Jérôme Mengin
email: jerome.mengin@irit.fr

An incomplete knowledge compilation map for conditional preference statements-based languages

Les assertions de préférences conditionnelles (CPstatements) permettent de représenter de manière compacte les préférences sur des domaines combinatoires. Elles sont au coeur des CP-nets et de leurs généralisations, et des arbres de préférences lexicographiques. Plusieurs travaux ont abordé la complexité de certaines requêtes liées à ces formalismes (optimisation, dominance en particulier). Cet article étend certains de ces résultats, et s'intéresse à d'autres requêtes (comme l'équivalence), contribuant ainsi à une carte de compilation pour les langages basés sur les assertions de préférences conditionnelles.

Introduction

Preference handling is a key component in several areas of Artificial Intelligence, notably for decision-aid systems. Research in Artificial Intelligence has led to the development of several languages that enable compact representation of preferences over complex, combinatorial domains. Some preference models rank alternatives according to their values given by some multivariate function; this is the case for instance with valued constraints [START_REF] Schiex | Valued constraint satisfaction problems: Hard and easy problems[END_REF], additive utilities and their generalizations [START_REF] Gonzales | Gai networks for utility elicitation[END_REF][START_REF] Braziunas | Local utility elicitation in gai models[END_REF]. Ordinal models like CP nets and their generalisations [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF][START_REF] Wilson | Extending cp-nets with stronger conditional preference statements[END_REF][START_REF] Brafman | On graphical modeling of preference and importance[END_REF], or lexicographic preferences and their generalisations [START_REF] Gigerenzer | Reasoning the fast and frugal way: Models of bounded rationality[END_REF][START_REF] Schmitt | On the complexity of learning lexicographic strategies[END_REF][START_REF] Wilson | An effcient upper approximation for conditional preference[END_REF][START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF][START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF][START_REF] Fargier | Learning lexicographic preference trees from positive examples[END_REF] use sets of conditional preference statements to represent a pre-order over the set of alternatives.

Many problems of interest, like comparing alternatives or finding optimal alternatives, are at least NP-hard for some of these models, which makes these representations difficult to use in some decision-aid systems like configurators, where real-time interaction with a decision maker is needed. One approach to tackle this problem is Knowledge Compilation, whereby a model, or a part of it, is compiled, off-line, into another representation which enables fast query answering, even if the compiled representation has a much bigger size. This approach has first been studied in propositional logic: [START_REF] Darwiche | Compiling knowledge into decomposable negation normal form[END_REF][START_REF] Darwiche | A knowledge compilation map[END_REF] compare how various subsets of propositional logic can succinctly, or not, express some propositional knowledge bases, and the complexity of queries of interest. [START_REF] Coste-Marquis | Expressive power and succinctness of propositional languages for preference representation[END_REF] follow a similar approach to compare extensions of propositional logic which associate real values to models of a knowledge base; [START_REF] Fargier | A knowledge compilation map for ordered realvalued decision diagrams[END_REF] provide such a map for value function-based models.

The aim of this paper is to initiate such a compilation map for ordinal models of preferences. Specifically, we compare the expressiveness and succinctness of various languages based on conditional preference statements, and the complexity of several queries of interest for these languages.

The next section recalls some basic definitions about combinatorial domains and pre-orders, and introduces notations that will be used throughout. Section 3 gives an overview of various languages based on conditional preference statements that have been studied in the literature. Section 4 and 5 respectively study expressiveness and succinctness for languages based on conditional preference statements . Sections 6 study the complexity of queries for these languages. Proofs are omitted due to lack of space.

Preliminaries 2.1 Combinatorial domain

We consider languages that can be used to represent the preferences of a decision maker over a combinatorial space X : here X is a set of attributes that characterise the possible alternatives, each attribute X ∈ X having a finite set of possible values X; then X denotes the cartesian product of the domains of the attributes in X , its elements are called alternatives. For binary attribute X, we will often denote by x, x its two possible values.

For a subset U of X , we will denote by U the cartesian product of the domains of the attributes in U , called instantiations of U , or partial instantiations (of X). If v is an instantiation of some V ⊆ X , v[U] denotes the restriction of v to the attributes in V ∩ U ; we say that instantiation

u ∈ U and v are compatible if v[U ∩ V] = u[U ∩ V]; if U ⊆ V and v[U] = u, we say that v extends u.
Sets of partial instantiations can often be conveniently, and compactly, specified with propositional formulas: the propositions are X = x for every X ∈ X and x ∈ X, and we use the standard connectives ∧ (conjunction), ∨ (disjunction), → (implication), ↔ (equivalence) and ¬ (negation). Implicitly, this propositional logic is equipped with a theory that enforces that every attribute has precisely one value from its domain; so, for two distinct values x, x of attribute X, the formula X = x ∧ X = x is a contradiction; also, the interpretations are thus in one-to-one correspondence with X . If α is such a propositional formula over X and o ∈ X , we will write o |= α when o satisfies α, that is when, assigning to every literal X = x that appears in α the value true if o[X] = x, and the value false otherwise, makes α true.

We assume that the domains of the attributes in X are disjoint, so that, given a formula α, or a partial instantiation u, we can unambiguously define Var(α) and Var(u) as the set of variables, the values of which appear in α and u respectively.

