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On maximal regularity for the second order Cauchy

problems in Hilbert space

Mahdi Achache
∗

Abstract

We consider the problem of maximal regularity for semilinear non-
autonomous second order Cauchy problems







u′′(t) + B(t)u′(t) +A(t)u(t) = F (t, u, u′) t-a.e.

u(0) = u0, u
′(0) = u1.

(0.1)

Here, the time dependent operator A(t) is bounded from the Hilbert
space V to its dual space V ′ and B(t) is associated with a sesquilinear
form b(t, ·, ·) with domain V. We prove maximal L2-regularity results
and other regularity properties for the solutions of the above equa-
tion under minimal regularity assumptions on the operators and the
inhomogeneous term F. One of our main results shows that maximal
L2-regularity holds if the operators are piecewise H

1

2 with respect to
t. This regularity assumption is optimal and provides the best positive
result on this problem.
keywords: Damped wave equation, maximal regularity, non-autonomous
evolution equations.
Mathematics Subject Classification (2010): 35K90, 35K45, 47D06.

1 Introduction

The present paper is a continuation of [1],[3] which are devoted to maximal
regularity for non-autonomous evolution equations governed by forms. The
aim of this article is to study non-autonomous second order evolution equa-
tions governed by forms.
Let (H, (·, ·), ‖ ·‖) be a separable Hilbert space over R or C. We consider an-
other separable Hilbert space V which is densely and continuously embedded
into H. We denote by V ′ the (anti-) dual space of V so that

V →֒d H →֒d V ′.

∗Univ. Bordeaux, Institut de Mathématiques (IMB). CNRS UMR 5251. 351, Cours
de la Libération 33405 Talence, France. Mahdi.Achache@math.u-bordeaux.fr
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Hence there exists a constant C > 0 such that

‖u‖ ≤ C‖u‖V (u ∈ V),

where ‖ · ‖V denotes the norm of V. Similarly,

‖ψ‖V ′ ≤ C‖ψ‖ (ψ ∈ H).

We denote by 〈, 〉 the duality V ′-V and note that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H.
In this paper we consider maximal regularity for second order Cauchy prob-
lems. We focus on the damped wave equation.
We consider a family of sesquilinear forms

b : [0, τ ]× V × V → C,

such that

• [H1]: D(b(t)) = V (constant form domain),

• [H2]: |b(t, u, v)| ≤M‖u‖V‖v‖V (V-uniform boundedness),

• [H3]: Re b(t, u, u)+ν‖u‖2 ≥ δ‖u‖2V (∀u ∈ V) for some δ > 0 and some
ν ∈ R (uniform quasi-coercivity).

We denote by B(t),B(t) the usual operators associated with b(t)(as oper-
ators on H and V ′). Recall that u ∈ H is in the domain D(B(t)) if there
exists h ∈ H such that for all v ∈ V: b(t, u, v) = (h, v). We then set
B(t)u := h. The operator B(t) is a bounded operator from V into V ′ such
that B(t)u = b(t, u, ·). The operator B(t) is the part of B(t) on H.
It is a classical fact that −B(t) and −B(t) are both generators of holomor-
phic semigroups (e−rB(t))r≥0 and (e−rB(t))r≥0 on H and V ′, respectively.
The semigroup e−rB(t) is the restriction of e−rB(t) to H. In addition, e−rB(t)

induces a holomorphic semigroup on V (see, e.g., Ouhabaz [36, Chapter 1]).
Let A(t) ∈ L(V,V ′) for all t ∈ [0, τ ] such that

‖A(t)‖L(V,V ′) ≤M, M > 0.

Given a function f defined on [0, τ ] with values either in H or in V ′ we
consider the second order evolution equation











u′′(t) + B(t)u′(t) +A(t)u(t) = f(t)

u(0) = u0, u
′(0) = u1.

(1.1)

This is an abstract damped non-autonomous wave equation and our aim is
to prove well-posedness and maximal L2-regularity in H.

2



Definition 1.1. Let X = H or V ′. We say that Problem (1.1) has maximal
L2-regularity in X, if for all f ∈ L2(0, τ ;X) and all (u0, u1) in the trace
space (see Sections ?? and ?? for more details) there exists a unique u ∈
H2(0, τ ;X) ∩H1(0, τ ;V) which satisfies (1.1) in the L2-sense.

Thus we are able to define the non-autonomous maximal L2-regularity
of a second order problem in a manner similar to maximal L2-regularity of
the first order non-autonomous problem u′(t) +A(t)u(t) = f(t), u(0) = u0.
Due to applications to many parabolic partial differential equations, the
maximal L2-regularity (Lp-regularity, p ∈ (1,∞)) of first order problems
has been studied intensively in recent years, both from the abstract and
the applied point of view. We mention only two accounts of this theory
([3], [8] ) and refer to the references therein. The maximal L2-regularity
in V ′ was first considered by Lions [32] (p. 151). He assumes that A(t)
is associated with a sesquilinear form a(t) which satisfies the same prop-
erties as b(t) together with an additional regularity assumption on the
forms t → a(t, u, v) and t → b(t, u, v) for every fixed u, v ∈ V. Dautray-
Lions [19] (p.667) proved maximal L2-regularity in V ′ without the regu-
larity assumption by taking f ∈ L2(0, τ ;H) and considering mainly sym-
metric forms. Recently, Batty, Chill, Srivastava [15] proved maximal Lp-
regularity for general forms B(.) and A(.) for the case u0 = u1 = 0 and
t 7→ ‖A(.)‖L(V,V ′) ∈ Lp(0, τ) by reducing the problem to a first order
non-autonomous Cauchy problem. Dier-Ouhabaz [22] proved maximal L2-
regularity in V ′ for u0 ∈ V, u1 ∈ H and A(t) is also associated with a
V-bounded quasi-coercive non-autonomous form a(t). By using the result of
the first order problem as in [15] and the fixed point argument Achache [1]
improve the result in [15] by proving maximal Lp-regularity in V ′ for u0 and

u1 not necessarily 0 and t 7→ t
1− 1

p ‖A(.)‖L(V,V ′) ∈ Lp(0, τ).
More interesting is the question of second order maximal regularity in H,
i.e. whether the solution u of (1.1) is in H2(0, τ ;H) provided that f ∈
L2(0, τ ;H). A first answer to this question was giving by Batty, Chill, Sri-
vastava [15] in the particular case B(.) = kA(.) for some constant k and
that A(.) has the maximal regularity in H. By using the form method, Dier
and Ouhabaz [22], proved maximal L2-regularity in H without the rather
strong assumption B(.) = kA(.), but A(t) is also associated with V-bounded
quasi-coercive form a(t) and t→ a(t, u, v), b(t, u, v) are symmetric and Lip-
schitz continuous for all u, v ∈ V. Achache [1] extend the results in [22] in
three directions. The first one is to consider general forms which may not
be symmetric. The second direction is to deal with maximal Lp-regularity,
for all p ∈ (1,∞). The third, is to assume less regularity on the operators
A(t),B(t) with respect to t (t 7→ A(t),B(t) ∈ C 1

2
+ε, ε > 0).

In the present paper we solve the problem of maximal L2-regularity in H
under minimal assumptions on the operators. One of our main result shows
that for forms satisfying the uniform Kato square root property and an in-
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tegrability condition (see Theorem 3.10 for more general and precise state-
ments), if t 7→ A(t),B(t) is piecewise in the Sobolev space Ḣ

1
2 (0, τ ;L(V,V ′))

maximal L2-regularity in H is satisfied. The initial data u0, u1 are arbitrary
in V. This result is optimal and provides the best positive result on this
problem. This result allows us also to study the semilinear linear equation











u′′(t) + B(t)u′(t) +A(t)u(t) = F (t, u, u′) t-a.e.

u(0) = u0, u
′(0) = u1.

Here u0, u1 are arbitrary in V, F satisfies some continuity property (see
Theorem 5.3 for more details) and F (., 0, 0) ∈ L2(0, τ ;H). We prove that
there exists a unique solution to this equation, moreover u ∈ H2(0, τ ;H) ∩
H1(0, τ ;V) and we have the apriori estimate

‖u‖H2(0,τ ;H)∩H1(0,τ ;V) ≤ C
[

‖u0‖V + ‖u1‖V + ‖F (., 0, 0)‖L2(0,τ ;H)

]

.

This work is structured as follows. In the second section we prove some re-
sults and preparatory lemma, while in the section 3 we prove our results for
maximal L2−regularity to the considered linear non-autonomous second or-
der Cauchy problem (1.1) and by induction, our approach allows to consider
Cauchy problems of order N for any N ≥ 3. In this section we prove also a
decay estimate in time for the solution of (1.1). We discuss the optimality
of our results in Section 4. We prove our results for the semilinear equation
in section 5 and several examples are given in Section 6.
Notation. We denote by L(E,F ) (or L(E)) the space of bounded linear op-
erators from E to F (from E to E). The spaces Lp(a, b;E) and W k,p(a, b;E)
or Hk(a, b;E) if p = 2 denote respectively the Lebesgue and usual Sobolev
spaces of order k of function on (a, b) with values in E. For u ∈W 1,p(a, b;E)
we denote the first weak derivative by u′ and for u ∈ W 2,p(a, b;E) the sec-
ond derivative by u′′. Recall that the norms of H and V are denoted by ‖ · ‖
and ‖ · ‖V . The scalar product of H is (·, ·) and the duality V ′-V is 〈, 〉. We
denote by m! the factorial of m.
Finally, we denote by C, C ′ or C0, C1, c, ... all inessential constants. Their
values may change from line to line.

Acknowledgements
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2 Preparatory lemmas

In this section we prove several estimates which will play an important role
in the proofs of the main results. Before we start let us point out that we
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may assume without loss of generality that assumption [H3] is satisfied with
ν = 0, that is the forms are coercive with constant δ > 0 independent of t.
The reason is that the maximal regularity of











v′′(t) + B(t)v′(t) +A(t)v(t) = f(t) t-a.e.

v(0) = u0, v
′(0) = u1 + γu0

(2.1)

is equivalent to the same property for














u′′(t) +
(

B(t) + 2γI
)

u′(t) +
(

A(t) + γB(t) + γ2I
)

u(t) = e−γtf(t) t-a.e.

u(0) = u0, u
′(0) = u1

(2.2)
for all γ ∈ C. This can be seen by observing that for g(t) := e−γtf(t),
then u(t) = e−γtv(t) and clearly v ∈ H2(0, τ ;H) ∩ H1(0, τ ;V) if and only
if u ∈ H2(0, τ ;H) ∩H1(0, τ ;V)(and obviously f ∈ L2(0, τ ;H) if and only if
g ∈ L2(0, τ ;H) ).

