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An algorithm for the minimization of nonsmooth nonconvex

functions using inexact evaluations and its worst-case

complexity

S. Gratton ∗, E. Simon †, and Ph. L. Toint ‡

2 January 2020

Abstract

An adaptive regularization algorithm using inexact function and derivatives evalua-
tions is proposed for the solution of composite nonsmooth nonconvex optimization. It
is shown that this algorithm needs at most O(| log(ǫ)| ǫ−2) evaluations of the problem’s
functions and their derivatives for finding an ǫ-approximate first-order stationary point.
This complexity bound therefore generalizes that provided by [Bellavia, Gurioli, Morini
and Toint, 2018] for inexact methods for smooth nonconvex problems, and is within a
factor | log(ǫ)| of the optimal bound known for smooth and nonsmooth nonconvex mini-
mization with exact evaluations. A practically more restrictive variant of the algorithm
with worst-case complexity O(| log(ǫ)|+ ǫ−2) is also presented.

Keywords: evaluation complexity, nonsmooth problems, nonconvex optimization, composite 
functions, inexact evaluations

1 Introduction

We consider the problem of finding a local minimum of the following composite problem:

min
x∈IRn

ψ(x) = f(x) + h(c(x)), (1.1)

where f is a (possibly nonconvex) function from IRn into IR whose gradient is Lipschitz
continuous, c is a (possibly nonconvex) function from IRn into IRm, whose Jacobian is also
Lipschitz continuous, and where h is a convex (possibly nonsmooth) Lipschitz continuous
function from IRm into IR.

Such problems occur in a variety of contexts, like LASSO methods in computational statis-
tics [28], Tikhonov regularization of underdetermined estimation problems [19], compressed
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sensing [15], artificial intelligence [22], penalty or projection methods for constrained opti-
mization [9], reduced-precision deep-learning [29], image processing [1], to cite only a few
examples. We also refer the reader to the excellent review in [23]. In many of these appli-
cations, the function h is cheap to compute, for example if h(x) is the Euclidean, ℓ1 or ℓ∞
norm, and its Lipschitz constant is known.

Methods to calculate approximate local solutions of the nonconvex problem (1.1) have
been studied for many years. (We do not consider here the abundant literature on the
easier convex case, see [16] or [14] for recent instances or [7] for a general text.) If h is
differentiable, standard methods include steepest descent, Levenberg-Morrison-Marquardt
quadratic regularization algorithms or trust-region techniques (see [13]). In this case, the
evaluation complexity (that is the number of times the functions f and c are evaluated for
finding an ǫ-approximate first-order point) is proved to be O(ǫ−2) [25, 17]. Moreover, this
order is known to be optimal [10]. If h is nonsmooth, applicable methods can be found in the
abundant literature for bundle methods (see [20] and the references therein), and also involve
the proximal gradient method and its variants [26], as well as the nonsmooth trust-region
and quadratic regularization methods of [9] for the nonconvex ones. It was also shown in this
paper that the evaluation compexity remains O(ǫ−2) despite nonsmoothness.

Inexact function evaluations are however quite commonly met in practice. For instance,
f(x) or c(x) may be the result of some truncated iterative process, making the accuracy of
the computed values dependent on the truncation level. Or f(x) or c(x) could be computed
as statistical estimates with controlled error (e.g. in subsampling methods for additive prob-
lems). Or they may result from the need (for embarked processors) or desire (for high-end
supercomputers) to perform their evaluation in restricted arithmetic precision whenever possi-
ble. Convergence analysis results for methods with inexact function and/or derivatives values
exist [8, 13, 30, 11, 2, 24, 12, 6, 4, 3] and their practical performance considered [8, 18], but all
these contributions assume smoothness of the objective function. To the best of the authors’
knowledge, the only analysis for nonconvex composite problems allowing inexact evaluations
is [20], but this contribution uses assumptions different from those presented below and does
not discuss upper complexity bounds.

The contribution of the present paper is threefold.

• We first propose a new regularization method for the nonsmooth problem (1.1) that
uses dynamic accuracy.

• We then show that the optimal O(ǫ−2) evaluation complexity bound is preserved when
using this algorithm, up to a (typically modest) factor | log(ǫ)|.

• We finally present a variant of the algorithm for which a better complexity bound of
O(| log(ǫ)|+ ǫ−2) can be proved at the price of losing some practicality.

Our presentation is organized as follows. Section 2 discusses the nature of the inexact evalu-
ations and presents the new regularization algorithm, whose essential properties are then de-
veloped in Section 3. The corresponding evaluation complexity bound is derived in Section 4.
A practically more restrictive variant of the algorithm with better worst-case complexity is
presented in Section 5. What can happen if accuracy is limited is discussed in Section 6.
Conclusions are outlined in Section 7.



2 The Adaptive Regularization Algorithm using Dynamic

Accuracy

As indicated above, we assume that f , c and their derivatives are computed inexactly but
that h is exact and its cost negligible compared to that of obtaining approximate value for f ,
c or their derivatives. Moreover, we assume that, for some known constant Lh ≥ 0,

‖h(v)− h(w)‖ ≤ Lh‖v − w‖ for all v, w ∈ IRm. (2.1)

where ‖ · ‖ denotes the standard Euclidean norm.

2.1 An outline

Our algorithm is iterative and of the adaptive regularization type. It constructs a sequence of
iterates {xk}, at which the function ψ and its derivatives are computed inexactly. For exact
values, we use the notations

fk
def
= f(xk), gk

def
= g(xk) = ∇1

xf(xk), ck
def
= c(xk), Jk

def
= J(xk) = ∇1

xc(xk)

and ψk
def
= ψ(xk) = fk + h(ck). The “linearization”

ℓk(s)
def
= fk + gTk s+ h(ck + Jks).

will play in important role in what follows. In particular, we use the fact that

min
‖d‖≤1

ℓk(d) = ℓk(0) = ψk

if xk is a local minimizer of (1.1) [31, Lemma 2.1] and we say that xk is an ǫ-approximate
minimizer if

φk ≤ ǫ, (2.2)

where
φk

def
= φ(xk)

def
= ℓk(0)− min

‖d‖≤1
ℓk(d) = max

‖d‖≤1
∆ℓk(d), (2.3)

with
∆ℓk(s)

def
= ℓk(0)− ℓk(s) = −gTk s+ h(ck)− h(ck + Jks).

