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This paper deals with the stabilization of a coupled system composed by an infinite-dimensional system and an ODE. Moreover, the control, which appears in the dynamics of the ODE, is subject to a general class of nonlinearities. Such a situation may arise, for instance, when the actuator admits a dynamics. The openloop ODE is exponentially stable and the open-loop infinite-dimensional system is dissipative, i.e., the energy is nonincreasing, but its equilibrium point is not necessarily attractive. The feedback design is based on an extension of a finite-dimensional method, namely the forwarding method. We propose some sufficient conditions that imply the well-posedness and the global asymptotic stability of the closed-loop system. As illustration, we apply these results to a transport equation coupled with an ODE.

Introduction

This paper deals with the stabilization problem of systems in cascade, in which the first subsystem is an ordinary differential equation (ODE), and the second one is an infinitedimensional system. Another term to denote the structure under consideration is the feedforward-form, that has been studied deeply in the context of finite-dimensional systems, see, e.g., [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF].

There exist many systems in such a form. One interesting example is the PIcontroller case [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of pde systems[END_REF], where an additional finite-dimensional dynamic is added to achieve the regulation problem for an infinite-dimensional system. In our case, it is not added to obtain better performances: the finite-dimensional dynamics is imposed. It may represent, for instance, the dynamics of the actuator of the infinite-dimensional system to be controlled. Moreover, we suppose that our control is nonlinear. This situation may arise when considering saturating controllers [START_REF] Marx | Stability analysis of dissipative systems subject to nonlinear damping via Lyapunov techniques[END_REF][START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. Finally, another example of application of the considered class of systems in feedforward form is the case in which an infinite-dimensional internal-model based regulator is used to solve a robust output regulation problem for a finite-dimensional system [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF][START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF][START_REF] Paunonen | Stability and robust regulation of passive linear systems[END_REF][START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF][START_REF] Weiss | Repetitive control of MIMO systems using h∞ design[END_REF]. In this case, our proposed methodology can be employed to solve the stabilization problem.

Designing an explicit stabilizing feedback law in the infinite-dimensional context is not an easy task. To the best of our knowledge, very few is known nowadays. The backstepping method [START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF] has been proved to be applicable for many PDEs, even coupled PDE/ODE systems [START_REF] Auriol | Delay-robust stabilization of a hyperbolic PDE-ODE system[END_REF][START_REF] Tang | Stabilization for a coupled PDE-ODE control system[END_REF]. Note, however, that the method applies only on linear PDEs. It does not allow to stabilize globally nonlinear PDEs, but only locally around the desired equilibrium [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF][START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF]. Moreover, the backstepping method gives raise to a kernel function representing the gain of the feedback law and which solves itself a PDE that might be difficult in some cases to compute numerically. It is also worthy mentionning the construction of Lyapunov functionals with Legendre polynomials for coupled PDE/ODE systems, which leads to a hierarchy of Linear Matrix Inequalities (LMIs), and that has been applied on many systems such as the transport/ODE system [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF], the wave/ODE system [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF] or the heat/ODE system [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF]. Note however that the Legendre method has been only applied on linear systems in 1D.

In the semigroup theory (see, e.g., [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] for an introduction to the linear theory and [START_REF] Miyadera | Nonlinear semigroups[END_REF] for the nonlinear one), there exists also some design method for the stabilization of linear systems, but it is difficult most of the time to obtain explicit gains for the feedback law. Let us mention the method provided in [START_REF] Urquiza | Rapid exponential feedback stabilization with unbounded control operators[END_REF], which allows to achieve rapid stabilization of the closed-loop system and which relies on the Grammian operator. This method has been applied on the linear Korteweg-de Vries (KdV) equation [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF]. For coupled systems, it is also worthy mentionning some researchs related to the ouput regulation [START_REF] Paunonen | Stability and robust regulation of passive linear systems[END_REF][START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF], where some coupled systems arise when adding the dynamics, or even [START_REF] Feng | Actuator dynamics compensation in stabilization of abstract linear systems[END_REF], which deals with similar systems that the one we are facing with, but where the actuator dynamics is linear.

It is important then to emphasize on the fact that, in this paper, we aim at proposing a design methods to stabilize globally coupled systems admitting a class of input nonlinearities. A typical example of such a nonlinearity is the saturation, but we consider a larger class of nonlinearity, namely cone-bounded nonlinearities, as in [START_REF] Marx | Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces[END_REF]. Note that very few is known about methods for the stabilization of nonlinear PDEs, but let us mention [START_REF] Marx | Global stabilization of a Korteweg-de Vries equation with a saturating distributed control[END_REF], which deals with the stabilization of a nonlinear KdV subject to a saturation, [START_REF] Chitour | L p -asymptotic stability analysis of a 1d wave equation with a nonlinear damping[END_REF][START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF], which addresses the stabilization problem of some wave equations with saturated controller; or [START_REF] Marx | Stability analysis of dissipative systems subject to nonlinear damping via Lyapunov techniques[END_REF][START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], which builds Lyapunov functionals for abstract systems. However, these papers do not deal with coupled systems. Let us however mention [START_REF] Daafouz | Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line[END_REF], where a coupled PDE/ODE system is considered with a saturated input.

