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Résumé
Les assertions de préférences conditionnelles (CP-
statements) permettent de représenter de maniére compacte
les préférences sur des domaines combinatoires. Elles sont
au cceur des CP-nets et de leurs généralisations, et des ar-
bres de préférences lexicographiques. Plusieurs travaux ont
abordé la complexité de certaines requétes liées a ces for-
malismes (optimisation, dominance en particulier). Cet ar-
ticle étend certains de ces résultats, et s’intéresse a d’autres
requétes (comme I’équivalence), contribuant ainsi a une
carte de compilation pour les langages basés sur les asser-
tions de préférences conditionnelles.
Abstract
Conditional preference statements have been used to
compactly represent preferences over combinatorial do-
mains. They are at the core of CP-nets and their general-
izations, and lexicographic preference trees. Several works
have addressed the complexity of some queries (optimiza-
tion, dominance in particular). We extend in this paper some
of these results, and study other queries which have not been
addressed so far, like equivalence, thereby contributing to a
knowledge compilation map for languages based on condi-
tional preference statements.

1 Introduction

Preference handling is a key component in several areas
of Artificial Intelligence, notably for decision-aid systems.
Research in Artificial Intelligence has led to the devel-
opment of several languages that enable compact repre-
sentation of preferences over complex, combinatorial do-
mains. Some preference models rank alternatives accord-
ing to their values given by some multivariate function; this
is the case for instance with valued constraints [26], ad-
ditive utilities and their generalizations [24, 10]. Ordinal
models like CP nets and their generalisations [5, 29, 8], or
lexicographic preferences and their generalisations [21, 27,
30, 4, 11, 18] use sets of conditional preference statements
to represent a pre-order over the set of alternatives.

Many problems of interest, like comparing alternatives
or finding optimal alternatives, are at least NP-hard for
some of these models, which makes these representations
difficult to use in some decision-aid systems like configu-
rators, where real-time interaction with a decision maker
is needed. One approach to tackle this problem is Knowl-
edge Compilation, whereby a model, or a part of it, is com-
piled, off-line, into another representation which enables
fast query answering, even if the compiled representation
has a much bigger size. This approach has first been stud-
ied in propositional logic: [14, 15] compare how various
subsets of propositional logic can succinctly, or not, ex-
press some propositional knowledge bases, and the com-
plexity of queries of interest. [13] follow a similar ap-
proach to compare extensions of propositional logic which
associate real values to models of a knowledge base; [19]
provide such a map for value function-based models.

The aim of this paper is to initiate such a compilation
map for ordinal models of preferences. Specifically, we
compare the expressiveness and succinctness of various
languages based on conditional preference statements, and
the complexity of several queries of interest for these lan-
guages.

The next section recalls some basic definitions about
combinatorial domains and pre-orders, and introduces no-
tations that will be used throughout. Section 3 gives an
overview of various languages based on conditional pref-
erence statements that have been studied in the literature.
Section 4 and 5 respectively study expressiveness and suc-
cinctness for languages based on conditional preference
statements . Sections 6 study the complexity of queries for
these languages. Proofs are omitted due to lack of space.



2 Preliminaries

2.1 Combinatorial domain

We consider languages that can be used to represent the
preferences of a decision maker over a combinatorial space
X' here X is a set of attributes that characterise the possible
alternatives, each attribute X € X having a finite set of
possible values X'; then X denotes the cartesian product of
the domains of the attributes in X, its elements are called
alternatives. For binary attribute X, we will often denote
by z,Z its two possible values.

For a subset U of X, we will denote by U the cartesian
product of the domains of the attributes in U, called instan-
tiations of U, or partial instantiations (of X). If v is an
instantiation of some V' C X, v[U] denotes the restriction
of v to the attributes in V' N U; we say that instantiation
u € U and v are compatible if o[U N V] = u[U N V]; if
U C V and v[U] = u, we say that v extends u.

Sets of partial instantiations can often be conveniently,
and compactly, specified with propositional formulas: the
propositions are X = x forevery X € X and x € X, and
we use the standard connectives A (conjunction), V (dis-
junction), — (implication), <> (equivalence) and — (nega-
tion). Implicitly, this propositional logic is equipped with
a theory that enforces that every attribute has precisely one
value from its domain; so, for two distinct values x, z’ of at-
tribute X, the formula X = x A X = 2’ is a contradiction;
also, the interpretations are thus in one-to-one correspon-
dence with X. If « is such a propositional formula over X
and o € X, we will write 0o = « when o satisfies «, that
is when, assigning to every literal X = x that appears in «
the value true if o[X] = z, and the value false otherwise,
makes « true.

We assume that the domains of the attributes in X are
disjoint, so that, given a formula «, or a partial instantia-
tion u, we can unambiguously define Var(«) and Var(u)
as the set of variables, the values of which appear in v and
u respectively.

When it is not ambiguous, we will use = as a shorthand
for the literal X = z; also, for a conjunction of such liter-
als, we will omit the A symbol, thus X = x A Y = gy for
instance will be denoted xy.

