
HAL Id: hal-02943953
https://hal.science/hal-02943953

Submitted on 21 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Factor Graph-Based Smoothing Without Matrix
Inversion for Highly Precise Localization

Paul Chauchat, Axel Barrau, Silvere Bonnabel

To cite this version:
Paul Chauchat, Axel Barrau, Silvere Bonnabel. Factor Graph-Based Smoothing Without Matrix
Inversion for Highly Precise Localization. IEEE Transactions on Control Systems Technology, 2021,
29 (3), pp.1219 - 1232. �10.1109/TCST.2020.3001387�. �hal-02943953�

https://hal.science/hal-02943953
https://hal.archives-ouvertes.fr


1

Factor graph based smoothing without matrix
inversion for highly precise localization

Paul CHAUCHAT, Axel BARRAU and Silvère BONNABEL

Abstract—We consider the problem of localizing a manned,
semi-autonomous, or autonomous vehicle in the environment
using information coming from the vehicle’s sensors, a problem
known as navigation or simultaneous localization and mapping
(SLAM) depending on the context. To infer knowledge from
sensors’ measurements, while drawing on a priori knowledge
about the vehicle’s dynamics, modern approaches solve an opti-
mization problem to compute the most likely trajectory given all
past observations, an approach known as smoothing. Improving
smoothing solvers is an active field of research in the SLAM
community. Most work is focused on reducing computation
load by inverting the involved linear system while preserving
its sparsity. The present paper raises an issue which, to the
knowledge of the authors, has not been addressed yet: standard
smoothing solvers require explicitly using the inverse of sensor
noise covariance matrices. This means the parameters that reflect
the noise magnitude must be sufficiently large for the smoother to
properly function. When matrices are close to singular, which is
the case when using high precision modern inertial measurement
units (IMU), numerical issues necessarily arise, especially with
32-bits implementation demanded by most industrial aerospace
applications. We discuss these issues and propose a solution that
builds upon the Kalman filter to improve smoothing algorithms.
We then leverage the results to devise a localization algorithm
based on fusion of IMU and vision sensors. Successful real
experiments using an actual car equipped with a tactical grade
high performance IMU and a LiDAR illustrate the relevance of
the approach to the field of autonomous vehicles.

I. INTRODUCTION

State estimation is fundamental, notably for control pur-
poses. This is particularly true for autonomous systems, such
as autonomous cars. Prevailing approaches to the state es-
timation problem in robotics, and for inertial navigation in
aerospace engineering, explicitly model sensor uncertainties,
due to noise and bias, using Gaussian random variables, and
then seek to compute the maximum a posteriori (MAP) state,
that is the most likely state in the light of all measurements
while drawing on the vehicle’s dynamics. Such approaches
allow combining sensor measurements optimally based on
their confidence levels, as quantified by their covariance, and
also allow the estimator to convey a degree of uncertainty
associated to its own estimate, which may prove critical
for high-level planning and low-level control of autonomous
vehicles.

Paul Chauchat is with ISAE-Supaéro, University of Toulouse, 31055
Toulouse, France (e-mail: paul.chauchat@isae-supaero.fr)

Silvère Bonnabel is with MINES ParisTech, PSL Reasearch University,
Centre for Robotics, 60 bd Saint-Michel, 75006 Paris, France (e-mail:
silvere.bonnabel@mines-paristech.fr)

Axel Barrau is with SAFRAN TECH, Groupe Safran, Rue des Jeunes
Bois - Châteaufort, 78772 Magny Les Hameaux CEDEX, France (e-mail:
axel.barrau@safrangroup.com)

Simultaneous Localisation and Mapping (SLAM) has re-
ceived tremendous attention in the robotics community over
the past two decades. With a probabilistic approach, the
corresponding mathematical problem may be formulated as a
nonlinear estimation problem, that has served as a benchmark
for recent developments in state estimation. The historical
estimator is the extended Kalman filter, which is still state
of the art of inertial navigation, but exhibits huge caveats for
SLAM, because of its numerical complexity, and especially
its inherent inconsistency, that prompted the use of particle
filters instead [14], [21], [32], [15]. More recently, non-linear
observers and filters were reintroduced for SLAM through the
use of geometric frameworks, and Lie groups in particular
[5], [28], [44], [43]. However, the progresses of vision sensors
and vision algorithms over the past years, and their ubiquity
in mobile robotics and autonomous driving, have led the
community to replace particle filters with optimization based
algorithms being able to return the solution to the MAP prob-
lem. Such algorithms have achieved major successes for fusion
of vision and inertial measurements, see for instance, [8],
[41]. They have also recently been used in GNSS applications
[47], adapting them in various ways to accomodate outliers in
this context [35], [2], [37]. They fall into the framework of
“smoothing” where one seeks to compute the most likely entire
past trajectory given sensors measurements. From a theoretical
point of view, the nonlinear optimization smoothing problem
has been known for decades, but solving it has long proved
intractable.

Smoothing is formulated as a non-linear optimization prob-
lem which is solved through iterative methods, the most
popular being the Gauss-Newton (GN), Levenberg-Marquardt,
Conjugate Gradient Descent or other trust-region algorithms
[11], [23], [25], [40], [24], [1] methods. Extension to non-
gaussian models, also based on successive least-squares prob-
lems, were developped [39], [35], [36]. To come up with
tractable algorithms, these works heavily exploit the tight link
that exists between the MAP problem and factor graphs, and
in particular sparse graph structures [12].

In the present paper, a shortcoming of those methods that
has gone unnoticed yet to our best knowledge is raised.
Indeed, all the mentioned formulations are based explicitly
on the information matrix of each factor - the inverse of
the covariance matrix - whose eigenvalues tend to increase
as the sensors improve. But a large discrepancy between the
most accurate and least accurate sensor leads to ill conditioned
information matrices. This may also impact linearization errors
[18], [9]. Numerical issues may thus degrade the solvers’
computed solution, and in turn the state estimate accuracy and
consistency.



2

As the cost of high performance inertial measurement
units (IMU) keeps decreasing, and techological progresses are
constantly made, one may anticipate that tactical grade IMUs
will be used in an increasing number of autonomous systems.
Their precision is so high that the resulting process noise is
close to negligible as compared to other sensors. This prompts
the need for solvers being robust to ill conditioning of the
information matrix. Using the square-root approach of the
information matrix reduces the impact of conditioning [11],
[30]. Numerical issues related to it depend on the precision of
the hardware used, though. Indeed, single precision implemen-
tations will much more suffer. This is noticeable as there is a
need to speed up computations for real-time applications, for
which single precision is generally considered [45], [10], and
most industrial aerospace computers still use single precision
(32 bits or less) [17]. Besides, navigation methods relying on
machine learning to improve some of their bricks [7], [6], or
mimicking Kalman filters [19], are on the rise, and some recent
methods even rely on Gauss-Newton as one of their bricks
[27]. They also could benefit from single precision algorithms
to speed up their training phase.

In the present paper, we propose methods to carry out a
broad class of non-linear optimization problems while avoid-
ing issues related to ill conditioning, by deriving new exact
ways of solving of the linear least-squares problems they
induce. More precisely, we derive two novel linear solvers.
First a first simple, robust, batch algorithm for solving least-
squares based on a relevant decomposition of the problem.
Then, we leverage the correspondence between Bayesian
inference and least-squares in the linear case to derive a
new sparsity-preserving least-squares solver. To this end, we
combine Stochastic Cloning (SC) [33] and the Backward
Information Forward Marginal (BIFM) [26], [42] version of
the Kalman smoother. Our starting point was the finding
that the Kalman filter never requires to invert process noise
covariance matrices, and leads to relatively cheap computation
cost, which allowed simplified implementations on hardware
with precision as low as 8-bits processors [29].

These solvers are leveraged to devise a novel smoothing
algorithm for localization based on IMU, vision, and additional
sensors such as GNSS. The algorithm is successfully imple-
mented on an actual car equipped with a high performance
IMU and a LiDAR, and real experiments illustrate the interest
of the approach in the context of highly precise motion sensors.

The paper is organized as follows. In Section II we sum-
marize the modern factor graph based approaches to the
smoothing problem of SLAM, and the issues that arise when
propagation covariances approach zero. We also propose our
first (“robust batch”) solver. In Section III, we recall how
the Kalman smoother may serve as a solver for linear least
squares. However, in its standard form it does not accomodate
vision measurements. To remedy this issue, we propose our
second robust and sparsity-preserving solver, called “SC-
BIFM”, in Section IV. A simple numerical illustration of
the interest of the method is presented in Section V. Finally,
we demonstrate the validity of our approach in real world
experiments in Section VI, in which the standard methods
actually fail in single precision, while our solvers prove

robust, leading to a novel accurate visual inertial localization
algorithm in the presence of highly precise inertial sensors.