As mentionned earlier, our method is nonlinear. It is based on the so-called forwarding method, which has been first introduced in the finite-dimensional context [START_REF] Benachour | Forwarding design with prescribed local behavior[END_REF][START_REF] Kaliora | On the stabilization of feedforward systems with bounded control[END_REF][START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF], and it applies on cascade systems, with particular stability properties: the first subsystem needs to be globally stabilizable at the origin, while the second one is dissipative. The forwarding method has been applied in other contexts than the stabilization one, such as in the design of integral-based controllers [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF]. To the best of our knowledge, this method has been extended in an infinite-dimensional setting only in [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of pde systems[END_REF], but, as mentioned earlier, the context is different.

The forwarding method that we use gives raise to a gain which is a solution to an infinite-dimensional version of the well-known Sylvester equation. We show in this paper that this gain is not difficult to obtain in some simple cases, since it can be obtained as the solution of some well-know boundary value problems. Our method needs some approximate observability condition to apply the LaSalle's Invariance principle. This condition might seem difficult to check in general, but we also provide a sufficient condition for having such a property provided that the infinite-dimensional system under consideration is conservative (but not attractive at the origin). This condition is known in the output-regulation context as a nonresonance condition see, e.g., [START_REF] Isidori | Robust autonomous guidance: an internal model approach[END_REF]Chapter 1.4]). Let us however mention that we are not able to impose a decay rate for the trajectory of the closed-loop system, in contrast with the backstepping method.

The paper is organized as follows. In Section 2, we introduce the system under consideration together with the functional setting which will be used all along the paper. In Section 3, we explain the forwarding approach and introduce the infinitedimensional version of the Sylvester equation. In Section 4, we state and prove the well-posedness of the closed-loop system by using some nonlinear semigroup theory results. In Section 5, we state and prove the global asymptotic stability result. Section 6 provides and proves a sufficient condition for the approximate observability in infinite for our system in cascade. Finally, Section 7 collects some further research lines to be followed.

Notation: Set R + = [0, ∞). We denote by | • | the Euclidean norm and by • the induced matrix norm. Given two Hilbert spaces H 1 and H 2 , the space L(H 1 , H 2 ) denotes the space of functions bounded from H 1 to H 2 , and L(H 1 ) = L(H 1 , H 1 ). Given N ∈ N, for a function w : (t, x) ∈ R + × [0, 1] → w(t, x) ∈ R N , the notation w t (resp. w x ) denotes the partial derivative of w with respect to the variable t (resp. with respect to the variable x). We keep this notation both for the weak and the strong definition of partial derivatives.

Problem Statement

Let H be a Hilbert space equipped with a scalar product •, • H and the corresponding norm • H . In this paper we are interested in the stabilization (at the origin) problem for systems that can be described as a cascade of two systems reading as follows

           d dt z = Az + Bσ(u), y = Cz, d dt w = Sw + Γ y, z(0) = z 0 , w(0) = w 0 , (1) 
where In the following, we use the state space X := R n × H equipped with the norm defined by (z, w) X = |z| + w H . We also consider the following set of assumptions, on which our results rely.

A ∈ R n×n , B ∈ R m×n , C ∈ R n×p , u ∈ R m is

Assumption 1

The following statements hold.

(i) The operator S : D(S) ⊆ H → H generates a strongly continuous semigroup of contractions, that is denoted by (T(t)) t≥0 . (ii) The matrix A is Hurwitz. (iii) The spectra of S and A are disjoint and nonempty.

In system (1), the state component z lives in R n , while w is a (possibly infinitedimensional) state living in the Hilbert space H. System (1) can be viewed as an infinite-dimensional control system in which the z-dynamics represent the actuator's dynamics. This class of systems may arise also in output regulation and repetitive control problems (see, e.g., [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF][START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF][START_REF] Weiss | Repetitive control of MIMO systems using h∞ design[END_REF]): in these cases, the w-dynamics represents the state of a dynamical feedback which is used to achieve a desired control goal for the controlled finite-dimensional z-subsystem.

Definition 1 (Cone-bounded nonlinearity)

A continuous function σ : R m → R m is said to be a cone-bounded nonlinearity if it satisfies the following properties.

1. For all s ∈ R m , σ(s) = 0 if and only if s = 0.

It is monotone1, which means that, for every

s 1 , s 2 ∈ R m (σ(s 1 ) -σ(s 2 )) (s 1 -s 2 ) ≥ 0.
(2)

3. It is linearly bounded, that is: there exists a positive constant L such that, for all

s ∈ R m |σ(s)| ≤ L|s|. (3) 
The following examples are borrowed from [START_REF] Marx | Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces[END_REF].

Example 1 (Examples of cone-bounded nonlinearities)

1. Any linear mapping σ(s) = µs, where µ is a positive constant, is a cone-bounded nonlinearity. 2. The so-called saturation function for s ∈ R:

sat ū(s) :=      -ū if s ≤ -ū, s if |s| ≤ ū, ū if s ≥ ū, ∀s ∈ R ( 4 
)
where ū is a positive constant, is a cone-bounded nonlinearity. By using (4), we can also define a saturation function when s ∈ R m as follows:

sat U (s) :=    sat ū1 (s 1 ) . . . sat ūm (s m )    , ∀ s := (s 1 , . . . , s m ) ∈ R m (5)
where U := (ū 1 , . . . , ūm ) is a vector of positive constants ūi > 0, for all i = 1, . . . , m. The saturation function ( 5) is still a cone-bounded nonlinearity.