If xk is not such a point, the standard exact regularization algorithm [9] computes a trial step
sk by approximately minimizing the regularized model

mk(s)
def
= ℓk(s) +

σk
2
‖s‖2 (2.4)

over all s ∈ IRn, where σk is an adaptive “regularization parameter”, which is adjusted by the
algorithm we described below, starting from an arbirary initial value. This yields the model
decrease ∆mk(sk), where

∆mk(s)
def
= mk(0)−mk(s) = −gTk s+ h(ck)− h(ck + Jks)−

σk
2
‖s‖2.

The value of the objective function is then computed at the trial point xk + sk, which is
accepted as the new iterate if the achieved reduction ψk −ψ(xk + sk) compares well with the
predicted decrease ∆ℓk(sk). The regularization parameter σk is then updated to reflect the
quality of this prediction and a new iteration started.



2.2 An accuracy model

In our context of inexact values for f and c, we will keep the same general algorithm outline,
but will also need to take action to handle the fact that evaluations of f , c, g and J are
inexact. In order to reach any conclusion regarding the true problem (that is the problem
using exact evaluations), we must make some assumptions on the possible errors occuring in
the evaluations. To make the discussion more focused, consider the evaluation of the objective
function f at a given point x ∈ IRn. A very general accuracy model would be to assume that
we have an accuracy parameter af which we can specify and such that the resulting inexact

value f̂(x, af ) satisfies

|f̂(x, af )− f(x)| ≤ κf (x)af . (2.5)

This implies, in particular, that sufficiently reducing af also reduces the error |f̂(x, af )−f(x)|.
Several cases are then of interest. A first case is when κf (x) = κf is independent of x or
an upper bound on its value (κf (x) ≤ κf,max for all x) is known a priori. This occurs, for
instance, in some subsampling algorithms for deep learning (see [27]) or binary classification
problems modelled by the sigmoid function and least-squares loss (see [3]). Other examples
include the case where f is linear combination of basis functions whose coefficients can be
computed to prescribed accuracy (in multivariate interpolation, for instance), or more general
iterative process whose termination guarantees a final user-specified accuracy. A second case
is when κf (x) depends of x and an upper bound on its value (κf (x) ≤ κf,max(x)) is computable

together with f̂(x, af ) once x is known. An example is when the relative accuracy of f̂(x, af )
can be controlled, say when

|f̂(x, af )− f(x)| ≤ (ζ + |f(x)|)af or |f̂(x, af )− f(x)| ≤ (ζ + |f̂(x, af )|)af (2.6)

for some small ζ ≥ 0 and some computable function u(x) is known such that |f(x)| ≤ u(x) or
|f̂(x, af )| ≤ u(x). (Of course, u(x) might be constant when global upper bounds on |f(x)| or
|f̂(x, af )| are known.) Computation in variable precision using an idealized truncation model
(see [18] and references therein) is a framework where the first of the inequalities of (2.6)
typically holds. A third case where no bound on κf (x) is computable could unfortunately
also happen. This occurs, for instance, in [21] where a PDE application is described in
which κf (x) depends on an adaptive mesh. However, this third case then prevents any
algorithm to include a termination rule relating an inexact solution to a true one. While the
algorithm may be proved convergent to a true solution in the limit, it has to remain theoretical
and a priori evaluation complexity bound can possibly be given for the computation of an
approximate solution. Indeed, the authors of [21] derive a trust-region algorithm inspired
from [13, Section 10.6] that is convergent to a true solution, but this algorithm does not
include any termination rule (and the practical termination criterion used in the numerical
illustration is not mentioned).

In order to cover the first two cases (given our purpose to estimate an evaluation com-
plexity bound, we exclude the third), we assume that, given an absolute accuracy request εf ,
we can compute f(x) such that

f(x)
def
= f(x, εf ) with |f(x, εf )− f(x)| ≤ εf , (2.7)

possibly by evaluating f̂(x, af ) in (2.5) for several values of af . Let nf (x) denote the number



of these evaluations. In case 1, defining

f(x, εf ) = f̂

(
x,

εf
κf,max

)

then ensure that (2.7) holds with nf (x) = 1. The situation in case 2 is more complicated
because the evaluation of κf,max(x) may itself require some additional evaluations. Note that,
in the relative accuracy case of (2.6) where the upper bounding function u(x) is known, setting

f(x, εf ) = f̂

(
x,

εf
u(x)

)

also yields nf (x) = 1.
In what follows, we will denote inexactly computed quantities with an overbar and we

apply the model discussed above for f to f , g, c, and J , and assume the accuracy parameters
εf , εg, εc and εJ are bounded above and that, given xk ∈ IRn, εf , εg, εc and εJ , approximate
values of f(x), g(x), c(x) and J(x) can be computed such that

fk = f(xk, εf ) and |fk − fk| ≤ εf , (2.8)

gk = g(xk, εg) and ‖gk − gk‖ ≤ εg, (2.9)

ck = c(xk, εc) and ‖ck − ck‖ ≤ εc, (2.10)

Jk = J(xk, εJ) and ‖Jk − Jk‖ ≤ εJ , (2.11)

with associated number of evaluations nf,k, ng,k, nc,k and nJ,k. The accuracy level on f , g, c
and J is thus dynamic, in the sense that εf , εg, εc and εJ are specified by the algorithm in
order to ensure its meaningful progress.

We will then consider the inexact objective function ψ(x) = f(x)+h(c(x)), together with
its “linearization” and model given by

ℓk(s)
def
= fk + gTk s+ h(ck + Jks) and mk(s)

def
= ℓk(s) +

σk
2
‖s‖2,

defining their corresponding decreases by

∆ℓk(sk)
def
= −gTk s+ h(ck)− h(ck + Jks) (2.12)

and
∆mk(s)

def
= −gTk s+ h(ck)− h(ck + Jks)−

σk
2
‖s‖2. (2.13)

Finally, the criticality measure φk will be approximated by

φk
def
= ℓk(0)− min

‖d‖≤1
ℓk(d) = max

‖d‖≤1
∆ℓk(d).

Armed with these definitions, we may establish the following crucial error bounds.