A. Relation to previous literature

Most of the smoothing solvers use the information form of
the MAP problem, in order to take advantage of its sparsity
[11], [25], [1]. It has been long recognised that using the
square-root, for instance the Cholesky factorisation of the
information matrix, leads to algorithms which are numerically
more stable, and even enabled implementations with single
precision on mobile devices [45]. This led to highly effi-
cient incremental implementations [23], [25]. However, even
square-root formulations are inherently limited by the inverses
of the covariances appearing in the formulas, and there is
no transition between zero covariances, which represent hard
constraints, and numerically invertible covariances. This issue
has been addressed in the signal processing community by
devising new formulations of the Kalman smoother. Addition-
ally to the well-known Modified-Bryson-Frazier Smoother [4],
a new alternative has been derived, the so-called Backward
Information Forward Marginals (BIFM) Smoother, which also
avoids covariance inverting [26], [42]. Nevertheless, they were
only expressed for acyclic graphs (i.e., without relative mea-
surements other than the propagation, such as loop closures),
which only cover a small part of the existing factor graphs.
We introduce here a more general smoother, able to solve a
broader class of linear least-squares, and thus applies to the
non-linear optimization problems at hand in navigation, by
applying the stochastic cloning method of [33] to the BIFM.

II. FACTOR GRAPHS AND MAP

Assume we want to track the state of a system (say, a
vehicle) equipped with an IMU and/or wheel odometry, as
well as a set of sensors such as cameras, LiDARs, GNSS or
acoustic positioning system for UAVs. The current formulation
of SLAM uses the formalism of factor graphs to cast the
maximum likelihood estimation problem as a nonlinear opti-
mization problem. Throughout the article, we will not consider
landmark-based SLAM, but rather “pose-graph SLAM”, where
vision sensors identify loop closures and provide relative poses
between key frames, triggering the back-end optimization run.
Moreover, and contrary to “pure” SLAM, we allow absolute
sensors such as GNSS to provide information about the
vehicle, and refer to SLAM as an extended multi-sensor fusion
problem, mainly for localization and navigation purposes.

A. MAP formulation of the SLAM problem

1) The state: The state is a set of all variables that char-
acterize the vehicle and its sensors, typically its orientation,
position, velocity, and all parameters of interest such as IMU
biases, camera to IMU transformation parameters. The state at
time k is denoted Xk. In landmark-based SLAM, the state also
includes the position of the landmarks in the environment.
Without loss of generality the state is assumed to evolve
through a discrete-time dynamical model

Xk+1 = f (Xk,uk,wk) (1)



3

with wk a random variable (noise) encoding model uncertain-
ties, and uk a measurement typically obtained by wheel speed
sensors or the IMU. Generally, the initial uncertainty about the
state X0 is assumed Gaussian, that is, X0 ∼N (X̂0,P0). In the
smoothing approach, one is interested in the entire trajectory,
denoted

χ := (X0,X1, · · · ,XN). (2)

2) The observations: We are given a set of measurements
Z1,Z2, · · · ,ZK of the form Zk = hk(Xk1 , . . . ,Xkp ,Vk) where each
state is in X1,X2, · · · ,Xk, hk is a known measurement function,
and Vk is a random variable encoding measurements uncertain-
ties that stem from sensors’ imperfections (i.e., observations
noise). The measurement function of each sensor is fixed, the
subscript k indicates that different sensors may be present. In
the present paper centered on inertial navigation, visual inertial
odometry, and inertial pose-graph SLAM, we will consider
two types of measurements:

• Observations that are made at time k and involve only the
state at time k (unary observations):

Zk = hk(Xk,Vk) (3)

• Observations at time k that involve a pair of states, that
is,

Zik = hk(Xi,Xk,Vk), i < k (4)

as is the case in pose graph SLAM. These measurements
may be related to the computation of relative transfor-
mations between poses at different times, typically using
stereo cameras or LiDARs. They can be used as either
odometry to propagate the state, or as “loop closures”
[15].

For simplicity of notation we let Zk = hk(χ,Vk) denote both
types of observations (3) and (4) at time k. This is not a
problem as Xk,Xi ∈ χ . Finally Z = (Z1, · · · ,ZN) denotes all
available measurements.

B. Maximum a posteriori (MAP) estimation

As only Z is observed, the best one can achieve is to
compute the most likely state trajectory χ given all the
measurements obtained, that is, maximum a posteriori (MAP)
estimation. Mathematically, one seeks:

χ
∗ = argmax

χ

p(χ | Z) = argmax
χ

p(Z | χ)p(χ). (5)

Assume the dynamical model (1) can be inverted with respect
to the noise variable, that is, there exists a function φ such
that

Xk+1 = f (Xk,uk,wk) ⇐⇒ wk = φ(Xk+1,Xk,uk),

and similarly

Zk = hk(χ,Vk) ⇐⇒ Vk = ψk(χ,Z).

The latter quantities define factors that may be viewed as
constraints between variables. Indeed assuming the noises
are independent variables with distribution wk ∼ N (0,Qk),

X0 X1 X2 X3 X4

Fig. 1: MAP estimation as a factor graph: Blue circles denote
the successive states of the vehicle X0,X1, · · · ,XN through
times 0,1 · · · ,N. Factor nodes shown in black involve succes-
sive states and correspond to dynamical model relations (1).
Factors nodes shown in orange correspond to measurements
involving a pair of state variables (4). The factor nodes shown
by a red circle and a blue diamond respectively represent an
observation of the form (3), and a prior on the initial state.

Vk ∼N (0,Rk), standard computations show the log-likelihood
of the posterior writes

L(χ) : =− log p(χ | Z) = ||X0− X̂0||2P0

+
N−1

∑
k=0
||φ(Xk+1,Xk,uk)||2Qk

+
N

∑
k=1
||ψk(χ,Zk)||2Rk

.
(6)

up to an additive constant independent from χ , where ‖e‖2
P =

eT P−1e is the Mahalanobis norm of the vector e given the
covariance P. From (5) we see that:

χ
∗ = (X∗0 , · · · ,X∗N) = argmin

χ

L(χ). (7)

C. Factor graph interpretation

A factor graph is a bipartite graph that contains variable
nodes X j ∈ χ and factor nodes ηi, each involving several
variable nodes. There is an edge between a factor and each
of the variables it involves. Factors may encode the model
relation (1) or measurements of the form (3) or (4), and may
be viewed as constraints between variables of the trajectory χ

one seeks to estimate. See Figure 1 for a visualization.

D. Resolution of the nonlinear optimization problem

The minimization problem (7) is commonly tackled re-
sorting to Gauss-Newton or Levenberg-Mardquardt methods.
The idea is to start from an initial guess of the trajectory,
typically obtained through dead-reckoning, and successively
linearize the problem, and solve the obtained linear least
squares, that is, a quadratic multidimensional optimization
problem at each iteration. Starting from an initial guess of
the trajectory χ(0) := (X (0)

0 ,X (0)
1 , · · · ,X (0)

N ), the likelihood (6)
may be linearized around χ(0), and Gauss-Newton algorithms
seek to compute

δ χ
∗ = argmin L̄(δ χ), (8)

where L̄ is the linearized cost. To keep the exposition simple,
we assume in the sequel noises are additive, that is, (1) is of
the form Xk+1 = f (Xk,uk)+wk, and also that Zk = h(χ)+Vk.



4

Then, letting δ χ := χ−χ(0), the linearized cost writes

L̄(δ χ) = ||δX0− (X̂0−X (0)
0 )||2P0

+
N−1

∑
k=0
||δXk+1−FkδXk− ( f (X (0)

k ,uk)−X (0)
k+1)||

2
Qk

+
N

∑
k=1
||Hkδ χ− (Zk−hk(χ

(0)))||2Rk

(9)

where Fk denotes the Jacobian of f with respect to Xk, and Hk
that of hk at current estimate χ(0). After solving (8)-(9), the
linearization point is updated as χ(1) = χ(0)+δ χ∗ and serves
as a new linearization point until convergence.

Remark 1: This easily generalises for smoothing on-
manifold, see for instance [9], [24], [18], by simply changing
the prior factor and update definitions, and adapting the
jacobians accordingly. To save space, we omit it herein.

E. Resolution of the linearized optimization problem
We see at each step the algorithm is faced with the res-

olution of the linearized optimization problem (8)-(9). This
is a standard least squares problem, and the solution comes
in closed form. Note indeed that the log-likelihood L̄ can be
re-written as a single quadratic cost function:

L̄(δ χ) = ||Aδ χ−b||2Σ, (10)

with

A =



I 0 ... ... 0
−F1 I ... ... 0
... ... ... −FN I

H1
...

