
HAL Id: hal-02944032
https://hal.science/hal-02944032

Submitted on 21 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Scheduling with Redirection for Parallel Jobs
Adrien Faure, Giorgio Lucarelli, Olivier Richard, Denis Trystram

To cite this version:
Adrien Faure, Giorgio Lucarelli, Olivier Richard, Denis Trystram. Online Scheduling with Redirection
for Parallel Jobs. IPDPSW 2020 - IEEE International Parallel and Distributed Processing Symposium
Workshops, May 2020, New Orleans, France. pp.1-4, �10.1109/IPDPSW50202.2020.00066�. �hal-
02944032�

https://hal.science/hal-02944032
https://hal.archives-ouvertes.fr

Online Scheduling with Redirection for Parallel Jobs
Adrien Faure‡∗, Giorgio Lucarelli†, Olivier Richard∗, Denis Trystram∗

‡Atos
Echirolles, France

∗Univ. Grenoble Alpes, CNRS, INRIA, Grenoble INP, LIG
Grenoble, France

†LCOMS, University of Lorraine
Metz, France

Abstract—An important component of High Performance
Computing (HPC) clusters is the job scheduling algorithm, which
decides the allocation and the scheduling of the jobs in the system.
Such scheduling algorithms need to be scalable to confront the
growth both in size and in complexity of the modern clusters.
We propose in this paper a new algorithm for scheduling parallel
jobs with redirection. Specifically, our algorithm redirects the
jobs whose execution affects significantly an important number
of other jobs. A redirected job is stopped and restarted from
the beginning in a dedicated part of the cluster. We show the
effectiveness of our method through an intensive experimental
campaign of simulations of production cluster log traces.

Index Terms—Scheduling, Parallel jobs, Redirection.

I. INTRODUCTION

The need for efficient automatic tools for managing the re-
sources in large scale modern parallel and distributed platforms
become more important as their complexity increases [1]. On
the first hand, we need simple enough mechanisms able to
deliver an allocation of jobs to the processors at scale, but on
the other hand, such mechanisms should include all features
needed to deal with specific situations [2].

We consider the problem of scheduling parallel jobs without
preemption in multi-processor clusters using the concept of
job redirection, where a job can be killed and restarted into
a set of dedicated processors. Scheduling with redirection has
been previously studied for sequential independent jobs where
promising results have been presented [3]. As far as we know,
this idea has never been presented in HPC. We validate our ap-
proach through an intensive simulation campaign based on the
analysis of logs extracted from three production management
systems. We compare our approach with a standard scheduling
policy, namely FCFS with EASY backfilling [4], [5], and we
show that scheduling parallel jobs with redirection improves
the average bounded slowdown objective [6].

II. DEFINITION AND NOTATION

A job is a program submitted by a user to the queue of the
computing platform. We characterize a job j by its submission
time rj , its walltime wj , its number of required resources qj ,
and its processing time pj (known only at the end of the
execution). The waiting time waitj of job j is the time it
spends in the system after its release date and until its start

time startj . Then, we define the flow time Fj of the job j to be
the total time it spends in the system, that is Fj = waitj+pj .

We consider the problem of scheduling a set of jobs into an
HPC platform, that is of finding an allocation of each job to
a set of free resources as well as assigning its starting time.

To evaluate our scheduling algorithm, we use the bounded
slowdown (BSLD), which is defined for job j as follows:

BSLDj = max

(
Fj

max (pj , τ)
, 1

)
(1)

where τ is a constant that prevents small jobs to have a high
impact. In our study we set τ = 60 seconds. Accordingly, we
define the average and max slowdown as follows:

BSLDavg = 1
n

∑
j∈[n]

BSLDj ,

BSLDmax = max
j∈[n]

(BSLDj) .
(2)

III. SCHEDULING PARALLEL JOBS WITH REDIRECTION

A. General Description of the Redirection

Redirection is a generic mechanism that can be used in con-
junction with any other scheduling algorithm. This is mainly
because the redirection does not directly impact the scheduling
decisions, instead it can independently choose to redirect a job
to improve later scheduling decisions. The idea is to identify
jobs that are worth to be redirected and move them into a
dedicated part of the cluster — or another independent cluster.
To set up the redirection, we propose to split the resources of
the platform into two independent groups: the principal group
and the redirection group. The size of the redirection group
is determined by a parameter α, the percentage of allocation.
Depending on the total number of available resources and on
the properties of the jobs targeting the HPC platform, the
size of the two groups needs to be adapted. The principal
group contains (1 − α)m processors while the redirection
group contains the remaining αm processors of the platform,
where m is the total number of processors. Both groups can
be scheduled independently.