We deduce that we may replace B(t) by B(t) + γ and A(t) by A(t) +
γB(t) + γ2I. Noting that for γ > 0 big enough (γ > max{M

δ
, ν}) and t ∈

[0, τ ], we have that C(t) = A(t)+γB(t)+γ2I is associated with a V-bounded
coercive form c(t) (i.e., it satisfies [H3] with ν = 0). In fact, let u ∈ V. We
get

Re c(t, u, u) = Re 〈A(t)u, u〉+ γRe b(t, u, u) + γ2‖u‖2

≥ −‖A(t)‖L(V,V ′)‖u‖2V + γδ‖u‖2V + (γ2 − γν)‖u‖2

= −M‖u‖2V + γδ‖u‖2V + (γ2 − γν)‖u‖2

≥ (γδ −M)‖u‖2V .

In particular, we may suppose thatB(t) and B(t) (resp. A(t)) are invertibles.
We will do so in the sequel without mentioning it.
From [4] [Theorem III 4.10.2] we have the following lemma

Lemma 2.1. Let E1, E2 be two Banach spaces such that E2 ⊆ E1. Then

W 1,p(0, τ ;E1) ∩ Lp(0, τ, E2) →֒ C([0, τ ]; (E1, E2)1− 1
p

,p).

From [36] (Theorem 1.52 and Theorem 1.55), we have the following
lemma which point out that the constants involved in the estimates are
uniform with respect to t

Lemma 2.2. For any t ∈ [0, τ ], the operators −B(t) and −B(t) generate
strongly continuous analytic semigroups of angle γ = π

2 − arctan(M
δ

) on H
and V ′, respectively. In addition, there exist constant Cθ, independent of t,
such that
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‖(z + B(t))−1‖L(Y ) ≤
Cθ

1 + |z| for all z ∈ Σπ−θ with fixed θ < γ.

Here, Y = H,V or V ′.
All of the previous estimates holds for the adjoint operator B(t)∗.

For f ∈ L2(0, τ ;H) and for almost every t ∈ [0, τ ] we define the operator
L by

L(f)(t) := B(t)
∫ t

0
e−(t−s)B(t)f(s) ds.

Our aim is to prove L ∈ L(L2(0, τ ;H)). It is proved in [27] that L is bounded
on Lp(0, τ ;H) for all p ∈ (1,∞) provided t 7→ a(t, ., .) is Cǫ for some ǫ > 0
(or similarly, t 7→ A(t) is Cǫ on [0, τ ] with values in L(V,V ′)). The proof for
the case p = 2 is based on vector-valued pseudo-differential operators. The
extension from p = 2 to p ∈ (1,∞) uses Hörmander’s almost L1-condition
for singular integral operators. Here we give a direct proof for the case p = 2
which does not appeal to pseudo-differential operators. It is essentially based
on Lions’ theorem and the holomorphic functional calculus for the sectorial
operator.

Lemma 2.3. Assume that B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)). Then L ∈ L(L2(0, τ ;V ′)).

Proof. By Lions’ theorem we obtain that for all f ∈ L2(0, τ ;V ′) there exists
a unique u ∈ MR(V ′,V) := H1(0, τ ;V ′) ∩ L2(0, τ ;V) be the solution to the
Cauchy problem











u′(t) + B(t)u(t) = f(t)

u(0) = 0.
(2.3)

In addition,

‖u‖MR(V ′,V) ≤ C(δ,M)‖f‖L2(0,τ ;V ′) (2.4)

Set v(s) = e−(t−s)B(t)u(s) where 0 ≤ s ≤ t ≤ τ. We remark that v(t) =
u(t), v(0) = 0 and

v′(s) = B(t)e−(t−s)B(t)u(s) + e−(t−s)B(t)u′(s)

= e−(t−s)B(t)(B(t)− B(s))u(s) + e−(t−s)B(t)f(s).

Since u(t) =
∫ t

0 v
′(s) ds, we have

B(t)u(t) = B(t)
∫ t

0
e−(t−s)B(t)(B(t)− B(s))u(s) ds+ B(t)

∫ t

0
e−(t−s)B(t)f(s) ds

:= (S(B(.)u))(t) + L(f)(t).
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Therefore, L(f)(t) = (I − S)(B(.)u).
Noting that

(S(g))(t) := B(t)
∫ t

0
e−(t−s)B(t)(B(t)− B(s))B(s)−1g(s) ds,

where g ∈ L2(0, τ ;V ′).
Using the analyticity of the semigroup and Cauchy-Schwarz inequality we
obtain

‖(S(g))(t)‖V ′ ≤
∫ t

0
‖B(t)e−(t−s)B(t)‖L(V ′)‖B(t)− B(s)‖L(V,V ′)‖B(s)−1‖L(V ′,V)‖g(s)‖V ′ ds

.

∫ t

0

‖B(t)− B(s)‖L(V,V ′)

t− s ‖g(s)‖V ′ ds.

.
(

∫ t

0

‖B(t)− B(s)‖2L(V,V ′)

(t− s)2
ds
)

1
2 ‖g‖L2(0,τ ;V ′).

So
‖(S(g))‖L2(0,τ ;V ′) . ‖B‖

Ḣ
1
2 (0,τ ;L(V,V ′))

‖g‖L2(0,τ ;V ′).

Therefore

‖L(f)‖L2(0,τ ;V ′) .
[

‖(S(B(.)u))‖L2(0,τ ;V ′) + ‖B(.)u‖L2(0,τ ;V ′)

]

.
(

‖B‖
Ḣ

1
2 (0,τ ;L(V,V ′))

+ 1
)

‖u‖L2(0,τ ;V).

Now, we use the estimate (2.4) to get L ∈ L(L2(0, τ ;V ′)) and

‖L(f)‖L2(0,τ ;V ′) . ‖f‖L2(0,τ ;V ′).

For almost every s ∈ [0, τ ] we define the operator

L1(f)(s) := B(s)∗
∫ τ

s
e−(t−s)B∗(s)f(t) dt

where f ∈ L2(0, τ ;V ′).

Lemma 2.4. If t → B(t) is measurable, then for all f ∈ L2(0, τ ;V ′) there
exists a unique u ∈MR(V ′,V) be the solution to the retrograde problem











u′(s)− B(s)∗u(s) = f(s)

u(τ) = 0.
(2.5)
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Proof. We define the multiplication operator B on L2(0, τ ;V ′) by D(B) =
L2(0, τ ;V) and (Bu)(t) = B(t)u(t), for t ∈ [0, τ ] and u ∈ L2(0, τ ;V). We
define also the differentiation operator ∂ on L2(0, τ ;V ′) with domain

D(∂) := {v ∈ H1(0, τ ;V ′) s.t v(0) = 0},

by (∂u)(t) = u′(t).
To prove our result it is enough to prove

∂(∂ − B∗)−1 ∈ L(L2(0, τ ;V ′)).

By Lions’ theorem we have ∂ + B is invertible and

(∂ + B)−1 ∈ L(L2(0, τ ;V ′), L2(0, τ ;V)).

So (∂ − B∗)−1 ∈ L(L2(0, τ ;V ′), L2(0, τ ;V)) and

∂(∂ − B∗)−1 = I + B∗(∂ − B∗)−1 ∈ L(L2(0, τ ;V ′)).

Then we get the desired result. We can also use the Lax-Milgram lemma to
prove this result.

Lemma 2.5. If B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)), we have L1 ∈ L(L2(0, τ ;V ′)).

Proof. For the proof we use the maximal regularity for the retrograde adjoint
problem in V ′











u′(s)− B(s)∗u(s) = f(s)

u(τ) = 0
(2.6)

We set v(t) = e−(t−s)B(s)∗

u(t), with 0 ≤ s ≤ t ≤ τ. Noting that u(s) =
v(s), v(τ) = 0 and

v′(t) = e−(t−s)B(s)∗

(B(t)∗ − B(s)∗)u(t) + e−(t−s)B(s)∗

f(t).

Thus,

B(s)∗u(s) = B(s)∗
∫ τ

s
e−(t−s)B(s)∗

(B(t)∗ − B(s)∗)u(t) dt+ L1(f)(s).

Now we follow the same strategy of proof of Lemma 2.3 to get the desired
result.

Lemma 2.6. For all f ∈ L2(0, τ ;H), s ∈ (0, τ) one has

L∗(f)(s) =
∫ τ

s
B∗(t)e−(t−s)B∗(t)f(t) dt.
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Proof. Let f, g ∈ L2(0, τ ;H). We obtain by Fubini’s theorem

∫ τ

0
(L(g)(t), f(t)) dt =

∫ τ

0
(B(t)

∫ t

0
e−(t−s)B(t)g(s) ds, f(t)) dt

=
∫ τ

0

∫ t

0
(B(t)e−(t−s)B(t)g(s), f(t)) ds dt

=
∫ τ

0

∫ τ

s
(g(s), B(t)∗e−(t−s)B(t)∗

f(t)) dt ds

=
∫ τ

0
(g(s),

∫ τ

s
B(t)∗e−(t−s)B(t)∗

f(t) dt) ds.

Therefore

L∗(f)(s) =
∫ τ

s
B∗(t)e−(t−s)B∗(t)f(t) dt, s ∈ (0, τ).

Lemma 2.7. If B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)), we have L∗ ∈ L(L2(0, τ ;V ′)).

Proof. Let s ∈ [0, τ ] and t ∈ [s, τ ]. Choose a contour Γ in the positive
half-plane and write by the holomorphic functional calculus for the sectorial
operators B∗(t),B∗(s)

B∗(t)e−tB∗(t)−B∗(s)e−tB∗(s) =
1

2πi

∫

Γ
λe−tλ(λI−B∗(t))−1

(

B∗(t))−B∗(s)
)

(λI−B∗(s))−1 dλ.

By taking the norm in L(V ′) we have by Lemma 2.1

‖B∗(t)e−tB∗(t) − B∗(s)e−tB∗(s)‖L(V ′)

≤ C
∫ ∞

0
|λ|e−t| cos γ||λ|‖(λI − B∗(t))−1‖L(V ′)

× ‖(λI − B∗(s))−1‖L(V ′;V) d|λ|‖B∗(t))− B∗(s)‖L(V,V ′)

≤ C1

∫ ∞

0
e−t| cos γ||λ| d|λ|‖B∗(t))− B∗(s)‖L(V,V ′).

Since,
∫ ∞

0
e−t| cos γ||λ| d|λ| = 1

| cos γ|t ,

we obtain

‖B∗(t)e−(t−s)B∗(t) − B(s)∗e−(t−s)B∗(s)‖L(V ′) .
‖B(s)∗ − B∗(t)‖L(V,V ′)

t− s .

Hence,

‖L∗(f)(s)− L1(f)(s)‖V ′ .

∫ τ

s

‖B(s)∗ − B∗(t)‖L(V,V ′)

t− s ‖f(t)‖V ′ dt.
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The Cauchy-Schwarz inequality gives

‖(L∗ − L1)(f)‖L2(0,τ ;V ′) . ‖B∗‖
Ḣ

1
2 (0,τ ;L(V,V ′))

‖f‖L2(0,τ ;V ′).

Then

‖L∗(f)‖L2(0,τ ;V ′) ≤ 2‖[L∗ − L1](f)‖L2(0,τ ;V ′) + 2‖L1(f)‖L2(0,τ ;V ′)

.
(

‖B‖
Ḣ

1
2 (0,τ ;L(V,V ′))

+ 1
)

‖f‖L2(0,τ ;V ′).