HN


,b =



a0
a1
...

aN
c1
...

cN


(11)

where Σ= blkdiag(P0,Q,R), where Q and R are block diagonal
matrices stacking the sequences of covariance matrices Qn and
Rk, a0 = X̂0−X (p)

0 , ai =( f (X (p)
i−1,ui−1)−X (p)

i ) if i> 0, and ck =

(Zk−hk(χ
(p))). Computing the gradient of (10) and setting it

to zero, allows one to conclude the minimizer δ χ∗ satisfies
the normal equations:

(AT
Σ
−1A)δ χ

∗ = AT
Σ
−1b (12)

Solving the normal equations (12) is the main task to be ad-
dressed when implementing factor graph optimization. Indeed,
one is faced with a system of linear equations. Most popular
methods rely on factorizations of the information matrix
defined by I := AT Σ−1A in the form of AT Σ−1A = LLT with
L lower triangular (Cholesky) or through a QR factorization.
Matrix L is referred as the “square root” of the information
matrix, and allows to solve the problem by first solving
Lη = AT Σ−1b and then η = LT δ χ∗ by back-substitution, see
[11].

F. Potential issue n◦1: computational complexity
A is a matrix having size ((N + 1)dx +Kdz)× ((N + 1)dx)

where dx,dz are the dimensions of the state and observa-

tion vectors, K is the number of observations (we assumpe
for simplicity all observations have identical dimension). In
principle, the problem would not be tractable for localiza-
tion applications. However, the sparsity of A stemming from
the particularity of the problem estimation structure allows
smoothing solvers to encode various ways of inverting this
equation. Indeed, each factor only involves few variables
(usually one or two) [16]. For instance, [23] embeds the
problem in a particularly well adapted Bayes tree structure
which allows for local constant-time updates at each time
step by reusing previous factorizations. In a more recent
work, [25] uses preconditioned conjugate gradient to invert the
problem, with a high efficiency gain coming from a number
of computational tricks specific to the SLAM problem. These
methods usually prefer working with an equivalent formulation
of (10):

L̄(δX) = ||Ãδ χ− b̃||2

with Ã = Σ−1/2A and b̃ = Σ−1/2b, where Σ−1/2 is the square-
root of Σ−1. However, both formulations explicitly rely on the
inverse of the covariance matrices at play.

G. Potential issue n◦2: ill-conditioned normal equation matrix

The complexity issue is obvious, and much efforts in the
SLAM back-end community have been devoted to it. Another
potential issue that has scarcely been addressed so far, and
that we bring forward in the present paper, is as follows.
If the normalization matrix Σ−1 is ill conditioned because Σ

has very small eigenvalues (or even null eigenvalues), then
measurement noise is amplified and the solution may become
grossly inaccurate. In the present paper, we focus on the case
where dynamics (1) rely on high precision inertial sensors,
which are becoming increasingly common, and lead to very
small covariance matrices.

Assume the covariance matrix Q has very small eigenvalues.
As Q→ 0, we see that Σ−1→ ∞ and thus

(AT Σ−1A)−→ ∞, (AT Σ−1b)−→ ∞,

Σ−1/2A−→ ∞, Σ−1/2b−→ ∞.

But this does not mean that the quantity of interest δ χ∗ de-
generates in the same way, as we have an “ ∞

∞
” indetermination

from (12). In fact, it does converge to a finite value δ χ∞ which
is simply the result of a lower-dimensional problem: we will
prove in the next section that when Q→ 0 we have

(AT
Σ
−1A)−1AT

Σ
−1b−→ δ χ∞, (13)

Ideally, we would like the solver to be such that δ χ∗→ δ χ∞

when Q→ 0, and also to be able to find δ χ∞ even in the
degenerate case where Q= 0. However, we cannot expect such
a desirable behavior from a solver directly based on the normal
equations (12). This is why we advocate in the present paper
a different approach based on the Kalman smoother to solve
the linearized optimization problem (8), (9).

H. A solution without matrix inversion: the robust batch solver

Assume the noise matrix of the model Q should not be
inverted. Owing to the block-diagonal structure of the noise



5

matrix Σ, the linearized cost (10) may be split into two parts
as follows:

L̄(δ χ) = ‖A1δ χ−b1‖2
Σ1
+‖A2δ χ−b2‖2

Σ2
(14)

that is, A =

(
A1
A2

)
, b =

(
b1
b2

)
, and Σ =

(
Σ1 0
0 Σ2

)
, and

where Σ1 should not be inverted, and where we require A1
to be square and invertible. In the meantime, Σ2 should be
well-conditionned. There might be less factors with close to
singular covariances than the dimension of the state, and
A1 may be completed with additional factors having well-
conditioned covariances to make it square if need be. Using the
associated normal equations, and the matrix inversion lemma,
the minimizer of the cost (14) reads:

δ χ
∗ = A−1

1 ((I−KJ)b1 +Kb2),

K = Σ1JT (JΣ1JT +Σ2)
−1, J = A2A−1

1 .
(15)

The inverted term is the sum of a possibly ill-conditionned
matrix with small eigenvalues, and a well-conditionned one,
and should thus have no eigenvalue close to zero. Wee are
now in a position to prove the result announced in equation
(13).

Lemma 1: As Q→ 0, the solution δ χ∗ to (12) tends to a
finite value.

Proof: Expanding the definitions of
K and J in (15), we obtain: δ χ =
A−1

1

[
b1 +Σ1A−1

1 AT
2 (A2A−1

1 Σ1A−T
1 AT

2 +Σ2)
−1(b2−A2A−1

1 b1)
]
.

We see (A2A−1
1 Σ1A−T

1 AT
2 + Σ2) → (A2A−1

1 Σ∞A−T
1 AT

2 + Σ2)
when Σ1→ 0, and this latter term is lower-bounded by Σ2, so
there is no indetermination in (13): δX∞ exists.

This solution may become intractable as it requires the full
inverse of A1, and the size of the matrix A1 is quadratic in
the size of the trajectory. According to (11), A1 has a lower
block-triangular structure, and its inverse may be obtained
analytically, but the number of linear systems to solve because
of the term J = A2A−1

1 still is a major caveat of this method. It
is however used in Section VI as a reference for comparison
purposes. In the next sections we investigate an approach based
on Kalman smoothers, which reaches identical result, but with
a complexity being linear in the length of the trajectory.

III. THE LINEAR KALMAN SMOOTHER AS A LEAST
SQUARES SOLVER

Consider the problem of finding the minimum of cost
function L̄ given by (9). In this section we will recall the
Kalman smoother may serve as a solver to this optimization
problem, albeit (for now) in the particular case of unary
observations of the form (3).

A. The standard Kalman smoother
Consider the following linear system with unary observa-

tions:
Xk+1 = FkXk +uk +wk,

Zk = HkXk +Vk (unary observations)
(16)

Z0 = X0 +V0 encodes the prior on X0. It is easily proved that
L̄ given by (9) is related to this linear system as

L̄ =− log p(X0, . . . ,XN | Z1, . . . ,ZN)+ c,

where c ∈ R is a constant. The linear Kalman smoother
computes the MAP estimate which minimizes L̄, and thus may
output the quantity of interest δ χ∗ that is required at each
linearization step of the more general Gauss-Newton solver.
Its implementation is generally based on a forward recursion
(e.g. the Kalman filter), and a backward recursion which
backpropagate the information to the past states, for instance
the standard Rauch-Tung-Striebel (RTS) implementation [38].

B. The Backward Information Filter Forward Marginal
(BIFM)

The RTS implementation of the Kalman Smoother avoids
inverting the propagation covariance, but not the states’ ones,
which appear in the gain used for the backpropagation [38]. In
this work, we propose to use an alternative formulation of the
Kalman smoother equations, the Backward Information Filter
Forward Marginal (BIFM), which specifically avoids inverting
the states’ covariances [26]. This approach has already been
used for message passing in Gaussian factor graphs in signal
processing, but only for acyclic graphs. Another version of
the Kalman smoother, namely the Modified-Bryson Frasier
smoother, also exists [4]. Square-root forms of both algorithms
have been produced and were compared on various signal
processing problems in [42]. BIFM appeared slightly superior
in these cases. Moreover, it can be derived in a very “Kalman
filter like” manner which does not require writing the inverse
of the covariance matrices Qk nor the inverse of the forward
covariance matrix Pk defined in (17), as we are about to prove.

Consider the system (16). BIFM is based on the following
approach. Suppose P(Xk|Z0, · · · ,Zk) ∼ N (x f

k ,P
f

k ); and like-
wise P(Xk|Zk+1, · · · ,ZN) ∼ N (xb

k ,P
b
k ). Here the superscripts

stand for forward and backward. x f
k is obtained by a Kalman

filter. Then xb
k may be considered as a measurement of Xk

with noise covariance Pb
k , and treated as such in a Kalman

update to merge it with (x f
k ,P

f
k ) and obtain a final estimate

X̂k. As there is no prior for the backward phase, that is, the
prior on xb

0 is “flat”, the information form of the Kalman filter
must be used [30], starting with zero information prior. The
detailed equations are given in the following. For the sake of
readability, the forward and backward distributions are denoted
by, for all k :

P(Xk|Z0, . . . ,Zk)∼N (xk,Pk) (17)

P(Xk|Zk+1, . . . ,ZN)∼N (J−1
k yk,J−1

k ), (18)

where yk and Jk are the information vector and matrix respec-
tively.

