][START_REF] Hiratsuka | An Alternative Menaquinone Biosynthetic Pathway Operating in Microorganisms[END_REF] . These later mqnP, -L, -M genes were found to strictly co-occur with mqnA-E in many bacterial genomes, which reinforces their potential to participate in the futalosine pathway [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] . In 2014, Zhi and colleagues observed that the futalosine pathway was found in more phyla of Bacteria and Archaea than the classical MK pathway [START_REF] Zhi | The Futalosine Pathway Played an Important Role in Menaquinone Biosynthesis during Early Prokaryote Evolution[END_REF] . Furthermore, phylogenies of MenB, -C, -F suggested that the classical MK pathway was acquired in Archaea, specifically in Halobacteriaceae, as a result of lateral gene transfers from bacteria. In contrast, phylogenies for the MqnA, -D, and -C enzymes (specific to the futalosine pathway) globally retrieved the delineation of major bacterial and archaeal lineages, suggesting a vertical inheritance of the futalosine pathway and an early emergence predating that of the classical pathway [START_REF] Zhi | The Futalosine Pathway Played an Important Role in Menaquinone Biosynthesis during Early Prokaryote Evolution[END_REF] .

In 2016, Ravcheev and Thiele built phylogenies for genes of the two MK, and the UQ pathways [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] . Their trees showed that homologs from the different pathways separated well (including those of the candidate MqnP, -L and -M, homologs of UQ enzymes). Interestingly, the only enzyme supposedly shared by the three pathways, the prenyltransferase UbiA/MenA/MqnP family, had a phylogeny displaying a dichotomy between the classical MK pathway on one side, and the futalosine and UQ pathways on another side [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] .

However, in the tree of the methyltransferase family (UbiE/MenG), candidate enzymes of the futalosine pathway positioned within those of the classical MK pathway, and apart from those of the UQ pathway.

The authors therefore suggested that the likely younger pathway of UQ evolved from parts of the two preexisting MK pathways, with some enzymes being more closely related to the futalosine pathway, and others to the classical pathway.

Future studies in the context of recent discoveries, including that of new pathways (e.g. the O2independent UQ pathway) or new taxonomic groups of Archaea and Bacteria 82 , are very likely to further enlighten the origins of quinones. Elucidating the evolutionary relationships of the quinone pathways is indeed important as it bears strong implications for understanding the evolution of bioenergetics and adaptation to extant oxidizing environments.

6) Conclusion and Perspectives

Recent results have significantly expanded our view of the biosynthesis of UQ in bacteria. Several functional homologs have now been identified at various steps (Table 1) and a pathway independent from O2 has been characterized [START_REF] Pelosi | Ubiquinone Biosynthesis over the Entire O2 Range: Characterization of a Conserved O2-Independent Pathway[END_REF] . The first proof of a supramolecular structuration of the E. coli O2-dependent UQ pathway was recently provided with the characterization of the Ubi complex [START_REF] Hajj Chehade | A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone[END_REF] . Whether such multiprotein complexes exist or not in other bacterial species and how they accommodate the variability of the constituting proteins (notably the hydroxylases) remains to be investigated. Understanding the regulation of the various UQ pathways and establishing their cellular localization will also be of interest.

Indeed, we may expect the UQ biosynthesis apparatus to localize close to active bioenergetic enzymes, and some of them adopt a specific localization, as recently observed for the fumarate dehydrogenase and nitrate reductase in respiring E. coli [START_REF] Bulot | Clustering as a Means To Control Nitrate Respiration Efficiency and Toxicity in Escherichia Coli[END_REF] . Whether the UQ pathways indeed originated from the MK pathways [START_REF] Ravcheev | Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis[END_REF] and how they evolved in the past 2 billion years is also a challenging and interesting question.

To obtain a satisfactory understanding of the composition, regulation and evolution of the UQ pathways across bacteria, it will certainly be fruitful to combine biochemical and bioinformatic approaches in order to extract information from the multiple genomes now available in public databases. Besides increasing our basic knowledge of UQ pathways, such studies will also benefit bioengineering projects aimed at increasing the production of UQ [START_REF] Lee | Cellular Factories for Coenzyme Q(10) Production[END_REF] or that of related natural products like antroquinonol, a molecule currently in clinical trials for non-small-cell lung cancer [START_REF] Chou | 4-Hydroxybenzoic Acid Serves as an Endogenous Ring Precursor for Antroquinonol Biosynthesis in Antrodia Cinnamomea[END_REF] . In addition, a better understanding of the UQ pathways may refine possible strategies to target them in order to develop novel antibiotics, and may also provide valuable information to help pinpoint the nature of the bacterial ancestor of mitochondria [START_REF] Roger | The Origin and Diversification of Mitochondria[END_REF] .
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 1 Figure 1: Chemical structures of common isoprenoid quinones. 62The polyprenyl chain of various lengths are in blue and the polar 63 head groups are in black. The molecules are represented in their 64 oxidized form. However, in this review, the abbreviations used 65 for quinones (UQ, RQ, MK, PQ) refer to the molecules 66 irrespective of their redox state, which will be specified in the 67 text, when necessary. 68
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 2 Figure 2: Model of UQ8 biosynthesis in E. coli and supramolecular organization of the pathway. The names of precursors and intermediates are indicated in blue and the molecules are represented in their reduced forms. The red dotted rectangle delimits the Ubi-complex, which is composed of UbiE to UbiK proteins and encompasses the last six reactions of the pathway. The numbering of the aromatic carbon atoms is shown on OPP. Abbreviations used are: 4-HB, 4-hydroxybenzoate; OHB, octaprenyl-4-hydroxybenzoate; OPP, octaprenyl phenol; DDMQ8, C2-demethyl-C6-demethoxy-ubiquinone 8; DMQ8, C6-demethoxy-ubiquinone 8; DMeQ8, 6-demethyl-ubiquinone 8; UQ8, ubiquinone 8. The 3D-structures of UbiC (PDB ID: 1G81), UbiI (PDB ID: 4K22), UbiD (PDB ID: 5M1B) and UbiG (PDB ID: 4KDR) correspond to the proteins from E. coli and the 3D-structures of UbiX (PDB ID: 4RHE) and UbiA (PDB ID: 4TQ5) correspond to the proteins from Pseudomonas aeruginosa and Archaeoglobus fulgidus, respectively. The UbiJ monomer is colored grey and the UbiK dimer is colored green in the model of the E. coli UbiK-UbiJ 2:1 heterotrimer complex 28 . The

Figure 3 :

 3 Figure 3: Homology between bacterial UQ-and cyanobacterial PQ-pathways. A) Biosynthetic pathway of UQ in Escherichia coli with enzymes specific of the O2-dependent and O2-independent pathways in red and green respectively. B) Biosynthetic pathway of PQ in the cyanobacterium Synechocystis sp. PCC 6803. Reactions 1-3 in the UQ pathway and 1'-3' in the PQ pathway are catalyzed by homologous enzymes. Proposed candidates for the PQ pathway (Slr1300? and Sll0418?) are homologous to UbiH and UbiG (see text). Enzymes with homologs in MK pathways are designated with (*).
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