Lemma 2.1 We have that, for any k,

|ψk − ψk| ≤ εf + Lhεc (2.14)

and, for any v ∈ IRn,

|∆mk(v)−∆mk(v)| = |∆ℓk(v)−∆ℓk(v)| ≤ (εg + LhεJ)‖v‖+ 2Lhεc. (2.15)



Proof. Using successively (1.1), the triangle inequality, (2.1), (2.8) and (2.10), we
obtain that

|ψk − ψk| = |fk + h(ck)− fk − h(ck)|
≤ |fk − fk|+ |h(ck)− h(ck)|
≤ εf + Lh‖ck − ck‖
≤ εf + Lhεc

and hence (2.14) holds. Similarly, using now (2.13), (2.12), the triangle and Cauchy-
Schwarz inequalities, (2.1), (2.9), (2.10) and (2.11), we deduce that

|∆mk(v)−∆mk(v)| = |∆ℓk(v)−∆ℓk(v)|
≤ |(gk − gk)

T v|+ |h(ck)− h(ck)|+ |h(ck + Jkv)− h(ck + Jkv)|
≤ ‖gk − gk‖ ‖v‖+ Lh‖ck − ck‖+ Lh‖ck + Jkv − ck − Jkv‖
≤ ‖gk − gk‖ ‖v‖+ Lh‖ck − ck‖+ Lh(‖ck − ck‖+ ‖Jk − Jk‖ ‖v‖)
≤ εg‖v‖+ Lhεc + Lh(εc + εJ‖v‖)
≤ (εg + LhεJ)‖v‖+ 2Lhεc.

✷

2.3 The ARLDA algorithm

Broadly inspired by [3], we may now state our inexact adaptive regularization algorithm
formally, in two stages. We first describe its global framework on the following page, delegat-
ing the more complicated questions of verifying optimality and computing the step to more
detailed sub-algorithms to be presented in the second stage.

In the ARLDA (1) algorithm on the next page, εmax
f , εmax

g , εmax
c and εmax

J stand for upper
bounds on εf , εg, εc and εJ , and ωk can be viewed as an iteration dependent relative accuracy
level on f , ψ and the model decreases.

A few comments on this first view of the algorithm are now useful.

1. The words “If unavailable” at the beginning of Step 1 will turn out to be fairly important.
In a context where the values of fk, gk, ck and Jk may need to be computed several
times but with different accuracy requirements in the course of the same iteration (as we
will see below), they indicate that, if one of these functions has already been computed
at the current iterate with the desired accuracy, it need not (of course) be recomputed.
This imposes the minor task of keeping track of the smallest value of the relevant ε for
which each of these functions has been evaluated at the current iterate.

2. Observe that the relative accuracy threshold ωk is recurred from iteration to iteration,
and the absolute accuracy requirements εf , εg, εc and εJ are then determined in the
hope to enforce the relative error (see (2.17) and (2.18) for f at xk + sk).

(1)For Adaptive Regularization with Lipschitz model and Dynamic Accuracy.



Algorithm 2.1: The ARLDA Algorithm

Step 0: Initialization. An initial point x0 and an initial regularization parameter σ0 >
0 are given, as well as an accuracy level ǫ ∈ (0, 1). The constants α, κω, η1, η2, γ1,
γ2, γ3, ε

max
f , εmax

g , εmax
c , εmax

J , γε and σmin are also given and satisfy σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3, α ∈ (0, 1), γε ∈ (0, 1).

Choose εf ≤ εmax
f , εg ≤ εmax

g , εc ≤ εmax
c , εJ ≤ εmax

J and κω ∈ (0, 1
3
αη1] such that

ω0 = εf + Lhεc ≤ min[κω, σ
−1
0 ]. Set k = 0.

Step 1: Compute the optimality measure and check for termination.

If unavailable, compute fk, gk, ck and Jk satisfying (2.8)–(2.11). Apply Algo-
rithm 2.2 to check for termination with the iterate xk and ψ(xk) = fk + h(ck), or
to obtain φk > ǫ/(1 + ωk) if termination does not occur.

Step 2: Step calculation. Apply Algorithm 2.3 to approximately minimize mk(s)
and obtain a step sk and the corresponding linearized decrease ∆ℓk(sk) such that

∆ℓk(sk) ≥
1

4
min

{
1,
φk
σk

}
φk. (2.16)

Step 3: Acceptance of the trial point. Possibly reduce εf to ensure that

εf ≤ ωk∆ℓk(sk). (2.17)

If εf has been reduced, recompute fk(xk, εf ) to ensure (2.8). Then compute fk(xk+
sk, εf ) such that |fk(xk + sk, εf )− f(xk + sk)| ≤ εf , (2.18)

set ψ(xk+ sk) = fk(xk+ sk, εf )+h(ck(xk+ sk, εc)), ψk = fk(xk, εf )+h(ck(xk, εc))
and define

ρk =
ψk − ψ(xk + sk)

∆ℓk(sk)
. (2.19)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈





[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.20)

Step 5: Relative accuracy update. Set

ωk+1 = min

[
κω,

1

σk+1

]
(2.21)

and redefine εf ≤ εmax
f , εg ≤ εmax

g , εc ≤ εmax
c and εJ ≤ εmax

J such that εf +Lhεc ≤
ωk+1. Increment k by one and go to Step 1.



3. However, the redefinition of the absolute accuracy requirements in Step 5 leaves much
freedom. One possible implementation of this redefinition would be to set

εf = min
[
εmax
f ,

ωk+1

ωk

εf

]
, εg = min

[
εmax
g ,

ωk+1

ωk

εg

]
,

εc = min
[
εmax
c ,

ωk+1

ωk

εc

]
, εJ = min

[
εmax
J ,

ωk+1

ωk

εJ

]
,

(2.22)

but this is by no means the only possible choice. In particular, any choice of εg ≤ εmax
g

and εJ ≤ εmax
J is permitted. Observe that since the sequence {σk} produced by (2.20)

(or (2.22)) need not be monotonically increasing, the sequence {ωk} constructed in
(2.21) need not be decreasing. We present an alternative to this choice in Section 5.

4. We will verify in Lemma 3.1 below that the sufficient-decrease requirement (2.16) is
fairly loose. In fact the constant 1

4
in this condition can be replaced by any constant in

(0, 1
2
) and/or φk replaced by ǫ without affecting our theoretical results.

5. When exact functions values can be computed (i.e. εf = εg = εc = εJ = 0), the ARLDA
algorithm essentially reduces to the regularization algorithm of [9]. It is also close in
spirit to the ARpDA algorithm for p = 1 (AR1DA) of [3] when h = 0 and the problem
becomes smooth, but the step computation is simpler in this reference because ∆ℓk(s)
only involves derivatives’ values in that case.

6. The algorithm presented in [20] in the context of general nonsmooth functions assumes
the Lipschitz nature of the objective function but does not use any Lipschitz constant
explictly. This is of course more general than the context discussed here. However, this
point of view ignores the problem’s structure and we are not aware of any complexity
result for methods at that level of generality.

The purpose of Step 1 of the ARLDA algorithm is to check for termination by computing a
value of φk which is relatively sufficiently accurate. As can be expected, computing a relatively
accurate value when φk itself tends to zero may be too demanding, but we nevertheless design
a mechanism that will allow us to prove (in Lemma 3.3 below) that true ǫ-optimality can be
reached in this case. The details of the resulting Step 1 are given in Algorithm 2.2 on
the following page. Observe that this algorithm introduces a possible loop on the accuracy
requirement, between Step 1.3 and Step 1.