Remark 2: Note that, here, the information matrix Jk is the
inverse of a covariance, while the information matrix referred
to in Section II-E, I , is the Fisher information matrix.
The forward recursion may be performed based on the stan-
dard Kalman filtering belief. The parameters of the Gaussian
are returned by the standard linear Kalman filter by alternating
between the propagation step:

xk+1|k = Fkxk +uk

Pk+1|k = FkPkFT
k +Qk

(19)



6

and letting Kk+1 := Pk+1|kHT
k (HkPk+1|kHT

k +Rk)
−1, the update

step
xk+1 = xk+1|k +Kk+1(Zk−Hkxk+1|k)

Pk+1 = Pk+1|k−Kk+1HkPk+1|k.
(20)

We see that even if some or even all the eigenvalues of P0 and
Q are null, the computation may be performed as long as R
is non-singular. In particular, this means that the measurement
noise must be sufficiently large for BIFM to be applied. As a
consequence, Q can be as small as desired without leading to
numerical issues. The equations for Jk and yk in the backward
recursion are obtained by setting JN to be zero, and then
considering (16) in reverse time, and combining it with (19)
and (20), using the identities xk = J−1

k yk, Pk = J−1
k . The update

in information form simply becomes:

Jk|k = Jk +HT
k R−1

k Hk,

yk|k = yk +HT
k R−1

k Zk
(21)

The backpropagation equations read:

Jk = FT
k (I + Jk+1|k+1Qk)

−1Jk+1|k+1Fk,

yk = FT
k (I + Jk+1|k+1Qk)

−1(yk+1|k+1− Jk+1|k+1uk)
(22)

And the final solution X∗k = argmaxXk
P(Xk|Z) is given by

merging the estimates obtained at the forward and backward
pass as follows for each k, see [26]:

X∗k = xk +Pk(Pk + J−1
k )−1(J−1

k yk− xk). (23)

However, the given formula implies inverting Jk, which we
want to avoid. Therefore, we propose to modify (23) as
follows:

X∗k = xk +Pk(Pk + J−1
k )−1J−1

k (yk− Jkxk) (24)

= xk +(I +PkJk)
−1(Pkyk−PkJkxk) (25)

= (I +PkJk)
−1(xk +Pkyk), (26)

where the push-through identity [20] shows that Pk(Pk +
J−1

k )−1J−1
k = (I + PkJk)

−1Pk. Moreover, the final covariance
of X∗k given Z, Pk|N is given by

Pk|N = (I +PkJk)
−1Pk (27)

We see the equations above allow performing optimal smooth-
ing without involving at any time the matrix inverses Q−1

or P−1
k where Pk denotes the forward covariance matrices,

see (17). Indeed, in (22) and (23) each time those matrices
are involved in an inversion operation there is a natural
regularization term (I + ·) involved as well.

C. Summary of the approach

We summarize the approach and the results obtained so far.
• We consider nonlinear system (1) with measurements of

the form (3) and (4). In the smoothing approach, one
seeks to compute the most likely (entire) trajectory χ of
(2) in the light of past measurements. By contrast, the
filtering approach is only concerned with computation of
the most likely current state XN .

• The solution to the smoothing problem corresponds to
optimization problem (7) with cost function (6). To attack

this problem one usually linearizes the cost at current
estimate and solves a simplified optimization problem
(8) with quadratic cost function (9), that is, a least
squares problem. This provides a correction to the current
estimate of χ , and then the cost (6) is relinearized at the
corrected estimate, yielding another least squares problem
which in turn provides a new correction. This is repeated
until convergence to the optimum.

• At each optimization step, the least squares solution (8)
involves solving the normal equations (12), which may
be ill-conditioned when process noise is too low. In the
present paper, we address the problem of smoothing in
the presence of process noise covariance matrices that
may be ill-conditioned or even singular, owing to the use
of highly accurate motion sensors.

• In the case of unary observations (3) only, one may asso-
ciate a linear dynamical system (16) with the linearized
cost (9) at each step. The Kalman smoother then provides
a solution to the optimization problem (8). By using a
slightly modified implementation related to the BIFM
of [26], we obtain a solution to (8) without inverting
matrices that may be ill-conditioned or singular.

• In the sequel, we seek to adapt the proposed latter solution
to the case where measurements of the form (4) are also
involved, as typically arises when using vision, notably
for SLAM.

IV. PROPOSED METHOD: THE BIFM KALMAN SMOOTHER
WITH STOCHASTIC CLONING

Throughout this section, we still consider the linearized
optimization problem (8) with cost (9), but where observations
may involve pairs of states, to account for measurements of the
form (4). As previously done in (16), one may then associate
a linear system

Xk+1 = FkXk +uk +wk, (28)
Zk = HkXk +Vk (unary observations) (29)
Zk = HkXk +HlXl +Vk, l < k (pair of states observations)

(30)

to the optimization problem, where (30) stems from the lin-
earization of observations of the form (4). As in Section II-A2,
Zk denotes both types of measurements. Building upon the
BIFM of the previous section, we will attempt to solve the
corresponding optimization problem (i.e., smoothing) without
ever inverting matrices that may be ill-conditioned or singular
in the presence of low or even null process noise wk.

A. Stochastic cloning for filtering

Although we are concerned with smoothing, we have seen
the Kalman filter is the main component of the forward pass
of the BIFM smoother. Standard Kalman filtering for linear
systems of the form (28)-(30) has been rendered possible
through the stochastic cloning method, introduced in [33] and
one of the key components of the MSCKF [34]. The state
is cloned at some point in time l and kept in memory to be
able to compute an update that will involve it in the future at



7

I0 = {0,0} {0,1} {0,2,2} {0,3}

X0 X1 X2 X3 X4

Fig. 2: Stochastic cloning methodology for the forward pass in
the factor graph framework. At each time k, state variable Xk is
augmented to form the variable X̃k := XIk where Ik consists of
current state index k and all the indices of the current and past
variables that are to be used later in a relative measurement. In
a factor graph representation, variables involved in stochastic
cloning are easily visualized: “clones” at time k are the
variables related by an orange factor that spans from, to, or
“over” the current state.

time k, see (30). The clones are discarded once they are not
useful anymore. Note that the variables designated as clones
are easily visualized in the factor graph framework, see Figure
2.

Remark 3: Since the focus is put on the linearized problem,
the factor graph is fixed, therefore we know in advance which
states are linked together, and thus when cloning or discarding.
Removing a clone does not delete it from the higher-level
estimation process, as does marginalisation for instance.
To incorporate a measurement (30) in the Kalman filter update,
one needs the mean and covariance matrix of the vector
(Xl ,Xk). Thus, denoting by Ik the set containing k and all
indices of past states involved in future measurements, we
may define the current state at time step k as X̃k = (Xi)i∈Ik ,
and we see its size changes over time, see Figure 2.

1) The stochastic cloning pipeline: The goal of Kalman
filtering with SC is to compute at each time step k the param-
eters of the Gaussian density P((Xi)i∈Ik |Z0, . . .Zk−1), and then
to update them accounting for observations available at k, that
is, compute the parameters of distribution P((Xi)i∈Ik |Z0, . . .Zk).
This can be done along the lines of the standard Kalman filter,
even though the dimension of the state keeps changing over
time. The cloning pipeline may be intuitively described as
follows:

Cloning−→ Propagation−→ Update−→ Clone discarding

Let P̃k denote the covariance matrix of the augmented state
X̃k = (Xi)i∈Ik . The SC steps are as follows.

Clone creation (duplication step): The cloning step cor-
responds to the fact that if the current state Xk is to be used
in a future relative measurement, then it must be cloned. This
simply consists in duplicating the Xk and concatenating it with
the full state X̃k, which thus now contains the state Xk twice.
Indeed, the current state is of the form X̃k where Ik contains
current index k and index of clones already created and not
yet discarded. Duplication of current state then writes:

X̃k← (Xk, X̃k) (31)

This may be rewritten in terms of matrix computation as
follows:

X̃k←CkX̃k, Ck =


I
I

. . .
I

 (32)

Since Xk and its copy are fully correlated, the covariance of
the extended vector must be replaced with

P̃k←CkP̃k(Ck)
T =

(
Pk PIk,k

Pk,Ik P̃k

)
, (33)

where Pk is the marginal covariance of the current state
variable Xk, P̃k the marginal covariance of the augmented state
X̃k before duplication, PIk,k and Pk,Ik the cross-correlations. The
computation of Pk,Ik is made by copying blocks from P̃k and
the correlation between Xk and Xk is the identity matrix.