Proposition 2.8. If B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)), we obtain L ∈ L(L2(0, τ ;H)).

Proof. Since by Lemma 2.3, L ∈ L(L2(0, τ ;V ′)) and by Lemma 2.7, L∗ ∈
L(L2(0, τ ;V ′)), one has L ∈ L(L2(0, τ ;V)). Then by interpolation we get
L ∈ L(L2(0, τ ;H)).

Lemma 2.9. Assume that,

∫ τ

0

‖B(t)− B(0)‖2L(V,V ′)

t
dt <∞,

∫ τ

0

‖A(t)−A(0)‖2L(V,V ′)

t
dt <∞.

Let u1, u0 ∈ V, then the operators

R1u1(t) = B(t)e−tB(t)u1

R2u0(t) = e−tB(t)A(t)u0

are bounded in L2(0, τ ;H).

Proof. For the operator R1 we refer to [3][Lemma 4.7]. It remains to prove
that R2 ∈ L(V, L2(0, τ ;H)). Indeed, observing that

R2u0(t) = e−tB(t)A(t)u0

= e−tB(t)
(

A(t)−A(0)
)

u0 + e−tB(t)A(0)u0. (2.7)

For the first term in the RHS of (2.7), we have
∫ τ

0
‖e−tB(t)

(

A(t)−A(0)
)

u0‖2 dt

≤
∫ τ

0
‖e−tB(t)‖2L(V ′,H)‖A(t)−A(0)‖2L(V,V ′)‖u0‖2V dt

≤ C
∫ τ

0

‖A(t)−A(0)‖2L(V,V ′)

t
dt ‖u0‖2V .
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We write

e−tB(t)A(0)u0 = e−tB(t)A(0)u0 − e−tB(0)A(0)u0 + e−tB(0)A(0)u0.

The functional calculus for the sectorial operators B(t), B(0) gives

‖e−tB(t)A(0)u0 − e−tB(0)A(0)u0‖ ≤ c
‖B(t)− B(0)‖2L(V,V ′)

t
1
2

‖u0‖V .

Clearly,
e−tB(0)A(0)u0 = B(0)

1
2 e−tB(0)B(0)− 1

2A(0)u0.

Hence, by Lemma 3.4 we have
∫ τ

0
‖e−tB(0)A(0)u0‖2dt

=
∫ τ

0
‖B(0)

1
2 e−tB(0)B(0)− 1

2A(0)u0‖2dt

≤ c‖B(0)− 1
2A(0)u0‖2.

Since D(B(0)
1
2 ) = V, we have D(B(0)

1
2 ) = H and B(0)− 1

2 ∈ L(V ′,H) (see
Lemma ??).
Therefore

∫ τ

0
‖e−tB(0)A(0)u0‖2 dt ≤ C‖u0‖2V .

Thus, ‖R2u0‖L2(0,τ ;H) ≤ C‖u0‖V

For 0 ≤ t ≤ τ define the operator

Ltf =
∫ t

0
e−(t−r)B(t)f(r) dr, f ∈ L2(0, τ ;H).

In the following lemma we prove that the assumption (3.3) is necessary to
get Lt ∈ L(L2(0, t;H);V) for all t ∈ [0, τ ].

Lemma 2.10. 1- Suppose (3.3). Then for all f ∈ L2(0, τ ;H), 0 ≤ t ≤ τ ,

‖Ltf‖V ≤ C‖f‖L2(0,t;H).

2- If V ( D(B(t)
1
2 ) for some t ∈ (0, τ ], it follows that Lt /∈ L(L2(0, t;H);V).

Proof. For the first assertion we refer to [3][Lemma 4.1]. Take v ∈ H. Then

(Ltf ; v) =
∫ t

0
(f(s); e−(t−s)B(t)∗

v) ds

=
∫ t

0
(f(s);L∗

1(t, s)v) ds.
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So the adjoint operator of Lt is defined in L2(0, t;H) by L∗
1(t, s)v = e−(t−s)A(t)∗

v.

If V ( D(B(t)
1
2 ), we want to prove that Lt /∈ L(L2(0, t;H);V). Hence,

it is equivalent to prove L∗
1(t, .) /∈ L(V ′;L2(0, t;H)). Let v ∈ V ′ and set

u = B(t)∗−1v ∈ V. Therefore, by the definition of the real interpolation
space (see e.g. [33], Proposition 5.1.1) we get for t ∈ (0, τ ]

‖u‖2 + ‖L∗
1(t, .)v‖2L2(0,t;H) = ‖u‖2 +

∫ t

0
‖B(t)∗e−sB(t)∗

u‖2 ds

≃ ‖u‖2
D(B(t)∗

1
2 )
.

Since V ( D(B(t)
1
2 ) we have by [1][ Lemma 6.4] and [35][Theorem 1] that

D(B(t)∗ 1
2 ) ( V and V \ D(B(t)∗ 1

2 ) is non empty. Hence, there exists a
u ∈ V \D(B(t)∗ 1

2 ) and for v = B(t)∗u ∈ V ′ we get L∗
1(t, .)v is not bounded

in L2(0, t;H). Therefore Lt /∈ L(L2(0, t;H);V).

3 Maximal Regularity under Fractional Sobolev

Regularity in time

In this section we prove our main result on maximal regularity for the linear
equation.
Let us define the spaces

MR(V,H) := {u ∈ H2(0, τ ;H) ∩W 1,∞(0, τ ;V) : B(.)u′ +A(.)u ∈ L2(0, τ ;H)}.
T r(V,H) := {(u(0), u′(0)) : u ∈MR(V,H)},

endowed with norms respectively

‖u‖MR(V,H) := ‖u′′‖L2(0,τ ;H) + ‖u‖W 1,∞(0,τ ;V)

+ ‖B(.)u′(.) +A(.)u(.)‖L2(0,τ ;H).

‖(u(0), u′(0))‖T r(V,H) := inf{‖v‖MR(V,H) :

v ∈MR(V,H), v(0) = u(0), v′(0) = u′(0)}.

From [1][Theorem 2.6] we have the following theorem

Theorem 3.1. Assume that t → b(t) is measurable. Then for all f ∈
L2(0, τ ;V ′) and (u0, u1) ∈ (V,H), there exists a unique solution u ∈ H2(0, τ ;V ′)∩
H1(0, τ ;V) to the problem











u′′(t) + B(t)u′(t) +A(t)u(t) = f(t) t-a.e.

u(0) = u0, u
′(0) = u1.

(3.1)
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Moreover, there exists a positive constant C independent of u0, u1 and f
such that the following estimate holds

‖u‖H2(0,τ ;V ′)∩H1(0,τ ;V) ≤ C
[

‖(u0, u1)‖(V,H) + ‖f‖L2(0,τ ;V ′)

]

. (3.2)

Remark 3.2. Noting that

H2(0, τ ;V ′) ∩H1(0, τ ;V) →֒ C1([0, τ ];H) ∩ C([0, τ ];V).

Indeed, let v ∈ H2(0, τ ;V ′)∩H1(0, τ ;V), it follows by the Sobolev embedding
that v ∈ C([0, τ ];V) and since v′ ∈ H1(0, τ ;V ′) ∩ L2(0, τ ;V ′) we obtain by
Lemma 2.1 that v ∈ C1([0, τ ];H). Thus, since u ∈ H2(0, τ ;V ′)∩H1(0, τ ;V),
both u(0) and u′(0) make sense.

Following [3](Definition 3.4), we introduce the following definition

Definition 3.3. We say that (B(t))t∈[0,τ ] satisfies the uniform Kato square

root property if D(B(t)
1
2 ) = V for all t ∈ [0, τ ] and there are c1, c

1 > 0 such
that for all v ∈ V

c1‖v‖V ≤ ‖B(t)
1
2 v‖ ≤ c1‖v‖V . (3.3)

The uniform Kato square root property is obviously satisfied for symmet-
ric forms. It is also satisfied for uniformly elliptic operators (not necessarily
symmetric)

B(t) = −
d
∑

k,l=1

∂k(akl(t, x)∂l)

on L2(Rd) since ‖∇u‖2 is equivalent to ‖B(t)
1
2u‖2 with constants depending

only on the dimension and the ellipticity constants, see [11].
The next lemma shows the quadratic estimate for B(t) with constant in-
dependent of t. Here we assume the uniform Kato square root property.
Quadratic estimates are an important tool in harmonic analysis and we will
use them at several places in the proofs of maximal regularity.

Lemma 3.4. Suppose in addition to [H1]-[H3] (with ν = 0) that the uniform
Kato square root property is satisfied. Then there exists a constant C such
that for every t ∈ [0, τ ]

∫ τ

0
‖B(t)

1
2 e−sB(t)x‖2 ds ≤ C‖x‖2 (3.4)

for all x ∈ H.

Definition 3.5. Let X be a Banach space and α ∈ (0, 1),

• A Bochner measurable function f : [0, τ ]→ X, lies in the homogeneous
fractional Sobolev space Ḣα(0, τ ;X) provided

‖f‖2
Ḣα(0,τ ;X)

:=
∫ τ

0

∫ τ

0

‖f(t)− f(s)‖2X
|t− s|2α+1

dsdt <∞.
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• A Bochner measurable function f : [0, τ ] → X, lies in the space

Ḣ
1
2
0 (0, τ ;X) provided

‖f‖2
Ḣ

1
2

0 (0,τ ;X)
:= sup

t∈[0,τ ]

∫ τ

0

‖f(t)− f(s)‖2X
|t− s| ds+

∫ τ

0

∫ τ

0

‖f(t)− f(s)‖2X
|t− s|2 ds dt <∞.

We shall say that f is piecewise in Ḣα(I;X) (resp. Ḣ
1
2
0 (I;X)) if there

exists t0 < t1 < ... < tn such that I = ∪i[ti, ti+1] and the restriction of f to

each sub-interval (ti, ti+1) is in Ḣα(ti, ti+1;X) (resp. Ḣ
1
2
0 (ti, ti+1;X)).

Let b(t) : V × V → C for 0 ≤ t ≤ τ be a family of forms satisfying
[H1]-[H3] and let B(t) and B(t) be the associated operators on H and V ′,
respectively. We shall need the following property.