Once the algorithm has determined in Step 1 that termination cannot occur at the current
iterate, it next computes sk in Step 2. In this computation, the relative accuracy of the
“linearized decrease” ∆ℓk(sk) must again be assessed. This is achieved in Algorithm 2.3 on
the next page.

As for Algorithm 2.2, this algorithm introduces a possible loop on the accuracy requirement,
between Step 2.3 and Step 1. We will show (in Lemma 3.5 below) that these loops are finite,
and thus that the ARLDA algorithm is well-defined.



Algorithm 2.2: Check for termination in Algorithm 2.1

Step 1.1. Solve
max
‖d‖≤1

∆ℓk(d) (2.23)

to obtain a global maximizer dk and the corresponding ∆ℓk(dk).

Step 1.2.

• If
εg + LhεJ + 2Lhεc ≤ ωk∆ℓk(dk), (2.24)

then

– define φk = ∆ℓk(dk);

– if φk ≤ ǫ/(1 + ωk), terminate the ARLDA algorithm with exit = 1;

– else go to Step 2 of the ARLDA algorithm.

• If
∆ℓk(dk) ≤ 1

2
ǫ and εg + LhεJ + 2Lhεc ≤ 1

2
ǫ, (2.25)

terminate the ARLDA algorithm with exit = 2.

Step 1.3: Multiply εg, εc and εJ by γε and restart Step 1 of the ARLDA algorithm.

Algorithm 2.3: Compute the step sk in Algorithm 2.1

Step 2.1: Approximately solve
min
s∈IRn

mk(s) (2.26)

to obtain a step sk together with ∆mk(sk) and ∆ℓk(sk).

Step 2.2: If
(εg + LhεJ)‖sk‖+ 2Lhεc ≤ ωk∆ℓk(sk), (2.27)

go to Step 3 of the ARLDA algorithm.

Step 2.3: Otherwise multiply εg, εc and εJ by γε and return to Step 1 of the ARLDA
algorithm.



3 Properties of the ARLDA algorithm

Having defined the algorithm, we turn to establishing some of its properties, which will be
central to the forthcoming complexity analysis. We first verify that the requirement (2.16)
can always be achieved.

Lemma 3.1 A step sk satisfying

∆ℓk(sk) ≥ ∆mk(sk) ≥
1

2
min

{
1,
φk
σk

}
φk (3.1)

(and hence also satisfying (2.16)) can always be computed.

Proof. The first inequality results from (2.13) and (2.12). The second is given in [9,
Lemma 2.5], and hinges on the convexity of h. ✷

We next show an alternative lower bound on the linearized decrease, directly resulting from
the model’s definition.

Lemma 3.2 For all k ≥ 0, we have that

∆ℓk(sk) ≥
σk
2
‖sk‖2. (3.2)

Moreover, as long as the algorithm has not terminated,

∆ℓk(sk) ≥ δk(ǫ)
def
=

1

16
min

{
1,

ǫ

σk

}
ǫ. (3.3)

Proof. The definitions (2.13) and (2.12) imply that, for all k,

0 < ∆mk(sk) = ∆ℓk(sk)−
σk
2
‖sk‖2

and (3.2) follows. We also have that, using (2.16) and the fact that φk > ǫ/(1 + ωk) if
termination does not occur,

∆ℓk(sk) ≥
1

4
min

{
1,

ǫ

σk(1 + ωk)

}
ǫ

1 + ωk

.

Hence (3.3) results from (2.21) and the inequality ωk ≤ κω ≤ 1
3
αη1 < 1. ✷

Our next step is to prove that, if termination occurs, the current iterate is a first-order
ǫ-approximate minimizer, as requested.



Lemma 3.3 (Inspired by [3, Lemma 3.2]) If the ARLDA algorithm terminates, then

φk ≤ ǫ (3.4)

and xk is a first-order approximate necessary minimizer.

Proof. Suppose first that the ARLDA algorithm terminates at iteration k with exit

= 1 in Step 1.2. From the mechanism of this step, we have that (2.24) holds and thus, for
each d with ‖d‖ ≤ 1

(εg + LhεJ)‖d‖+ 2Lhεc ≤ εg + LhεJ + 2Lhεc ≤ ωk∆ℓk(dk).

As a consequence, (2.15) ensures that, for all d with ‖d‖ ≤ 1,

|∆ℓk(d)−∆ℓk(d)| ≤ ωk∆ℓk(dk).

Hence,
∆ℓk(d) ≤ ∆ℓk(d) + |∆ℓk(d)−∆ℓk(d)|

≤ ∆ℓk(dk) + |∆ℓk(d)−∆ℓk(d)|
≤ (1 + ωk)∆ℓk(dk).

(3.5)

where we have used that ∆ℓk(d) ≤ ∆ℓk(dk) by definition of dk to derive the second
inequality. As a consequence, for all d with ‖d‖ ≤ 1,

max
{
0,∆ℓk(d)

}
≤ (1 + ωk)∆ℓk(dk) = (1 + ωk)φk ≤ ǫ,

where we have used the definition of φk to obtain the last inequality. The conclusion (3.4)
then follows from (2.3).

Suppose now that the ARLDA algorithm terminates with exit = 2 (in Step 1.2). We
then obtain, using the first two inequalities of (3.5), (2.25) and (2.15), that, for every d
such that ‖d‖ ≤ 1,

∆ℓk(d) ≤ ∆ℓk(dk) + |∆ℓk(d)−∆ℓk(d)|
≤ 1

2
ǫ+ (εg + LhεJ)‖d‖+ 2Lhεc

≤ 1
2
ǫ+ εg + LhεJ + 2Lhεc

≤ 1
2
ǫ+ 1

2
ǫ = ǫ,

which, combined with (2.3), again implies (3.4) for this case. ✷

We now establish a useful property of Step 2 (Algorithm 2.3).

Lemma 3.4 Suppose that, at Step 2.2,

‖sk‖ ≥ θk
def
=

1

ωkσmin

[
εmax
g + Lhε

max
J +

√
(εmax

g + Lhε
max
J )2 + 4Lhεmax

c

]
. (3.6)

Then (2.27) is satisfied and the branch to Step 3 of the ARLDA algorithm is executed.