Propagation: Clones remain static during propagation,
since the rationale is merely to keep past states in the aug-
mented state. Hence we use a propagation step analogous to
(19) but with augmented dynamics, input, and process noise
as follows:

F p
k =

(
Fk 0
0 I

)
, ũk =

(
uk
0

)
, w̃k =

(
Gkwk

0

)
. (34)

Update: The main purpose of SC is to allow carrying out
the updates as in the standard Kalman filter. Indeed, as each
relative observation at time k involves a past state variable with
index l < k that has been cloned, and thus l,k∈ Ik, observations
(30) may be written using a novel observation matrix H̃k =
(Hi)i∈Ik , defined such that

H̃kXIk = ∑
i∈Ik

HiXi. (35)

Clone discarding: Once a clone is no longer useful (i.e., it
will be involved in no later measurement), it can be discarded.
This is done by marginalizing out the considered clone, which
reads in terms of matrices

X̃k← DkX̃k, P̃k← DkP̃k(Dk)
T , (36)

where Dk is the identity matrix from which we removed the
rows corresponding to states we discard, that is, those in Ik \
Ik+1.

2) SC implementation: Gathering all the steps above, we
see the obtained Kalman filter maintains the augmented state
X̃k =(Xi)i∈Ik and its covariance matrix P̃k. Formally, X̃k follows
the state equations

X̃k+1 = F̃kX̃k + ũk + w̃k, (37)
Zk = H̃kX̃k +Vk, (38)

using the augmented quantities defined in (34), and where the
matrix F̃k is defined with the help of matrices introduced in
(32), (34), and (36), by

F̃k = F p
k CkDk, (39)

(note we suggest to perform the discarding step before du-
plication to spare the algorithm undesirable computations),
and with observations defined by (35) corresponding to (29)-



8

(30). Formally the obtained system (37)-(38) fits into the
standard system form used by the Kalman filter, and in fact
the dimension of the state changes does not result in any
modification of the Kalman filter method.

B. Proposed “SC-BIFM” (stochastic cloning for smoothing)

The proposed solver consists in applying the BIFM
smoother of Section III-B dedicated to system (16) to the
augmented system created by stochastic cloning to address
systems of the form (28)-(29)-(30). This way, we will achieve
robustness to singular prior and process noise covariance
matrices.

1) Forward pass with stochastic cloning: The forward
pass is akin to Kalman filtering, and the method of Kalman
filtering with stochastic cloning was recalled in (19)-(20) and
Section IV-A, and put in perspective in the proposed factor
graph context. The forward pass consists of the BIFM forward
recursion (19)-(20), applied to the augmented system (37)-(38)
having augmented state variables X̃k.

2) Backward stochastic cloning with an information filter:
This step consists in applying the backward equations in infor-
mation form (22) to the augmented system (37)-(38) instead of
the standard system dynamics with unary observations (16). As
a noticeable difference, we observe that contrary to Fk in (16),
matrix F̃k is not square. However, only its transpose is involved
in the backwards equations and this poses no problem. This
is an advantage of having written the backwards recursion in
information form: in standard form writing state at time k from
state at time k+1 would require matrix inversion.

Let ỹk be the augmented backward information vector, and
J̃k the associated information matrix. Let us comment on the
steps involved in the backwards pass in the presence of clones.

Clone creation: In the forward pass, the vector state is
augmented each time a pose has to be kept for later use,
while the covariance matrix is augmented with full correlation
as in Eq. (33). In the backward case, the order of the
steps is reversed, so the information vector and information
matrix are augmented each time a clone was discarded in the
forward pass. The process of clone creation and destruction
in backwards time strictly mirrors the forward time. However
when augmentation occurs in the backward sense new entries
of both ỹk and J̃k are padded with zeros: we create a state with
no correlation with the rest of the system. Note indeed that
the clone refers to another state variable Xk appearing in the
“past”, that is, Xl with l < k. Thus immediately after creating
it the observation linking the current state k to the added state
having index l is performed, which will create correlation.
Note this interesting fact: in the backward sense the clone does
not “know” it is a clone (i.e., is by no means fully correlated
with any state but only loosely correlated to it via the noisy
observations involving the pair of states). Full correlation only
appears when it gets discarded, mirroring the forward case
where the clone is “informed” it is a clone, through Eq. (33),
at its creation.

Clone discarding: In the backward propagation, the coun-
terpart of clone creation is surprisingly simple, since it boils
down to applying (Dk)

T , see (39) and recall from (36) that

Dk is the identity matrix from which we removed the rows
corresponding to states we can discard. Assuming the clone
lies at position l in the information vector and we are dealing
with state at position k, the corresponding operation reads:

ỹk← ỹk + ỹl

J̃k,k← J̃k,k + J̃k,l + J̃l,k + J̃l,l (40)

These formulas are directly derived from (22) and (32)
reading what happens to the entries of the matrix J and the
vector ỹ. Indeed, the transpose of Ck is applied, which sums
the last two blocks of a vector. Combined with the transpose
of the clone discarding matrix Dk, we get the above formulas.

3) Interpretation: Although the backward pass was ob-
tained through “blind” matrix manipulations of the system
in reverse time, the following interesting interpretation of
what cloning means in reverse time provides insight. Indeed,
discarding the clone in backward time is actually a sequence
of two actions: informing the clone it is a clone, then killing
it (mirroring clone creation and full correlation information
(33) in the forward pass). The first action is equivalent to a
noise-free observation Zk = Xk−Xl , taking value Zk = 0. To
study this operation mathematically, let us associate a non-
zero covariance matrix R to observation Zk. We will then study
what happens when R→ 0. Since we are in information form,
only the components ỹk, ỹl and the blocks J̃k,k, J̃k,l , J̃l,k, J̃l,l are
affected by this operation. The Kalman update equations then
yield:

J̃+ =

(
J̃+k,k J̃+k,l
J̃+l,k J̃+l,l

)
=

(
J̃k,k J̃k,l
J̃l,k J̃l,l

)
+
(
I −I

)T R−1 (I −I
)

=

(
J̃k,k +R−1 J̃k,l−R−1

J̃l,k−R−1 J̃l,l +R−1

)
(41)

After this observation, we marginalize out the clone. In infor-
mation form, the remaining block J̃++

k,k is given by the classical
Schur complement formula:

J̃++
k,k ← J̃+k,k− J̃+k,l

[
J̃+l,l
]−1

J̃+l,k

Replacing the blocks of J̃+ by their values from Eq. (41), the
new block J̃+k,k after the sequence “ observation + marginal-
ization” reads:

J̃++
k,k = J̃k,k +R−1−

(
J̃k,l−R−1)(J̃l,l +R−1)−1 (

J̃l,k−R−1)
(42)

= J̃k,k +R−1−
(
J̃k,lR− I

)(
J̃l,lR+ I

)−1 (J̃l,k−R−1) (43)

= J̃k,k +R−1−
(
J̃k,lR− I

)(
I− J̃l,lR+O(R2)

)(
J̃l,k−R−1) ,

(44)

where, after factorising R−1 in
(
J̃ll +R−1

)−1, the first-order
expansion (I + ε)−1 = I− ε +O(ε2) was carried out. Devel-
oping the parentheses, we see a −R−1 term appears, canceling
the R−1 term (second term in the right hand side), and we end
up with:

J̃++
k,k = J̃k,k + J̃k,l + J̃l,k + J̃l,l +O(R2)



9

Algorithm 1: SC-BIFM

Input: P0,(ui)i,(Qi)i,(Zk)k,(Rk)k;
Forward pass

1 Set X̃0 = Z0, P̃0 = P0 ;
For k < N do

2 Compute X̃k+1 and P̃k+1, based on (37), (38),
using the Kalman equations (19), (20);

Backward pass
3 Set ỹN = 0, J̃N = 0, k = N ;

For k > 0 do
4 Compute ỹk−1 and J̃k−1, based on (37), (38)

using the information form equations (22),
(21) ;

For k ≤ N, do
5 Compute the augmented solution X̃∗Ik based on (26)

and extract only the state variables X∗k ;

Output: χ = (X̃∗k )k≤N which is the exact solution to
the linearised optimization problem (9);

And finally we can make R tend to zero (i.e., precision of the
virtual measurement to infinity) to recover (40). Interestingly,
the action of “informing two states they are clones”, easily
encoded in the covariance form, cannot be made in the
information form, due to the infinite R−1 terms. On the other
hand the sequence “”informing two states they are clones,
and then keeping only one” works out beautifully in the
information matrix form.

4) Final fusion: The final fusion is carried out for each step
as in standard BIFM, according to (26). The full pipeline is
summarised in Algorithm 1.

Remark 4: Alternatively, at step 5 of Algorithm 1 one
could first extract simple state variables Xk from augmented
ones X̃k = XIk , and then perform fusion (26) with smaller
matrices to save computation time. However the extraction is a
marginalization, which has to be performed on the information
variables ỹ, J̃, which is computationally costly.