Given ε > 0, there exists τ0 = 0 < τ1 < ... < τn = τ such that

sup
t∈(τi−1,τi)

∫ τi

τi−1

‖B(t)− B(s)‖2L(V,V ′)

|t− s| ds < ε. (3.5)

Note that this assumption is satisfied in many cases. Suppose for exam-
ple that t 7→ b(t, u, v) is Cα for some α > 0 in the sense that

|b(t, u, v)− b(s, u, v)| ≤M |t− s|α‖u‖V‖v‖V (3.6)

for some positive constant M and all u, v ∈ V. Then clearly

‖B(t)− B(s)‖L(V,V ′) ≤M |t− s|α

and this implies (3.5). More generally, if ωi denotes the modulus of conti-
nuity of B(.) on the interval (τi−1, τi) then (3.5) is satisfied if

∫ τi

τi−1

ωi(r)2

r
dr < ε. (3.7)

Proposition 3.6. Let v ∈ L∞(τi−1, τi;V) and C(.) ∈ L∞(τi−1, τi;L(V,V ′)).
We define the operator QC(τi−1,τi)

by

(QC(τi−1,τi)
v)(t) =

∫ t

τi−1

e−(t−s)B(t)(C(t)− C(s))v(s) ds,

where t ∈ [τi−1, τi]. Assume that C(.) satisfies the condition (3.5) for ε small
enough. Therefore, QC(τi−1,τi)

∈ L(L∞(τi−1, τi;V)) and

‖QC(τi−1,τi)
‖L(L∞(τi−1,τi;V)) < 1.
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Proof. For v ∈ L∞(τi−1, τi;V), we have for t ∈ (τi−1, τi)

‖(QC(τi−1,τi)v)(t)‖V = sup
‖w‖

V′ =1
〈
∫ t

τi−1

e−(t−s)B(t)(C(t)− C(s))v(s) ds, w〉

= sup
‖w‖

V′ =1

∫ t

τi−1

〈e−
(t−s)

2
B(t)(C(t)− C(s))v(s),B(t)∗ 1

2 e−
(t−s)

2
B(t)∗B(t)∗− 1

2w〉 ds

≤ sup
‖w‖

V′ =1

∫ t

τi−1

‖C(t)− C(s)‖L(V,V ′)‖e−
(t−s)

2
B(t)‖L(V ′,H)

× ‖B(t)∗ 1
2 e−

(t−s)
2

B(t)∗B(t)∗− 1
2w‖ ds ‖v‖L∞(τi−1,τi;V)

≤ sup
t∈[τi−1,τi]

(

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)‖e−
(t−s)

2
B(t)‖

1
2

L(V ′,H) ds
)

1
2

× sup
‖w‖

V′ =1

(

∫ t

τi−1

‖B(t)∗ 1
2 e−

(t−s)
2

B(t)∗B(t)∗− 1
2w‖2ds

)

1
2 ‖v‖L∞(τi−1,τi;V)

≤ C sup
t∈[τi−1,τi]

(

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)

|t− s| ds
)

1
2

× sup
‖w‖

V′ =1

(

∫ t

τi−1

‖B(t)∗ 1
2 e−

(t−s)
2

B(t)∗B(t)∗− 1
2w‖2 ds

)

1
2 ‖v‖L∞(τi−1,τi;V)

≤ C2 sup
t∈[τi−1,τi]

(

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)

|t− s| ds
)

1
2 ‖v‖L∞(τi−1,τi;V).

Then

‖(QC(τi−1,τi)
v)‖L∞(τi−1,τi;V) ≤ C2 sup

t∈[τi−1,τi]

(

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)

|t− s| ds
)

1
2 ‖v‖L∞(τi−1,τi;V).

Using (3.5), we get for ε < 1
C2

‖QC(τi−1,τi)
‖L(L∞(τi−1,τi;V)) ≤ C2ε‖v‖L∞(τi−1,τi;V)

< ‖v‖L∞(τi−1,τi;V).

This finishes the proof.

In the following proposition we set QC = QC(0,τ)

Proposition 3.7. Let v ∈ L∞(0, τ ;V) and assume that C ∈ Ḣ 1
2 (0, τ ;L(V,V ′)).

Then B(.)QCv ∈ L2(0, τ ;H).
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Proof. For v ∈ L∞(0, τ ;V), we obtain

‖(B(.)QCv)‖L2(0,τ ;H)

= sup
‖g‖

L2(0,τ ;H)=1
|
∫ τ

0

∫ t

0
(B(t)e−(t−s)B(t)(C(t)− C(s))v(s); g(t)) ds dt|

= sup
‖g‖

L2(0,τ ;H)=1
|
∫ τ

0

∫ t

0
(B(t)

1
2 e−

(t−s)
2

B(t)(C(t)− C(s))v(s);B(t)∗ 1
2 e−

(t−s)
2

B(t)∗

g(t)) ds dt|

. sup
‖g‖

L2(0,τ ;H)=1

∫ τ

0

∫ t

0

‖(C(t)− C(s))‖L(V,V ′)

|t− s|

× ‖B(t)∗ 1
2 e−

(t−s)
2

B(t)∗

g(t)‖ ds dt ‖v‖L∞(0,τ ;V)

. (
∫ τ

0

∫ t

0

‖(C(t)− C(s))‖2L(V,V ′)

|t− s|2 ds dt)
1
2

× sup
‖g‖

L2(0,τ ;H)=1

(

∫ τ

0

∫ t

0
‖B(t)∗ 1

2 e−(t−s)B(t)∗

g(t)‖2 ds dt
)

1
2 ‖v‖L∞(0,τ ;V)

. ‖C‖
Ḣ

1
2 (0,τ ;L(V,V ′))

‖v‖L∞(0,τ ;V).

Lemma 3.8. Assume that C ∈ Ḣ 1
2

+ǫ(0, τ ;L(V,V ′)), with ε > 0. Then the
condition (3.5) is satisfied.

Proof. Let τ0 = 0 < τ1 < ... < τn = τ be a subdivision of the interval [0, τ ].
Using [[?], p. 745, (6.8)], we get for t ∈ [τi−1, τi]

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)

|t− s|1+ǫ
ds ≤ C‖C‖2

Ḣ
1
2 +ǫ(τi−1,τi;L(V,V ′))

.

Therefore,

sup
t∈[τi−1,τi]

∫ t

τi−1

‖C(t)− C(s)‖2L(V,V ′)

|t− s| ds ≤ C|τi−1 − τi|ε‖C‖2
Ḣ

1
2 +ǫ(0,τ ;L(V,V ′))

.

Then if we choose |τi−1 − τi| small enough we get the desired result.

It is interesting to know whether u′(t) ∈ V for all t ∈ [0, τ ]. This is indeed
the case if t 7→ a(t) ∈ C 1

2
+ǫ, ǫ > 0. This is proved in [1]. In the following

proposition we prove that the solution of the equation (3.1) lies in the space
W 1,∞(0, τ ;V) and u′(t) ∈ V for all t ∈ [0, τ ].

Proposition 3.9. Let f ∈ L2(0, τ ;H) and (u0, u1) ∈ V × V. Assume that

(3.5) and A(.) ∈ Ḣ
1
2
0 (0, τ ;L(V,V ′)). Then u ∈ W 1,∞(0, τ ;V) and u′(t) ∈ V

for all t ∈ [0, τ ]. Moreover,

‖u′‖L∞(0,τ ;V) ≤ C
[

‖u0‖V + ‖u1‖V + ‖f‖L2(0,τ ;H)

]

. (3.8)
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Proof. Let f ∈ L2(0, τ ;H) and (u0, u1) ∈ V × V. A direct application of
Theorem 3.10 gives u ∈ H2(0, τ ;V ′) ∩H1(0, τ ;V) and

‖u‖H2(0,τ ;V ′)∩H1(0,τ ;V) ≤ C
[

‖u0‖V + ‖u1‖+ ‖f‖L2(0,τ ;H)

]

.

Let τ0 = 0 < τ1 < ... < τn = τ be a subdivision of the interval [0, τ ].
From [1](26) we have for t ∈ [0, τ1]

u′(t) = −B(t)−1A(t)u(t) + e−tB(t)B(t)−1A(t)u(0)

+ e−tB(t)u′(0) +
∫ t

0
e−(t−s)B(t)(B(t)− B(s))u′(s)ds

−
∫ t

0
e−(t−s)B(t)[A(s)−A(t)]u(s)ds

−
∫ t

0
e−(t−s)B(t)B(t)−1A(t)u′(s)ds+

∫ t

0
e−(t−s)B(t)f(s) ds.

Then

(I −QB(0,τ1)
)(u′)(t) = −B(t)−1A(t)u(t) + e−tB(t)B(t)−1A(t)u0

+ (QA(0,τ1)
u)(t) + e−tB(t)u1

−
∫ t

0
e−(t−s)B(t)B(t)−1A(t)u′(s) ds+ Ltf.

We remark that

‖B(t)−1A(t)u(t)‖V ≤ C‖u(t)‖V .
‖e−(t)B(t)B(t)−1A(t)u(0)‖V ≤ C1‖u0‖V .

‖e−(t)B(t)u1‖V ≤ C2‖u1‖V

‖
∫ t

0
e−(t−s)B(t)B(t)−1A(t)u′(s) ds‖V ≤ C3‖u′‖L2(0,t;V).

Now, we choose τ1 small enough such that ‖QB(0,τ1)
‖L(L∞(0,τ1;V)) < 1.

Therefore, I −QB(0,τ1)
is invertible on L∞(0, τ1;V) and

‖u′‖L∞(0,τ1;V) . ‖(1−QB(0,τ1)
)−1‖L(L∞(0,τ1;V))

[

‖u‖L∞(0,τ1;V) + ‖u0‖V + ‖u1‖V

+ ‖QA(0,τ1)
‖L(L∞(0,τ1;V)).‖u‖L∞(0,τ1;V) + ‖u′‖L2(0,τ1;V) + ‖f‖L2(0,τ1;H)

]

.

Therefore

‖u′‖L∞(0,τ1;V)

≤ C
[

‖u‖C([0,τ1];V) + ‖u0‖V + ‖u1‖V + ‖u′‖L2(0,τ1;V) + ‖f‖L2(0,τ1;H)

]

≤ C1

[

‖u0‖V + ‖u1‖V + ‖f‖L2(0,τ1;H)

]

.

17



Hence, u′ ∈ L∞(0, τ1;V) ∩C([0, τ1];H). By Lemma [3](Lemma 3.7) one has
u′(t) ∈ V for all t ∈ [0, τ1]. In particular, u′(τ1) ∈ V.
Fix τ1 ≤ t ≤ τ2. We get from the equation in (2.2)

∫ t

τ1

e−(t−s)B(t)u′′(s) ds+
∫ t

τ1

e−(t−s)B(t)B(s)u′(s) ds

+
∫ t

τ1

e−(t−s)B(t)A(s)u(s) ds =
∫ t

τ1

e−(t−s)B(t)g(s) ds. (3.9)

Noting that (3.9) is equivalent to

∫ t

τ1

e−(t−s)B(t)u′′(s) ds+
∫ t

τ1

e−(t−s)B(t)B(s)u′(s) ds

+
∫ t

τ1

e−(t−s)B(t)
(

A(s)−A(t)
)

u(s) ds

+
∫ t

τ1

e−(t−s)B(t)A(t)u(s) ds

=
∫ t

τ1

e−(t−s)B(t)f(s) ds. (3.10)

Integrating by parts, we obtain

∫ t

τ1

e−(t−s)B(t)u′′(s) ds = u′(t)− e−(t−τ1)B(t)u′(τ1)

−
∫ t

τ1

e−(t−s)B(t)B(t)u′(s) ds (3.11)

and
∫ t

τ1

e−(t−s)B(t)A(t)u(s) ds = A(t)u(t)− e−(t−τ1)B(t)A(t)u(τ1)

−
∫ t

τ1

e−(t−s)B(t)B(t)−1A(t)u′(s) ds. (3.12)

Combining (3.11) with (3.12) and (3.10), we have

u′(t) = e−(t−τ1)B(t)u′(τ1) +
∫ t

τ1

e−(t−s)B(t)
(

B(t)− B(s)
)

u′(s) ds

+
∫ t

τ1

e−(t−s)B(t)
(

A(t)−A(s)
)

u(s) ds− B(t)−1A(t)u(t)

+ e−(t−τ1)B(t)B(t)−1A(t)u(τ1) +
∫ t

τ1

e−(t−s)B(t)B(t)−1A(t)u′(s) ds

+
∫ t

τ1

e−(t−s)B(t)f(s) ds. (3.13)
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Therefore

(I −QB(τ1,τ2)
)u′(t) = e−(t−τ1)B(t)u′(τ1) + (QA(τ1,τ2)

u)(t)− B(t)−1A(t)u(t)

+ e−(t−τ1)B(t)B(t)−1A(t)u(τ1) +
∫ t

τ1

e−(t−s)B(t)B(t)−1A(t)u′(s) ds

+ Lt(I(τ1,τ2)f). (3.14)

We remark that

‖e−(t−τ1)B(t)u′(τ1)‖V ≤ C‖u′(τ1)‖V .
‖B(t)−1A(t)u(t)‖V ≤ C1‖u‖C([τ1,τ2],V).