Proof. Step 2 of the ARLDA algorithm terminates as soon as (2.27) holds, which, in
view of (3.2) is guaranteed whenever ‖sk‖ exceeds the largest root of

(εg + LhεJ)‖sk‖+ 2Lhεc = 1
2
ωkσk‖sk‖2.

given by
1

ωkσk

[
εg + LhεJ +

√
(εg + LhεJ)2 + 4Lhεcωkσk

]
,

which is itself bounded above by θk as defined in (3.6) because of the inequality σk ≥ σmin,
(2.21) and the fact that εf ≤ εmax

f , εg ≤ εmax
g , εc ≤ εmax

c and εJ ≤ εmax
J . ✷

It is also necessary (as announced above) to prove that the accuracy loops within iteration
k are finite, and thus that the ARLDA algorithm is well-defined. We therefore give explicit
bounds on the maximum number of these accuracy loops and the resulting number of evalu-
ations of the problem’s inexact functions.

Lemma 3.5 Each iteration k of the ARLDA algorithm involves at most three evalua-
tions of f , 2 + νk(ǫ) evaluations of c and 1 + νk(ǫ) evaluations of g and J , where νk(ǫ),
the number of times that the accuracy thresholds εg, εc and εJ have been reduced by
Steps 1.3 or 2.3 at iteration k, satisfies the bound

νk(ǫ)
def
=

| log
(
(εmax

g + Lhε
max
J )max{1, θk}+ 2Lhε

max
c

)
− log

(
ωk min{ 1

2
ǫ, δk(ǫ)}

)
|

| log(γε)|
, (3.7)

and where δk(ǫ) and θk are defined in (3.3) and (3.6), respectively.
As a consequence, each iteration k of the ARLDA algorithm involves at most 3nf,k
evaluations of f̂ , (2 + νk(ǫ))nc,k evaluations of ĉ, (1 + νk(ǫ))ng,k evaluations of ĝ and

(1 + νk(ǫ))nJ,k evaluations of Ĵ .

Proof. In order to prove this result, we have to bound the number of times the
accuracy-improving loops (Step 1.3–Step 1) and (Step 2.3–Step 1) are being executed.

Observe first that, at the beginning of every iteration, εg, εJ and εc are bounded above
by εmax

g , εmax
J and εmax

c , respectively. Morever, the mechanism of Algorithms 2.2 and 2.3
ensures that they can only be reduced within these algorithms, and that this reduction is
obtained by multiplication with the constant γε < 1. Thus, if i is the number of times εg,
εJ and εc have been reduced in Steps 1.3 or 2.3, then

εg ≤ γiεε
max
g , εJ ≤ γiεε

max
J and εc ≤ γiεε

max
c . (3.8)

Consider the loop (Step 1.3–Step 1) and suppose that

εg + LhεJ + 2Lhεc ≤ 1
2
ωkǫ. (3.9)



First consider the case where ∆ℓk(dk) ≥ 1
2
ǫ. Combining this last inequality with (3.9)

gives that (2.24) holds and thus the loop (Step 1.3–Step 1) is terminated by either exiting
the ARLDA algorithm with exit = 1 or going to its Step 2. Suppose now that (3.9)
holds and that ∆ℓk(dk) < 1

2
ǫ. Then (2.25) holds and the loop is terminated by exiting the

ARLDA algorithm with exit = 2. Thus, using (3.8) and (3.9), the loop is not activated
if i is large enough to ensure that

γiε (ε
max
g + Lhε

max
J + 2Lhε

max
c ) ≤ 1

2
ωkǫ. (3.10)

The situation is similar for the loop (Step 2.3–Step 1): the mechanism of Algorithm 2.3
ensures that the loop is not activated when (2.27) holds. Suppose first that ‖sk‖ remains
below θk (as defined in (3.6)) for all iterations of the loop (Step 2.3–Step 1). Then, in
view of (3.8) and (3.3), (2.27) must hold at the latest when

γiε

(
(εmax

g + Lhε
max
J )θk + 2Lhε

max
c

)
≤ ωkδk(ǫ) (3.11)

where δk(ǫ) is defined in (3.3). If ‖sk‖ happens to exceed θk before (3.11) is satisfied,
then (2.27) is also satisfied earlier because of Lemma 3.4 and the loop terminated. We
therefore deduce from (3.10) and (3.11) that the loops (Step 1.3–Step 1) and (Step 2.3–
Step 1) can be activated at most νk(ǫ) times during the complete k-th iteration of the
ARLDA algorithm, where νk(ǫ) is given by (3.7).

Since they are be evaluated once in each of these loops and also (possibly) once in the
beginning of Step 1, g(xk, εg), and J(xk, εj) are thus computed at most 1 + νk(ǫ) times.
Evaluations of c occurs with those of g, and J , but also in Step 3 where c(xk + sk, εc)
is evaluated. Observe that there is no need to recompute c(xk, εc) in Step 3 because the
necessary accuracy is ensured by Step 2, since (2.27) must hold, which in turn implies that
Lhεc ≤ 1

2
ωk∆ℓk(sk). Thus c is evaluated at most 2+νk(ǫ) times at each iteration. Finally,

f is evaluated at most three times per iteration (possibly once in Step 1 and possibly twice
in Step 3). This concludes the proof of the first part of the theorem. The conclusions in
terms of f̂ , ĝ, ĉ and Ĵ follow from the definitions of nf,k, ng,k, nc,k and nJ,k, respectively.
✷

We next bound the error on the successive values of the objective function.

Lemma 3.6 We have that, for all k ≥ 0,

|ψk − ψk| ≤ 3
2
ωk∆ℓk(sk) and |ψ+

k − ψ+
k | ≤ 3

2
ωk∆ℓk(sk). (3.12)

where ψ+
k = ψ(xk + sk).

Proof. When ρk is computed in Step 3, it must be because Step 2 has been completed,
and hence, as we noted above, (2.27) must hold, which in turn implies that Lhεc ≤
1
2
ωk∆ℓk(sk). Thus the desired inequalities follow from (2.8), (2.18), (2.17) and (2.14). ✷



We finally recall a standard result on successful versus unsuccessful iterations.

Lemma 3.7 [5, Theorem 2.4] Let

Sk = {j ∈ {1, . . . , k} | ρj ≥ η1} and Uk = {1, . . . , k} \ Sk (3.13)

be the sets of successful and unsuccessful iterations, respectively. The mechanism of
Algorithm 2.1 guarantees that, if

σk ≤ σmax, (3.14)

for some σmax > 0, then

k + 1 ≤ |Sk|
(
1 +

| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.15)

This shows that it is sufficient, for establishing the overall evaluation complexity of the
ARLDA algorithm, to bound the maximum number of evaluations at successful iterations.