When it is not ambiguous, we will use x as a shorthand for the literal X = x; also, for a conjunction of such literals, we will omit the ∧ symbol, thus X = x ∧ Y = ȳ for instance will be denoted xȳ.

Preference relations

Preorders

Depending on the knowledge that we have about a decision maker's preferences, given any pair of distinct alternatives o, o ∈ X , one of the following situations must hold: one may be strictly preferred over the other, or o and o may be equally preferred, or o and o may be incomparable.

Assuming that preferences are transitive, such a state of knowledge about the DM's preferences can be characterised by a preorder over X : is a binary, reflexive Following [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] we say that alternative o is:

• weakly undominated if there is no o ∈ X such that o o; • undominated if there is no o ∈ X , o = o,

Antisymmetric preorders

Some languages designed to represent preferences are associated with a primitive relation which is not a preorder but a strict partial order . However, it is possible to define a preorder as the reflexive closure of : that is, o o holds when o o or o = o . The relation defined in this way is antisymmetric.

Languages

Conditional preference statements

Let us call conditional preference statement, or CP statements, over X any expression of the form α | V : w ≥ w , where α is a propositional formula over U ⊆ X , w, w ∈ W , w = w , and U, V, W are disjoint subsets of X . Informally, such a statement represents the piece of knowledge that, when comparing alternatives o, o that both satisfy α, the one that has values w for W is preferred to the one that has values w for W , irrespective of the values of the attributes in V , every other attribute being fixed. We call α the conditioning part of the statement; we call W the swapped attributes, and V the free part.

Conditional preference statements have been studied in many works. They are the basis for CP-nets [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF][START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] and their extensions, and have been studied in a more logic-based fashion by e.g. [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] and [START_REF] Wilson | Extending cp-nets with stronger conditional preference statements[END_REF][START_REF] Wilson | Consistency and constrained optimisation for conditional preferences[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]. In all these works, a syntactic restriction is put on W : it must be the case that | W | = 1. Also, [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] do not consider any free part (V = ∅), and [START_REF] Wilson | Extending cp-nets with stronger conditional preference statements[END_REF][START_REF] Wilson | Consistency and constrained optimisation for conditional preferences[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] only considers statements with a conjunctive conditioning part (α must be a consistent conjunction of literals). 1The semantics of a set ϕ of conditional preference statements can be defined as follows: consider a pair of alternatives (o, o) such that there is a statement

α | V : w ≥ w ∈ ϕ with o[U] = o [U] |= α, o[W] = w and o [W] = w , and such that for every attribute Y / ∈ U ∪ V ∪ W it holds that o[Y] = o [Y]
; following [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] we say that (o, o) is a worsening swap. We also say that the statement α | V : w ≥ w ∈ ϕ sanctions (o, o). Let ϕ * be the set of all worsening swaps that ϕ sanctions, and define ϕ to be the reflexive and transitive closure of ϕ * . [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] proves that o ϕ o if and only o = o or ϕ * contains a finite sequence of worsening swaps

(o i , o i+1) 0 ≤ i ≤ k-1 with o 0 = o and o k = o . 2
The language of the above statements is very expressive: in fact, by considering a set W = X , and α = and V = ∅, it is possible to represent any preorder "in extension" with preference statements of the form o ≥ o . Let us call:

• CP the language where formulas are sets of statements of the general form α | V : w ≥ w ;

This expressiveness has a cost: we will see that many queries about pre-orders represented by CP-statements are PSPACE-hard for the language CP. Several restrictions / sub-languages have been studied in the literature, we review them below. Note that formulas in CP are not required to verify any form of consistency or completeness; such conditions, will be imposed for some sublanguages defined below.

Notations We write α : w ≥ w when V is empty, and w ≥ w when V is empty and α = , the formula always true. Note that we reserve the symbol ≥ for conditional preference statements, whereas "curly" symbols , , , are used to represent relations over the set of alternatives.

In the remainder of this section, we introduce various restrictions on formulas. Table 1 gives an overview of these restrictions, as well as some complexity results that will be detailed in section 6.

Statement-wise restrictions

Some restrictions apply on the syntactical form of statements allowed; they bear on the size of the set of free variables, or on the size of the set of swapped variables, or on the type of conditioning formulas allowed. Given some language L ⊆ CP, we define the following restrictions:

• L is the restriction of L to formulas with empty free parts (V = ∅) for every statement;3 • L∧ is the restriction of L to formulas where the condition α of every statement is a conjunction of literals; • Lk is the restriction of L to formulas where the set of swapped attributes contains no more than k attributes (| W | ≤ k) for every statement; in particular, we call elements of CP1 unary statements.

In particular, CP1∧ corresponds to the language studied by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF], and CP1 is the language of generalized CP-nets as defined by [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF].