Identifying jobs that harm the overall cluster’s performance
is done by counting the number of submitted jobs during
the execution of another job. This gives an estimation of the
induced pressure by a job. If a job’s counter exceeds a fixed

threshold θ, the system can choose to trigger a redirection.
Each job running in the principal group holds the number
of jobs submitted during its execution. When a job has
been chosen to be redirected, it is killed and moved to the
redirection group which is exclusively dedicated to these jobs,
where redirection is no longer possible. As stated before, we
focus on the case where no preemption is allowed, as a result,
a redirected job is terminated and restarted from the beginning
into the redirection group.

Algorithm 1 Scheduler using redirection.
1: procedure SCHEDULER(SP1,SP2, j) . SP1 and SP2

two scheduling policies, j new job
2: if NbAvail(Resources) ≤ qj and j 1st in queue then
3: Start j
4: else
5: T ← Redirection(j, θ) . c.f. Algorithm 2
6: if T is not None then
7: Kill T
8: add T to the queue of the redirection group
9: end if

10: end if
11: Schedule principal group with SP1.
12: Schedule redirection group with SP2.
13: end procedure

Algorithm 2 Algorithm for the redirection mechanism.

1: procedure REDIRECTION(j, θ, m′ = αm) . j newly
submitted job, θ threshold, m′ redirection group size

2: for k ∈ Runningjobs do
3: if wj >= wk then . restricts impact of huge jobs
4: Counterk ← Counterk1
5: end if
6: end for
7: T ← {l ∈ Runningjobs, Counterl > θ, rj ≤ m′}
8: if T 6= ∅ then
9: r ← conflictRedirectionPolicy(T) . tunes

jobs selection in case of conflict.
10: Reset every Counter
11: return job r
12: end if
13: return None
14: end procedure

B. Set-up and execution

At the initialization, the redirection defines the scheduling
policy for both principal and redirection groups. We set FCFS
with EASY for both principal and redirection groups, and we
activate the redirection only for the principal group.

Algorithm 1 describes how the redirection is integrated into
a scheduling algorithm, while the redirection mechanism itself
is detailed in Algorithm 2. The parameters of the latter one
are the set of m processors, the percentage of allocation α,
and the threshold θ used for tuning the redirection.

When a job j enters the system for the first time (rj), it is
assigned to the queue of the principal group. If the queue is
empty and there are enough available resources, the job starts
directly on the principal group. If the queue is not empty
or there are not enough resource available to start the job
immediately, the job waits and is assigned to the scheduling
queue of the principal group. At this moment, the redirection
increment the counters of all running jobs. Once all submitted
jobs have proceeded, the redirection mechanism can decide to
redirect a job (Algorithm 2). The decision to redirect is taken
when one of the job’s counter exceeds the input parameter
θ — the redirection threshold. Note that to be illegible for
redirection a job j needs to satisfy qj ≤ αm. After one
occurred, the counters of each running job are reinitialized.

In some cases, several jobs can exceed the threshold at the
same time, the redirection mechanism determines which job
will be redirected according to a conflict resolution policy (e.g.
select the job with the greatest walltime).

Additionally, to control the impact of big jobs on small jobs,
we set a filter preventing jobs to trigger redirection of smaller
ones. The filter is configured such that if a job j is submitted,
only the counter of the jobs k satisfying qk ≥ qj is increased.

IV. EXPERIMENTAL SETTING

A. Simulation and Inputs

The redirection algorithm1 has been integrated into the
Batsim simulator [7], available as an open-source software.
Batsim is a platform simulator, it does not simulate the
scheduler. Instead, Batsim has a programming interface to
communicate with an external scheduler. In our case, the
scheduler is an external program implementing the EASY-
Backfilling policy with the redirection mechanisms. The user
submissions are also managed by Batsim so that the scheduler
is not aware of a job until its release date (rj), which is
consistent with a system in production.

The performance of our algorithm on the metrics depends
on a set of input parameters, namely, the size of the platform,
the workload as well as the inputs related to the redirection
mechanism itself. The latter are the threshold of redirection (θ)
and the parameter α specifying the proportion of processors
used for redirected jobs. To understand the behavior of the
redirection, we ran thousands of simulations with several sets
of parameters for the redirection to determine the best possible
parameters combination.