The function

σ(s) : s ∈ R → sat ū(ϕ(s)), (6) 
where ū > 1 and ϕ is defined as follows

ϕ(s) :=      -|s| -1 -1 if s < -1, s if |s| ≤ 1, √ s -1 + 1 if s > 1 (7) 
is also a cone-bounded nonlinearity, but it is not globally nor locally Lipschitz, because of the square root function in its definition.

Remark 1 (About A Hurwitz) It is well-known that in presence of input nonlinearities, global stabilization of the origin of a finite-dimensional system of the form

d dt z = Az + Bσ(u)
is not possible without any restrictive condition on the spectrum of A and the stabilizability property of the pair (A, B). For instance, if σ is a saturation function, a necessary condition is that the eigenvalues of A must not have positive real parts [36, Chapter 1.6.2.1, Theorem 1.2]. In our context, due to the presence of the infinite-dimensional properties of system (1), we suppose a slightly more stringent condition in Assumption 1-(ii), that is, A Hurwitz. An extra condition on B will be required later on, in Theorem 2. Note, however, that, in absence of input nonlinearity, that is, σ(u) = u, Assumption 1-(ii) can be replaced by supposing the pair (A, B) to be stabilizable.

We provide now an example of a transport equation coupled with an ODE which corresponds to our functional setting. Such an example will be also used in the following sections as an illustration of the proposed design.

Example 2 (Transport equations coupled with an ODE) Consider

           ż(t) = Az(t) + Bσ(u(t)), t ∈ R + w t (t, x) + Λw x (t, x) = 0, (t, x) ∈ R + × [0, 1] w + (t, 0) = D 0 w -(t, 0), t ∈ R + , w -(t, 1) = D 1 w + (t, 1) + Cz(t), t ∈ R + z(0) = z 0 , w(0, x) = w 0 (x), x ∈ [0, 1], (8) 
where The state space is chosen to be

Λ = diag(λ 1 , . . . , λ N ) is such that λ i > 0 (resp. λ i < 0),
X := R n × H, H = L 2 (0, 1; R N ).
The operator S is given by Sw := -Λw with domain D(S)

:= {w ∈ H 1 (0, 1; R N ) | w + (0) = D 0 w -(0), w -(1) = D 1 w + (1)
}, and the operator Γ is the delta function at x = 1 in L(R p , H -1 ), i.e., v, Γ y D(S * ),H-1 = v(1)y for all y ∈ R p and v ∈ D(S * ) where •, • D(S * ),H-1 is the dual product. Now, under some assumptions on the matrices D 0 and D 1 to be given later on, let us prove that Asssumption 1 (i) is satisfied. First, by [32, Theorem 3.1.], the operator S generates a strongly continuous semigroup (for all D 0 and D 1 ). Then, S is dissipative if and only if S generates a strongly continuous semigroup of contractions. To do so, let us introduce the following real inner product on H: for all w 1 , w 2 ∈ H,

w 1 , w 2 H := 1 0 w 1 (x) Λw 2 (x)dx, Λ := diag 1 |λ 1 | , . . . , 1 |λ N | .
Showing that S is dissipative reduces to prove that Sw, w H ≤ 0. We have

Sw, w H = - 1 0 (w + ) (x) w + (x)dx + 1 0 (w -) (x) w -(x)dx,
One deduces by integration by parts that

Sw, w H = 1 2 w -(0) D 0 D 0 w -(0) -w -(0) w -(0) + 1 2 w + (1) D 1 D 1 w + (1) -w + (1) w + (1) .
Hence, if matrices D 0 and D 1 satisfy D 0 D 0 -I M 0 and D 1 D 1 -I N -M 0, one can deduce that S is dissipative. Conversely, if these matrix inequalities are not satisfied, one can pick w -(0) and w + (1) such that Sw, w H ≥ 0, hence S does not generate a strongly continuous semigroup of contractions.

Our objective in this paper is to propose a design procedure to stabilize [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]. We follow a forwarding strategy, that has been applied in the finite-dimensional context in many situations [START_REF] Mazenc | Adding integrations, saturated controls, and stabilization for feedforward systems[END_REF], and that has been extended recently to some infinite-dimensional systems in a different context [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of pde systems[END_REF].

The Forwarding Approach

Inspired by the forwarding strategy and in particular by the change of coordinate approach proposed in [25, Section IV], we look for an operator M :

R n → H -1 satisfying SM -M A = -Γ C, (9) 
where S is understood as the extension of the operator S in H -1 . Since the spectra of A and S are disjoint (see Assumption 1 (iii)), we conclude that there exists a unique M : R n → H -1 solution of ( 9), see [ 

∈ R n SM z -M Az -µM z + M zµ = -Γ Cz.
By a simple computation, one can prove that, for all z ∈ R n ,

M z = (µI H -S) -1 M (µI n -A)z + (µI H -S) -1 Γ Cz. (10) 
Since (µI H -S) -1 ∈ L(H -1 , H), one can deduce from the above expression that M z ∈ H for all z ∈ R n .

Example 3 (Sylvester equation for (8)) In Example 2, the Sylvester equation ( 9) can be rewritten as follows:

   -ΛM (x) -M (x)A = 0, x ∈ [0, 1] M + (0) = D 0 M -(0) M -(1) = D 1 M + (1) + C
The solution M : [0, 1] → R N ×m to this two-boundary value problem can be computed explicitly using some vectorization operators. Consider the case of the one-dimensional transport equation driven by a scalar ODE:

       ż = -az + σ(u), t ∈ R + w t (t, x) + λw x (t, x) = 0, (t, x) ∈ R + × [0, 1] w(t, 0) = w(t, 1) + cz, t ∈ R + z(0) = z 0 , w(0, x) = w 0 (x), x ∈ [0, 1], (11) 
with a, c and λ three positive constants. System [START_REF] Cheverry | Handbook of Spectral Theory[END_REF] can be seen as a subcase of (8) with N = 2 and n = m = p = 1.