2.2 Preference relations
2.2.1 Preorders

Depending on the knowledge that we have about a decision
maker’s preferences, given any pair of distinct alternatives
0,0 € X, one of the following situations must hold: one
may be strictly preferred over the other, or o and o’ may be
equally preferred, or o and o’ may be incomparable.
Assuming that preferences are transitive, such a state
of knowledge about the DM’s preferences can be charac-
terised by a preorder >~ over X: > is a binary, reflexive

and transitive relation; for alternatives o, 0, we then write
o = o when (0,0') €x; 0o > o when (0,0') €= and
(0',0) ¢=; 0 ~ o when (0,0") €= and (0',0) €x; 011 0
when (0,0") ¢> and (0’,0) ¢>. Note that for any pair of
alternatives 0,0’ € X either o = o/, or o’ > 0, 0ro ~ o' or
o<1 0. The relation ~ defined in this way is the symmet-
ric part of -, it is reflexive and transitive, < is irreflexive,
they are both symmetric. The relation > is the irreflexive
part of >, it is what is usually called a strict partial order:
it is irreflexive and transitive.

Terminology and notations We say that alternative o
dominates alternative o’ (w.r.t. =) if and only if 0 = 0o;
if o > 0, then we say that o strictly dominates o'. We
use standard notations for the complements of > and >:
we write 0 7 o' when it is not the case that o = o', and
o0 % o when it is not the case that o . We will denote by
= (respectively <) the dual of > (resp. of ), also called
its converse or transpose: o =< o' if and only if o’ = o, and
o < 0 iff o’ = o. Note that since b and ~ are symmetric,
they are equal to their dual.
Following [23] we say that alternative o is:
e weakly undominated if there is no o/ € X such that
o = o;
e undominated if there is no o’ € X, o/ # o, such that
o =, 0;
e dominating if for every o’ € X, 0 >, 0';
e strongly dominating if for every o’ € X with o' # o,
0>, 0.
Note that o is strongly dominating if and only if it is dom-
inating and undominated; and that if o is dominating or
undominated, then it is weakly undominated.

2.2.2 Antisymmetric preorders

Some languages designed to represent preferences are as-
sociated with a primitive relation which is not a preorder
but a strict partial order >. However, it is possible to define
a preorder > as the reflexive closure of >: that is, 0 > o
holds when o = o’ or o = o’. The relation > defined in this
way is antisymmetric.

3 Languages

3.1 Conditional preference statements

Let us call conditional preference statement, or CP state-
ments, over X any expression of the form a|V:w>w’,
where « is a propositional formula over U C X, w,w’ €
W, w # w', and U,V,W are disjoint subsets of X. Infor-
mally, such a statement represents the piece of knowledge
that, when comparing alternatives o, 0’ that both satisfy «,
the one that has values w for W is preferred to the one
that has values w’ for W, irrespective of the values of the



attributes in V, every other attribute being fixed. We call
« the conditioning part of the statement; we call W the
swapped attributes, and V' the free part.

Conditional preference statements have been studied in
many works. They are the basis for CP-nets [7, 5] and their
extensions, and have been studied in a more logic-based
fashion by e.g. [23] and [29, 28, 31]. In all these works, a
syntactic restriction is put on W: it must be the case that
|W | = 1. Also, [23] do not consider any free part (V = ),
and [29, 28, 31] only considers statements with a conjunc-
tive conditioning part (o must be a consistent conjunction
of literals).!

The semantics of a set ¢ of conditional preference state-
ments can be defined as follows: consider a pair of alterna-
tives (0,0’) such that there is a statement o | V:w >w' € ¢
with o[U] = o'[U] = a, o[W] = w and o'[W] = w’, and
such that for every attribute Y ¢ U UV U W it holds that
o[Y] = o'[Y]; following [31] we say that (0,0') is a wors-
ening swap. We also say that the statement o | V:w>w' €
¢ sanctions (0,0"). Let ¢* be the set of all worsening
swaps that ¢ sanctions, and define =, to be the reflexive
and transitive closure of ¢*. [31] proves that o =, o’ if and
only 0o = o’ or ¢* contains a finite sequence of worsening
swaps (0i>0i+1>0§i§k71 with og = o and o, = 02

The language of the above statements is very expressive:
in fact, by consideringaset W = X, anda =T and V =
(), it is possible to represent any preorder “in extension”
with preference statements of the form 0> o'. Let us call:

o CP the language where formulas are sets of statements
of the general form o |V :w >w';

This expressiveness has a cost: we will see that many
queries about pre-orders represented by CP-statements are
PSPACE-hard for the language CP. Several restrictions /
sub-languages have been studied in the literature, we re-
view them below. Note that formulas in CP are not re-
quired to verify any form of consistency or completeness;
such conditions, will be imposed for some sublanguages
defined below.

Notations We write a:w>w’ when V is empty, and
w>w' when V is empty and o = T, the formula always
true. Note that we reserve the symbol > for conditional
preference statements, whereas “curly” symbols -, #, =,
# are used to represent relations over the set of alternatives.