Graphical restrictions

CP-statements describe some interactions between attributes. Many tractability results on CP-statements based languages require that the graph of these interactions has some "good" properties. In their seminal work, [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] consider that these interaction can be elicited first from a decision-maker, and that this structure can be used to render easier the elicitation of CP1 statements that represent her preferences. However, these interactions can also be extracted a posteriori, for any set of CP statements. The graph defined by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] is restricted to the case where all CP statements are unary and have no free variables. This definition has been extended by [START_REF] Brafman | On graphical modeling of preference and importance[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] to cover the case of statements with free variables. The following definition is inspired by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]Def. 15]. Given ϕ ∈ CP over set of attributes X , we define the following graphs with sets of vertices

X : given X, Y ∈ X • (X, Y) ∈ D uncond ϕ if there is some statement α | V : w ≥ w ∈ ϕ such that X ∈ Var(α) and Y ∈ Var(w) ∪ V ; • for every alternative o, (X, Y) ∈ D cond ϕ (o) if there is some statement α | V : w ≥ w ∈ ϕ such that o |= α, X ∈ Var(w) and Y ∈ V ; • D ϕ = D uncond ϕ ∪ o∈X D cond ϕ (o).
Given some language L ⊆ CP, we define: • L the restriction of L to acyclic formulas, which are those ϕ such that D ϕ is acyclic; 4 ; (o)'s are all empty, so cuc-acyclicity reduces to D ϕ being acyclic, and D ϕ is the set of all (X, Y) such ϕ contains some statement u : y > y with X ∈ Var(u) -which is the definition used by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF].

Properties/Restrictions Base language CPnet CPnet CPnet LPT LTP Unary swaps / nodes 1 1 (1) 1 (1) (1) 1 No free variable () () () Condition in conjunctive form ∧ (∧) ∧ (∧) (∧) Local consistency ⊥ loc (⊥ loc) ⊥ loc (⊥ loc) (⊥ loc) Local completeness loc (loc) (loc) (loc) Acyclicity cuc full polytree Queries LINEARISABILITY ! ! ! EQUIVALENCE ! ! ! R-COMPARISON, R ∈ { , , } ! ! ! ! ! ! ∼-COMPARISON ! ! ! 2-ORDERING UNDOMINATED CHECK S. DOM., DOM., W. UNDOM. CHECK ! ! ! S. DOM. ∃, DOM. ∃ ! ! UNDOMINATED ∃ ! ! W. UNDOMINATED ∃ Table 1:
In the more general case of CP1, checking cucacyclicity can be hard [START_REF] Brafman | On graphical modeling of preference and importance[END_REF]Th. 3], [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]Prop. 24].

Attribute-wise restrictions

It is possible, especially with CP1 statements, to consider restrictions that guarantee some form of completeness and consistency on the conditions that sanction swaps on a given variable X. In other words, the idea is that for every pair of alternatives o, o ∈ X such that o and o are equal except for their value for one attribute, there must be exactly one statement in a CP-net that orders o and o . These conditions are implicit in CP-nets defined by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF], and have been formally defined by [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] in a slightly more restrictive context (binary attributes) and, in part, by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]. Definition 1 (Local completeness and local consistency [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]). Let ϕ ∈ CP1. For every attribute X ∈ X and 5 This definition is weaker than the one given by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF], who also imposes local consistency as will be defined shortly; it corresponds to the definition of conditional acyclicity as given by [START_REF] Brafman | On graphical modeling of preference and importance[END_REF]. every partial instantiation u, define ≥ X,u ϕ to be the reflexive and transitive closure of the set of all pairs (x, x) ∈ X 2 such that there exists some α | V : x ≥ x ∈ ϕ with u |= α; then ϕ is locally consistent if ≥ X,o ϕ is antisymmetric for every attribute X ∈ X and every alternative o ∈ X ; and ϕ is locally complete if ≥ X,o ϕ is a total preorder for every attribute X and every alternative o ∈ X .

Given some language L ⊆ CP, we define:

• L ⊥ loc is the restriction of L to those formulas that are locally consistent;

• L loc is the restriction of L to those formulas that are locally complete. Note that the problem of checking if a formula of CP1∧ is locally consistent is coNP complete [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]Prop. 11]. Locally complete and locally consistent formulas of CP1 , that is, formulas of CP1 ⊥ loc loc , are called CP-nets by [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF]. However, we recall next the original definition of CP-nets, which is slightly different.

CP-nets

In their seminal work, [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] define a CP-net over a set of attributes X to be composed of two elements: 1. a directed graph over X , which should represent preferential dependencies between attributes; 62. a set of conditional preference tables, one for every attribute X: if U is the set of parents of X in the graph, the conditional preference table for X contains exactly | U | rules u : ≥, for every u ∈ U , where the ≥'s are linear orders over X.

Therefore, as shown by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF], CP-nets can be seen as sets of unary CP statements in conjunctive form with no free attribute. Specifically, given a CP-net N over X , define ϕ N to be the set of all CP statements u : x ≥ x , for every attribute X, every u ∈ Pa(X), every x, x ∈ X such that x are consecutive values in the linear order ≥ specified by the rule u : ≥ of N . N being a CP-net enforces a very strong form of local consistency and completeness: it must the case that, for every attribute X with parents U , for every u ∈ U , for every x, x ∈, the CP-net must explicitly, and uniquely, order ux and ux . Thus we call

• CPnet the language that contains all ϕ N , for every CPnet N . Note that CPnet ⊆ CP1 ∧ ⊥ loc loc . [START_REF] Brafman | On graphical modeling of preference and importance[END_REF] define TCPnets as an extension of CP-nets where it is possible to represent tradeoffs, by stating that, under some condition, some attribute is more important than another one. [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] describes how TCP-nets can be transformed, in polynomial times, into equivalent sets of CP1∧ statements.