4 Worst-case evaluation complexity

We are now in position to start our evaluation complexity proper. In order to make it formally
coherent, we start by explicitly stating our assumptions on the problem.

AS.1. f and c are continuously differentiable in IRn.

AS.2. There exist non-negative constants Lg and LJ such that, for all k ≥ 0, and for all x, y
in L0 = {v ∈ IRn | ψ(v) ≤ ψ(x0)},

‖g(x)− g(y)‖ ≤ 2Lg‖x− y‖ and ‖J(x)− J(y)‖ ≤ 2LJ‖x− y‖. (4.1)

AS.3 There exists a constant Lh ≥ 0 such that (2.1) holds.

AS.4 There exists a constant ψlow such that ψ(x) ≥ ψlow for all x ∈ IRn.

We stress that we only assume the existence of Lg and LJ , but we do not assume that their
value is known. Since our algorithm uses Lh, AS.3 is necessary. A first (and standard)
consequence of AS.1-AS.2 is the following result on error bounds for f and c at a trial point
x+ s.

Lemma 4.1 Suppose that AS.1 and AS.2 hold. Then, for all x, s ∈ IRn,

|f(x+ s)− (f(x) + g(x)T s)| ≤ Lg‖s‖2 and ‖c(x+ s)− (c(x) + J(x)s)‖ ≤ LJ‖s‖2

Proof. See [10, Lemma 2.1]. ✷



We may then use the bounds to establish the following important bound on the regularization
parameter.

Lemma 4.2 Suppose that AS.1-AS.3 hold. Then there exists a constant σmax ≥
max{1, σ0} such that, for all k ≥ 0,

σk ≤ σmax
def
= max

{
σ0, γ3

4 + 2(Lg + LhLJ)

1− η2
,
1

κω

}
and ωk ≥ 1

σmax
. (4.2)

Proof. Observe first that, if the algorithm has not terminated at iteration k, then
(2.27) must hold, and hence (2.15) (with v = sk) implies that

|∆ℓk(sk)−∆ℓk(sk| ≤ ωk∆ℓk(sk). (4.3)

We then have that

|ρk − 1| =
|ψk − ψ

+
k −∆ℓk +∆ℓk(sk)−∆ℓk(sk)|

∆ℓk(sk)

≤ 1

∆ℓksk)

[
|ψk − ψk|+ |ψ+

k − ψ+
k |+ |∆ℓk(sk)−∆ℓk(sk)|

+|ψ+
k − (ψk −∆ℓk(sk))|

]

≤ 1

∆ℓk(sk)

[
4ωk∆ℓk(sk) + |ψ+

k − (ψk −∆ℓk(sk))|
]
,

where we also used (2.19), the triangle inequality to derive the first inequality, while
the second results from (3.12) and (4.3). Now, because of the triangle inequality, (4.1),
Lemma 4.1 and (2.1), we see that

|ψ+
k − (ψk −∆ℓk(sk))| = |f+k + h(c+k )− fk − h(ck)− gTk sk + h(ck)− h(ck + Jksk)|

≤ |f+k − (fk + gTk sk)|+ |h(c+k )− h(ck + Jksk)|
≤ |f+k − (fk + gTk sk)|+ Lh‖c+k − ck + Jksk‖
≤ Lg‖sk‖2 + LhLJ‖sk‖2.

Thus, combining the two last displays,

|ρk − 1| ≤ 4ωk + (Lg + LhLJ)
‖sk‖2

∆ℓk(sk)
. (4.4)

Taking now (2.21) and the inequality of (3.2) into account, we deduce that

|ρk − 1| ≤ 1

σk

[
4 + 2(Lg + LhLJ)

]
≤ 1− η2 whenever σk ≥ 4 + 2(Lg + LhLJ)

1− η2
, (4.5)

in which case ρk ≥ η2 ≥ η1, iteration k is successful (i.e. k ∈ Sk) and σk+1 ≤ σk. Assume
now that k + 1 is the first index such that

σk+1 > γ3
4 + 2(Lg + LhLJ)

1− η2
, (4.6)



Then σk < σk+1 and the mechanism of Step 4 in the ARLDA algorithm implies that

σk >
4 + 2(Lg + LhLJ)

1− η2
.

Thus, because of (4.5), ρk ≥ η2, which in turn ensures that

σk+1 ≤ σk < σk+1

which is impossible. Hence no k can exist such that (4.6) holds and (4.2) therefore holds
for all k. The lower bound on ωk follows from (2.21) and the fact that (4.2) ensures that
(1/σmax) ≤ κω. ✷

The bound (4.2) is important, in particular because it allows, in conjunction with AS.2, to
simplify the bound on the complexity of a single iteration of the ARLDA algorithm, making
this bound only dependent on ǫ (i.e. dropping the dependence on k).

Lemma 4.3 Suppose that AS.1-AS.3 hold. Then we have that, before termination, each
iteration of the ARLDA algorithms evaluates f at most three times, c at most 2 + ν(ǫ)
times, and g and J at most 1 + ν(ǫ) times, where

ν(ǫ)
def
=

⌊
|2 log

(
ǫ
)
|+ | log

(
(εmax

g + Lhε
max
J )θ + 2Lhε

max
c

)
+ 2 log(4σmax)|

| log(γε)|

⌋
(4.7)

with

θ
def
= max

{
1,
σmax

σmin

[
εmax
g + Lhε

max
J +

√
(εmax

g + Lhε
max
J )2 + 4Lhεmax

c

]}
. (4.8)

As a consequence, each iteration k of the ARLDA algorithm involves at most 3nf,k
evaluations of f̂ , (2 + ν(ǫ))nc,k evaluations of ĉ, (1 + ν(ǫ))ng,k evaluations of ĝ and

(1 + ν(ǫ))nJ,k evaluations of Ĵ .

Proof. We observe that, because of (3.3), (4.2) and the inequalities ǫ ≤ 1 ≤ σmax and
the second part of (4.2),

ωkδk(ǫ) ≥
ωk

16
min

{
1,

ǫ

σmax

}
ǫ ≥ ǫ2

16σ2max

and 1
2
ωkǫ ≥

ǫ2

16σ2max

.

Moreover, the second part of (4.2) and (3.6) imply that θk ≤ θ, a value independent of k
and ǫ. Using these bounds in (3.7), we see that

νk(ǫ) ≤
log

(
ǫ2

16σ2
max

)
− log

(
(εmax

g + Lhε
max
J )θ + 2Lhε

max
c

)

log(γε)

which, with Lemma 3.5, the second part of (4.2) and the observation that the above value
only depends on ǫ, concludes the proof of the first part of the theorem. The last conclusion
again follows from the definitions of nf,k, ng,k, nc,k and nJ,k, respectively. ✷



Following a well-worn path in complexity analysis, we may now use a telescopic sum argument
involving successive objective function’s decreases at successful iterations and Lemmas 3.1,
3.7 and 4.3 to deduce our final result.