B. Workloads Description

The workload is a static set of jobs that need to be scheduled
during a simulation, and it is given as a simulation input. As
in a production cluster, the scheduler only knows the walltime
of the jobs. During the simulation, at the release time of a job,
Batsim sends to the scheduler the given walltime of the job
and the number of requested resources. The actual processing
time remains known only by Batsim, therefore Batsim kills the

1The redirection mechanism implementation is available on-line with the
data and the analysis https://gitlab.inria.fr/adfaure/evipar

jobs exceeding their walltime. Since the users overestimate
the execution times of their jobs, we choose to give to the
scheduler the exact job processing time.

The web site parallel workload archive (PWA)2 hosts a
consequent number of workload. To evaluate our algorithm,
we run an intensive campaign of simulation on workloads
extracted from logs of production clusters — namely, Curie,
Intrepid and Ricc, all provided by PWA. For each of the
production cluster logs, we extract 20 weeks of jobs. The
extraction routine extract weeks (168 hours) with a mean
utilization of at least 70%, ensuring that the traces are loaded
enough to benefits from the redirection — indeed under-loaded
traces do not represent any challenge and can be handled by
any other traditional schedulers.

For the redirection, we split the cluster resources into two
groups — the greater the parameter α, the more resources we
reserve for the redirection. If the simulation is configured to
use fewer processors in the principal group than the number
of processors of the cluster the workload stem from, some
jobs may be unable to execute. To cope with this problem and
still execute every job of the original workload, we increase
the number of resources based on the parameter α. Once the
resource groups are created the principal group holds the same
number of resources as the original cluster. Note that to ensure
the fairness, we also give the extra resources to the algorithms
without redirection.

C. Redirection Parameters: α and θ

As stated before, θ is the value of the redirection threshold
and α determines the size of the redirection group. Both
parameters need to be wisely tuned to find the best possible
redirection performance. The threshold of redirection will
impact the sensitivity of the redirection. A high value will
rarely be reached leading to idle time for the redirection group,
while setting θ to a low value will trigger a large number of
redirections, leading to a redirection group overloaded. A large
value of α allocates a lot of processors for the redirected jobs,
leaving room for a lot of redirected jobs at the cost of reducing
the size of the principal group. On the other hand, reducing α
increases the number of jobs not eligible for the redirection.

Both parameters need to be carefully configured, in order to
obtain the best performance for the redirection mechanism. To
determine the best configuration, we ran simulations using all
the combinations for θ ∈ {1, 2, 5, 10, 15, 25, 50, 100, 125} and
α ∈ {0.1, 0.15, 0.20, 0.25}, for each of the 20 extracted weeks.
The next section describes how we select the best parameters.

It is worth mentioning that the best parameter configuration
also depends on factors such as the distribution of the size of
the jobs of a particular workload. For instance, the minimum
job size allowed for the Intrepid cluster is 256, meaning that
a redirection group of size smaller than 256 leads to a loss of
resources without any positive effect on the performance.

α=0.1 α=0.15 α=0.2 α=0.25
C

urie
Intrepid

R
icc

5 10 15 25 50 5 10 15 25 50 5 10 15 25 50 5 10 15 25 50

1

2

3

4

5

5

10

15

20

0

10

20

30

40

Redirection Threshold (θ)

A
ve

ra
ge

 B
S

LD
Fig. 1: Lower is better — For each of the 20 workloads
extracted from Curie, we computed BSLDavg . Each violin is
created by 20 such workloads under a certain set of parameters.
One violin depicts the distribution of the data, and contains
a box (inside). The black horizontal line of the box is the
median ratio and the red squares represent average ratio. The
redirection threshold is in the x-axis, while the y-axis shows
the observed metric. Each grid represents a different α value.

V. EXPERIMENTAL RESULTS

A. Parameters tuning

In Fig. 1, the different columns of the grid represent the
different values for parameter α, while each line shows the
result of a particular cluster (Curie at the top, Intrepid in the
middle and Ricc at the bottom). The x-axis represents the
different threshold (θ) values we used. Considering θ, note
first that small values generate a lot of redirection, and as
a result, increases the load of on the redirection group. On
the opposite side, high threshold values will never trigger any
redirection, letting the processors in the redirection group idle.
Redirection leads to an important improvement for BSLDavg

when using small and moderate values of θ. Specifically, we
observe that there is an optimal threshold value for BSLDavg

which is between [10, 50], [5, 15] and [5, 25] for respectively
Curie, Intrepid and RICC.

Considering the allocation percentage (α), we first note that
a small value may cause congestion in the redirection group,
especially if there are a lot of redirected jobs. On the second
hand, a very big value would improve the performance in
the redirection group, but it is not realistic as we want to
keep a reasonable total number of processors. We observe

2https://www.cs.huji.ac.il/labs/parallel/workload

https://www.cs.huji.ac.il/labs/parallel/workload

that the impact of α to the max flow-time objective is very
important due to the increased number of processors used in
the redirection group as we increase α.