Semantic restriction

Although the original definition of CP-nets by [START_REF] Boutilier | Reasoning with conditional ceteris paribus preference statements[END_REF] does not impose it, many works on CP-nets, especially following [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF], consider that they are intended to represent a strict partial order, that is, that ϕ should be antisymmetric; equivalently, this means that ϕ * can be extended to a linear order. We say that a set ϕ of CP-statements is linearisable if ϕ * can be extended to a linear order;7 in this case, several authors define ϕ to be the transitive closure of ϕ * , which leads to the same definition of preorder ϕ as ours. But, like [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF], we use the same definition for ϕ even when ϕ * is not acyclic; note that in this case ϕ is not antisymmetric.

Note that, if ϕ is linearisable, then it is locally consistent.

Lexicographic preference trees

LP-trees generalise lexicographic orders. As an inference mechanism, they are equivalent to search trees used by [START_REF] Boutilier | Preference-based constrained optimization with cp-nets[END_REF], and formalised by [START_REF] Wilson | Consistency and constrained optimisation for conditional preferences[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF]. As a preference representation, and elicitation, language, slightly different definitions for LP-trees have been proposed by [START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF][START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF][START_REF] Fargier | Learning lexicographic preference trees from positive examples[END_REF]. We use here a definition which subsumes the others.

An LP-tree over X is a rooted tree with labelled nodes and edges, and a set of preference tables; specifically • every node N is labelled with a set W ⊆ X ;

• we denote by Anc(N) the set of attributes that appear in the nodes above N (excluding those at N), and by NonInst(N) the set of attributes that appear in the nodes above N that have only one child;

• if N is not a leaf, it can have one child, or | W | children;
• in the latter case, the edges that connect N to its children are labelled with the instantiations in W ;

• if N has one child only, the edge that connect N to its child is not labelled; • a conditional preference table CPT(N) is associated with N : it contains local preference rules of the form α : ≥, where ≥ is a preorder over W , and α is a propositional formula over some attributes in U ⊆ NonInst(N).

We assume that the rules in CPT(N) define their preorder in extension. Additionally, two constraints guarantee that an LP-tree ϕ defines a unique preorder over X :

• no attribute can appear at more than one node on any branch of ϕ; and, • at every node N of ϕ, for every u ∈ NonInst(N), CPT(N) must contain exactly one rule α : ≥ such that u |= α.

Given an LP-tree ϕ and an alternative o ∈ X , there is a unique way to traverse the tree, starting at the root, and along edges that are either not labelled, or labelled with instantiations that agree with o, until a leaf is reached. Now, given two distinct alternatives o, o , it is possible to traverse the tree along the same edges as long as o and o agree, until a node N is reached which is labelled with some W such that o[W] = o [W]: we say that N decides {o, o }.

In order to define ϕ for some LP-tree ϕ, we define ϕ * to be the set of all pairs of distinct alternatives (o, o) such that there is a node N that decides {o, o } and the only rule α :

≥ ∈ CPT(N) with o[NonInst(N)] = o [NonInst(N)] |= α is such that o[W] ≥ o [W]. Then ϕ is the reflexive closure of ϕ * .

Proposition 1 ([3]

). Let ϕ be an LP-tree over X , then ϕ as defined above is a preorder.

An LP-tree is said to be complete if every attribute appears on every branch, and if every preference rule specifies a linear order; ϕ is then a linear order too.

From a semantic point of view, an LP-tree ϕ is equivalent to the set that contains, for every node N of ϕ labelled with W , and every rule α : ≥ in CPT(N), all CP statements of the form α ∧ u | V : w ≥ w , where

• u is the combination of values given to the attributes in Anc(N) -NonInst(N) along the edges between the root and N , and

• w, w ∈ W such that w ≥ w , and

• V = [X -(Anc(N) ∪ W)].
We define the following languages:

• LPT is the language of LP-trees as defined above; we consider that LPTis a subset of CP.8 Note that, using the notations defined above:

• LPTk = LPT ∩ CPk is the restriction of LPT where every node has at most k attributes, for every k ∈ N; in particular, LPT1 is the language of LP-trees with one attribute at each node; • LPT∧ = LPT∩CP∧ is the restriction of LPT where the condition α in every rule at every node is a conjunction of literals. LP-trees as defined by [START_REF] Wilson | Consistency and constrained optimisation for conditional preferences[END_REF][START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF][START_REF] Lang | Voting on multiissue domains with conditionally lexicographic preferences[END_REF] are sublanguages of LPT1∧; and those of [START_REF] Fargier | Learning lexicographic preference trees from positive examples[END_REF] and [START_REF] Bräuning | Learning conditional lexicographic preference trees[END_REF] are sublanguages of LPT∧.

Expressiveness

A first criterium for comparing languages is expressiveness: Definition 2. Let L and L be two languages for representing preorders. We say that:

• L is a sublanguage of L if L ⊇ L ; it is a proper sub- language if L ⊃ L , that is, if L ⊇ L and L ⊇ L;
• L is at least as expressive as L , written L L , if every preorder that can be represented with a formula of L can also be represented with a formula of L; we write L L if L L but it is not the case that L L, and say in this case that L is strictly more expressive than L .

Note that is a preorder, and obviously L ⊇ L implies L L , but the converse does not hold in general.

