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The magnetoresistance of Ni81Fe19 and Co83Gd17 ferromagnetic thin films is measured in Corbino disk
geometry, and compared to the magnetoresistance of the same films measured in the Hall-bar geometry. The
symmetry of the magnetoresistance profiles is drastically modified by changing the geometry of the sample, i.e.,
by changing the boundary conditions. These properties are explained in a simple model, showing that the Corbino
magnetoresistance is defined by the potentiostatic boundary conditions while the Hall-bar magnetoresistance is
defined by galvanostatic boundary conditions.
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The Hall effect was first measured in 1879 by Hall [1]
by applying a magnetic field to a conducting slab contacted
to an electric generator at the extremities. Later on, Corbino
[2] found a similar effect by applying a magnetic field on a
disk geometry with two concentric electrodes. Quickly the
question arose on whether the effect measured by Corbino
(the so-called Corbino effect) in a disk and by Hall in a bar
have the same origin. In 1914, Adams and Chapman measured
the Corbino effect in many different metals [3] by using an
oscillating current flowing from the center of the disk to its
outer. Adams concluded in 1915 that “the Corbino effect
is, essentially, the same as the Hall effect” [4]. However,
the question remains about the exact meaning of the adverb
“essentially.”

In the 1950’s, the Hall effect in the Corbino geometry was
studied for its practical applications. The magnetoresistance
of InSb slabs was shown to depend strongly on the shape of
the samples [5]. The reason is that near the current injection
edge, the Hall electric field is shorted and a transverse electric
current appears which causes an increase of the resistance
as in the Corbino geometry [6–9]. Accordingly, one can see
the Corbino geometry as the extreme scenario where the Hall
electric field is zero everywhere and a Hall current is flowing,
or, in other terms, one can view the Corbino disk as a Hall
bar in which the electrostatic charge accumulation is reduced
to zero everywhere. The system cannot generate a voltage
between the edges so that a Hall current is flowing and the
Joule heating is higher than in the Hall bar for an equivalent
volume [10–12]. The mechanism responsible for both the
Hall effect and the Corbino effect is indeed the same, but the
Corbino disk is a device that is more constrained than the Hall
bar, due to the change of the boundary conditions.

At the turn of the last century, the emergence of spintronics
has shown the possibility of exploiting spin-polarized currents
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and spin-dependent potentials, and has paved the way to
the realization of new electronic devices. Recently, various
developments about the spin-Hall effects (anomalous Hall
effect, spin-Hall effect, spin-pumping effect, spin-Seebeck
effects, etc. [13,14]) tend to show that the usual Hall-bar
conditions with spin relaxation could be turned into “Corbino-
like boundary conditions,” in the sense that the electric charge
accumulation drops to zero at the edges and a pure spin current
can be generated instead of a Hall voltage [11].

In this context, the goal of this Rapid Communication
is to study NiFe and GdCo ferromagnetic Corbino disks
and Hall bars, in order to understand the behavior of the
magnetoresistance [13,15–17] when the boundary conditions
are switched (by changing the geometry) from spin current
to spin-dependent voltage. The alloys Ni81Fe19 and Co83Gd17

are chosen for their maximum contribution to the anisotropic
magnetoresistance and the anomalous Hall magnetoresistance
(that defines the anomalous Hall angle), respectively.

First, we will present our measures of Corbino magne-
toresistance performed on NiFe and CoGd rings. The re-
sults are then analyzed in the framework of the generalized
Ohm’s law by defining the Corbino magnetotransport coeffi-
cients C as a function of the usual Hall-bar coefficients [see
Eq. (12) below]. The consistency of the proposed explanation
is checked independently, by measuring the magnetotransport
coefficients of the Hall bar.

The samples studied are 20-nm-thick layers of Ni81Fe19

and Co83Gd17 sputtered on glass substrates. The magnetic
layers are sandwiched between 5-nm-thick Ta buffers and
3-nm-thick Pt caps. The magnetic properties of the thin layers
have been previously studied [18] (see Supplemental Material
[19]). The sample magnetization is uniform for quasistatic
states, although nonuniform states could take place at low
magnetic fields (this regime is, however, not considered in
the present study). The NiFe is textured with small uniaxial
anisotropy lying in the sample plane. The coercivity field
in the in-plane geometry is of the order of 1 mT. The out-
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FIG. 1. (a) Schematic view of the Corbino geometry, with the
three unit vectors �ur, �uφ, �ux confined in the plane. (b) and (c) Corbino
magnetoresistances for the CoGd and NiFe samples measured as
a function of the out-of-plane magnetic field. The gray lines are a
quadratic fitting of the data.

of-plane shape anisotropy corresponds to a field of about
1 T, defined by the magnetization at saturation Ms (NiFe) ≈
800 emu cm−3. The CoGd has a comparable magnetization,
with a similar shape anisotropy. The structure of CoGd is
amorphous and it is not textured. Owing to a standard two-step
UV lithographic process, they have been patterned in Corbino
rings with an inner and outer radius respectively equal to 7
and 2 mm. Gold contact pads are formed in the second step.
Figure 1(a) presents a sketch of the obtained devices.