‖e−(t−τ1)B(t)B(t)−1A(t)u(τ1)‖V ≤ C2‖u‖C([τ1,τ2],V)

‖
∫ t

τ1

e−(t−s)B(t)B(t)−1A(t)u′(s) ds‖V ≤ C3‖u′‖L2(τ1,τ2;V).

Now, we choose τ2 such that τ1−τ2 small enough to get ‖QB(τ1,τ2)
‖L(L∞(τ1,τ2;V)) <

1. Then, I −QB(τ1,τ2)
is invertible on L∞(τ1, τ2;V).

Therefore

‖u′‖L∞(τ1,τ2;V)

≤ C
[

‖u‖C([τ1,τ2];V) + ‖u′(τ1)‖V + ‖u′‖L2(τ1,τ2;V) + ‖f‖L2(τ1,τ2;H)

]

≤ C1

[

‖u0‖V + ‖u1‖V + ‖f‖L2(0,τ2;H)

]

.

Hence, u′ ∈ L∞(τ1, τ2;V)∩C([τ1, τ2];V). One has by [3](Lemma 3.7) u′(t) ∈
V for all t ∈ [τ1, τ2].
Now repeat the same strategy. We work on [τi−1, τi] and argue exactly as
before. We obtain (3.8) on each sub-intervals [τi−1, τi]. This implies (3.8)
on [0, τ ] for arbitrary τ > 0 and finishes the proof.

The following theorem is the main result of this section

Theorem 3.10. Let f ∈ L2(0, τ ;H), u0, u1 ∈ V. Assume that B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)),

(3.5) and A(.) ∈ Ḣ
1
2
0 (0, τ ;L(V,V ′)). Then (3.1) has maximal L2-regularity

in H.
Moreover, there exists N > 0 such that

‖u‖MR(V,H) ≤ N
[

‖u0‖V + ‖u1‖V + ‖f‖L2(0,τ ;H)

]

. (3.15)

Remark 3.11. The regularity assumption on B(t) (resp. A(t)) can be weak-

ened considerably. Indeed, piecewise in Ḣ
1
2 (0, τ ;L(V,V ′)) (resp. Ḣ

1
2
0 (0, τ ;L(V,V ′)))

is sufficient.
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Proof. Let f ∈ L2(0, τ ;H) and (u0, u1) ∈ (V,V). Then by Theorem 3.1 there
exists a unique u ∈ H2(0, τ ;V ′) ∩H1(0, τ ;V) solution to Problem (3.1). In
addition

‖u‖H2(0,τ ;V ′)∩H1(0,τ ;V) ≤ C
[

‖(u0, u1)‖(V,H) + ‖f‖L2(0,τ ;V ′)

]

.

By integration by parts (see [1](26)) we have

B(t)u′(t) +A(t)u(t) = e−tB(t)A(t)u(0)

+B(t)e−tB(t)u′(0) +B(t)
∫ t

0
e−(t−s)B(t)(B(t)− B(s))u′(s) ds

+B(t)
∫ t

0
e−(t−s)B(t)[A(t)−A(s)]u(s) ds

+
∫ t

0
e−(t−s)B(t)A(t)u′(s)ds+B(t)

∫ t

0
e−(t−s)B(t)f(s) ds.

(3.16)

Hence,

B(t)u′(t) +A(t)u(t) = R2u0(t) +R1u1(t) + (B(.)QB(0,τ)
u′)(t) + (B(.)QA(0,τ)

u)(t)

+
∫ t

0
e−(t−s)B(t)A(t)u′(s) ds+ (Lf)(t).

We remark that

‖t 7→
∫ t

0
e−(t−s)B(t)A(t)u′(s) ds‖L2(0,τ ;H) ≤M‖t 7→ e−tB(t)‖L1(0,τ ;L(V ′,H))‖u′‖L2(0,τ ;V)

≤ 2M
√
τ‖u′‖L2(0,τ ;V).

Then, in light of Propositions 2.8, 3.7, 3.9 and Lemma 2.9 we obtain

‖B(.)u′ +A(.)u‖L2(0,τ ;H) ≤
[

‖R2u0‖L2(0,τ ;H) + ‖R1u1‖L2(0,τ ;H) + ‖Lf‖L2(0,τ ;H)

+ ‖t 7→
∫ t

0
e−(t−s)B(t)A(t)u′(s) ds‖L2(0,τ ;H) + ‖B(.)QA(0,τ)

u‖L2(0,τ ;H)

+ ‖B(.)QB(0,τ)
u′‖L2(0,τ ;H)

]

≤ C
[

‖u0‖V + ‖u1‖V + ‖u′‖W 1,∞(0,τ ;V) + ‖f‖L2(0,τ ;H)

]

≤ C1

[

‖u0‖V + ‖u1‖V + ‖f‖L2(0,τ ;H)

]

.

Therefore B(.)u′ +A(.)u ∈ L2(0, τ ;H) and hence u′′ = f−(B(.)u′ +A(.)u) ∈
L2(0, τ ;H). Then u ∈MR(V,H).

The following proposition gives a characterization of the trace space
Tr(V,H).
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Proposition 3.12. Assume the same hypothesis of Theorem 3.10 we get

Tr(V,H) = V × V with equivalent norms.

Proof. First we prove the injection V×V →֒ Tr(V,H). Indeed, let (u0, u1) ∈
V × V then by Theorem 3.10 there exists u ∈ MR(V,H) be the unique
solution to (3.1) such that f = 0 and u(0) = u0, u

′(0) = u1. Hence, (u0, u1) ∈
Tr(V,H) and by (5.3) we get

‖(u0, u1)‖T r(V,H) ≤ ‖u‖MR(V,H) ≤ C
[

‖u0‖V + ‖u1‖V
]

and so the first injection holds.
For the second injection "←֓" let us take (u0, u1) ∈ Tr(V,H). Then there
exists u ∈MR(V,H) such that u(0) = u0, u

′(0) = u1. Since

u ∈W 1,∞(0, τ ;V) ∩H2([0, τ ];H) →֒ C([0, τ ];V) ∩ C1([0, τ ];H),

we have u(0) = u0 ∈ V and by [3][Lemma 3.7] we get u′(t) ∈ V for all
t ∈ [0, τ ]. One has u′(0) = u1 ∈ V and
[

‖u0‖V + ‖u1‖V
]

≤ inf{‖u‖W 1,∞(0,τ ;V) : u ∈MR(V,H), u(0) = u0, u
′(0) = u1}

≤ inf{‖u‖MR(V,H) : u ∈MR(V,H), u(0) = u0, u
′(0) = u1}

= ‖(u0, u1)‖T r(V,H).

Therefore Tr(V,H) →֒ V × V.

Let u0 ∈ V, u1 ∈ [H,V]β, β ∈ [0, 1]. In the following proposition we prove
optimal estimates for the decay in time of solutions to (3.1)

Proposition 3.13. Assume that b(t) = b(0),A(t) = A(0) for all t ∈ [0, τ ].
Let u0 ∈ V, u1 ∈ [H,V]β, β ∈ [0, 1] and u be the solution to (3.1) with f = 0.
We have for all t > 0

‖u′′(t)‖ = ‖B(0)u′(t)+A(0)u(t)‖ ≤ C1

( 1

t1− β

2

+1
)

‖u1‖[H,V]β +C2

( 1

t
1
2

+1
)

‖u0‖V .

Proof. Let u0 ∈ V, u1 ∈ [H,V]β, β ∈ [0, 1] and u be the solution to (1.1)
with f = 0. A direct application of Theorem 3.10 gives u ∈ H2(0, τ ;V ′) ∩
H1(0, τ ;V) and

‖u‖H2(0,τ ;V ′)∩H1(0,τ ;V) ≤ C
[

‖u0‖V + ‖u1‖
]

.

From (3.16) we obtain

B(0)u′(t) +A(0)u(t) = e−tB(0)A(0)u0 +B(0)e−tB(0)u1

−
∫ t

0
e−(t−s)B(0)A(0)u′(s) ds.
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Hence,

‖B(0)u′(t) +A(0)u(t)‖ ≤ ‖e−tB(0)A(0)u0‖+ ‖B(0)e−tB(0)u1‖

+ ‖
∫ t

0
e−(t−s)B(0)A(0)u′(s) ds‖

≤ ‖e−tB(0)‖L(V ′;H)‖u0‖V + ‖B(0)e−tB(0)u1‖

+ ‖
∫ t

0
e−(t−s)B(0)A(0)u′(s) ds‖.

We remark that

‖B(0)e−tB(0)‖L(V;H) ≤
C

t
1
2

,

‖B(0)e−tB(0)‖L(H) ≤
C1

t
.

We have by interpolation

‖B(0)e−tB(0)u1‖ ≤
Cβ

t1− β

2

‖u1‖[H,V]β .

We write
∫ t

0
e−(t−s)B(0)A(0)u′(s) ds = B(0)

1
2

∫ t

0
e−(t−s)B(0)B(0)− 1

2A(0)u′(s) ds.

Hence,

‖
∫ t

0
e−(t−s)B(0)A(0)u′(s) ds‖ = ‖B(0)

1
2

∫ t

0
e−(t−s)B(0)B(0)− 1

2A(0)u′(s) ds‖

≤ ‖B(0)
1
2 ‖L(V,H)‖

∫ t

0
e−(t−s)B(0)B(0)− 1

2A(0)u′(s) ds‖V

= c1‖Lt(B(0)− 1
2A(0)u′)‖V

≤ C‖B(0)− 1
2A(0)u′‖L2(0,τ ;H) ≤ C ′‖u′‖L2(0,τ ;V).