Indeed, taking λ = 2λ 1 = -2λ 2 , D 0 = D 1 = 1, A = -a, B = 1, C = c and w 0 (x) = w + 0 (2x) if x < 1 2 , w - 0 (2(1 -x)) if x > 1 2 ,
any (z, (w + , w -)) satisfies ( 8) if and only if (z, w) is a solution of [START_REF] Cheverry | Handbook of Spectral Theory[END_REF], where

w(t, x) = w + (t, 2x) if x < 1 2 , w -(t, 2(1 -x)) if x > 1 2 .
Then M is the unique solution of

λM (x) = aM (x), x ∈ [0, 1] M (0) = M (1) + c, (12) 
i.e., for all x ∈ [0, 1],

M (x) = c 1 -exp a λ exp a λ x ,
Now go back to the general case [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF].The fact that A is Hurwitz implies that there exists a symmetric positive definite matrix P satisfying

P A + A P = -I R n . (13) 
We denote by p min > 0 (resp. p max > 0) its smallest (resp. largest) eigenvalue. Following the forwarding approach, let us first introduce the following candidate Lyapunov functional

V (z, w) := z P z + w -M z 2 H , ( 14 
)
where M is the operator previously defined in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF]. Then V induces a scalar product on X defined by

z 1 w 1 , z 2 w 2 V := z 1 P z 2 + w 1 -M z 1 , w 2 -M z 2 H . (15) 
The norm induced by V , denoted in the following by • V , is equivalent to • X . Indeed, for all (z, w) ∈ X, we have:

V (z, w) = z P z + w 2 H + M z 2 H -2 w, M z ≤ p max |z| 2 + 2( w 2 H + M z 2 H ) ≤ max 2, p max + 2 M 2 L(R n ,H) (z, w) 2 X and V (z, w) = z P z + w 2 H + M z 2 H -2 w, M z ≥ p min |z| 2 + (1 -ε) w 2 H + 1 - 1 ε M z 2 H ≥ p min + 1 - 1 ε M 2 L(R n ,H) |z| 2 + (1 -ε) w 2 H ≥ min p min 2 , p min p min + 2 M 2 L(R n ,H) (z, w) 2 X by choosing ε = 2 M 2 L(R n ,H) p min + 2 M 2 L(R n ,H) .
Let (z, w) be a sufficiently regular solution to (1), i.e., (z, w) ∈ D(A), where

D(A) := {(z, w) ∈ X | Sw + Γ Cz ∈ H}. (16) 
Since (T(t)) t≥0 is a strongly continuous semigroup of contractions, S is a dissipative operator. Then,

d dt V (z, w) = 2z P (Az + Bσ(u)) + Sw -M Az + Γ Cz, w -M z H + w -M z, Sw -M Az + Γ Cz H -M Bσ(u), w -M z H -w -M z, M Bσ(u) H , = -z z + 2z P Bσ(u)
(by ( 9) and ( 13))

+ Sw -SM z, w -M z H + w -M z, Sw -SM z H -M Bσ(u), w -M z H -w -M z, M Bσ(u) H , ≤ -z z + 2z P Bσ(u) (since S is dissipative) -M Bσ(u), w -M z H -w -M z, M Bσ(u) H , ≤ -z z + 2 z P -(M * (w -M z)) Bσ(u). (17) 
Hence, a natural candidate control u is:

u = -B [P z -M * (w -M z)] (18) 
yielding d dt V (z, w) ≤ -z z -2u σ(u) ≤ 0.
The previous inequality being not strict, i.e., we don't have any negative term in (z, w) X , we cannot conclude any attractivity result without a more precise analysis.

This will be done in Section 5. The closed-loop system (1)- [START_REF] Kaliora | On the stabilization of feedforward systems with bounded control[END_REF] given by

           d dt z = Az + Bσ -B (P z -M * (w -M z)) , d dt w = Sw + Γ Cz, z(0) = z 0 , w(0) = w 0 , (19) 
can be rewritten as

   d dt ζ = A(ζ), ζ(0) = ζ 0 , (20) 
where ζ = z w and

A(ζ) = Az + Bσ -B (P z -M * (w -M z)) Sw + Γ Cz .
The domain of A is D(A) (given in ( 16)) equipped with the graph norm. In the next section, we first study the existence and uniqueness of solutions of [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF].

Example 4 (Control design for (11)) For system [START_REF] Cheverry | Handbook of Spectral Theory[END_REF], the control law ( 18) can be explicitly design by using the function M defined in [START_REF] Chitour | L p -asymptotic stability analysis of a 1d wave equation with a nonlinear damping[END_REF]. In particular, in this case, M * is given by M * : L 2 (0, 1) w → 1 0 M (x)w(x)dx ∈ R. Hence, the feedback (18) reads, for all t ≥ 0

u(t) = - 1 2a z + 1 0 M (x)[w(t, x) -M (x)z]dx.
See also [START_REF] Marx | Forwarding design for stabilization of a coupled transport equation/ode with a cone-bounded input nonlinearity[END_REF].