In the remainder of this section, we introduce various
restrictions on formulas. Table 1 gives an overview of these
restrictions, as well as some complexity results that will be
detailed in section 6.

I'The formula w |V 12>z’ is written w: 2z >2'[V] by [31].

2 Actually, [31] proves that (0,0’) is in the transitive closure of ¢*
if and only there is such a worsening sequence from o to o/, but adding
the reflexive closure to this transitive closure does not change the result,
since we can add any pair (0,0) to, or remove it from, any sequence of
worsening swaps without changing the validity of the sequence.

3.2 Statement-wise restrictions

Some restrictions apply on the syntactical form of state-
ments allowed; they bear on the size of the set of free vari-
ables, or on the size of the set of swapped variables, or
on the type of conditioning formulas allowed. Given some
language £ C CP, we define the following restrictions:

e LI¥ is the restriction of £ to formulas with empty free
parts (V' = ()) for every statement;’

e LA is the restriction of £ to formulas where the condi-
tion « of every statement is a conjunction of literals;

e [K is the restriction of £ to formulas where the set of
swapped attributes contains no more than £ attributes
(|W|<k ) for every statement; in particular, we call
elements of CP1 unary statements.

In particular, CP1A corresponds to the language studied
by [31], and CP1(# is the language of generalized CP-nets
as defined by [23].

3.3 Graphical restrictions

CP-statements describe some interactions between at-
tributes. Many tractability results on CP-statements based
languages require that the graph of these interactions has
some “‘good” properties. In their seminal work, [5] con-
sider that these interaction can be elicited first from a
decision-maker, and that this structure can be used to ren-
der easier the elicitation of CP1 statements that represent
her preferences. However, these interactions can also be
extracted a posteriori, for any set of CP statements.

The graph defined by [5] is restricted to the case where
all CP statements are unary and have no free variables. This
definition has been extended by [8, 31] to cover the case
of statements with free variables. The following definition
is inspired by [31, Def. 15]. Given ¢ € CP over set of
attributes X', we define the following graphs with sets of
vertices X': given XY € X

o (X\Y) € Dgncond if there is some statement
alV:iw>w" € ¢ such that X € Var(a) and Y €
Var(w) UV;

e for every alternative o, (X,Y) € Dgond(o) if there is

some statement | V:w>w' € ¢ such that o E «,
X e Var(w)and Y € V;

o D, = Dgncond UUse Dgond(o).
Given some language £ C CP, we define:

e L (% the restriction of L to acyclic formulas, which are
those ¢ such that D, is acyclic;*;

3In the literature, the symbol > is sometimes used to represent an im-
portance relation between attributes; and, as explained by [31], statement
a|V:w>w' is a way to express that attributes in Var(w) have more
importance those in V' (when « is true).

4This is full acyclicity in [31].



Properties/Restrictions

Base language CPnet CPnet | CPnet || LPT |LTP
Unary swaps / nodes 1 1 €))] 1 (D €))] 1
No free variable ¢ v (%) (%) (%)

Condition in conjunctive form A N) A N) (N)

Local consistency lloc ( lloc) lloc ( xloc) ( lloc)

Local completeness TIOC (TIOC) (TIOC) (TIOC)

Acyclicity cuc full | polytree

Queries

LINEARISABILITY X! | X! X! T T T T T
EQUIVALENCE X!| x! v X! v v v v
R-COMPARISON, R € {>, >} X!\ x| X! X! X! X! v o/
~-COMPARISON X! | xX!'| X! v v v v v
2-ORDERING v v v v v
UNDOMINATED CHECK v/ v v v v v v
S. DOM., DOM., W. UNDOM. CHECK | X! | X! | X! v v v v
S. DOM. 3, DOM. 3 X! X! T T v v
UNDOMINATED 3 X! | X! T T T T T
W. UNDOMINATED 3 T|T | T T T T T T T

Table 1: Language restrictions and complexity of queries: v = indicates that the query can be solved in time polynomial
in ||+ |result|; X! = no such algorithm unless P= NP, or PSPACE= P; T = always true for the language.

o £ (#CUC the restriction of £ to cuc-acyclic formulas,
which are those ¢ such that for every alternative o,

Dgncond U Dgond(o) is acyclic.’

Note that D, can be computed in polynomial time.
Moreover, in the case of CP1%, the Dgond (0)’s are all
empty, so cuc-acyclicity reduces to D, being acyclic, and
D, is the set of all (X,Y") such ¢ contains some statement
u:y>y' with X € Var(u) — which is the definition used
by [5].

In the more general case of CP1, checking cuc-
acyclicity can be hard [8, Th. 3], [31, Prop. 24].

3.4 Attribute-wise restrictions

It is possible, especially with CP1 statements, to consider
restrictions that guarantee some form of completeness and
consistency on the conditions that sanction swaps on a
given variable X. In other words, the idea is that for every
pair of alternatives 0,0’ € X such that o and o’ are equal
except for their value for one attribute, there must be ex-
actly one statement in a CP-net that orders o and o’. These
conditions are implicit in CP-nets defined by [5], and have
been formally defined by [23] in a slightly more restrictive
context (binary attributes) and, in part, by [31].