Theorem 4.4 Suppose that AS.1-AS.4 hold. Then the ARLDA algorithm terminates
with φk ≤ ǫ in at most

τ(ǫ) iterations, 3τ(ǫ) evaluations of f , (2 + ν(ǫ))τ(ǫ) evaluations of c

and (2 + ν(ǫ))τ(ǫ) evaluations of g and J,

where

τ(ǫ)
def
=

⌊
8σmax

(
ψ(x0)− ψlow

)

η1(1− α)
ǫ−2 + 1

⌋(
1 +

| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
, (4.9)

ν(ǫ) is defined in (4.7) and σmax is defined in (4.2).
As a consequence, the ARLDA algorithm terminates with φk ≤ ǫ in at most

• 3

τ(ǫ)∑

k=0

nf,k evaluations of f̂ ,

•
τ(ǫ)∑

k=0

(2 + ν(ǫ))nc,k evaluations of ĉ,

•
τ(ǫ)∑

k=0

(1 + ν(ǫ))ng,k evaluations of ĝ and

•
τ(ǫ)∑

k=0

(1 + ν(ǫ))nJ,k evaluations of Ĵ .

Proof. If iteration k is successful (i.e. k ∈ Sk) and the ARLDA algorithm has not
terminated yet, one has that

ψ(xk)− ψ(xk+1) ≥ [ψk(xk)− ψk(xk+1)]− 3ωk∆ℓk(sk)

≥ η1∆ℓk(sk)− αη1∆ℓk(sk)

≥ η1(1− α)

2
min

{
1,
φk
σk

}
φk

≥ η1(1− α)

2
min

{
1,

ǫ

σmax(1 + ωk)

}
ǫ

1 + ωk

=
η1(1− α)ǫ2

2σmax(1 + ωk)2
,



where we used (3.12), (2.19), (3.1) and (4.2), the fact that φk > ǫ/(1 + ωk) before termi-
nation, that σmax ≥ 1 and the inequality ǫ ≤ 1. Thus ψ(xk) is monotonically decreasing,
and one then deduces that

ψ(x0)− ψ(xk+1) ≥
η1(1− α)ǫ2

2σmax(1 + ωk)2
|Sk|.

Using that ψ is bounded below by ψlow and the inequalities ωk ≤ κω < 1, we conclude
that

|Sk| ≤
2σmax(1 + ωk)

2

η1(1− α)
(ψ(x0)− ψlow)ǫ

−2 <
8σmax

η1(1− α)
(ψ(x0)− ψlow)ǫ

−2

until termination. Lemmas 3.7 and 4.2 are then invoked to compute the upper bound on
the total number of iterations τ(ǫ), and Lemma 4.3 is invoked to bound the number of
evaluations. The final bounds on the number of evaluations of f̂ , ĝ, ĉ and Ĵ follow once
more from the definitions of nf,k, ng,k, nc,k and nJ,k, respectively. ✷

If, as is usual in evaluation complexity analysis, one focuses on the maximum number of
evaluations expressed as the order in ǫ, the bound of Theorem 4.4 may be simplified, whenever
nf,k, ng,k, nc,k and nJ,k can be bounded above uniformly, to

O
(
| log(ǫ)| ǫ−2

)
evaluations, (4.10)

which is identical in order to the bound obtained for the inexact first-order regularization
method AR1DA in [3].

5 An algorithmic variant with monotonic accuracy thresholds

As in [3], we now consider a variant of the ARLDA algorithm for which a better worst-case
complexity bound can be proved, at the price of a significantly more rigid dynamic accuracy
strategy. Whether or not this could result in a less efficient optimization process strongly
depends on the problem-dependent cost of more accurate evaluations.

Suppose that the relatively loose conditions for updating εf , εg, εc and εJ and the end of
Step 5 of the ARLDA algorithm are replaced by

If necessary, decrease εf , εg, εc and εJ to ensure that εf + Lhεc ≤ ωk+1. (5.1)

In this case, εf , εg, εc and εJ all decrease monotonically. As a consequence, the number
of times they are reduced by multiplication with γǫ is still bounded by ν(ǫ) as given in (4.7),
but this bound now holds for reductions at Steps 1.3 or 2.3 across all iterations (instead of
at iteration k only). We may therefore revise Theorem (4.4) as follows.



Theorem 5.1 Suppose that AS.1-AS.4 hold. Then the variant of the ARLDA algorithm
using the update (5.1) terminates with φk ≤ ǫ in at most

τ(ǫ) iterations, 3τ(ǫ) evaluations of f , (ν(ǫ) + 2τ(ǫ)) evaluations of c

and (ν(ǫ) + τ(ǫ)) evaluations of g and J,

where τ(ǫ) is defined in (4.9) and ν(ǫ) is defined in (4.7).
As a consequence, the variant of ARLDA algorithm terminates with φk ≤ ǫ in at most

• 3

τ(ǫ)∑

k=0

nf,k evaluations of f̂ ,

• ν(ǫ) max
k∈{0,...,τ(ǫ)}

nc,k + 2

τ(ǫ)∑

k=0

nc,k evaluations of ĉ,

• ν(ǫ) max
k∈{0,...,τ(ǫ)}

ng,k +

τ(ǫ)∑

k=0

ng,k evaluations of ĝ and

• ν(ǫ) max
k∈{0,...,τ(ǫ)}

nJ,k +

τ(ǫ)∑

k=0

nJ,k evaluations of Ĵ .

Proof. The proof is identical to that of Theorem 4.4 except for the very last argument,
where one now needs to take the revised interpretation of ν(ǫ) into account to derive the
maximum number of approximate evaluations of g, c and J . ✷

Observe that expressing this new bound in order of ǫ now gives

O
(
| log(ǫ)|+ ǫ−2

)
evaluations,

which typically improves upon (4.10) and extends the bound known in the smooth case for
the p = 1 variant of the ARpDA algorithm with monotonic accuracy [3]. But, as indicated
above this improved bound comes at the price of the more restrictive updating rule (5.1).
In particular this rule means that a (potentially large) number of iterations will require an
accuracy on g, c and J which is tighter than what is actually needed for the algorithm’s
progress.

