Generalized Bott-Cattaneo-Rossi invariants of high-dimensional long knots - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Generalized Bott-Cattaneo-Rossi invariants of high-dimensional long knots

David Leturcq
  • Fonction : Auteur
  • PersonId : 1077542

Résumé

Bott, Cattaneo and Rossi defined invariants of long knots $\mathbb R^n \hookrightarrow \mathbb R^{n+2}$ as combinations of configuration space integrals for $n$ odd $\geq 3$. Here, we give a more flexible definition of these invariants. Our definition allows us to interpret these invariants as counts of diagrams. It extends to long knots inside more general $(n+2)$-manifolds, called asymptotic homology $\mathbb R^{n+2}$, and provides invariants of these knots.

Dates et versions

hal-02943913 , version 1 (21-09-2020)

Identifiants

Citer

David Leturcq. Generalized Bott-Cattaneo-Rossi invariants of high-dimensional long knots. 2020. ⟨hal-02943913⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More