Remark 2 (Nonlinear design and small control) Note that the feedback law ( 18) can be also modified in

u = ψ -B P z -M * (w -M z) ,
with ψ being any desired function so that the composition σ •ψ is still a cone-bounded function satisfying Definition 1. Indeed, the resulting closed-loop system would still read as [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF] and all the forthcoming results apply. For instance, if u takes value in R, it suffices to select ψ as any cone-bounded function satisfying Definition 1. Recall indeed that the composition of two monotonic functions f, g : R n → R, is still a monotonic function. The other two properties in Definition 1 are trivially verified. Such a choice can be of particular interest for the design of saturated feedback laws with small magnitude (that is, small energy), see, e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. Indeed, by selecting ψ as a saturation function of the form (5), it turns out that the saturation level Ū can be chosen arbitrarily small to reduce the efforts on the actuators (although, as a drawback, this may also sensitively reduce the converge rate). Such a feature, highly desirable from a practical point of view, is a typical feature of forwarding approach for finite-dimensional systems (see, e.g., [START_REF] Kaliora | On the stabilization of feedforward systems with bounded control[END_REF]) which is still preserved in our context, and that is very hard to retain when considering pole-placement techniques (e.g., [START_REF] Feng | Actuator dynamics compensation in stabilization of abstract linear systems[END_REF][START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF]) or backstepping design (see, e.g., [START_REF] Auriol | Delay-robust stabilization of a hyperbolic PDE-ODE system[END_REF][START_REF] Krstic | Boundary Control of PDEs: A Course on Backstepping Designs[END_REF][START_REF] Tang | Stabilization for a coupled PDE-ODE control system[END_REF]) in the infinite-dimensional framework.

Well-posedness Result

We are now in position to state our first result, which deals with the well-posedness of system [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF].

Theorem 1 (Well-posedness and Lyapunov stability of ( 19)) Suppose Assumption 1 is satisfied. Then, the following statements hold.

1. For every initial conditions (z 0 , w 0 ) ∈ X, there exists a unique weak solution (z, w) ∈ C 0 (R + ; X) to [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF]. Moreover, for all t ≥ 0,

(z(t), w(t)) V ≤ (z 0 , w 0 ) V . ( 21 
)
2. For every initial conditions (z 0 , w 0 ) ∈ D(A), there exists a unique strong solution [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF]. Moreover, for all t ≥ 0,

(z, w) ∈ C 1 (R + ; X) ∩ C 0 (R + ; D(A)) to
(z(t), w(t)) 2 V + A(z(t), w(t)) 2 V ≤ (z 0 , w 0 ) 2 V + A(z 0 , w 0 ) 2 V . ( 22 
)
If one proves that the operator A defined in ( 20) is a m-dissipative operator on (X, • X ), according to the definition below, one can apply the result provided by [START_REF] Miyadera | Nonlinear semigroups[END_REF]Corollary 3.7,Theorem 4.20], and conclude that the statements of Theorem 1 hold.

Definition 2 (m-dissipative operators) An operator

A : D(A) ⊂ X → X is said to be m-dissipative if and only if • The operator A is dissipative, i.e. A(ζ 1 ) -A(ζ 2 ), ζ 1 -ζ 2 V ≤ 0, ∀ζ 1 , ζ 2 ∈ D(A). (23) 
• The operator A is maximal, i.e. there exists λ 0 > 0 such that (equivalently, for all

λ 0 > 0) Ran(λ 0 I X -A) = X, ( 24 
)
where I X is the identity operator over the Hilbert space X, and Ran is the range operator.

Proof (Theorem 1) The proof of Theorem 1 relies on the so-called semigroup theory (see, e.g., [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] or [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] for an introduction to this theory in the linear case, and [START_REF] Miyadera | Nonlinear semigroups[END_REF] in the nonlinear case). The proof is divided in two steps: we first prove that A is dissipative and second that A is maximal. First step: A is dissipative. To prove this result, we use the scalar product introduced in [START_REF] Daafouz | Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line[END_REF], that is equivalent to the standard scalar product used for X. Let

ζ 1 = z 1 w 1 and ζ 2 := z 2 w 2 be in D(A). We introduce z = z 1 -z 2 and w = w 1 -w 2 , u i = -B (P z i -M * (w i -M z i )). Since (z, w) ∈ D(A) and because S w + Γ C z ∈ H, one can compute A(ζ 1 ) - A(ζ 2 ), ζ 1 -ζ 2 V . We obtain: A(ζ 1 ) -A(ζ 2 ), ζ 1 -ζ 2 V (25) = z A P z + (σ(u 1 ) -σ(u 2 )) B P z + S w -(M A -Γ C)z -M B(σ(u 1 ) -σ(u 2 )), w -M z H = - 1 2 |z| 2 + (σ(u 1 ) -σ(u 2 
)) B P z (by ( 9))

+ S( w -M z) -M B(σ(u 1 ) -σ(u 2 )), w -M z H ≤ - 1 2 |z| 2 + (σ(u 1 ) -σ(u 2 )) B P z (S is dissipative) -(σ(u 1 ) -σ(u 2 )) B M * ( w -M z) - 1 2 |z| 2 -(σ(u 1 ) -σ(u 2 )) (u 1 -u 2 ) ≤ 0. ( 26 
)
where in the last step we used the monotony of σ given in [START_REF] Astolfi | Integral action in output feedback for multi-input multi-output nonlinear systems[END_REF]. Thus A is a dissipative operator, concluding the first step of the proof.