Clearly, CP ⊆ CP and CP∧ ⊆ CP; however, these three language have the same expressiveness: Proposition 2. CP, CP∧ and CP can all three represent every preorder, thus CP CP CP∧ CP.

A large body of works on CP-statements since the seminal paper by [START_REF] Boutilier | Preference-based constrained optimization with cp-nets[END_REF] concentrate on various subsets of CP1. With this strong restriction on the number of swapped variables, CP-theories have a reduced expressiveness. Example 1 (CP1 CP). Consider two binary attributes A and B, with respective domains {a, ā} and {b, b}. Define preorder such that ab āb , with the two remaining alternatives being incomparable to the former and to each other. This can be represented in CP with ϕ = {ab ≥ āb }. But it cannot be represented in CP1, because this would require at least two rules: one to flip the value of A, the other one to flip the value of B; but then there must be one intermediate alternative comparable with ab and āb . But it cannot be represented in CP1 , and it cannot be obtained by transitivity from the comparisons that can be expressed in CP1 .

However, restricting to conjunctive statements does not incur a loss in expressiveness.

Proposition 3. CP CP1 CP1 , CP1∧ CP1∧ , but CP1 CP1∧ CP1 and CP1 CP1∧ CP1 .
LP trees Because an LP-tree can be a single node labelled with X , and a single preference rule : ≥ where ≥ can be any preorder, LPT can represent any preorder.

Proposition 4. LPT CP ⊃ LPT.

For LP-trees too, limiting the number of attributes per node reduces expressiveness:

Proposition 5. LPT ⊃ LPT∧ LPT, LPT LPTk ⊃ LPTk∧ LPTk.

Succinctness

Another criterium is the relative sizes of formulas that can represent the same preorder in different languages. [START_REF] Cadoli | Space efficiency of propositional knowledge representation formalisms[END_REF] study the space efficiency of various propositional knowledge representation formalisms. An often used definition of succinctness makes it a particular case of expressiveness: Definition 3 ([START_REF] Gogic | The comparative linguistics of knowledge representation[END_REF][START_REF] Darwiche | A knowledge compilation map[END_REF]). Let L and L be two languages for representing preorders. We say that L is at least as succinct as L , written L L , if there exists a polynomial p such that for every formula ϕ ∈ L , there exists a formula ϕ ∈ L that represent the same preorder as ϕ and such that

| ϕ | < p(| ϕ |).
With this definition, if L ⊆ L then L L ; and if L L then L L . In particular, if we have two languages such that L ⊃ L and L L, then L L and L L, even if there is no real succinctness hierarchy between the two, it is just that one is strictly more expressive than the other. Therefore, we introduce the following definition for strict succinctness, more restrictive than taking the strict partial order induced by . Definition 4. Let L and L be two languages for representing preorders. We say that L is strictly more succinct than L , written L L , if L L and for every polynomial p, there exists ϕ ∈ L such that:

• there exists ϕ ∈ L such that ϕ = ϕ , but • for every ϕ ∈ L such that ϕ = ϕ , | ϕ | > p(| ϕ |).

With this definition, L

L if every formula ϕ ∈ L has an equivalent formula in L which is "no bigger" 9 , and there is at least one sequence of formulas 10 in L that have equivalent formulas in L but necessarily "exponentially bigger". Note that L L implies that L L and L L. Restricting the conditioning part of the statements to be conjunctions of literals does induce a loss in succinctness, because propositional logic is strictly more succinct than the language of DNFs. Example 4. Consider 2n + 1 binary attributes X 1 , X 2 , . . . , X n , Y 1 , Y 2 , . . . , Y n , Z, and let ϕ contain 2n + 2 unary CP-statements with no free attribute:

(x 1 ∨ y 1) ∧ (x 2 ∨ y 2) ∧ . . . ∧ (x n ∨ y n) : z ≥ z, ¬[(x 1 ∨ y 1) ∧ (x 2 ∨ y 2) ∧ . . . ∧ (x n ∨ y n)] : z ≥ z
and xi ≥ x i and ȳi ≥ y i for every i ∈ {1, . . . , n}. Then ϕ ∈ CP1 ⊥ loc loc , but ϕ is not in conjunctive form. A set of conjunctive CP-statements equivalent to ϕ has to contain all 2 n statements of the form µ 1 µ 2 . . . µ n : z ≥ z with µ i = x i or µ i = x i for every i.

Restricting to CP-nets induces a further loss in expressiveness, as the next example shows: Example 5. Consider n + 1 binary attributes X 1 , X 2 , . . . , X n , Y , and let ϕ be the CP1 ∧ formula that contains the following statements:

x i ≥ xi for i = 1, . . . , n; x 1 x 2 . . . x n : y ≥ ȳ; xi : ȳ ≥ y for i = 1, . . . , n.
The size of ϕ is linear in n. Because preferences for Y depend on all X i 's, a CP-net equivalent to ϕ will contain, in the table for Y , 2 n CP statements. Proposition 6. For every language such that CP1 ⊥ loc loc ⊆ L ⊆ CP , L CP∧ ∩ L. Moreover, CP1 ∧ ⊥ loc loc CP-net.