Definition 1 (Local completeness and local consistency
[23, 31]). Let ¢ € CP1. For every attribute X € X and

S5This definition is weaker than the one given by [31], who also im-
poses local consistency as will be defined shortly; it corresponds to the
definition of conditional acyclicity as given by [8].

every partial instantiation u, define 2;( " to be the reflex-
ive and transitive closure of the set of all pairs (z,z') € X2
such that there exists some o|V:x>a' € ¢ withu E «;
then ¢ is locally consistent if Zf % is antisymmetric for
every attribute X € X" and every alternative o € X; and
@ is locally complete if Zf *? is a total preorder for every
attribute X and every alternative o € X.

Given some language £ C CP, we define:

o L ,}iloc is the restriction of £ to those formulas that are
locally consistent;

o £T19C is the restriction of £ to those formulas that are
locally complete.

Note that the problem of checking if a formula of CP1A is
locally consistent is coNP complete [31, Prop. 11]. Locally
complete and locally consistent formulas of CP1p#, that is,
formulas of CP 14 ,KIOC TIOC, are called CP-nets by [23].
However, we recall next the original definition of CP-nets,
which is slightly different.

3.5 CP-nets

In their seminal work, [5] define a CP-net over a set of

attributes X to be composed of two elements:

1. adirected graph over X', which should represent prefer-
ential dependencies between attributes;®

5Given some pre-order > over X, attribute X is said to be prefer-
entially dependent on attribute Y if there exist z, 2" € X, y,y’ € Y,
z € X ({X,Y}) such that zyz =, z'yz butzy’z #, zy’ 2.



2. a set of conditional preference tables, one for every at-
tribute X: if U is the set of parents of X in the graph, the
conditional preference table for X contains exactly |U |
rules u: >, for every u € U, where the >’s are linear
orders over X.

Therefore, as shown by [31], CP-nets can be seen as sets
of unary CP statements in conjunctive form with no free
attribute. Specifically, given a CP-net N over X, define
o, to be the set of all CP statements w:x > z’, for every
attribute X, every u € Pa(X), every z,2’ € X such that z
are consecutive values in the linear order > specified by the
rule u:> of N. A being a CP-net enforces a very strong
form of local consistency and completeness: it must the
case that, for every attribute X with parents U, for every
u € U, for every x,2’ €, the CP-net must explicitly, and
uniquely, order ux and uz’.
Thus we call

o CPnet the language that contains all ¢, for every CP-
net \V.

Note that CPnet € CP1p¢A £10C T10C (8] define TCP-
nets as an extension of CP-nets where it is possible to repre-
sent tradeoffs, by stating that, under some condition, some
attribute is more important than another one. [31] describes
how TCP-nets can be transformed, in polynomial times,
into equivalent sets of CP1A statements.

3.6 Semantic restriction

Although the original definition of CP-nets by [7] does not
impose it, many works on CP-nets, especially following
[5], consider that they are intended to represent a strict par-
tial order, that is, that =, should be antisymmetric; equiva-
lently, this means that ¢* can be extended to a linear order.
We say that a set ¢ of CP-statements is linearisable if p*
can be extended to a linear order;’ in this case, several au-
thors define >, to be the transitive closure of ¢*, which
leads to the same definition of preorder =, as ours. But,
like [23], we use the same definition for =, even when ¢*
is not acyclic; note that in this case =, is not antisymmet-
ric.

Note that, if ¢ is linearisable, then it is locally consistent.

3.7 Lexicographic preference trees

LP-trees generalise lexicographic orders. As an inference
mechanism, they are equivalent to search trees used by [6],
and formalised by [28, 31]. As a preference representation,
and elicitation, language, slightly different definitions for
LP-trees have been proposed by [4, 11, 18]. We use here a
definition which subsumes the others.

7Such sets of CP-statements are often called consistent in the standard
terminology on CP-nets, but we prefer to depart from this definition which
only makes sense when one asserts that ¢ should indeed represent a strict
partial order.

An LP-tree over & is a rooted tree with labelled nodes
and edges, and a set of preference tables; specifically

e every node [V is labelled with aset W C X;

e we denote by Anc(NN) the set of attributes that appear
in the nodes above N (excluding those at V), and by
NonlInst(NV) the set of attributes that appear in the nodes
above N that have only one child;

e if N is not a leaf, it can have one child, or | W | children;

e in the latter case, the edges that connect [V to its children
are labelled with the instantiations in W ;

e if IV has one child only, the edge that connect N to its
child is not labelled;

e a conditional preference table CPT(N) is associated
with N: it contains local preference rules of the form
«:>, where > is a preorder over W, and « is a
propositional formula over some attributes in U C
NonlInst(N).

We assume that the rules in CPT (V) define their preorder
in extension. Additionally, two constraints guarantee that
an LP-tree ¢ defines a unique preorder over X':

e no attribute can appear at more than one node on any
branch of ¢; and,
e at every node N of ¢, for every u € Nonlnst(N),

CPT(N) must contain exactly one rule «: > such that

u = a.