Second step:

A is a maximal operator. Proving that A is maximal reduces to show that, given a positive constant λ, for all ζ ∈ X, there exists ζ ∈ D(A) such that

(λI X -A) ζ = ζ. (27) 
The constant λ will be selected later on. Let (z, w) ∈ X. We seek (z, w)

∈ D(A) such that λz -Az -Bσ B (-P z + M * ( w -M z) = z λ w -S w -Γ C z = w. ( 28 
)
Since S is a dissipative operator, the real parts of its eigenvalues are non-positive, and thus any positive constant λ is in the resolvent of S. Then, the operator (λI H -S) is invertible. We have w = (λI

H -S) -1 [w + Γ C z]. (29) 
We can therefore rewrite the first line of (28) as an equation depending only on z and the given data w and z.

λz

-Az -Bσ B (-P z + M * ((λI H -S) -1 [w + Γ C z] -M z)) = z. ( 30 
)
Since A is Hurwitz, one may rewrite the latter equation as follows

z = (λI n -A) -1 Bσ B (-P z + M * ((I H -S) -1 [w + Γ C z] -M z)) + z . (31) 
We prove that there exists a solution to this equation by using a fixed-point strategy. Let us define the operator

F : R n → R n z → F (z), (32) 
where F is defined by

F (z) := (λI n -A) -1 z+ Bσ B (-P z + M * ((λI H -S) -1 [w + Γ C z] -M z)) = (λI n -A) -1 z+ Bσ B -P z + M * [(λI H -S) -1 (w -M (λI n -A)z)] ,
by [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF].

Our aim is to prove that this operator admits at least one fixed-point, which will prove that there exists a solution to [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF]. To this end, we apply the Schauder fixed-point theorem [START_REF] Coron | Control and Nonlinearity[END_REF]Theorem B.19].

Consider the ball B R ⊂ X centered at 0 of radius R > 0. If for every z ∈ B R , we succeed to prove that F (z) ∈ B R , then the Schauder fixed-point theorem applies (since B R is convex and compact), and the proof is achieved. We have

|F (z)| ≤ (λI n -A) -1 L B 2 P + M * (λI H -S) -1 M (λI n -A) |z| + (λI n -A) -1 L B 2 |M * (λI H -S) -1 w| + (λI n -A) -1 |z|. (33) 
Now choose λ sufficiently large to apply the Schauder fixed-point theorem.

If λ > A , then (λI n -A) -1 ≤ 1 λ-A (see, e.g., [38, Lemma 2.2.6]). Hence (λI n - A) -1 → 0 as λ → +∞. Moreover, (λI H -S) -1 M (λI n -A) remains bounded. Indeed, (λI n -A) ≤ λ + A and (λI H -S) -1 ≤ m λ-ω by [38, Corollary 2.3.3] 
for some positive constants m, ω and all λ > ω. We can therefore select λ sufficiently large such that

(λI n -A) -1 L B 2 P + M * (λI H -S) -1 M (λI n -A) ≤ 1 2 
Then, if one selects R satisfying

(λI n -A) -1 L B 2 |M * (λI H -S) -1 w| + (λI n -A) -1 |z| ≤ R 2 we obtain |F (z)| ≤ R.
Applying Schauder fixed-point theorem [START_REF] Coron | Control and Nonlinearity[END_REF]Theorem B.19.], the operator F admits a fixed-point, which implies that the operator A is maximal. Since A is dissipative and maximal, we obtain that A is m-dissipative, which concludes the proof of Theorem 1.

Global Asymptotic Stability Result

To prove the global asymptotic stability of the origin of ( 19), we will invoke an infinite-dimensional version of the LaSalle's Invariance Principle [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 3.1.].

But such a result is not sufficient to deduce the global asymptotic stability of the closedloop system. As in the finite-dimensional context, we need an observability condition for [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF]. To this end, we recall below the definition of infinite-time approximate observability given in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]Definition 6.5.1.]. Definition 3 (Infinite-time approximate observability) Let H and Y be two real Hilbert spaces, S : D(S) ⊂ H → H be the generator of a strongly continuous semigroup (T(t)) t≥0 and C ∈ L(X, Y ). Let ψ ∈ L(D(S), L 2 ([0, ∞); Y )) be defined by Then, the origin of ( 19) is globally asymptotically stable in X, that is, for every initial condition (z 0 , w 0 ) ∈ X, the origin is Lyapunov stable and lim t→+∞ (z(t), w(t)) X = 0.

(ψζ 0 )(t) = CT(t)ζ 0 , ∀ζ 0 ∈ D(S) (34 

Remark 3 (Compact resolvent)

According to [START_REF] Cheverry | Handbook of Spectral Theory[END_REF]Proposition 4.24], it is worthy mentionning that there is an equivalence between the compactness of the resolvent and the precompactness of the positive orbit, a property required to apply LaSalle's Invariance Principle [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 3].

Remark 4

According to [14, Theorem 4.1.5], since S is unbounded and B M * takes values in a finite-dimensional space, the pair (S, B M * ) cannot be exactly observable. For this reason, we rely on an approximate observability hypothesis.

Remark 5 Checking whether (v) holds might be difficult in practice, except in some simple cases, as the one provided in Example 5. Unfortunately, this condition introduces the operator M , defined in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and which does not depend directly on the data of the initial problem given in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]. Nevertheless, in the case where S is skew-adjoint with compact resolvent, we provide a necessary condition which does not depend on M , see below in Proposition 1.