Therefore

‖u′′(t)‖ = ‖B(0)u′(t) +A(0)u(t)‖ ≤ C

t
1
2

‖u0‖V +
Cβ

t1− β

2

‖u1‖[H,V]β

+ C ′‖u′‖L2(0,τ ;V)

≤ C1

( 1

t1− β

2

+ 1
)

‖u1‖[H,V]β + C2

( 1

t
1
2

+ 1
)

‖u0‖V .

For higher order equations we have
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Theorem 3.14. Let (Ai(t))t∈[0,τ ],i∈[1,N−1], N ∈ N∗ such that Ai(t) ∈ L(V,V ′)
for all i ∈ [1, N −1] and ‖Ai(t)‖L(V,V ′) ≤M. We suppose that (B(t))t∈[0,τ ] ∈
L(V,V ′) is associated with V-bounded quasi-coercive forms. We assume in

addition B(.) ∈ Ḣ 1
2 (0, τ ;L(V,V ′)), (3.5), (3.3) and Ai(.) ∈ Ḣ

1
2
0 (0, τ ;L(V,V ′)).

Then for all f ∈ L2(0, τ ;H) and u0, ..., uN−1 ∈ V there exists a unique
u ∈ HN (0, τ ;H)∩WN−1,∞(0, τ ;V) such that u(N−1)(t) ∈ V for all t ∈ [0, τ ],
be the solution to the problem











u(N)(t) + B(t)u(N−1)(t) +AN−1(t)u(N−2)(t) + ..+A1(t)u(t) = f(t) t-a.e.

u(N−1)(0) = uN−1, ....., u(0) = u0.
(3.17)

In addition, there exists a positive constant C independent of u0, ..., uN−1

and f such that

‖u‖HN (0,τ ;H)∩W N−1,∞(0,τ ;V) ≤ C
(

N−1
∑

i=0

‖ui‖V + ‖f‖L2(0,τ ;H)

)

.

Proof. We give only the main ideas of the proof, the details are left to the
reader. We shall prove the theorem by induction. Indeed, in case N = 1 the
result follows from [3] (Theorem 2.2). The theorem holds for N = 2 by The-
orem 3.10. Now, we assume that the theorem is true at order N−1 where N
is an arbitrary positive integer. By integration and following the same strat-
egy of proof as in [1][Theorem 2.6] we prove maximal L2−regularity in V ′ for
the Cauchy problem (3.17) and we have u ∈ HN (0, τ ;V ′) ∩HN−1(0, τ ;V).
Let γ > 0 and set v(t) = e−γtu(t),AN (t) = B(t). By Leibniz’s rule and using
the equation (3.17) we get that v is the solution to the problem










v(N)(t) + (AN (t) +NγI)v(N−1)(t) +
∑N−2

j=0 Cj(t)v(j)(t) = e−γtf(t) t-a.e.

v(k)(0) = vk =
∑k

j=0C
k
j (−γ)k−juj , k ∈ [0, N − 1],

(3.18)

where Cj(t) =
(

∑N−1
m=j (−1)N+1−mCN

mC
m
j

)

γN−jI +
∑N−1

m=j C
m
j γ

m−jAm+1(t),

for all j ∈ [0, N − 1] and Cm
j = m!

j!(m−j)! . Here v(j) is the derivative of order
j.
We assume now that γ > |ν|

N
, then CN−1(t) = AN (t) + NγI is associated

with V-bounded coercive form for all t ∈ [0, τ ].
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By performing an integration by parts (see [1] [p.29] ) we obtain

v(N−1)(t) = −CN−1(t)−1
[

CN−2(t)v(N−2)(t) + ....+ C0(t)v(t)
]

+ e−tCN−1(t)vN−1 + e−tCN−1(t)CN−1(t)−1
(

C1(t)v0 + ...+ CN−2(t)vN−2

)

+
∫ t

0
e−(t−s)CN−1(t)

(

CN−1(t)− CN−1(s)
)

v(N−1)(s) ds

+
∫ t

0
e−(t−s)CN−1(t)

(

CN−2(t)− CN−2(s)
)

v(N−2)(s) ds

+ ....+
∫ t

0
e−(t−s)CN−1(t)

(

C0(t)− C0(s)
)

v(s) ds

+
∫ t

0
e−(t−s)CN−1(t)CN−1(t)−1

(

C0(t)v′(s) + ...+ CN−2(t)v(N−1)(s)
)

ds

+
∫ t

0
e−(t−s)CN−1(t)e−γsf(s) ds. (3.19)

We now proceed analogously to the proof of Proposition 3.9 to get v(N−1) ∈
L∞(0, τ ;V) and v(N−1)(t) ∈ V for all t ∈ [0, τ ].
From (3.19) we can see that

CN−1(t)v(N−1)(t) + CN−2(t)v(N−2)(t) + ....+ C0(t)v(t)

= R1vN−1(t) + e−tCN−1(t)
(

C1(t)v0 + ...+ CN−2(t)vN−2

)

+ CN−1(t)(QCN−1
v(N−1))(t) + ...+ CN−1(t)(QC0v)(t)

+
∫ t

0
e−(t−s)CN−1(t)

(

C0(t)v′(s) + ...+ CN−2(t)v(N−1)(s)
)

ds+ (L(e−γ.f))(t).

We now proceed analogously to the proof of Theorem 3.10 to get v ∈
HN (0, τ ;H) ∩WN−1,∞(0, τ ;V). Hence, u ∈ HN (0, τ ;H) ∩WN−1,∞(0, τ ;V)
and this finishes the proof.

4 Optimality of the results

Definition 4.1. Let X be a Banach space, let p, q ∈ [1,∞], and α ∈ (0, 1).
A Bochner measurable function f : [0, τ ]→ X is in the homogeneous Besov
space Ḃα,p

q (0, τ ;X) if

‖f‖q
Ḃ

α,p
q (0,τ ;X)

=
∫ τ

0

1
lαq

(
∫ τ

l
‖f(t)− f(t− l)‖pXdt)

q

p
dl

l
<∞.

We note that Ḃα,2
2 (0, τ ;X) = Ḣα(0, τ ;X) and Ḣα(0, τ ;X) ⊂ Ḃα,2

q (0, τ ;X)
for all q > 2.
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Proposition 4.2. Let p ∈ [1,∞) and q ∈ (2,∞). There exists a, b coercive,

symmetric, non-autonomous forms with A(.),B(.) ∈ Ḃ
1
2

,p
q (0, τ ;L(V,V ′)) such

that (3.1) does not has maximal L2−regularity in H.

Remark 4.3. Since Ḣ
1
2 (0, τ ;X) ⊂ Ḃ

1
2

,2
q (0, τ ;X) ⊂ Ḣ 1

2
−ǫ(0, τ ;X), ǫ > 0 for

all q > 2. Then the regularity assumption in Theorem 3.10 is optimal and
provides the best positive result on this problem.

Proof. Let p ∈ [1,∞), q ∈ (2,∞). According to [8], there exist a Gelfand
triple V →֒ H →֒ V ′ and a coercive, symmetric, non-autonomous forms

a(t) with A(.) ∈ Ḃ
1
2

,p
q (0, τ ;L(V,V ′)) that does not satisfy the maximal L2-

regularity in H. The example in [8] proves that there exists f ∈ L∞(0, τ ;H)
such that the solution v to the first order Cauchy problem

{

v′(t) +A(t) v(t) = f(t), t-a.e.
v(0) = 0.

is in H1(0, τ ;V ′) ∩ L∞(0, τ ;V), but v′(t) /∈ H for all t ∈ [0, τ ]. Now, we put
b(t) = a(t)+I and u(t) =

∫ t
0 e

−(t−s)v(s) ds. Consequently, u(t)+u′(t) = v(t)
and so u′(t) + u′′(t) = v′(t).
We get by Theorem 3.1 that u ∈ H2(0, τ ;V ′) ∩ H1(0, τ ;V) is the unique
solution to the problem











u′′(t) + (A(t) + I)u′(t) +A(t)u(t) = f(t) t-a.e.

v(0) = 0, v′(0) = 0.
(4.1)

Note that u ∈ H2(0, τ ;H) if and only if v ∈ H1(0, τ ;H). But v /∈ H1(0, τ ;H),
hence, u /∈ H2(0, τ ;H) and so Problem (4.1) deos not have maximal L2-
regularity in H.

5 Semilinear equation

Let F (t, x, y) : (0, τ) × H × H → H and F0(t) = F (t, 0, 0). Assume that
F0 ∈ L2(0, τ ;H) and F (., x, y) satisfies the following continuity property:
for any ǫ > 0 there exists a constant Nǫ > 0 such that

‖F (., u, u′)− F (., v, v′)‖2L2(0,τ ;H)

≤ ǫ‖u− v‖p
MR(V,H) +Nǫ

[

‖u′ − v′‖2L2(0,τ ;H) + ‖u− v‖2L2(0,τ ;V)

]

, (5.1)

for any u, v ∈MR(V,H).

Example 5.1. If we assume that ‖F (t, x1, x2) − F (t, y1, y2)‖ ≤ K
[

‖x1 −

y1‖V + ‖x2 − y2‖V
]

,K > 0, x1, x2, y1, y2 ∈ V, t ∈ (0, τ) then the conditions
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(5.1) is satisfied. Indeed, let u, v ∈MR(V,H). One has by Lemma 5.2

‖F (., u, u′)− F (., v, v′)‖2L2(0,τ ;H) ≤ K2‖u− v‖2H1(0,τ ;V)

=
K2

δ

[

δ‖u− v‖2H1(0,τ ;V)

]

≤ 2
K2

δ

∫ τ

0
Re (A(t)(u− v)(t) + B(t)(u− v)′(t), (u− v)′(t)) dt

+ L
K2

δ
‖u− v‖2L2(0,τ ;V)

≤ ǫ‖A(.)(u− v) + B(.)(u− v)′‖2L2(0,τ ;H)

+Nǫ

[

‖u′ − v′‖2L2(0,τ ;H) + ‖u− v‖2L2(0,τ ;V)

]

≤ ǫ‖u− v‖p
MR(V,H) +Nǫ

[

‖u′ − v′‖2L2(0,τ ;H) + ‖u− v‖2L2(0,τ ;V)

]

,

where Nǫ = sup{4K4

δ2ǫ
, LK2

δ
}, and in the second inequality we have used the

basic inequality ab ≤ a2

ǫ
+ ǫb2, a, b, ǫ > 0.

Lemma 5.2. Let u ∈ H1(0, τ ;V). We have

δ
[

‖u‖2L2(0,τ ;V) + ‖u′‖2L2(0,τ ;V)

]

≤ 2
∫ τ

0
Re 〈A(t)u(t) + B(t)u′(t), u′(t)〉 dt

+ L‖u‖2L2(0,τ ;V),

with L = 2(M2

δ
+ δ).