The measured magnetoresistance of NiFe and CoGd
Corbino rings is presented respectively in Figs. 1(b) and 1(c).
The voltage is measured as a function of the current with a
current swept from −1 to +1 mA. The resistance is deduced
by fitting the I (V ) curve in order to eliminate thermoelec-
tric contributions. In both materials, an increasing magnetic
field leads to parabolic magnetoresistance. The nonparabolic
point at zero magnetic field in Fig. 1(c) corresponds to the
variation observed in Fig. 2(b) and is due to the small in-
plane anisotropy for the NiFe sample [19]. Note that while
a negative Corbino magnetoresistance is measured for NiFe
devices, it is positive in the CoGd case. It is also remarkable
that the amplitude of the NiFe Corbino signal is one order of
magnitude higher than the one measured in the CoGd case.

To shed light on these Corbino magnetoresistance profiles
and the drastic differences between NiFe and CoGd, it is nec-
essary to have a look at the Ohm’s law �E = ¯̄ρ �J generalized

FIG. 2. (a) Schematic view of the Hall-bar devices. Resistance
measurements vs applied field for the NiFe device in the (b) lon-
gitudinal and (c) transverse geometries. Resistance measurements
vs applied field for the CoGd device in the (d) longitudinal and
(d) transverse geometries. The two insets are zooms (magnification
100×).

to ferromagnetic conductors. The resistivity tensor ¯̄ρ contains
both anisotropic terms and anomalous Hall terms [15,17]
(see Supplemental Material [19]). In the Hall-bar geometry,
a current is imposed along the x axis and the device is in a
galvanostatic mode: We then use the resistivity representation
of the Ohm’s law,

�E = ρ �J + �ρ( �m · �J ) �m + ρAH �m × �J , (1)

where �m is the magnetization normalized to unity and �E is
the electric field. The first coefficient ρ on the right-hand side
is the isotropic resistivity and it accounts for isotropic trans-
port. The second term is the anisotropic magnetoresistance
described by the the coefficient �ρ/ρ, where �ρ = ρ‖ − ρ⊥
is the difference between the resistivity measured with a
current parallel to the magnetization ρ‖ and the resistivity
measured with a current perpendicular to the magnetization
ρ⊥ (�ρ/ρ is positive). The last term is the anomalous Hall
magnetoresistance described by the anomalous Hall resistivity
ρAH (as discussed in the Supplemental Material [19], the
coefficient ρAH plays the same role as the Hall resistivity
[13,20,21]).

In the following, we describe the magnetization �m in
Cartesian coordinates �m = mx �ux + my �uy + mz �uz with the set
of unit vectors {�ux, �uy, �uz} in the case of Hall bars, while it
is described in cylindrical coordinates �m = mr �ur + mφ �uφ +
mz �uz with the set of unit vectors {�ur, �uφ, �uz} in the case of
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Corbino disks [see Fig. 1(a)]. In this last case, the boundary
conditions are such that the potential V0 is imposed in the
inner disk while the outer disk is set at the ground. The device
is then in a potentiostatic mode. The resistance is given by
the ratio V0/I , where the current is the integral of the radial
current densities over the angle φ and the thickness t of the
disk,

I (r ) =
∫ t

z=0

∫ 2π

φ=0
Jr (r, φ)r dφ dz. (2)

In this potentiostatic mode, it is convenient to inverse Eq. (1)
in order to use the conductivity representation [8]. The Ohm’s
law now reads �J = σ �E, where the conductivity tensor σ =
(ρ )−1 is the inverse of the resistivity tensor ρ used in Eq. (1).
We then have the current as a function of the electric field,

�J = σ �E + �σ ( �m · �E) �m − σAH �m × �E, (3)

where the three conductivity coefficients are related to the
three resistivity coefficients by the relations

σ = ρ

ρ2 + ρ2
AH

, �σ = 1

ρ + �ρ
− ρ

ρ2 + ρ2
AH

,

σAH = ρAH

ρ2 + ρ2
AH

. (4)

As shown in the following, this simple inversion between
Eqs. (1) and (3) is responsible for the considerable change ob-
served in the magnetoresistance profiles between the Corbino
disk (Fig. 1) and the Hall bar (Fig. 2).