6 Discussion

The theory presented above supposes a somewhat ideal world, where arbitrarily high accuracy
may be requested for the evaluation of the problem’s function values and their derivatives. In
practice however, such requests are likely to be too demanding, for instance due to limitations
of computer arithmetic. It may thus happen that evaluating f , c, g or J becomes impossible,
especially if ψ is locally very nonlinear causing σk to increase and ωk to decrease.



A first comment is that algorithmic precautions may be taken, in the framework of the
present theory, to make this event less likely. The most obvious one is to use the ARLDA
algorithm itself (instead of its variant of Section 5). Secondly, it is important to choose the
final accuracy ǫ large enough to ensure that satisfying

εg + LhεJ + 2Lhεc ≈ 1
2
ǫ (6.1)

(the second inequality in (2.25)) is at all possible. Moreover, as one expects ∆ℓ(sk) to be of
the order of ǫ and ‖sk‖ to be of the order of

√
ǫ when converging, (2.27) and (2.21) suggest

that the condition
(εg + LhεJ)

√
ǫ+ 2Lhεc ≈

ǫ

σmax
(6.2)

should be achievable, where σmax is given by (4.2). Assuming the term in σ0 does not dominate
is this latter expression, the condition (6.2) becomes

(εg + LhεJ)
√
ǫ+ 2Lhεc ≈

ǫ(1− η2)

γ3(3 + 2(Lg + LhLJ))
. (6.3)

Similarly, (2.17) and (2.21) indicate that

εf ≈ ǫ(1− η2)

γ3(3 + 2(Lg + LhLJ))
(6.4)

should also be achievable. This discussion furthermore indicates that limiting the growth of
σk as much as possible by choosing moderate values of γ2 and γ3 in (2.20) might be a good
idea. A third possibility is to “balance” the accuracy requests between εg, εJ and εc in order
to satisfy (2.24) and (2.27), depending on the value of Lh. For instance, if Lh is large, one
might consider choosing εg smaller to allow for a larger εc. In view of (2.27), this is even
more important if ‖sk‖ is small (as can be expected when converging). Finally, since (2.17)
and (2.27) involve ∆ℓk(sk) in their right-hand side, computing the step sk more accurately
than requested by (2.16) may also be helpful.

As indicated, these stategies may still be insufficient because the high nonlinearity inherent
to the problem causes σk to grow or because the conditions (6.1)–(6.4) are too restrictive to
hold in practice. If failure to compute one of the problem’s function occurs with values of σk
barely ensuring successful iterations, we contend that this is signal that the algorithm should
be stopped as it has exhausted its “descent potential” on the exact objective function. Three
cases must be considered. The first is when the value of ∆ℓk(dk) cannot be proved to be
significant enough for its value to be interpreted as the optimality measure φk (this likely to
happen for quite small values of ∆ℓk(dk)). This implies that the link between φk and φk is
lost, but the proof of Lemma 3.3 nevertheless indicates that “noisy optimality” is achieved in
the sense that, for all d with ‖d‖ ≤ 1,

∆ℓk(d) ≤ max{ 1
2
ǫ,∆ℓk(dk)}+ εg + LhεJ + 2Lhεc.

The second case is when (2.27) cannot be satisfied, meaning that ∆ℓk(sk) cannot be made
accurate enough (due to failing evaluations of c, g or J) to make the latter significant compared
with the inaccuracy noise. Because of the form of (2.27), it is possible that backtracking along
the step sk could improve the situation, as convexity of ℓk leaves the possibility that ‖βsk‖
decreases faster that ∆ℓk(βsk) for β tending to zero in (0, 1], thereby allowing (2.27) to hold



for some β. If this is the case, minimization can be pursued, possibly at the price of loosing
the complexity guarantee of Theorem (4.4) if ∆ℓk(βsk) is too small compared to ǫ2. If (2.27)
cannot be enforced, this means that progress based on the model cannot be guaranteed, and
the algorithm should then be stopped. A similar situation occurs in the third case, where
the computation of f(xk, εf ) or f(xk + sk, εf ) fails. This then means that the decrease in the
objective function value is obscured by inaccuracies and cannot be meaningfully compared
to the predicted decrease. A purely deterministic algorithm, like ARLDA, must therefore
abandon. But, as we have noted, it is not because the correct working of the method is
no longer guaranteed that significant objective function decrease may not happen by chance.
Attempting some re-evaluations and/or recomputations of ∆ℓk(sk) may, with some luck, allow
progress. It is therefore not unreasonable to consider such an effort-limited “trial-and-error”
heuristic, close to random-direction search, if the algorithm stalls due to impractical accuracy
requests. Obviously, this is beyond the theory we have presented.

We conclude this section by an important observation. Since the mechanism of requiring
adaptive absolute errors on the inexactly computed quantities is identical to that used in
[3], the probabilistic complexity analysis derived in this reference remains valid for our case.
Moreover, if either f or c is computed by subsampling sums of many independent terms
(as is frequent in machine learning applications), the sample size estimators presented in [3,
Theorem 6.2] may also be used in our framework.

7 Conclusion and perspectives

For solving the possibly nonsmooth and nonconvex composite problem (1.1), we have proposed
an adaptive regularization algorithm using inexact evaluations of the problem’s functions and
their first derivative, whose evaluation complexity is O

(
| log(ǫ)| ǫ−2

)
. This complexity bound

is within a factor | log(ǫ)| of the known optimal bound for first-order methods using exact
derivatives for smooth [10] or nonsmooth composite [9] problems. It also generalizes the
bound derived in [3] to the composite nonsmooth case. We have also shown that a practically
more restrictive variant of the algorithm has O

(
| log(ǫ)|+ ǫ−2

)
complexity.

Our method and analysis can easily be extended to cover two other cases of potential
interest. The first is when g and J are merely β-Hölder continuous rather that Lipschitz-
continuous, and the second is to set-constrained problems minψ(x) for x ∈ F , where the
constraints are inexpensive in the sense that their/evaluation/enforcement has a negligible
cost compared to that of evaluating f , g, c or J . We have refrained from including the
generality needed to cover these two extensions here for clarity of exposition, and we refer
the reader to [10, 3] for details. We also note that, as in [10] (for instance), the Lipschitz
conditions of AS.2 need only to apply on each segment of the “path of iterates” ∪k≥0[xk, xk+1]
for our results to hold.

The authors are aware that there is considerable room for an updating strategy for εf ,
εg, εc and εJ which is more practical than uniform multiplication by γε or simple updates
of the form (2.22). One expects their worst-case complexity to lie between O

(
| log(ǫ)| ǫ−2

)

and O
(
| log(ǫ)|+ ǫ−2

)
depending on how much non-monotonicity is allowed. They should be

considered in a (desirable) numerical study of the new methods.
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