Note that from the final update we may also get the
posterior covariances of the related variables. However, this
only yields covariances of variables which are neighbors in the
measurement graph, contrary to more general methods [22]. To
this respect, note that an alternative to SC-BIFM, which does
not try to maintain sparsity, is to simply not discard the created
clones. Then, at the end of the forward pass, the filter outputs
P(X0, . . . ,Xn|Z0, . . . ,Zn), that is, the solution we pursue.

V. NUMERICAL ILLUSTRATION OF THE METHODOLOGY

We illustrate numerically the behavior of each method
using a linear simplified navigation example. Consider a body
equipped with a biased accelerometer moving along a horizon-
tal line. By letting p(t) denote its position, v(t) its velocity, and
b a static accelerometer bias, the noiseless dynamical motion
equations read

ṗ = v, v̇ = (u+b), ḃ = 0

Fig. 3: Top plot: distance between the solutions of various
solvers and the true minimum of the simple numerical example
of Section V in the process noise free case. Bottom plot:
average Monte-Carlo distance to the solution of the 64-bits
robust batch solver (which systematically finds the optimum)
for various solvers in the presence of process noise. In both
cases performances are plotted against the discretization time
step dt in (46). Standard solvers based on the information form
(Sq-root-32 and Sq-root-64) degrade rapidly when dt is taken
small, whereas the ones we propose (Batch and SC-BIFM) do
not degrade, even with single precision (32 bits).

with u the measurement reported by the accerelorometer.
We suppose morevoer that at discrete time instants, using
for instance vision, the system is able to measure relative
displacement with respect to a past position. In discrete time,
adding some process and measurement noise, and following
the structure of the graph of Figure 1, the state X = (b,v, p)
is approximately governed by

Xk+1 =

 1
−dt 1

dt 1

Xk +

0
1
0

uk +wk (45)

Z3 =
(
0 0 1

)
(X3−X0)+Vk (46)

Z4 =
(
0 0 1

)
(X4−X2)+Vk (47)

This model is a simplified version of the system dynamics
used in inertial navigation. Usually, position integration with
respect to the speed is considered exact on a single time step,
however IMU outputs are given at a much higher rate than
the observations, and are therefore preintegrated between two
states [18]. This leads to a propagation factor with full-rank
(although low eigenvalues) covariance matrix Q. We take the



10

length of the trajectory to be N = 4. Observation noise Vk has
variance σz. The process noise wk has diagonal covariance
diag(

√
dtσb,

√
dtσacc,

√
dtσint), which represent the bias ran-

dom walk, the accelerometer and the integration uncertainty
respectively. Their magnitude reflects typical characteristics
of high-grade inertial sensors:

σb = 1e−3, σacc = 1e−2, σint = 1e−3, (48)

with initial standard deviations and observation noise

σ
0
b = 1e−2, σ

0
v = 1, σ

0
p = 1,σz = 0.1. (49)

We compare the following solvers:
• The standard square-root information solvers based on

Cholesky (or QR) factorisation of Section II-E, with
precision of 64 (Sq-Root-64) and 32 bits (Sq-Root);

• The robust batch solver (“Batch solver”) of Section II-H,
with precision of 64 (Batch-64) and 32 bits (Batch 32);

• The proposed SC-BIFM solver in 32 bits (only).

A. Ideal case numerical experiment

First, we study the impact of conditioning on the solvers in
the noise free case, that is where the ground truth is described
by (45), (46) with wk = 0 and Vk = 0. The state is initialised at
the ground-truth, so that we can provide the true minimum as
ground truth, by simply integrating (45). The estimation here
is made relative to the initial position p0, which is naturally
considered fixed and is removed from the state. The effect
of the time step dt on the numerical behavior of the various
solvers is displayed on Figure 3, top plot. Indeed, dt is tightly
linked with the system’s conditioning, since the propagation
covariance varies with its square-root.

We can see that, as expected, the solvers based on infor-
mation matrix degenerate as the time step becomes too small,
while the others maintain a stable relative error, in both 32 and
64 bits. SC-BIFM is not displayed here, as it exactly follows
the true state owing to perfect initialization in the forward
pass.

B. Numerical experiment with low noise

Monte-Carlo simulations were run with noise turned on.
Since the 64 bits batch robust solver actually managed to
find the true solution of the linear least-squares problem in all
cases, it was taken as the reference for the comparison of the
remaning solvers. 200 sets of measurements were randomly
generated with noises (48)-(49). The distance between the
solution of each solver and the ground-truth are computed at
each run, and the average distances are shown in Figure 3,
bottom plot. In the noisy case, we also see that the standard
solvers perform equivalently or slightly better than the robust
ones at large time steps, but degrade rapidly for smaller ones .
These results clearly indicate that one should be careful when
designing least-squares-based estimators for accurate sensors.

Remark 5: The degeneracy of the square-root filters comes
from the fact that they are based on QR factorisation. Using
an SVD to invert the system proves to be much more robust.
However, it does not maintain sparsity and is therefore not
desirable in the context of factor graph navigation and SLAM.

Fig. 4: Car used in the experiments.

VI. REAL WORLD EXPERIMENT

This section deals with a real high precision inertial-LiDAR
odometry problem in the context of autonomous cars. We
conducted our own experiments, using the experimental car
of Safran shown in Figure 4. In our approach, 3D LiDAR
scans between keyframes were first processed to obtain relative
transformations using scan matching algorithms. This imposes
observations between pairs of state variables at different times
of the form (4), which are then fused with inertial measure-
ments. Combining pose from relative scans with odometry
through graph optimization has been pursued in various works,
see for example [31]. However, combining relative scans with
IMU has been less studied, and to our knowledge pose graph
SLAM using LiDAR and high grade military (or “tactical”)
precision IMUs has never been done before. This is the main
originality of the following experiments, along with a suitable
optimization approach to handle such levels of precisions that
lead to ill-conditioned normal equations.

A. Considered models

We use the standard IMU preintegration framework,
see [18] to define our propagation factors. The LiDAR
scans are aligned independently to obtain relative poses.
Let Xk = (Rk,vk, pk,bω

k ,b
a
k) represent the state variables:

Rk,vk, pk,bω
k ,b

a
k are the orientation, velocity, position and

biases. This leads to the following dynamics, see e.g., [18]:

Rk+1 = Rk expSO(3)(dt ωk−bω
k +wω

k )

vk+1 = vk +dt (Rk(ak−ba
k +wa

k)+g)

pk+1 = pk +dt vk

bω
k+1 = bω

k +wbω

k

ba
k+1 = ba

k +wba
k ,

(50)

where wω
k ,w

a
k ,w

bω

k ,wba
k are white noises, associated to the

isotropic covariances of standard deviations σω ,σa,σbω ,σba

respectively.

B. Experimental setup

All experiments were performed using the car shown in
Figure 4, which is equipped with a high-grade IMU from



11

the company Safran Electronics and Defense and a Velodyne
VLP32C. The car drove along an 11km long loop in a suburban
area, including medium-speed (90km/h) portions and round-
abouts. The IMU provided data at 100 Hz, for which we set,
according to the specification given by the manufacturer:

P0 = diag((σ0
R I2,0),σ0

v I,0,σ0
bω I,σ0

ba I),

σ
0
R = 1 ◦, σ

0
v = 100 m/s, σ

0
bω = 0.01 ◦/s,

σ
0
ba = 0.05 m/s2,σω = 0.1 ◦/h

σa = 0.0015 m/s2 (0.15mg), σbω = 2.5e−5 ◦/s/
√

s,

σba = 8e−4 m/s−2/
√

s.

From the acquired 3D laser scans, relative transforms were
obtained at 4 Hz. Scan matching algorithms such as the
well-known iterative closest point (ICP) [3], or more recent
methods [46], [13], return relative orientation and translation.
As the gyro only drifts of 0.1 degree in 1 hour, the level
of uncertainty associated to the relative rotation between
LiDAR scans computed by the ICP is much higher than the
gyro’s uncertainty. On the other hand, we estimated relative
translations between scans computed using the ICP have an
accuracy of order 10 cm (and the measurement covariance
matrix R is set accordingly), which is more precise than the
relative displacement obtained via a double integration of the
accelerometer. As a result we use relative translations as an
observation between pairs of states (4).

C. Implementation

A standard smoothing on-manifold approach was used to
carry out the estimation to cope with the nonlinear structure of
rotations. A 5 seconds sliding window approach was adopted,
in which states are added each time a relative translation
measurement is received. Once the number of estimated states
exceeds the window’s size, the oldest state is marginalised
out. The Gauss-Newton strategy described in Section II was
used, with one descent iteration carried out each time a mea-
surement was acquired. Different solvers were implemented
for comparison purposes. To focus on them, the rest of the
pipeline was fully treated in double precision. All algorithms
were implemented in Python, based on “Numpy” and “Scipy”
built-in functions. In the following we detail the specifics of
the implementation of the IMU preintegration and the solvers.