The striking specificity of the Corbino geometry is the
absence of charge accumulation (since the two opposite edges

of the Hall bar are contacted together in the Corbino disk). As
a consequence, the Poisson equation reduces to the Laplace
equation ∇2V = 0, which leads to the following form of the
electric potential,

V (r ) = V0

(
1 − ln (r/rin)

ln (rout/rin)

)
, (5)

where rin is the inner disk radius, and rout is the outer disk
radius. This leads to the planar component of the electric field,

�E = −�∇V = V0

ln(rout/rin)

1

r
�ur . (6)

Furthermore, an out-of plane electric field Ez is introduced
in order to take into account the thickness of the sample.
Since the difference rout − rin between the radius of the inner
disk and the outer disk is much larger than the thickness t of
the layer, we assume that Ez is uniform and the out-of-plane
component of the current is zero. Consequently, the electric
field and electric current read

�E =
⎛
⎝ V0

ln(rout/rin )
1
r

0
Ez

⎞
⎠

r,φ,z

and �J =
⎛
⎝Jr

Jφ

0

⎞
⎠

r,φ,z

. (7)

Introducing relations (7) in Eq. (3), we obtain a system
of three equations with the three unknowns {Jr, Jφ, Ez}. We
set the x axis as the direction of the in-plane component of
the magnetization. Using m2

r + m2
φ + m2

z = 1, and the relation
m2

φ = (1 − m2
z ) sin2 φ, we obtain

Jr (r, φ) = σ 2 + �σσ + sin2 φ
(
σ 2

AH − σ�σ
)(

1 − m2
z

)
σ + �σm2

z

V0

ln(rout/rin)

1

r
. (8)

Integrating according to Eq. (2) and dividing by the current gives the Corbino resistance,

RCor = V0

I
= ln(rout/rin)

πt

σ + �σ
(
1 − m2

z

)
2σ 2 + 2�σσ + m2

z

(
σ 2

AH − σ�σ
) . (9)

To obtain RCor as a function of the resistivity coefficients ρ, �ρ, and ρAH that are usually measured, we insert Eqs. (4) into
Eq. (9) and we obtain

RCor(mz) = ln(rout/rin)

2πt
ρ

1 + �ρ/ρ
(
1 − m2

z

) + ρ2
AHm2

z/ρ
2

1 + �ρ/(2ρ)
(
1 − m2

z

) . (10)

Considering that �ρ/ρ � 1 (this is the case for the ma-
terials used in this study) the magnetoresistance defined as
�RCor(mz)/RCor ≡ [RCor(mz) − RCor(0)]/RCor(0) can finally
be expressed as

�RCor(mz)

RCor
=

[(
ρAH

ρ

)2

− �ρ

2ρ

]
m2

z . (11)

Accordingly, for ferromagnetic devices patterned in the
Corbino geometry we expect a Corbino magnetoresistance
proportional to m2

z . This is qualitatively in agreement with
the trend measured in Figs. 1(b) and 1(c). Quantitatively, the

prefactor on the right-hand side of Eq. (11)—the Corbino
coefficient—which is defined by

C =
(

ρAH

ρ

)2

− �ρ

2ρ
, (12)

is the difference between the square of the anomalous Hall
magnetoresistance and half the anisotropic magnetoresis-
tance. The positive parabolic profile then corresponds to a
dominance of the anomalous Hall magnetoresistance, while
the negative parabolic profile corresponds to a dominance of
the anisotropic magnetoresistance.
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In order to verify the validity of Eq. (11), it suffices to
measure independently the terms (ρAH/ρ)2 and �ρ/2ρ on
the Hall bar. The results measured on the Hall-bar devices
patterned from the previous NiFe and GdCo multilayers are
reported in Fig. 2. As expected [16], it can be seen that the
magnetoresistance is dominated by the anisotropic magne-
toresistance �RAMR/RAMR for the NiFe sample in Fig. 2(b)
(transition metal ferromagnet), while it is dominated by the
anomalous Hall effect (ρAH/ρ)2 for the GdCo rare earth–
transition metal alloys in Fig. 2(e). Figure 2(c) shows that
the anomalous Hall effect is negligible in NiFe and Fig. 2(d)
shows that the anisotropic Hall effect is negligible in GdCo.
The insets in both figures are zooms with a magnification of
100×. Note that a small contribution of the AMR can also be
present in the inset of Fig. 2(c) due to a slight misalignment
of the electrodes (see Supplemental Material for a detailed
study [19]).