Example 5 (Checking (v) for [START_REF] Cheverry | Handbook of Spectral Theory[END_REF]) We aim at proving that property (v) holds for the system [START_REF] Cheverry | Handbook of Spectral Theory[END_REF] introduced in Example 3. Let ζ 0 = (z 0 , w 0 ) ∈ Ker ψ where ψ is given by ( 34) and C = B M * . In this case, M * is given by M * : L 2 (0, 1)

w → 1 0 M (x)w(x)dx ∈ R. Recalling that B = 1, the equation B M * T(t)w 0 (x) = 0 for all t ≥ 0 reduces to 1 0 M (x)w(t, x)dx = 0, ( 35 
)
where w is the solution to

   w t + λw x = 0, (t, x) ∈ R + × [0, 1], w(t, 0) = w(t, 1), t ∈ R + w(0, x) = w 0 (x), x ∈ [0, 1]. (36) 
Using [START_REF] Chitour | L p -asymptotic stability analysis of a 1d wave equation with a nonlinear damping[END_REF], one obtains therefore

1 0 M (x)w(t, x)dx = λ a 1 0 M (x)w(t, x)dx. (37) 
Performing an integration by parts leads to λ a

1 0 M (x)w(t, x)dx = λ a [M (1)w(t, 1) -M (0)w(t, 0)] - 1 0 M (x)w x (t, x)dx .
By noting that (35) implies 1 0 M (x)w t (t, x)dx = 0, we obtain

1 0 M (x)w x (t, x)dx = 0.
Using the boundary conditions of ( 36) and ( 12), one can deduce that w(t, 1) = 0. Then, following the proof of [START_REF] Marx | Forwarding design for stabilization of a coupled transport equation/ode with a cone-bounded input nonlinearity[END_REF]Theorem 2], one can prove that w(t, x) = 0, which shows that (v) holds for [START_REF] Cheverry | Handbook of Spectral Theory[END_REF]. Moreover, from standard Sobolev injections results, the canonical embedding from D(S) into H is compact, i.e., S has compact resolvent. Then, Theorem 2 applies, and (0, 0) in R n × H is globally asymptotically stable in the R n × H-topology.

Proof (Theorem 2)

We prove the statement of the theorem for initial conditions (z 0 , w 0 ) in D(A). The result follows for all initial conditions in X by a standard density argument (see e.g. [21, Lemma 1])). Consider the Lyapunov function defined in [START_REF] Curtain | An Introduction to Infinite-Dimensional Systems Theory[END_REF]. Denoting u = -B (P z -M * (w -M z)), and performing the same computations than in [START_REF] Isidori | Robust autonomous guidance: an internal model approach[END_REF], with the control defined in [START_REF] Kaliora | On the stabilization of feedforward systems with bounded control[END_REF], one therefore obtains

dV dt (z, w) ≤ -z z -2u σ(u) (38) 
for every (z 0 , w 0 ) ∈ D(A). Then, for all t ≥ 0,

V (z(t), w(t)) -V (z 0 , w 0 ) ≤ - t 0 z(s) z(s)ds -2 t 0 u(s) σ(u(s))ds. ( 39 
)
This implies that

∞ 0 z(s) z(s)ds < +∞, ∞ 0 u(s) σ(u(s))ds < +∞. (40) 
Since the trajectories of ( 19) are bounded in D(A) (20), and σ is linearly bounded, then z and

s → z(s) P -M * (w(s) -M z(s)) Bσ B [P z(s) -M * (w(s) -M z(s))]
are also linearly bounded. Hence, applying Barbalat's Lemma and using Definition 1, we have

lim t→+∞ z(t) = 0, lim t→+∞ B M * w(s) = 0. (41) 
Let ω(z 0 , w 0 ) be the ω-limit set of the initial condition (z 0 , w 0 ) ∈ D(A), that is, is the set of all (z , w ) ∈ D(A) such that there exists an increasing sequence of time (t n ) n≥0 such that z(t n ) → z and w(t n ) → w in H as n goes to infinity. Since A is a m-dissipative operator, the trajectory (z, w) is bounded in D(A). The injection of D(A) in X being compact, if ω(z 0 , w 0 ) = {(0, 0)}, then (z, w) converges to the origin in the X-topology. Since (z, w) is bounded in time and since the injection of D(A) in X is compact, the positive orbit {(z(t), w(t)) | t ≥ 0} is precompact in X. Therefore, according to the LaSalle's Invariance Principle for infinite-dimensional systems [34, Theorem 3.1.], ω(z 0 , w 0 ) is a non-empty compact set of X that is invariant to the flow of [START_REF] Kang | Boundary constrained control of delayed nonlinear Schrodinger equation[END_REF]. Hence, for any initial condition (z 0 , w 0 ) ∈ ω(z 0 , w 0 ), the corresponding solution (z , w

) ∈ C 1 ((0, ∞); X) × C 0 ((0, ∞); D(A)) of (19) satisfies          d dt w = Sw w (0) = w 0 B M * w = 0, z = 0 (42) 
Since the pair (S, B M * ) is approximately observable in infinite-time, this implies that w 0 = 0. Therefore, ω(z 0 , w 0 ) = {(0, 0)}, which means that (z, w) converges to (0, 0) in the X-topology. Moreover, according to Theorem 1, (0, 0) is Lyapunov stable in the X-topology. Thus, (0, 0) is globally asymptotically stable, which concludes the proof of Theorem 2.