Queries

Linearisability Checking if a given ϕ ∈ CP is linearisable, that is, if ϕ is antisymmetric, can give some interest- 9 up to some polynomial transformation of the size of ϕ 10 one formula for every polynomial p ing insights into the semantics of ϕ. The following query has been addressed in many works on CP statements: 11 LINEARISABILITY Given ϕ, is ϕ linearisable? [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] prove that when its dependency graph D ϕ is acyclic, then a CP-net ϕ is linearisable. This result has been extended by [START_REF] Domshlak | CP-nets: Reasoning and consistency testing[END_REF][START_REF] Brafman | On graphical modeling of preference and importance[END_REF][START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF], who give weaker graphical conditions that guarantee that a locally consistent set of unary, conjunctive CP statements, that is, a formula of CP1∧ ⊥ loc is linearisable: specifically, every formula of CP1∧ ⊥ loc cuc is linearisable. However, checking these conditions is a hard problem. [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF]Theorem 3 and 4] prove that LINEARISABILITY is PSPACE-complete for CP1 ∧, CP1 ⊥ loc loc .

Comparing theories Checking if two theories yield the same preorder can be useful during the compilation process. We say that two formulas ϕ and ϕ are equivalent if they represent the same preorder, that is, if ϕ and ϕ are identical; we then write ϕ ≡ ϕ . EQUIVALENCE Given two formulas ϕ and ϕ , are they equivalent? Consider a formula ϕ ∈ CP, two alternatives o, o , and let ϕ = ϕ ∪ {o ≥ o }: clearly o ϕ o , thus ϕ ≡ ϕ if and only if o ϕ o . Therefore, if language L is such that adding CP statement o ≥ o to any of its formulas yields a formula that is still in L, then EQUIVALENCE has to be at least as hard as -COMPARISON for L. This is the case of CP. The problem remains hard for CP1 , because it is hard to check the equivalence, in propositional logic, of the conditions of statements that entail a particular swap x ≥ x .

∈ A × B, if u |= a ∨ (āb) then uc 1 ≥ uc 3 . Thus ϕ ≡ {s, s } ∪ {a ∨ (āb) : c 1 ≥ c 3 } ≡ ϕ ∪ {b : c 1 ≥ c 3 }.
In general, given a propositional language P we define P ∨ to be the set of finite disjunctions of formulas in P, and:

• CP1 P is CP1 restricted to those statements such that the condition is in P.

Proposition 7. Given a propositional language P closed for conjunction, EQUIVALENCE for P ∨ (in the sense of propositional logic), restricted to consistent formulas, reduces to EQUIVALENCE for CP1 P restricted to fully acyclic, locally consistent formulas.

In particular, EQUIVALENCE is NP-hard for CP1 ∧ ⊥ loc restricted to binary attributes, because checking if two propositional, consistent DNFs are equivalent is NP-hard.

However, equivalence is not hard to check for CP-nets, thanks to the existence of a canonical, minimal form: given a CP-net with attributes X and Y such that X ∈ Pa(Y), it is easy to check if the preferences that appear in the conditional preference table for Y truly depend on X: if not, the table can be simplified and the edge (X, Y) can be removed. This can be done in polynomial time for all edges (X, Y) of the dependency graph of the CP-net.

For LP-trees too, EQUIVALENCE is easy to check because of the existence of a canonical form: given a node of an LP-tree ϕ labelled with set of variables S, it is possible to check if it can be split into a "root" node and one or more several children, using an approach like that proposed by [START_REF] Fargier | Learning lexicographic preference trees from positive examples[END_REF] for learning an LP-tree from positive examples; this can be done in time polynomial w.r.t. to | S |, which is itself polynomially bounded by the size of the preference table at S, since we assume that the pre-orders over S are given in extension in this table. This procedure can be iterated until no node of the tree can be split. Moreover, if all subtrees of a node are identical, they can be merged into one subtree; applying this in a bottom-up fashion, one obtains the canonical form of the tree; two LP-trees are then equivalent if and only if they have the same canonical form. For LP-trees, in order to compare alternatives o and o , one only has to traverse the tree from the root downwards until a node that decides the pair is reached, or up to a leaf if no such node is encountered: in this case o and o are incomparable. Note that checking if a node decides the pair, and checking if a rule at that nodes applies to order them, can both be done in polynomial time.

Proposition 8. R-COMPARISON is in P for LPT for every R ∈ { , , ∼, }.

The complexity of comparisons has been studied by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] for CP nets, by [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] for CP1 and by [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] for CP1∧. [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] propose a simple non-deterministic algorithm to prove membership in PSPACE of -COMPARISON; we rewrite the algorithm here for our more general preference statements:

Algorithm : -comparison. Input: o, o , ϕ 1. Repeat: (a) guess o , α | V : w ≥ w ∈ ϕ; Y ← X -(U ∪V ∪W); (b) if α | V : w ≥ w ∈ ϕ sanctions (o, o): o ← o ; until o = o .
This algorithm only needs space to store two outcomes at any iteration, and checks sanctioning w.r.t. one rule at every iteration. Repeated applications of this algorithm can answer R-COMPARISON queries for R ∈ { , ∼, }; for instance, to check if o ϕ o , we check that o ϕ o does not hold and that o ϕ o does not hold either. 12Tractability of comparisons, except in some trivial cases, comes at a heavy price in terms of expressiveness: the only positive result for -COMPARISON is about CP-nets when the dependency graph is a polytree [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]Theorem 14]; clearly, this entails a positive results for the other comparison queries for this language. The next proposition shows that most comparisons are hard for a vast family of CP statements; it follows from hardness results proved by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] and [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF].