Given an LP-tree ¢ and an alternative o € X, there is a
unique way to traverse the tree, starting at the root, and
along edges that are either not labelled, or labelled with
instantiations that agree with o, until a leaf is reached. Now,
given two distinct alternatives o, o', it is possible to traverse
the tree along the same edges as long as o and o’ agree, until
anode N is reached which is labelled with some W such
that o[WW] # o'[W]: we say that N decides {o,0'}.

In order to define =, for some LP-tree ¢, we de-
fine p* to be the set of all pairs of distinct alternatives
(0,0") such that there is a node N that decides {o,0'} and
the only rule a:> € CPT(N) with o[NonInst(N)] =
o'[NonlInst(N)] |= ais such that o[W]>o'[W]. Then =,
is the reflexive closure of p*.

Proposition 1 ([3]). Let ¢ be an LP-tree over X, then =,
as defined above is a preorder.

An LP-tree is said to be complete if every attribute ap-
pears on every branch, and if every preference rule speci-
fies a linear order; =, is then a linear order too.

From a semantic point of view, an LP-tree ¢ is equiva-
lent to the set that contains, for every node N of ¢ labelled
with W, and every rule «:> in CPT(XV), all CP state-
ments of the form « A u|V 1w >w’, where

e 1 is the combination of values given to the attributes
in Anc(N) — Nonlnst(V) along the edges between the
root and N, and



e w,w’ € W such that w>w’, and

o V=I[X—(Anc(N)UW)].

We define the following languages:

e LPT is the language of LP-trees as defined above; we
consider that LPTis a subset of CP.3

Note that, using the notations defined above:

e LPTEk = LPT n CPk% is the restriction of LPT where
every node has at most k attributes, for every k£ € N,
in particular, LPT1 is the language of LP-trees with one
attribute at each node;

e LPTA = LPTNCPA is the restriction of LPT where the
condition « in every rule at every node is a conjunction
of literals.

LP-trees as defined by [28, 4, 25] are sublanguages of

LPT1A; and those of [18] and [11] are sublanguages of

LPTA.

4 Expressiveness

A first criterium for comparing languages is expressive-
ness:

Definition 2. Let £ and £’ be two languages for represent-
ing preorders. We say that:
e [’ is a sublanguage of £ if £ D L’; it is a proper sub-
language if £ D L', thatis, if £L D £ and £’ 2 L;
e L is at least as expressive as L', written £ 3 L', if
every preorder that can be represented with a formula of
L' can also be represented with a formula of £; we write
L 3 L if £ 3 L butitis not the case that £ J £, and
say in this case that £ is strictly more expressive than
L.
Note that J is a preorder, and obviously £ O £’ implies
L 3 L, but the converse does not hold in general.
Clearly, CP¢ C CP and CPA C CP; however, these
three language have the same expressiveness:

Proposition 2. CP, CPA and CPW# can all three represent
every preorder, thus CP 1 CPy¥ 3 CPA 1 CP.

A large body of works on CP-statements since the sem-
inal paper by [6] concentrate on various subsets of CP1.
With this strong restriction on the number of swapped vari-
ables, CP-theories have a reduced expressiveness.

Example 1 (CP1 A CP). Consider two binary attributes
A and B, with respective domains {a,a} and {b,b}. De-
fine preorder > such that ab > @b, with the two remaining
alternatives being incomparable to the former and to each
other. This can be represented in CP with ¢ = {ab>ab}.
But it cannot be represented in CP1, because this would
require at least two rules: one to flip the value of A, the
other one to flip the value of B; but then there must be one
intermediate alternative comparable with ab and ab.

8Strictly speaking, for LPT C CP to hold, we can add the possibility
to augment every formula in CP with a tree structure.

Example 2 (CP1 O CP even if restricted to linear orders).
Consider two binary attributes A and B, with respective
domains {a,a} and {b,b}. Define preorder = such that
ab = ab = ab = ab. This can be represented in CP with
¢ = {ab>ab,ab>ab,ab>ab}. But it cannot be repre-
sented in CP1: {b:a>a,b:a>a,a:b>b,a:b>b}* C ©*,
but this is not sufficient to compare ab with ab. The four
remaining formulas of CP1 over these two attributes are
B:a>a, B:a>a, A:b>b, A:b>b, adding any of them
to ¢ yields a preorder which would not be antisymmetric.

Forbidding free parts incurs an additional loss in expres-
siveness:

Example 3 (CP1¢ [ CP1). Consider two binary at-
tributes A and B, with respective domains {a,a} and
{b,b}. Define preorder = such that ab = ab = ab = ab.
This can be represented in CP1 with ¢ = {B:a>a,b>b}.
But it cannot be represented in CP1(%, and it cannot be

obtained by transitivity from the comparisons that can be
expressed in CP1r%.

However, restricting to conjunctive statements does not
incur a loss in expressiveness.