Observability Result for Skew-Adjoint Operators

As mentioned earlier in Remark 5, we state now some sufficient conditions to verify the observability requirement of item (v) in Theorem 2. We focus on the case in which S is a skew-adjoint operator.

Proposition 1 Suppose that, in addition to Assumption 1, the following properties hold:

(vi) The operator S is skew-adjoint and has compact resolvent; (vii) The pair (S * , Γ * ) is approximately observable in infinite-time;

(viii) For all eigenvalue µ of S,

rank A -µI n B C 0 = n + p. ( 43 
)
Then, the pair (S, B M * ) is approximately observable in infinite-time.

Remark 6 (About item (iii).) Note that with item (ii), i.e. A Hurwitz, and (vi), i.e. S skew-adjoint, item (iii), i.e. the spectra of A is S are disjoint and nonempty, is trivially satisfied.

Proof (Proposition 1) Pick ϕ ∈ D(S) an eigenvector of S and denote -µ its corresponding eigenvalue. In order to apply [38, Proposition 6.9.1], let us assume that B M * ϕ = 0 and look for a contradiction. Suppose that ϕ = 0. Since S is skew-adjoint, ϕ is also an eigenvector of S * , with corresponding eigenvalue µ. Then, according to ( 9 Example 6 (The property (v) for (8)) Consider again system (8) introduced in Example 2. By some standard Sobolev injection theorems, it is easy to prove that the canonical embedding from D(S) to H is compact, i.e., S has compact resolvent. Therefore, item (iv) is satisfied. Moreover, assume that M = N 2 and D 0 and D 1 are orthogonal, which ensures that the corresponding operator S is skew-adjoint, as noticed in [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. In [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]Theorem 3.2], the exact controllability2 of the pair (S, Γ ) is proven, which, in turns, implies approximate observability in infinite-time of the pair (S * , Γ * ). Therefore, items (vi) and (vii) of Proposition 1 are satisfied. Hence, if A, B and C are given so that the conditions (viii) is also satisfied, Proposition 1 does apply and hence also the condition (v) is satisfied, namely Theorem 2 does apply.

Conclusions

In this paper, we have provided a methodology to globally stabilize a cascade system composed by a dissipative infinite-dimensional system and an ODE. This methodology relies on the so-called forwarding approach, which needs to introduce an infinite dimensional the Sylvester equation. Under an appropriate observability assumption, we prove that our design leads to a stabilizing feedback law. We also have provided a necessary condition implying this observability property. The proposed methodology can apply to other topics than the stabilization such as output regulation [START_REF] Paunonen | Stability and robust regulation of passive linear systems[END_REF][START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF] or the repetitive control [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF][START_REF] Weiss | Repetitive control of MIMO systems using h∞ design[END_REF].

As further research lines, we may consider more complicated systems, such as nonlinear infinite-dimensional dissipative systems. Let us mention for example the Korteweg-de Vries equation [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. In this case, we would not have to face with a Sylvester equation, which is a static equation, but with another dynamical nonlinear PDEs, for which the proof of the existence and the uniqueness of solution is not an easy task. Finally, another possible extension, can be to generalize the proposed forwarding approaches to different cascades of systems, for instance, in which each subsystem is infinite-dimensional.

  ),ϕ * SM -ϕ * M A = -ϕ * Γ C, i.e., ϕ * M (µI n -A) + ϕ * Γ C = 0. µI n -A B C 0 has full row rank, Γ * ϕ = 0.According to [38, Proposition 6.9.1], this contradicts the infinite-time observability of the pair (S * , Γ * ). This concludes the proof of Proposition 1.

  Defining H -1 as the completion of H with respect to the norm w -1 := (βI H -S) -1 w H , where β is in the resolvent of S, we suppose that Γ ∈ L(R p , H -1 ) (i.e. Γ is a bounded operator from R p to H -1 ).Recall thatH -1 is the dual of D(S * ) = {w ∈ H | sup v∈D(S)\{0} | Sv, w H |/ v H }with respect to the pivot space H.

	the control input and
	σ : R m → R m is a cone-bounded nonlinearity, that we will define in a rigorous way
	below. In system (1), S : D(S) ⊆ H → H is a (possibly unbounded) operator, with
	D(S) densely defined in H.

  for every i ∈ {1, . . . , k} (resp. λ i > 0 for every i ∈ {k + 1, . . . N }), w + (t, x) (resp. w -(t, x)) corresponds to the k first components of w (resp. to the N -k last components of w), C, D 0 and D 1 are matrices of appropriate dimension. The matrix A is Hurwitz and the function σ is supposed to be a cone-bounded nonlinearity. The boundary control problem (8) can be rephrased as (1) according to[START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] Chapter 10]. Following the steps of[START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] Example 10.1.9], operators S and Γ can be determined as follows.

  ) for all t ≥ 0. Then, the pair (S, C) is approximately observable in infinite-time if and only if Ker ψ = {0}.

	Theorem 2 (Global asymptotic stability) Suppose that Assumption 1 holds. More-
	over, assume the following:
	(iv) S has compact resolvent;
	(v) (S, B M

* 

) is approximately observable in infinite-time.

This terminology is used in functional analysis to denote monotone operators. If m = 1, then σ is nondecreasing.

See [38, Definition 11.1.1.] for a definition.
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