More qualitatively, we deduce from Eq. (1) that, with ho-
mogeneous magnetization and current density, the anisotropic
magnetoresistance (AMR), which is by definition measured
longitudinally to the current (along x), reads

RAMR = L

wt

(
ρ + �ρm2

x

)
, (13)

where t is the thickness, L is the length, and w is the width
of the Hall bar. Close to the magnetic saturation (at Bz = 1 T)
the magnetization is almost aligned with the magnetic field,
i.e., mx ≈ 0. At zero field the magnetization lies in the plane
of the sample, aligned with the current direction (mx = 1).
Consequently, the AMR amplitude �RAMR/RAMR at the sat-
uration field is equal to �ρ/ρ. From Figs. 2(b) and 2(d),
we can deduce the values of the parameters �ρNiFe/ρNiFe ≈
1.3 × 10−2 and �ρCoGd/ρCoGd ≈ 8.5 × 10−5.

On the other hand, RAH ≡ Eyl/I is the anomalous Hall
resistance defined by the voltage measured transversely
(along y) divided by the current I = Jxwt injected along x.
The expression of Ey is deduced from Eq. (1),

RAH = 1

t

(
�ρ

ρ
mxmy + ρAH

ρ
mz

)
. (14)

The right-hand side of Eq. (14) defines the planar Hall mag-
netoresistance (first term) and the anomalous Hall magne-
toresistance (last term). At saturation, the magnetization is
aligned along the z direction, and we can rewrite Eq. (14)
as RAH

R
≈ ρAH

ρ
ω
L

, or ρAH

ρ
= RAH t

ρ
. Since the resistivity ρ of the

CoGd alloy is of the order of 120 μ� cm and t = 23 nm, the
measurement of the Hall bar then gives ρAH/ρ ≈ 1.6 × 10−2.
The results are summarized in Table I.

The comparison is excellent in the case of the NiFe
(−6.5 × 10−3 instead of −6.7 × 10−3), with a largely dom-
inant contribution of the anisotropic magnetoresistance (the
anomalous Hall contribution is negligible). On the other hand,
the value of the anomalous Hall coefficient ρAH/ρ of GdCo is
underestimated in the Hall-bar geometry (1.5 × 10−4 instead
of 3.5 × 10−4). This discrepancy can be understood by the
3-nm Pt cap layer (lower ρ measured in the Hall bar) and by
the strong perturbation of the current lines due to the lateral

TABLE I. Comparison between the measured Corbino magne-
toresistance and the Corbino coefficients C defined in Eq. (11) from
the Hall-bar measurements.

Coefficients NiFe CoGd

�ρ/ρ [from Figs. 2(b) and 2(d)] 1.3 × 10−2 8.5 × 10−5

RAH [from Figs. 2(c) and 2(e)] �4 × 10−3 � 8 × 10−1 �

(ρAH/ρ )2 5 × 10−7 2.35 × 10−4

Corbino coeficient C −6.5 × 10−3 1.5 × 10−4

[calculated from Eq. (11)]
Corbino magnetoresistance −6.7 × 10−3 3.5 × 10−4

(measured from Fig. 1)

contacts of Pt (higher ρAH measured in the Hall bar). Indeed,
this problem is inherent in Hall-cross devices [8], and is one
of the main motivations for the use of Corbino devices. In
the last case, the two electrodes follow the radial geometry by
imposing the radial voltage, in contrast to the former case, for
which the electrodes break to translational invariance along
the longitudinal axis. We observe nevertheless a good order of
magnitude in the application of Eq. (12).

In conclusion, the magnetoresistance of Corbino disks of
NiFe and GdCo has been measured as a function of mag-
netization direction. This observed Corbino magnetoresis-
tance is interpreted in the framework of a phenomenological
model, that allows the Corbino parameters to be expressed
as a function of the usual Hall-bar parameters, which are
the isotropic resistivity ρ, the anisotropic resistivity �ρ/ρ,
and the anomalous Hall resistivity ρAH. The typical negative
(NiFe) or positive (GdCo) quadratic Corbino magnetoresis-
tance observed with respect to the external magnetic field is
explained by the competition between anisotropic magnetore-
sistance terms (negative contribution) and the anomalous Hall
magnetoresistance (positive contribution).

This Rapid Communication shows that the magnetoresis-
tance profiles between the Hall bar and the Corbino disks are
due to the absence of Hall current in the former geometry, and
the presence of the orthoradial spin-dependent Hall current
in the latter geometry. This difference changed drastically the
symmetry of the magnetoresistance, from negative to positive
magnetoresistance observed between Figs. 1(c) and 2(b) for
NiFe, and from even to odd magnetoresistance observed be-
tween Figs. 1(b) and 2(e) for GdCo. Similar effects are also
expected in the context of the spin-Hall effect (e.g., using
nonferromagnetic layers) while playing with the electrical
properties of the interfaces, with potential applications in
spin-to-charge conversion devices.
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