Proposition 3. CP 1 CP1 3 CP1i#, CPIA O CP1AW,
but CP1 3 CP1A 3 CP1 and CP1¢ 1 CP1AY 3
CP1i.

LP trees Because an LP-tree can be a single node la-
belled with X', and a single preference rule T :> where
> can be any preorder, LPT can represent any preorder.

Proposition 4. LPT 31 CP D LPT.

For LP-trees too, limiting the number of attributes per
node reduces expressiveness:

Proposition 5. LPT > LPTA O LPT, LPT 1 LPTk >
LPTKA 3 LPTk.

5 Succinctness

Another criterium is the relative sizes of formulas that can
represent the same preorder in different languages. [12]
study the space efficiency of various propositional knowl-
edge representation formalisms. An often used definition
of succinctness makes it a particular case of expressive-
ness:

Definition 3 ([22, 15]). Let £ and £’ be two languages for
representing preorders. We say that L is at least as suc-
cinct as L', written £ < L', if there exists a polynomial p
such that for every formula ¢’ € L', there exists a formula
© € L that represent the same preorder as ¢’ and such that

Lol < p(l¢']).



With this definition, if £/ C Lthen £ £ £';andif £ <
L' then £ 3 £'. In particular, if we have two languages
suchthat L D L' and £’ 2 L, then £L £ L' and £’ L L,
even if there is no real succinctness hierarchy between the
two, it is just that one is strictly more expressive than the
other. Therefore, we introduce the following definition for
strict succinctness, more restrictive than taking the strict
partial order induced by <.

Definition 4. Let £ and L’ be two languages for represent-
ing preorders. We say that L is strictly more succinct than
L', written £ < £, if £ < £’ and for every polynomial p,
there exists ¢ € £ such that:

o there exists ¢’ € L’ such that >,=>, but

e forevery ¢’ € L' suchthat = ,=>., |¢'|>p(|¢]).

With this definition, £ < £’ if every formula ¢ € L’ has
an equivalent formula in £ which is “no bigger?, and there
is at least one sequence of formulas!? in £ that have equiva-
lent formulas in £’ but necessarily “exponentially bigger”.
Note that £ < £’ implies that £ < £ and £ £ L.

Restricting the conditioning part of the statements to be
conjunctions of literals does induce a loss in succinctness,
because propositional logic is strictly more succinct than
the language of DNFs.

Example 4. Consider 2n + 1 binary attributes
X1, X0,..., X, Y1,Y5,...)Y,,,Z, and let ¢ contain
2n 4+ 2 unary CP-statements with no free attribute:
(k1 V y1) A (2 V y2) A oo A (T V Yn)iz>Z,
Sl Voyr) A (xa Voya) Aol A (a2 Voyn)] 222
and T;>x,; and y; >y, for every i € {1,...,n}. Then
v € CP1i ,Kloc TIOC, but ¢ is not in conjunctive form.
A set of conjunctive CP-statements equivalent to ¢ has to
contain all 2" statements of the form pips...pn:2>2
with pu; = x; or u; = x; for every 1.

Restricting to CP-nets induces a further loss in expres-
siveness, as the next example shows:

Example 5. Consider n + 1 binary attributes
X1,X5,...,X,,Y, and let ¢ be the CP1¥A formula
that contains the following statements: x;>Z; for
1=1,...,n, x1xa...TnYy>Y; Tiy>y fori = 1,... n.
The size of ¢ is linear in n. Because preferences for Y
depend on all X;’s, a CP-net equivalent to ¢ will contain,
in the table for Y, 2" CP statements.

Proposition 6. For every language such that CP11¢ ,}il oc
Tloc C L C CP, L « CPANN L. Moreover,
CP1A yloc Tloc « op-pet

6 Queries

Linearisability Checking if a given ¢ € CP is linearis-
able, that s, if =, is antisymmetric, can give some interest-

up to some polynomial transformation of the size of

100ne formula for every polynomial p

ing insights into the semantics of (. The following query
has been addressed in many works on CP statements:'!

LINEARISABILITY Given ¢, is ¢ linearisable?

[5] prove that when its dependency graph D, is acyclic,
then a CP-net ¢ is linearisable. This result has been ex-
tended by [16, 8, 31], who give weaker graphical con-
ditions that guarantee that a locally consistent set of
unary, conjunctive CP statements, that is, a formula of

CP1A 71/_|OC is linearisable: specifically, every formula

of CP1A ,KIOCCACUC is linearisable. However, checking
these conditions is a hard problem. [23, Theorem 3 and
4] prove that LINEARISABILITY is PSPACE-complete for

CP1pA, CP1p ylocloc

Comparing theories Checking if two theories yield the
same preorder can be useful during the compilation pro-
cess. We say that two formulas ¢ and ¢’ are equivalent if
they represent the same preorder, that is, if =, and = are
identical; we then write ¢ = .

EQUIVALENCE Given two formulas ¢ and ¢, are they
equivalent?