We can retain from the results of Fig. 1, that the choice of
the parameters is very important for the performance of our
mechanism while the two parameters are strongly related: in
case of a small redirection threshold which implies a lot of
redirected jobs, the size of the redirection group should be
larger in order to execute them without important delays.

B. Comparison to EASY back-filling

In this section, we focus on the BSLDavg metric and
we compare FCFS/EASY back-filling when using or not
the proposed redirection mechanism. The y-axis of Fig. 2
shows the ratio of the corresponding objective function of
FCFS with EASY back-filling policy (without redirection)
over FCFS/EASY back-filling with redirection. The redirec-
tion improves the performance if the ratio is smaller than 1. We
observe Fig. 2 that by appropriately choosing the parameters
θ and α, the performance of FCFS/EASY back-filling can be
improved by a factor of 10% for Curie, 20% for Intrepid and
40% for Ricc when considering the BSLDavg objective. On
another hand, the impact of redirection is not so beneficial for
BSLDmax since the redirected jobs are restarted and the job
with the BSLDmax value tends to appear in the redirection
group. However, there is always a couple of parameters for
which both objectives are improved, e.g. α = 0.15 and θ = 10
for Curie where the average improvement for both mean and
max BSLD is around 10%s.

VI. CONCLUSION

We proposed a mechanism based on redirection of parallel
jobs that can be used on the top of other queuing scheduling
and allocation policies. The selection of the jobs that should
be redirected is done with respect to their impact on the
performance of the other jobs in the queue. Although the
redirection mechanism causes an additional load due to the
kill-restart policy applied to the redirected jobs, it can improve
the performance of the system for average bounded slow-down
as shown in the intensive simulation campaign. Interestingly,
the experimental results show that the redirection can exploit
the benefits of preemption, even in cases where this is not
explicitly allowed. Redirection presents interesting results for
BSLDavg without harming the BSLDmax which is a metric
based on the satisfaction of the user. We showed that some
workloads are more responsive to the redirection; further
investigations are needed to understand these variations.

VII. ACKNOWLEDGMENT

The experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest
group hosted by Inria.

We thank gracefully all the contributors of the Parallel
Workloads Archive for making the workloads available.

α=0.1 α=0.15 α=0.2 α=0.25
C

urie
Intrepid

R
icc

5 10 15 25 5 10 15 25 5 10 15 25 5 10 15 25

0.3

1.0

3.0

10.0

30.0

0.1

1.0

10.0

0.1

1.0

10.0

Redirection Threshold (θ)

M
et

ric

metric Average BDSLD Max BDSLD

Fig. 2: Lower is better, under horizontal line means that the
redirection is more effective — For each of the 20 workloads
extracted from a cluster, we computed the ratio of BSLDavg

without redirection over BSLDavg with redirection, and we
did the same for the BSLDmax (dark grey boxes). Each box
is induced by 20 such ratios. The black line is the median
ratio and the red square the average ratio. The figure presents
the results for each cluster, the uppers figures deal with Curie,
the middle with Intrepid while the bottom one concerns Ricc.

REFERENCES

[1] J. J. Dongarra et al., “The international exascale software project
roadmap,” IJHPCA, 2011.

[2] D. Glesser, “Road to exascale: Improving scheduling performances and
reducing energy consumption with the help of end-users.” Ph.D. disser-
tation, University of Grenoble, France, 2016.

[3] G. Lucarelli, F. M. Mendonca, and D. Trystram, “A new on-line method
for scheduling independent tasks,” in CCGrid, 2017.

[4] D. G. Feitelson and A. M. Weil, “Utilization and predictability in
scheduling the IBM SP2 with backfilling,” in IPPS/SPDP, 1998.

[5] É. Gaussier, J. Lelong, V. Reis, and D. Trystram, “Online tuning of easy-
backfilling using queue reordering policies,” TPDS, 2018.

[6] D. G. Feitelson, “Metrics for parallel job scheduling and their conver-
gence,” in JSSPP, 2001.

[7] M. Poquet, “Simulation approach for resource management,” Ph.D.
dissertation, Grenoble Alpes University, France, 2017.

	Introduction
	Definition and Notation
	Scheduling parallel jobs with Redirection
	General Description of the Redirection
	Set-up and execution

	Experimental Setting
	Simulation and Inputs
	Workloads Description
	Redirection Parameters: and

	Experimental Results
	Parameters tuning
	Comparison to EASY back-filling

	Conclusion
	Acknowledgment
	References