Proposition 9. R-COMPARISON for R ∈ { , , } is NP hard for the language of fully acyclic CP-nets. ∼-COMPARISON is trivial for linearisable CP formulas, but hard for CP1 ∧, and for the language of linearisable (hence locally consistent) and locally complete CP1 formulas.

Optimisation Comparison queries can be used to compute, in a given set S ⊆ X , an alternative that is not dominated by any other alternative in S: this can be achieved by asking at most | S |(| S | -1)/2 dominance queries (such query can return failure when S contains no such alternative). More generally, given some integer k, we may be interested in finding a subset S of S that contains k "best" alternatives of S, in the following sense: we say that S ⊆ S is weakly undominated in S if for every o ∈ S , for every o ∈ S \ S it is not the case that o ϕ o. Note that such a set must exist, because ϕ is acyclic. [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] proposes a stronger query:

ORDERING Given k, S ⊆ X and ϕ, find o 1 , o 2 , . . . , o k ∈ S such that for every i ∈ 1, . . . , k, for every o ∈ S, if o ϕ o then o ∈ {o 1 , . . . , o i }.
Note that if o 1 , o 2 , . . . , o k is the answer to such query, if 1 ≤ i < j ≤ k, then it can be the case that o i o j , but it is guaranteed that o j o i : in the context of a recommender system for instance, where one would expect alternatives to be presented in order of non-increasing preference, o i could be safely presented before o j .

[5] consider a specific case of the above query, when | S | = 2: note that given two alternatives o, o ∈ X it must be the case that at least one of o ϕ o or o ϕ o must be false, since ϕ is irreflexive and transitive.

2-ORDERING Given

o, o ∈ X , return a pair (o 1 , o 2) ∈ {(o, o), (o , o)} such that o 2 ϕ o 1 .
[5] prove that 2-ORDERING is tractable for acyclic CPnets. This result can be generalised to cuc-acyclic formulas of CP1∧: Proposition 10 (Generalisation of Theorem 5 in [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]). 2-ORDERING and ORDERING can be answered in time which is polynomial in the size of ϕ and the size of S for cucacyclic, locally consistent formulas of CP1∧; and for LPT.

This approach for optimisation is of course not practical when S = X , because in this case the size of S is exponential in the number of attributes. When k is fixed, k = 1 and S = X , the ORDERING query amounts to finding a weakly undominated alternative. Based on the notions of (weakly) undominated / (strongly) dominating alternatives (defined in section 2.2.1), [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] define two types of queries: 1) given ϕ and o, is o (weakly) undominated, or is it (strongly) dominated? 2) given ϕ, is there a (weakly) undominated, or a (strongly) dominated, alternative? We call these queries W-UNDOMINATED CHECK, UNDOMINATED CHECK, and so on, for queries of type 1); and W-UNDOMINATED-∃, and so on, for queries of type 2). Note also that there is always at least one weakly undominated alternative (because X is finite), so WEAKLY UNDOMINATED-∃ is trivial (always true).

All these queries are easily shown to be tractable for LPT. The problem UNDOMINATED CHECK is tractable for CP; in fact, the proof, originally given by [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] for CP-nets, and generalised to CP1 by [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF], can be generalised further to CP. Proposition 11. UNDOMINATED CHECK is in P for CP. That all other, dominance related, queries are in PSPACE for CP can be proved using again the algorithm for checking -comparison. Checking for instance that o is not undominated can be done by guessing some o and checking if o ϕ o. [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] prove several hardness results: Proposition 12. [START_REF] Lang | The computational complexity of dominance and consistency in CP-nets[END_REF] The problems W. UNDOMINATED CHECK, DOMINATING CHECK, S. DOMINATING CHECK are PSPACE complete for CP1 ∧. These problems, as well as DOMINATING ∃, S. DOMINATING ∃, are PSPACE complete for CP1 , even if restricted to locally consistent and locally complete formulas. UNDOMINATED ∃ is NP complete for CP1 ∧.

For CP-nets, [START_REF] Boutilier | CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] give a polytime algorithm that computes the only dominating alternative when the dependency graph is acyclic; in this case, this alternative is also the only strongly dominating one, the only undominated, and the only weakly undominated one, since the CP-net is linearisable.

Conclusion

We have not studied here transformations, like conditioning or other forms of projection for instance. Some initial results on projections can be found in [START_REF] Besnard | Variable forgetting in preference relations over combinatorial domains[END_REF]. Note that the result of transformations like conditionning for CP1 formulas if often not expressible in CP1. However, this preliminary study shows that, for conditional preference statements, gains in terms of query complexity is not only at the cost of a loss in succinctness, but often at the cost of big losses in expressiveness. This may indicate that the language of conditional preference statement is not an adequate target language for compilation, but that other languages may be more suitable for that. However, existing real-valued languages in general force a complete ordering of the alternatives, thus a target language for the compact representation of possibly incomplete preorders has yet to be defined, possibly using combinations of real-valued formulas, used as multiple criteria, as in the definition of "partial order rationalizable" choice functions by [START_REF] Aleskerov | Utility Maximization, Choice and Preference[END_REF]; or as approximation of the preorder represented by a set of CP statements.