Computing the uncertainties of the prior and the IMU
preintegration: The preintegration of IMU increments was
done following [18]. The associated uncertainty, however, was
computed by propagating the square-root of the associated
covariance [42]. Likewise, the uncertainty of the prior was
computed in square-root form. This was needed to avoid some
numerical issues, and was useful for feeding the Square-Root
solvers with the most accurate uncertainty estimation.

SC-BIFM: It was implemented according Algorithm 1.
The covariance matrices P0 and Q were retrieved by simply
squaring the triangular matrices stored for the Prior and the
IMU.

Square-Root Smoothing: Square-Root smoothing was
achieved using the QR decomposition of Ã, based on its

“Numpy” implementation. Then the resulting linear systems
were solved thanks to the “Scipy” package.

Robust Batch Approach: As for SC-BIFM, the Batch solver
was fed with full covariance matrices (i.e., not square roots).
The solution was computed using the “Scipy.sparse” package,
and especially its “spsolve” method to invert the ensuing
square linear systems.

D. Experimental comparison of linear solvers
Three linear least squares solvers are compared, in their 32-

and 64-bits floating point formats:
• The standard square-root information solvers based on

Cholesky (or QR) factorisation of Section II-E, with
precision of 64 (Sq-Root-64) and 32 bits (Sq-Root-32);

• The robust batch solver (Batch solver) based on reformu-
lation of Section II-H, with precision of 64 (Batch-64)
and 32 bits (Batch 32);

• The proposed SC-BIFM solver in 64 and 32 bits.
As noticed in the simple numerical example of Section V,
the best method in terms of accuracy (but not in terms of
complexity) is the Batch formulation of Section II-H which
solves the linear least squares while avoiding ill-conditioned
related issues. As a result, to provide all solvers meaningful
linearization points, we performed fusion betwen IMU and
relative pose measurements based on scan matching using the
Batch solver with 64 bits based double precision.

Each time step where a GN iteration was carried out,
the condition number of the weighted jacobian Ã = Σ−1/2A
associated to the full normal equations (12), and all the solvers
were applied to the corresponding linear least squares system.
Figure 5, shows the evolution of the condition number in log-
scale, and the distance between the solution of each of the
single precision solvers with respect to that of the Batch-64,
which is considered herein as ground truth.

Accuracy: The methods rank as follows. The Batch ap-
proach we proposed in Section II-H runs first, then the
proposed SC-BIFM, and finally the square root resolution of
full normal equations. The fact that Batch beats SC-BIFM may
be due to our taking advantage of the existing libraries to solve
the linear systems that involve A−1

1 , whereas SC-BIFM uses no
such library owing to its different nature and implementation
based on Kalman smoothing, and thus had to be coded entirely
from scratch.

Execution time: Average computation times of the various
solvers are displayed in Table I are competitive with the Sq-
Root, in both precision formats. Batch solvers are slightly
slower, which was expected because of the A−1

1 term to be
computed. This is on the other hand encouraging for SC-
BIFM, which is based on an academic code developed from
scratch and thus does not yet benefit from the same level of
code optimisation as the other methods that use bricks such
as Numpy built-in QR decomposition. Theoretically, our code
runs in O(m3n), where n is the number of variables and m the
dimension of the largest XIk related to the number of clones. It
is difficult to go further into complexity analysis owing to the
clones, but we believe its complexity is closely related to the
complexity of sparse Cholesky or QR decompositions, which
varies with the filling of the R factor.



12

Fig. 5: Top : Evolution of the condition number of Ã during
the trajectory, in log scale; Bottom : Distance to Batch 64 con-
sidered herein as ground truth, in log scale. A moving average
on 100 steps was performed to improve readability. There is
a clear link between the increase of ill-conditioning and the
accuracy degradation of the single precision solvers. However,
the proposed SC-BIFM systematically beats its square-root
information counterpart described in Section II-E. Notably it is
remarkable SC-BIFM achieves comparable results with 32 bits
single-precision as square root with 64 bits double-precision
implementation.

Solver Average computation time (s)

Sq-Root 64 0.021
Sq-Root 32 0.010

Batch 64 0.029
Batch 32 0.024

SC-BIFM 64 0.020
SC-BIFM 32 0.016

TABLE I: Average computation times for the inversion of the
linear systems over trajectory. Computations were made on a
standard laptop with Intel i5-5300 2.3 GHz CPU

Solver Maximum distance to Batch-64 (m)

Sq-Root 64 0.09
Sq-Root 32 ∞

Batch 64 0
Batch 32 0.01

SC-BIFM 64 7e−4
SC-BIFM 32 0.1

TABLE II: Maximum distance to the Batch-64 trajectory for
the various solvers.

E. Experimental comparison of corresponding localization
algorithms

Following the full pipeline of iterative linearization proce-
dure of factor graph based SLAM (or navigation) recapped
in Section II, we computed state variable estimates for the
nonlinear system (50) using the various solvers.

Table II displays the maximum distance to Batch 64 esti-
mate (considered as optimal) in terms of position discrepancy
of the car. The results confirm what could be anticipated
from the linear solvers comparison above. Moreover, using
single-precision Sq-root-32, the estimation could not even be
carried out until the end, as it diverged after about an eighth
of the trajectory, see Figure 6. SC-BIFM-64 is as expected the
closest to Batch-64, followed by Batch-32, while Sq-root-64
and SC-BIFM-32 show similar behaviors. The latter feature
is remarkable, though, as it shows he proposed algorithm SC-
BIFM may achieve good results in single precision on a real
application.

F. Conclusions regarding real experiments

The first merit of the conducted experiments is to prove
that the problem of ill conditionned information matrix for
pose graph SLAM or Kalman smoothing for navigation may
arise when using highly precise inertial sensors (such as cost
effective high precision IMU from Safran Electronics and
Defense). Given the progress made in the field of inertial
sensors over the past decades, we can anticipate performance
will keep increasing, and cost decreasing. We showed the
resulting problems can even lead to divergence of the local-
ization estimate based on the standard Cholesky resolution
of linear least squares (Sq-Root 32) when implemented with
32 bits single-precision. This is an important point, as most
industrial grade inertial navigation embedded systems use
32-bit precision. In this respect, we see the two solutions
we proposed in this paper are satisfactory and achieve good
performance in single precision. Moreover, the proposed novel
SC-BIFM method based on Kalman smoothing with stochastic
cloning seems promising, as its complexity is reasonably low
since only matrices of a limited size need to be inverted, as
opposed to the proposed Batch solver.

VII. CONCLUSION

In this paper we highlight a shortcoming of the standard
solvers used to invert the linear least-squares problems appear-
ing in smoothing methods for sensor fusion, and especially



13

Fig. 6: Top : 11 km long trajectory followed by the car, taken from Google Maps. The bottom right image displays a zoom on
the zone inside the black box, and shows the trajectories estimated by Sq-root-32 and Batch-32. We see Sq-root-32 diverges
whereas Batch-32 properly follows the true trajectory. Both proposed single precision solvers, SC-BIFM-32 and Batch-32,
managed to stay stable during the whole experiment, as shown in the bottom left picture. More generally, the deviations
observed are consistent with the results reported in Table II.

inertial navigation. It was shown that these methods are not
adapted to overly low propagation noise, and can degenerate,
for instance in single precision. We build on the fact that
some formulations of Kalman smoothers avoid this numerical
issue and propose a novel sparsity-maintaining solver for a
large class of systems, using stochastic cloning. It exhibits
much higher robustness than standard solvers in the face of
the mentioned numerical difficulties.

Research to achieve numerical efficiency comparable to the
one of existing solvers is still needed, as they benefit from
decades of numerical algorithms, along with major recent
breakthroughs from the SLAM community. Another route for
future research is to come up with an incremental formulation
of SC-BIFM. Indeed, the forward part is easily continued when
a new measurement is available, but the backward information
filter seems to have to be recomputed from scratch each time.

We anticipate that there might be links with the Bayes tree
used in iSAM2 [23], for instance, which could help resolving
this issue.

VIII. ACKNOWLEDGEMENTS

This work is supported by the company Safran through the
CIFRE convention 2016/1444.

REFERENCES

[1] A. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org.
[2] E. Aghapour and J. A. Farrell. Performance specified state estimation

with minimum risk. In 2018 Annual American Control Conference
(ACC), pages 1114–1119, June 2018.

[3] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14(2):239–256, Feb 1992.

http://ceres-solver.org


14

[4] Gerald J Bierman. Factorization Methods for Discrete Sequential
Estimation, volume 128. Academic Press, 1977.

[5] M. Brossard, A. Barrau, and S. Bonnabel. Exploiting symmetries to
design ekfs with consistency properties for navigation and slam. IEEE
Sensors Journal, 19(4):1572–1579, Feb 2019.