Proof. Let u ∈ H1(0, τ ;V), we get
∫ τ

0
Re 〈A(t)u(t) + B(t)u′(t), u′(t)〉 dt

=
∫ τ

0
Re 〈B(t)u′(t);u′(t)〉 dt

+
∫ τ

0
Re 〈A(t)u(t);u′(t)〉 dt

≥ δ
∫ τ

0
‖u′(t)‖2V dt−M

∫ τ

0
‖u(t)‖V‖u′(t)‖V dt

≥ δ
∫ τ

0
‖u′(t)‖2V dt−

M2

δ

∫ τ

0
‖u(t)‖2V dt−

δ

2

∫ τ

0
‖u′(t)‖2V dt,

where in the last inequality we have used the basic inequality 2ab ≤ a2

δ
+

δb2, a, b > 0. Therefore

δ
[

‖u‖2L2(0,τ ;V) + ‖u′‖2L2(0,τ ;V)

]

≤ 2
∫ τ

0
Re 〈A(t)u(t) + B(t)u′(t), u′(t)〉 dt

+ 2(
M2

δ
+ δ)‖u‖2L2(0,τ ;V),
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In the following theorem we assume the same assumptions with Theorem
3.10 for B(.) and A(.).

Theorem 5.3. Let f ∈ L2(0, τ ;H), u0, u1 ∈ V. Assume that (5.1). Then the
semilinear equation











u′′(t) + B(t)u′(t) +A(t)u(t) = F (t, u, u′) t-a.e.

u(0) = u0, u
′(0) = u1.

(5.2)

admits a unique solution u ∈MR(V,H).
Moreover, there is C > 0 independent of u0, u1, F0 such that

‖u‖MR(V,H) ≤ C
[

‖u0‖V + ‖u1‖V + ‖F0‖L2(0,τ ;H)

]

. (5.3)

Proof. Let u0, u1 ∈ V. Since by Proposition 3.12, T r(V,H) = V × V, then
there exists v ∈MR(V,H) (with minimal norm) such that v(0) = u0, v

′(0) =
u1 and

‖v‖MR(V,H) =
[

‖u0‖V + ‖u1‖V
]

. (5.4)

We introduce the subspace

MR0(V,H) := {w ∈MR(V,H) : w(0) = 0, w′(0) = 0}.

We equip this subspace with the norm w → ‖w′′‖L2(0,τ ;H) + ‖w′‖L∞(0,τ ;V) +
‖B(.)w′ +A(.)w‖L2(0,τ ;H). For w ∈MR0(V,H) we define the function

G(t, w,w′) = F (t, w + v, w′ + v′)−
(

v′′(t) + B(t)v′(t) +A(t)v(t)
)

, t ∈ (0, τ).

It easy to see thatG satisfies the condition (5.1), t 7→ G(t, w,w′) ∈ L2(0, τ ;H), G(t, 0, 0) =

F (t, v, v′)−
(

v′′(t) + B(t)v′(t) +A(t)v(t)
)

. Moreover,

‖G(., 0, 0)‖L2(0,τ ;H) ≤ ‖F (., v, v′)− F (., 0, 0)‖L2(0,τ ;H) + ‖F (., 0, 0)‖L2(0,τ ;H)

+ ‖v′′ + B(.)v′ +A(.)v‖L2(0,τ ;H)

≤ C1‖v‖MR(V,H) + ‖F0‖L2(0,τ ;H)

≤ C
[

‖F0‖L2(0,τ ;H) + ‖u0‖V + ‖u1‖V
]

. (5.5)

For w ∈MR0(V,H) consider the linear equation










z′′(t) + B(t)z′(t) +A(t)z(t) = G(t, w,w′) t-a.e.

z(0) = 0, z′(0) = 0.
(5.6)
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By Theorem 3.10, this equation admits a unique solution z ∈ MR0(V,H).
We define

S : MR0(V,H) → MR0(V,H)

w 7→ z.

For w1, w2 ∈MR0(V,H) we have by Theorem 3.10 and (5.1)

‖Sw1 − Sw2‖2MR0(V,H)

≤ N‖G(., w1, w
′
1)−G(., w2, w

′
2)‖2L2(0,τ ;H)

≤ Nǫ‖w1 − w2‖2MR0(V,H) +NNǫ

[

‖w′
1 − w′

2‖2L2(0,τ ;H) + ‖w1 − w2‖2L2(0,τ ;V)

]

≤ Nǫ‖w1 − w2‖pMR0(V,H)

+NNǫ

[

∫ τ

0
s

∫ s

0
‖w′′

1(r)− w′′
2(r)‖2 dr ds+

∫ τ

0
s

∫ s

0
‖w′

1(r)− w′
2(r)‖2V dr ds

≤ Nǫ‖w1 − w2‖pMR0(V,H)

+NNǫτ
[

∫ τ

0

∫ s

0
‖w′′

1(r)− w′′
2(r)‖2 + ‖w′

1(r)− w′
2(r)‖2V dr ds

]

≤ Nǫ‖w1 − w2‖pMR0(V,H)

+NNǫτ
[

∫ τ

0
‖(w1 − w2)′′‖2L2(0,s;H) + ‖(w1 − w2)′‖2L2(0,s;V)

+ ‖B(.)(w1 − w2)′ +A(.)(w1 − w2)‖2L2(0,s;H) ds
]

.

Set K0 := Nǫ and K1 := 2NNǫτ. Then repeating the above inequality and
using the identity

∫ t

0

∫ s1

0
...

∫ sn−1

0
dsn...ds1 =

1
n!
tn,

we obtain

‖Snw1 − Snw2‖2MR0(V,H) ≤
n
∑

0

(

n
k

)

Kn−k
0 (K1τ)k 1

k!
‖w1 − w2‖2MR0(V,H)

≤ (2K0)n
[

max
k=0,..,n

(

(

K−1
0 τK1

)k

k!

)]

‖v1 − v2‖2MR0(V,H).

For the second inequality we use
∑n

0

(

n
k

)

= 2n.Note that
[

maxk=0,..,n

(

(

K−1
0 τK1

)k

k!

)]

is bounded for all n ∈ N∗.
Now, we choose ǫ < 1

4N
, which gives K0 <

1
4 and n sufficiently large to get

‖Snw1 − Snw2‖pMR0(V,H) <
1
2n

[

max
k=1,..,n

(

(

K−1
0 τK1

)k

k!

)]

‖w1 − w2‖pMR0(V,H)

< ‖w1 − w2‖pMR0(V,H).
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Then Sn is a contraction on MR0(V,H) and this yields the existence and
uniqueness of a solution z ∈MR0(V,H) to the equation











z′′(t) + B(t)z′(t) +A(t)z(t) = G(t, z, z) t-a.e.

z(0) = 0, z′(0) = 0.

It remains to prove the apriori estimate. Indeed, from the linear equation
and (5.1) we have for all ǫ > 0

‖z‖2MR0(V,H) ≤ N‖G(., z, z′)‖2L2(0,τ ;H)

≤ 2N‖G(., z, z′)−G(., 0, 0)‖2L2(0,τ ;H) + 2N‖G(., 0, 0)‖2L2(0,τ ;H)

≤ 2Nǫ‖z‖2MR0(V,H) + 2NNǫ

[

‖z‖2L2(0,τ ;V) + ‖z′‖2L2(0,τ ;H)

]

+ 2N‖G(., 0, 0)‖2L2(0,τ ;H)

≤ 2Nǫ‖z‖2MR0(V,H) +NNǫτ

∫ τ

0

[

‖z′‖2L2(0,s;V) + ‖z′′‖2L2(0,s;H)

]

ds

+ 2N‖G(., 0, 0)‖2L2(0,τ ;H).

Taking ǫ = 1
4N

and applying Gronwall’s lemma gives that there exists
C ′ > 0 such that

‖z‖MR0(V,H) ≤ C ′‖G(., 0, 0)‖L2(0,τ ;H). (5.7)

Now, we set u = z+v. Then u is the unqiue solution to (5.2) and from (5.4),
(5.5) and (5.7) we obtain

‖u‖MR(V,H) ≤ ‖z‖MR(V,H) + ‖v‖MR(V,H)

≤ C ′‖G(., 0, 0)‖L2(0,τ ;H) + ‖u0‖V + ‖u1‖V
≤ C

[

‖F0‖L2(0,τ ;H) + ‖u0‖V + ‖u1‖V
]

.

6 Applications

This section is devoted to some applications of the results given in the pre-
vious sections. We give examples illustrating the theory without seeking for
generality.

6.1 Laplacian with time dependent Robin boundary condi-

tions.

Let Ω be a bounded domain of Rd, with Lipschitz boundary Γ. Denote by
σ the (d− 1)−dimensional Hausdorff measure on Γ. Let

β1, β2 : [0, τ ]× Γ→ R
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be bounded measurable functions such that

∫ τ

0

∫ τ

0

‖βi(t, .)− βi(s, .)‖2L∞(∂Ω)

|t− s|1+2α
ds dt <∞ (6.1)

for some α > 1
2 . In particular, βi(., x) ∈ Ḣα(0, τ), i = 1, 2. We consider the

forms a, b
a, b : [0, τ ]×H1(Ω)×H1(Ω)→ R

defined by

a(t, u, v) =
∫

Ω
∇u∇v dx+

∫

Γ
β1(t, .)uv dσ

and
b(t, u, v) =

∫

Ω
∇u∇v dx+

∫

Γ
β2(t, .)uv dσ.

The forms a, b are H1(Ω)−bounded, quasi-coercive and symmetric. The
first statement follows readily from the continuity of the trace operator and
the boundedness of βi, i = 1, 2. The second one is a consequence of the
inequality

∫

Γ
|u|2dσ ≤ ε‖u‖2H1(Ω) + Cε‖u‖2L2(Ω)

which is valid for all ε > 0 (Cε is a constant depending on ε). Note that
this is a consequence of compactness of the trace as an operator from H1(Ω)
into L2(Γ, dσ).
Let A(t) be the operator associated with a(t, ·, ·) and B(t) the operator
associated with b(t, ·, ·). Note that the part A(t) in H := L2(Ω) of A(t) is
interpreted as (minus) the Laplacian with time dependent Robin boundary
conditions:

∂νv + β1(t, .)v = 0 on Γ.

Here we use the following weak definition of the normal derivative. Let
v ∈ H1(Ω) such that ∆v ∈ L2(Ω). Let h ∈ L2(Γ, dσ). Then ∂νv = h by
definition if

∫

Ω∇v∇w dx +
∫

Ω ∆v∇w dx =
∫

Γ hw dσ for all w ∈ H1(Ω).
Based on this definition, the domain of A(t) is the set

D(A(t)) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω), ∂νu+ β1(t, .)u = 0}

and for u ∈ D(A(t)) the operator is given by A(t)u := −∆u. The same
definition for the operator B(t).
Note that for any ε > 0

|a(t;u, v)− a(s;u, v)|

= |
∫

∂Ω
[β1(t, .)− β1(s, .)]uv dσ|

≤ ‖β1(t, .)− β1(s, .)‖L∞(∂Ω)‖u‖
H

1
2 +ε(Ω)

‖v‖
H

1
2 +ε(Ω)

,
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where we used the fat that the trace operator is bounded from H
1
2

+ε(Ω)
into L2(∂Ω).
Let F (t, x, y) : (0, τ) × H × H → H and F0(t) = F (t, 0, 0). Assume that
F0 ∈ L2(0, τ ;H) and F satisfies the following continuity property:

‖F (t, x1, y1)− F (t, x2, y2)‖L2(Ω) ≤ K
[

‖x1 − x2‖H1(Ω) + ‖y1 − y2‖H1(Ω)

]

,

where K > 0, x1, y1, x2, y2 ∈ H1(Ω), t ∈ (0, τ). In the next proposition we
suppose that w1 ∈ H1(Ω), w0 ∈ H1(Ω).