Consider a formula ¢ € CP, two alternatives o,0’, and
let ¢’ = U {0>0'}: clearly 0 =,/ o, thus p = ¢’ if
and only if 0 =, o'. Therefore, if language £ is such that
adding CP statement 0> 0’ to any of its formulas yields a
formula that is still in £, then EQUIVALENCE has to be at
least as hard as >-COMPARISON for £. This is the case
of CP. The problem remains hard for CP11%, because it
is hard to check the equivalence, in propositional logic, of
the conditions of statements that entail a particular swap
x>
Example 6. Consider three attributes A, B and C' with re-
spective domains {a,a}, {b,b} and {c;,c2,c3}. Consider
two CP statements s = a:c; >cg and s’ = b:cy>c3, and
let o = {s,s',;a:¢1 >c3}. Because of statements s and s’
we have abc; > abco > abcs; also, abcq >0 abcs because
of statement a:c; >cs. Hence, for any u € A x B, if
u | aV (ab) then uc; >ucg. Thus ¢ = {s,s'} U{a V
(@b):c1>c3} = pU{bicy >cs}.

In general, given a propositional language P we define
PV to be the set of finite disjunctions of formulas in P,
and:

e CP1£P is CP1p restricted to those statements such

that the condition is in P.

Proposition 7. Given a propositional language P closed
for conjunction, EQUIVALENCE for PV (in the sense of
propositional logic), restricted to consistent formulas, re-
duces to EQUIVALENCE for CP1¥P restricted to fully
acyclic, locally consistent formulas.

"'This query is often called consistency



In particular, EQUIVALENCE is NP-hard for

CP1 Iyé/\g’é,l/_loc restricted to binary attributes, be-
cause checking if two propositional, consistent DNFs are
equivalent is NP-hard.

However, equivalence is not hard to check for CP-nets,
thanks to the existence of a canonical, minimal form: given
a CP-net with attributes X and Y such that X € Pa(Y'), it
is easy to check if the preferences that appear in the con-
ditional preference table for Y truly depend on X: if not,
the table can be simplified and the edge (X,Y") can be re-
moved. This can be done in polynomial time for all edges
(X,Y) of the dependency graph of the CP-net.

For LP-trees too, EQUIVALENCE is easy to check be-
cause of the existence of a canonical form: given a node
of an LP-tree ¢ labelled with set of variables .5, it is possi-
ble to check if it can be split into a “root” node and one or
more several children, using an approach like that proposed
by [18] for learning an LP-tree from positive examples; this
can be done in time polynomial w.r.t. to | S|, which is itself
polynomially bounded by the size of the preference table at
S, since we assume that the pre-orders over S are given in
extension in this table. This procedure can be iterated until
no node of the tree can be split. Moreover, if all subtrees
of a node are identical, they can be merged into one sub-
tree; applying this in a bottom-up fashion, one obtains the
canonical form of the tree; two LP-trees are then equivalent
if and only if they have the same canonical form.

Comparing alternatives A basic question, given a for-
mula o and two alternatives 0,0’ is: how do o and o’ com-
pare, according to ? Is it the case that o >, o, oro’ >, o,
or o, 0, or 0 ~, 0'? We define the following query, for
any relation R € {>,>,~ i}

R-COMPARISON  Given formula ¢, alternatives o,0’, is it
the case that oR,0'?

For LP-trees, in order to compare alternatives o and o’,
one only has to traverse the tree from the root downwards
until a node that decides the pair is reached, or up to a leaf
if no such node is encountered: in this case o and o’ are
incomparable. Note that checking if a node decides the
pair, and checking if a rule at that nodes applies to order
them, can both be done in polynomial time.

Proposition 8. R-COMPARISON is in P for LPT for every
R e {>,=,~,}.

The complexity of comparisons has been studied by [5]
for CP nets, by [23] for CP1¢ and by [31] for CP1A.
[23] propose a simple non-deterministic algorithm to prove
membership in PSPACE of =-COMPARISON; we rewrite
the algorithm here for our more general preference state-
ments:

Algorithm : =-comparison. Input: 0,0’, ¢
1. Repeat:

(a) guesso”,a|V:iw>w' € ;Y + X—(UUVUW);

(b) if a|V:w>w" € g sanctions (0,0”): 0 < 0”;

until 0’ = o'.

This algorithm only needs space to store two outcomes
at any iteration, and checks sanctioning w.r.t. one rule at
every iteration. Repeated applications of this algorithm can
answer R-COMPARISON queries for R € {>,~,x}; for
instance, to check if o <, o', we check that o =, o’ does
not hold and that o’ =, o does not hold either. 12

Tractability of comparisons, except in some trivial cases,
comes at a heavy price in terms of expressiveness: the
only positive result for =~-COMPARISON is about CP-nets
when the dependency graph is a polytree [5, Theorem 14];
clearly, this entails a positive results for the other compari-
son queries for this language. The next proposition shows
that most comparisons are hard for a vast family of CP
statements; it follows from hardness results proved by [5]
and [23].