[6] M. Brossard, A. Barrau, and S. Bonnabel. Rins-w: Robust inertial nav-
igation system on wheels. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2068–2075, 2019.

[7] M. Brossard and S. Bonnabel. Learning wheel odometry and imu errors
for localization. In 2019 International Conference on Robotics and
Automation (ICRA), pages 291–297, May 2019.

[8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, Dec 2016.

[9] Paul Chauchat, Axel Barrau, and Silvere Bonnabel. Invariant Smoothing
on Lie Groups. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2018, pages 1703–1710, Madrid, Spain,
October 2018.

[10] Han-Pang Chiu, Stephen Williams, Frank Dellaert, Supun Samarasekera,
and Rakesh Kumar. Robust vision-aided navigation using sliding-
window factor graphs. In 2013 IEEE International Conference on
Robotics and Automation, pages 46–53. IEEE, 2013.

[11] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous
localization and mapping via square root information smoothing. The
International Journal of Robotics Research, 25(12):1181–1203, 2006.

[12] Frank Dellaert, Michael Kaess, et al. Factor graphs for robot perception.
Foundations and Trends R© in Robotics, 6(1-2):1–139, 2017.

[13] J. Deschaud. Imls-slam: Scan-to-model matching based on 3d data.
In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 2480–2485, May 2018.

[14] Gamini Dissanayake, Paul Newman, Hugh F. Durrant-Whyte, Steven
Clark, and M. Csobra. A solution to the simultaneous localisation and
mapping (slam) problem. IEEE Trans. Robot. Automat., 17:229–241,
2001.

[15] Hugh F. Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE robotics & automation magazine, 13(2):99–110,
2006.

[16] Ryan M. Eustice, Hanumant Singh, and John J. Leonard. Exactly sparse
delayed-state filters for view-based slam. Trans. Rob., 22(6):1100–1114,
December 2006.

[17] Jay Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-
Hill, Inc., New York, NY, USA, 1 edition, 2008.

[18] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza.
On-manifold preintegration for real-time visual–inertial odometry. IEEE
Transactions on Robotics, 33(1):1–21, Feb 2017.

[19] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel.
Backprop kf: Learning discriminative deterministic state estimators. In
Advances in Neural Information Processing Systems, pages 4376–4384,
2016.

[20] Harold V Henderson and Shayle R Searle. On deriving the inverse of a
sum of matrices. Siam Review, 23(1):53–60, 1981.

[21] Simon J Julier and Jeffrey K Uhlmann. A counter example to the
theory of simultaneous localization and map building. In Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 4, pages 4238–4243. IEEE, 2001.

[22] Michael Kaess and Frank Dellaert. Covariance recovery from a square
root information matrix for data association. Robotics and autonomous
systems, 57(12):1198–1210, 2009.

[23] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J.
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and
mapping using the Bayes tree. The International Journal of Robotics
Research, 31:217–236, 2012.

[24] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. g2o: A general framework for graph optimization.
In 2011 IEEE International Conference on Robotics and Automation,
pages 3607–3613, May 2011.

[25] Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao, and Yingze
Bao. Ice-ba: Incremental, consistent and efficient bundle adjustment for
visual-inertial slam. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[26] H. Loeliger, L. Bruderer, H. Malmberg, F. Wadehn, and N. Zalmai. On
sparsity by nuv-em, gaussian message passing, and kalman smoothing.
In 2016 Information Theory and Applications Workshop (ITA), pages
1–10, Jan 2016.

[27] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and Raquel
Urtasun. Deep rigid instance scene flow. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[28] Robert E. Mahony and Tarek Hamel. A geometric nonlinear observer for
simultaneous localisation and mapping. In 56th IEEE Annual Conference
on Decision and Control, CDC 2017, Melbourne, Australia, December
12-15, 2017, pages 2408–2415, 2017.

[29] Philippe Martin and Erwan Salaün. Design and implementation of a
low-cost observer-based attitude and heading reference system. Control
Engineering Practice, 18(7):712–722, February 2010.

[30] Peter S Maybeck. Stochastic models, estimation, and control. Academic
press, 1982.

[31] Ellon Mendes, Pierrick Koch, and Simon Lacroix. Icp-based pose-graph
slam. In 2016 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pages 195–200. IEEE, 2016.

[32] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Weg-
breit. FastSLAM 2.0: An improved particle filtering algorithm for
simultaneous localization and mapping that provably converges. In
Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico, 2003. IJCAI.

[33] A. I. Mourikis, S. I. Roumeliotis, and J. W. Burdick. Sc-kf mobile robot
localization: A stochastic cloning kalman filter for processing relative-
state measurements. IEEE Transactions on Robotics, 23(4):717–730,
Aug 2007.

[34] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state con-
straint kalman filter for vision-aided inertial navigation. In Proceedings
2007 IEEE International Conference on Robotics and Automation, pages
3565–3572, April 2007.

[35] T. Pfeifer and P. Protzel. Robust sensor fusion with self-tuning mixture
models. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3678–3685, Oct 2018.

[36] T. Pfeifer and P. Protzel. Expectation-maximization for adaptive mixture
models in graph optimization. In 2019 IEEE International Conference
on Robotics and Automation (ICRA), pages 3151–3157, 2019.

[37] F. Rahman, E. Aghapour, and J. A. Farrell. Outlier accommodation by
risk-averse performance-specified nonlinear state estimation: Gnss aided
ins. In 2018 IEEE Conference on Decision and Control (CDC), pages
5922–5927, Dec 2018.

[38] Herbert E Rauch, CT Striebel, and F Tung. Maximum likelihood
estimates of linear dynamic systems. AIAA journal, 3(8):1445–1450,
1965.

[39] D. M. Rosen, M. Kaess, and J. J. Leonard. Robust incremental online
inference over sparse factor graphs: Beyond the gaussian case. In
2013 IEEE International Conference on Robotics and Automation, pages
1025–1032, May 2013.

[40] D. M. Rosen, M. Kaess, and J. J. Leonard. Rise: An incremental trust-
region method for robust online sparse least-squares estimation. IEEE
Transactions on Robotics, 30(5):1091–1108, Oct 2014.

[41] Cyrill Stachniss, John J Leonard, and Sebastian Thrun. Simultaneous
localization and mapping. In Springer Handbook of Robotics, pages
1153–1176. Springer, 2016.

[42] F. Wadehn, L. Bruderer, V. Sahdeva, and H. Loeliger. New square-
root and diagonalized kalman smoothers. In 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pages 1282–1290, Sep. 2016.

[43] M. Wang and A. Tayebi. Geometric nonlinear observer design for slam
on a matrix lie group. In 2018 IEEE Conference on Decision and Control
(CDC), pages 1488–1493, Dec 2018.

[44] Miaomiao Wang and Abdelhamid Tayebi. A globally exponentially
stable nonlinear hybrid observer for 3d inertial navigation. In 2018
IEEE Conference on Decision and Control (CDC), pages 1367–1372,
2018.

[45] Kejian Wu, Ahmed Ahmed, Georgios A Georgiou, and Stergios I
Roumeliotis. A square root inverse filter for efficient vision-aided
inertial navigation on mobile devices. In Robotics: Science and Systems,
volume 2, 2015.

[46] Ji Zhang and Sanjiv Singh. LOAM: Lidar odometry and mapping in real-
time. In Robotics: Science and Systems Conference (RSS), Berkeley, CA,
July 2014.

[47] Sheng Zhao, Yiming Chen, Haiyu Zhang, and Jay A. Farrell. Differential
gps aided inertial navigation: a contemplative realtime approach. IFAC
Proceedings Volumes, 47(3):8959 – 8964, 2014. 19th IFAC World
Congress.


	INTRODUCTION
	Relation to previous literature

	Factor graphs and MAP
	MAP formulation of the SLAM problem
	The state
	The observations

	Maximum a posteriori (MAP) estimation
	Factor graph interpretation
	Resolution of the nonlinear optimization problem
	Resolution of the linearized optimization problem
	Potential issue n1: computational complexity 
	Potential issue n2: ill-conditioned normal equation matrix
	A solution without matrix inversion: the robust batch solver

	The linear Kalman smoother as a least squares solver
	The standard Kalman smoother
	The Backward Information Filter Forward Marginal (BIFM)
	Summary of the approach

	Proposed method: the BIFM Kalman smoother with stochastic cloning
	Stochastic cloning for filtering
	The stochastic cloning pipeline
	SC implementation

	Proposed ``SC-BIFM'' (stochastic cloning for smoothing)
	Forward pass with stochastic cloning
	Backward stochastic cloning with an information filter
	Interpretation
	Final fusion


	Numerical illustration of the methodology
	Ideal case numerical experiment
	Numerical experiment with low noise

	Real world experiment
	Considered models
	Experimental setup
	Implementation
	Experimental comparison of linear solvers
	Experimental comparison of corresponding localization algorithms
	Conclusions regarding real experiments

	Conclusion
	Acknowledgements
	References