 Language restrictions and complexity of queries: = indicates that the query can be solved in time polynomial in | ϕ | + | result |; ! = no such algorithm unless P= NP, or PSPACE= P; = always true for the language. • L cuc the restriction of L to cuc-acyclic formulas, which are those ϕ such that for every alternative o, D uncond ϕ ∪ D cond ϕ (o) is acyclic. 5 Note that D ϕ can be computed in polynomial time. Moreover, in the case of CP1 , the D cond ϕ

Example 2 (

 2 CP1 CP even if restricted to linear orders). Consider two binary attributes A and B, with respective domains {a, ā} and {b, b}. Define preorder such that ab āb a b āb. This can be represented in CP with ϕ = {ab ≥ āb , āb ≥ a b, a b ≥ āb}. But it cannot be represented in CP1: {b : a ≥ ā, b : ā ≥ a, a : b ≥ b, ā : b ≥ b} * ⊆ ϕ * , but this is not sufficient to compare a b with āb. The four remaining formulas of CP1 over these two attributes are B : a ≥ ā, B : ā ≥ a, A : b ≥ b, A : b ≥ b, adding any of them to ϕ yields a preorder which would not be antisymmetric. Forbidding free parts incurs an additional loss in expressiveness: Example 3 (CP1 CP1). Consider two binary attributes A and B, with respective domains {a, ā} and {b, b}. Define preorder such that ab a b āb āb . This can be represented in CP1 with ϕ = {B : a ≥ ā, b ≥ b}.

Example 6 .

 6 Consider three attributes A, B and C with respective domains {a, ā}, {b, b} and {c 1 , c 2 , c 3 }. Consider two CP statements s = ā : c 1 ≥ c 2 and s = b : c 2 ≥ c 3 , and let ϕ = {s, s , a : c 1 ≥ c 3 }. Because of statements s and s we have ābc 1 ≥ ϕ ābc 2 ≥ ϕ ābc 3 ; also, abc 1 ≥ ϕ abc 3 because of statement a : c 1 ≥ c 3 . Hence, for any u

 Comparing alternatives A basic question, given a formula ϕ and two alternatives o, o is: how do o and o compare, according to ϕ? Is it the case that o ϕ o , or o ϕ o, or o ϕ o , or o ∼ ϕ o ? We define the following query, for any relation R ∈ { , , ∼, }: R-COMPARISON Given formula ϕ, alternatives o, o , is it the case that oR ϕ o ?

 Note that for any pair of alternatives o, o ∈ X either o o , or o o, or o ∼ o or o o . The relation ∼ defined in this way is the symmetric part of , it is reflexive and transitive, is irreflexive, they are both symmetric. The relation is the irreflexive part of , it is what is usually called a strict partial order: it is irreflexive and transitive. Terminology and notations We say that alternative o dominates alternative o (w.r.t.) if and only if o o ; if o o , then we say that o strictly dominates o . We use standard notations for the complements of and : we write o o when it is not the case that o o , and o o when it is not the case that o . We will denote by (respectively ≺) the dual of (resp. of), also called its converse or transpose: o o if and only if o o, and o ≺ o iff o o. Note that since and ∼ are symmetric, they are equal to their dual.

and transitive relation; for alternatives o, o , we then write o o when (o, o) ∈ ; o o when (o, o) ∈ and (o , o) / ∈ ; o ∼ o when (o, o) ∈ and (o , o) ∈ ; o o when (o, o) / ∈ and (o , o) / ∈ .

The formula u | V : x ≥ x is written u : x > x [V] by[START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF].

Actually,[START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] proves that (o, o) is in the transitive closure of ϕ * if and only there is such a worsening sequence from o to o , but adding the reflexive closure to this transitive closure does not change the result, since we can add any pair (o, o) to, or remove it from, any sequence of worsening swaps without changing the validity of the sequence.

In the literature, the symbol is sometimes used to represent an importance relation between attributes; and, as explained by[START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF], statement α | V : w ≥ w is a way to express that attributes in Var(w) have more importance those in V (when α is true).

[START_REF] Booth | Learning conditionally lexicographic preference relations[END_REF] This is full acyclicity in[START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF].

Given some pre-order over X , attribute X is said to be preferentially dependent on attribute Y if there exist x, x ∈ X, y, y ∈ Y , z ∈ X ({X, Y }) such that xyz ϕ x yz but xy z ϕ xy z.

Such sets of CP-statements are often called consistent in the standard terminology on CP-nets, but we prefer to depart from this definition which only makes sense when one asserts that ϕ should indeed represent a strict partial order.

Strictly speaking, for LPT ⊆ CP to hold, we can add the possibility to augment every formula in CP with a tree structure.

Recall that NPSPACE = co-NPSPACE = PSPACE .

Acknowledgments We thank Hélène Fargier for fruitful discussions, anonymous reviewers for their helpful comments and suggestions. This work has benefitted from the AI Interdisciplinary Institute ANITI. ANITI is funded by the French "Investing for the Future -PIA3" program under grant agreement n o ANR-19-PI3A-0004. This work has also been supported by the PING/ACK project of the French National Agency for Researchgrant agreement n o ANR-18-CE40-0011.