Proposition 9. R-COMPARISON for R € {~,=,xx} is
NP hard for the language of fully acyclic CP-nets. ~-
COMPARISON is trivial for linearisable CP formulas, but
hard for CP1#A, and for the language of linearisable
(hence locally consistent) and locally complete CP 1% for-
mulas.

Optimisation Comparison queries can be used to com-
pute, in a given set S C X, an alternative that is not dom-
inated by any other alternative in S: this can be achieved
by asking at most | S|(] S| —1)/2 dominance queries (such
query can return failure when S contains no such alterna-
tive). More generally, given some integer k, we may be in-
terested in finding a subset S’ of S that contains k “best” al-
ternatives of S, in the following sense: we say that S’ C S
is weakly undominated in S if for every o € S’, for every
o' € §\ 5 itis not the case that o’ >, o. Note that such
a set must exist, because >, is acyclic. [31] proposes a
stronger query:

ORDERING Given k, S C X and ¢, find 01,09,...,0, € S
such that forevery i € 1,...,k, forevery o’ € S,ifo’ >, o
then o’ € {01,...,0;}.

Note that if 01,09, ...,0y is the answer to such query, if
1 <4 < j <k, then it can be the case that o; < 0, but it is
guaranteed that 0; % o;: in the context of a recommender
system for instance, where one would expect alternatives
to be presented in order of non-increasing preference, o;
could be safely presented before o;.

[5] consider a specific case of the above query, when
| S| = 2: note that given two alternatives 0,0’ € X it must
be the case that at least one of 0 >, o' or o’ >, o must be
false, since >, is irreflexive and transitive.

12Recall that NPSPACE = co-NPSPACE = PSPACE .



2-ORDERING Given 0,0’ € X, return a pair (01,09) €
{(0,0"),(0',0)} such that 0y 3, 01.

[5] prove that 2-ORDERING is tractable for acyclic CP-

nets. This result can be generalised to cuc-acyclic formulas
of CP1A:

Proposition 10 (Generalisation of Theorem 5 in [5]). 2-
ORDERING and ORDERING can be answered in time which
is polynomial in the size of ¢ and the size of S for cuc-
acyclic, locally consistent formulas of CP1A; and for LPT.

This approach for optimisation is of course not practical
when S = X, because in this case the size of S is exponen-
tial in the number of attributes. When £ is fixed, £ = 1 and
S = X, the ORDERING query amounts to finding a weakly
undominated alternative. Based on the notions of (weakly)
undominated / (strongly) dominating alternatives (defined
in section 2.2.1), [23] define two types of queries: 1) given
@ and o, is o (weakly) undominated, or is it (strongly) dom-
inated? 2) given ¢, is there a (weakly) undominated, or a
(strongly) dominated, alternative? We call these queries W-
UNDOMINATED CHECK, UNDOMINATED CHECK, and so
on, for queries of type 1); and W-UNDOMINATED-3, and
so on, for queries of type 2). Note also that there is always
at least one weakly undominated alternative (because X
is finite), sO0 WEAKLY UNDOMINATED-3 is trivial (always
true).

All these queries are easily shown to be tractable for
LPT. The problem UNDOMINATED CHECK is tractable for
CP; in fact, the proof, originally given by [5] for CP-nets,
and generalised to CP1p% by [23], can be generalised fur-
ther to CP.

Proposition 11. UNDOMINATED CHECK is in P for CP.

That all other, dominance related, queries are in
PSPACE for CP can be proved using again the algorithm
for checking >-comparison. Checking for instance that o
is not undominated can be done by guessing some o’ and
checking if o’ = 0. [23] prove several hardness results:

Proposition 12. [23] The problems W. UNDOMINATED
CHECK, DOMINATING CHECK, S. DOMINATING CHECK
are PSPACE complete for CP1#A. These problems, as
well as DOMINATING 3, S. DOMINATING 3, are PSPACE
complete for CP1, even if restricted to locally consistent
and locally complete formulas. UNDOMINATED 3 is NP
complete for CPT#A.

For CP-nets, [5] give a polytime algorithm that com-
putes the only dominating alternative when the dependency
graph is acyclic; in this case, this alternative is also the
only strongly dominating one, the only undominated, and
the only weakly undominated one, since the CP-net is lin-
earisable.

7 Conclusion

We have not studied here transformations, like condition-
ing or other forms of projection for instance. Some initial
results on projections can be found in [2]. Note that the
result of transformations like conditionning for CP1 for-
mulas if often not expressible in CP1. However, this pre-
liminary study shows that, for conditional preference state-
ments, gains in terms of query complexity is not only at
the cost of a loss in succinctness, but often at the cost of
big losses in expressiveness. This may indicate that the
language of conditional preference statement is not an ad-
equate target language for compilation, but that other lan-
guages may be more suitable for that. However, existing
real-valued languages in general force a complete ordering
of the alternatives, thus a target language for the compact
representation of possibly incomplete preorders has yet to
be defined, possibly using combinations of real-valued for-
mulas, used as multiple criteria, as in the definition of “par-
tial order rationalizable” choice functions by [1]; or as ap-
proximation of the preorder represented by a set of CP
statements.
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