Proposition 6.1. There exists a unique solution to the problem






















w′′(t)−∆w′(t)−∆w(t) = F (t, w,w′) t-a.e.

w(0) = w0, w
′(0) = w1,

∂ν

(

w′(t) + w(t)
)

+ β2(t, .)w′(t) + β1(t, .)w(t) = 0 on Γ,

(6.2)

where w ∈ H2(0, τ ;L2(Ω)) ∩W 1,∞(0, τ ;H1(Ω)) and w′(t) ∈ V for all t ∈
[0, τ ].

The proposition follows from Theorem 5.3.
Maximal L2−regularity for the Laplacian with time dependent Robin bound-
ary condition with β1 = β2 and w0 = w1 = 0 was previously proved in [15]
and maximal L2−regularity with t → β1(t, ·), β2(t, ·) ∈ C1 was proved in
[22], for t→ β1(t, ·), β2(t, ·) ∈ C 1

2
+ǫ the result was proved in [1].

6.2 Elliptic operators on Rd

Let H = L2(Rd) and V = H1(Rd). Suppose that al
jk ∈ L∞(I × Rd), where

I = [0, τ ] and j, k ∈ (1, ..., d), l ∈ (1, 2) and there exists a constant α > 0,
such that

d
∑

j,k=1

al
jk(t, x)ξi ξj ≥ δ |ξ|2

(

t ∈ I, x ∈ Rd, ξ ∈ Cd
)

.

We put Al(t, x) = (al
jk(t, x))1≤j,k≤d. We define the forms

a
l(t, u, v) =

d
∑

j,k=1

∫

Rd
al

jk(t, x)∂ju ∂kv dx

with domain V = H1(Rd). For each t, the corresponding operator is formally
given by

A(t)l = −
d
∑

j,k=1

∂j(al
jk(t, x)∂k) = −div

(

(al
jk(t, ·))jk∇

)

.

31



Next we assume that Al(t, x) ∈ H 1
2 (0, τ ;L∞(Cd2

)). We note that

‖A(t)l −A(s)l‖L(V,V ′) ≤M ′‖Al(t, .)−Al(s, .)‖
L∞(Cd2

)

for some contant M ′. This implies that A(.)l ∈ H
1
2 (0, τ ;L(V,V ′)). We

assume in addition that each al
jk is Hölder continuous of order α for some

α > 0 with
|al

jk(t, x)− al
jk(s, x)| ≤ c|t− s|α

for a.e. x ∈ Rd. This assumption implies in particular (3.5). We could
also weaken this assumption by formulating it in terms of the modulus of
continuity, see (3.7).
We are now allowed to apply Theorem 3.10. We obtain the following propo-
sition

Proposition 6.2. Let u0, u1 ∈ H1(Rd) and f ∈ L2(0, τ ;L2(Rd)). There
exists a unique u ∈ H2(I;L2(Rd)) ∩W 1,∞(I;H1(Rd)) such that

{

u′′(t)− div
(

(a1
jk(t, ·))jk∇u′(t)

)

− div
(

(a2
jk(t, ·))jk∇u(t)

)

= f t-a.e.

u(0) = u0, u
′(0) = u1.

(6.3)

As we already mentioned before, the uniform Kato square root property
required in Theorem 3.10 is satisfied in this setting, see [11](Theorem 6.1).
Then Proposition 6.2 follows from Theorem 3.10.

References

[1] M. Achache, Maximal regularity for the damped wave equations. J El-
liptic Parabol Equ (2020). https://doi.org/10.1007/s41808-020-00084-
8.

[2] M. Achache, E.M. Ouhabaz, Non-autonomous right and left multiplica-
tive perturbations and maximal regularity. Studia Math. 242 (1) (2018),
1-30.

[3] M. Achache, E.M. Ouhabaz, Lions’ maximal regularity problem with
H

1
2 -regularity in time. J. Differential Equations, 266 (2019) 3654-3678.

[4] H. Amann, Linear and quasilinear parabolic problems, Volume I, Ab-
stract Linear Theory Birkhäuser, Basel, 1995.

[5] H. Amann, Compact embeddings of vector-valued Sobolev and Besov
spaces. Glas. Mat. Ser. III 35(55), no. 1 (2000), 161-177.

32



[6] W. Arendt, C.J.K. Batty, M. Hieber. and F. Neubrander, "Vector-
valued Laplace Transforms and Cauchy Problems," Birkäuser Verlag,
Basel, 2011.

[7] W. Arendt, D. Dier, H. Laasri, E.M. Ouhabaz, Maximal regularity for
evolution equations governed by non-autonomous forms, Adv. Differen-
tial Equations 19 (2014), no. 11-12, 1043-1066.

[8] W. Arendt, D. Dier, S. Fackler, J. L. Lions’ problem on maximal regu-
larity. Arch. Math. (Basel) 109 (2017), no. 1, 5972.

[9] W. Arendt, R. Chill, S. Fornaro, C. Poupaud, Lp-maximal regularity
for non-autonomous evolution equations. J. Differential Equations 237
(2007), no. 1, 1-26.

[10] W. Arendt, S. Monniaux, Maximal regularity for non-autonomous
Robin boundary conditions. Math. Nachr. 1-16 (2016).

[11] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, Ph. Tchamitchian,
The solution of the Kato square root problem for second order elliptic
operators on Rn, Ann. of Math. (2) 156 (2002), no. 2, 633-654.

[12] P. Auscher, M. Egert, On non-autonomous maximal regularity for ellip-
tic operators in divergence form, Arch. Math (Basel) 107, no. 3 (2016)
271-284.

[13] C. Bardos, A regularity theorem for parabolic equations, J. Functional
Analysis 7 (1971) 311-322.

[14] C. J. K. Batty, R. Chill, S. Srivastava, Maximal regularity in interpo-
lation spaces for second order Cauchy problems, Operator semigroups
meet complex analysis, harmonic analysis and mathematical physics,
49-66, Oper. Theory Adv. Appl. 250.

[15] C. J. K. Batty, R. Chill, S. Srivastava, Maximal regularity for second
order non-autonomous Cauchy problems, Studia Math. 189 (2008), no.
3, 205-223.

[16] J. Bergh, J. Löfström, Interpolation spaces. An introduction.
Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-
Verlag, Berlin, 1976.

[17] M. Cowling, I. Doust, A. McIntosh, A. Yagi, Banach space operators
with a bounded H∞ functional calculus, J. Austral. Math. Soc. Ser. A
60 (1996), no. 1, 51-89.

[18] L. de Simon, Un applicazione della teoria degli integrali singolari allo
studio delle equazioni differenziali lineari astratte del primo ordine,

33



Rendiconti del Seminario Matematico della Universitá di Padova 34
(1964), 205-223.

[19] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology. Vol. 5, Springer-Verlag, Berlin, 1992.

[20] D. Dier, Non-autonomous maximal regularity for forms of bounded vari-
ation. J. Math. Anal. Appl. 425, no. 1 (2015), 33-54.

[21] D. Dier, Non-Autonomous Cauchy Problems Governed by Forms, PhD
Thesis, Universität Ulm, 2014.

[22] D. Dier, E.M. Ouhabaz, Maximal regularity for non-autonomous second
order Cauchy problems, Integral Equations Operator Theory 78 (2014),
no. 3, 427-450.

[23] D. Dier, R. Zacher, Non-autonomous maximal regularity in Hilbert
spaces. J. Evol. Equ. (2017), no. 3, 883-907.

[24] S. Fackler, J.L. Lions’ problem concerning maximal regularity of equa-
tions governed by non-autonomous forms. Ann. Inst. H. Poincaré Anal.
Non Linéaire 34 (2017), no. 3, 699-709.

[25] S. Fackler, Non-autonomous maximal Lp-regularity under
fractional Sobolev regularity in time. Preprint on arxiv:
https://arxiv.org/abs/1611.09064.

[26] C. Gallarati, M. Veraar, Maximal regularity for non-autonomous equa-
tions with measurable dependence on time. Potential Anal. 46 (2107),
no. 3, 527-567.

[27] B. Haak, E.M. Ouhabaz, Maximal regularity for non-autonomous evo-
lution equations, Math. Ann. 363 (2015), no. 3-4, 1117-1145.

[28] M. Hieber, S. Monniaux, Pseudo-differential operators and maximal
regularity results for non-autonomous parabolic equations. Proc. Amer.
Math. Soc.128 (2000), no. 4, 1047-1053.

[29] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach
Spaces. Volume I Martingales and Littlewood-Paley Theory, volume
63 of Ergebnisse der Mathematik undihrer Grenzgebiete (3). Springer,
2016.

[30] N.J. Kalton, G. Lancien, A solution to the problem of Lp-maximal
regularity, Math. Z.235 (2000), 559-568.

[31] T. Kato, Fractional powers of dissipative operators. J. Math. Soc.Japan
13, (1961), 246-274.

34

https://arxiv.org/abs/1611.09064


[32] J.L. Lions, Équations Différentielles Opérationnelles et Problèmes aux
Limites, Die Grundlehren der mathematischen Wissenschaften, Bd.
111, Springer-Verlag, Berlin, 1961.

[33] A. Lunardi, Interpolation theory. Second. Appunti. Scuola Normale Su-
periore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore
di Pisa (New Series)]. Edizioni della Normale, Pisa, 2009.

[34] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic
Problems, Progr. Nonlinear Differential Equations Appl., vol. 16,
Birkhäuser, Basel, 1995.

[35] A. McIntosh, On the comparability of A
1
2 and A∗ 1

2 , Proc. Amer.Math.
Soc. 32 (1972), 430-434.

[36] E.M. Ouhabaz, Analysis of Heat Equations on Domains. London Math-
ematical Society Mono-graphs Series, vol. 31, Princeton University
Press, Princeton NJ, 2005.

[37] A. Pazy, "Semigroups of Linear Operators and Applications to Partial
Differential Equations," Springer-Verlag, Berlin, 1983.

[38] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.

[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Opera-
tors (second ed.), Johann Ambrosius Barth, Heidelberg, 1995.

[40] L. Weis, Operator-valued fourier multiplier theorems and maximal Lp-
regularity, Mathematische Annalen 319 (2001), 735-758.

35


	Introduction
	Preparatory lemmas
	Maximal Regularity under Fractional Sobolev Regularity in time
	 Optimality of the results
	Semilinear equation
	Applications
	Laplacian with time dependent Robin boundary conditions.
	Elliptic operators on Rd 


