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Univ. Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
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A new theory is presented for the generation of two-dimensional internal wave beams,
including the effects of viscosity and unsteadiness on the propagation of the waves, and
extending to the near field the classical theory of Lighthill for the far field. For this, the
forcing is assumed to be of compact support. Several equivalent expressions of the waves
are obtained, each associatedwith the choice of a support of simple shape embedding the
actual support of the forcing. When the two match, the expression of the waves is valid
everywhere in the fluid. For an oscillating body, the existence of critical points where the
waves rays are tangential to the body is correctly accounted for, an essential requirement
with regard to later inclusion of nonlinear effects and boundary layer eruption into the
analysis, both of which take their origin at the critical points. Embedding supports in the
shape of a circle, an ellipse and a strip are considered. Line forcing is also considered, on
a weaker assumption of rapid decrease at infinity. The analysis reduces to the classical
analysis of Hurley & Keady in the isotropic case of an oscillating circular cylinder, and
is otherwise applied to four anisotropic oscillating bodies: an elliptic cylinder, a vertical
plate, a vertical wave generator and a thin Gaussian bump.

Key words: To be added during the typesetting process

1. Introduction
Internal gravity waves in density-stratified fluids, and the similar inertial waves in

rotating fluids, first came to the attention of the scientific community owing to the
striking pattern, a St. Andrew’s Cross, that they form under oscillatory forcing; a pattern
predicted and visualized by Görtler (1943) and Mowbray & Rarity (1967) for internal
waves, and Görtler (1944) and Oser (1958) for inertial waves. For several decades their
understanding rested on group velocity ideas, put into quantitative use by Lighthill
(1978, §4.10) in the far field, namely at large distances from the forcing. The analyses of
the internal shear layers that develop at the cross edges by Thomas & Stevenson (1972),
Walton (1975), Rieutord, Georgeot & Valdetarro (2001), Ogilvie (2005), Machicoane et
al. (2015), Le Dizès & Le Bars (2017) and Beckebanze et al. (2018), together with the
analyses of nonlinear effects by Tabaei & Akylas (2003) and Kataoka & Akylas (2015),
all involve a far-field assumption in one way or another.
The advent of quantitative measurement techniques such as synthetic schlieren for

density disturbances (Sutherland et al. 1999; Dalziel, Hughes & Sutherland 2000) and
particle image velocimetry for fluid velocities (Westerweel 1997) showed the need for a
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2 B. Voisin

theory valid not only in the far field, but also in the near field, close to the forcing.When
the forcing is a body of simple shape, oscillating in an inviscid fluid, a combination of
coordinate stretching and analytic continuation allows the calculation of the waves at
arbitrary distance from the body. This method, introduced by Bryan (1889) for inertial
waves and Hurley (1972) for internal waves, has been applied to circular and elliptic
cylinders by Hurley (1972, 1997) and Appleby & Crighton (1986), and to spheres and
spheroids by Hendershott (1969), Krishna & Sarma (1969), Sarma & Krishna (1972), Lai
& Lee (1981), Appleby & Crighton (1987), Voisin (1991), Rieutord et al. (2001) and Davis
(2012). The waves manifest themselves as a set of critical rays, with singular amplitude
at the rays and phase jumps across them.
Comparison with experiment requires the inclusion of viscosity, to smooth out the

singularities. A decisive contribution has been made by Hurley & Keady (1997), who
rewrote Hurley’s (1997) inviscid solution for the elliptic cylinder as a spectral integral,
and added, at each wavenumber, Lighthill’s (1978, §4.10) viscous attenuation factor for
the far field into it; see also Sutherland (2010, §5.2). Quantitative agreement has been
found excellent with experiments involving a circular cylinder, both in the far field
(Sutherland et al. 1999, 2000) and in the near field (Zhang, King & Swinney 2007). The
agreement was more qualitative for an elliptic cylinder (Sutherland & Linden 2002), but
remained consistent with what can be expected from a linear theory. As a result, the
idea has emerged that Lighthill’s far-field picture of the effect of viscosity applied to all
oscillating bodies, everywhere in the fluid.
A different picture has been obtained, however, using direct calculation for thin forc-

ing, namely line forcing in two dimensions and plane forcing in three dimensions.
Lighthill’s (1978, §4.10) theory predicts that the evolution of the waves away from the
forcing is set by the distance along the axes of the St. Andrew’s Cross: in the inviscid
case, the determination of the multivalued functions involved in the expression of the
waves depends on this distance; in the viscous case, the attenuation of the waves at each
wavenumber depends on it. By contrast, for thin forcing, the evolution of the waves is
set by the distance normal to the forcing. This can be seen in the inviscid calculations of
Oser (1957), Reynolds (1962), Martin & Llewellyn Smith (2011, 2012b) and Davis (2012)
for a horizontal disc, Hurley (1969) for an inclined plate and Llewellyn Smith & Young
(2003) for a vertical plate, or in the viscous calculations of Kistovich & Chashechkin
(1999a, b) for a two-dimensional inclined plate, Vasil’ev & Chashechkin (2003, 2006a,
b, 2012) for a three-dimensional inclined plate, Tilgner (2000), Bardakov, Vasil’ev &
Chashechkin (2007), Davis & Llewellyn Smith (2010), Le Dizès (2015) and Le Dizès &
Le Bars (2017) for a horizontal disc, Maurer et al. (2017) and Boury, Peacock & Odier
(2019) for a horizontal wave generator and Beckebanze, Raja &Maas (2019) for a vertical
wave generator. To some extent this can also be seen in the inviscid calculations of Gabov
(1985) for a horizontal plate, Gabov & Pletner (1985) for an inclined plate, Gabov &
Krutitskii (1987) for a vertical plate and Gabov & Pletner (1988) for a horizontal disc,
although only Gabov & Pletner (1985) considered the determination of the multivalued
functions explicitly.
Different measures have been taken to reconcile the two pictures with each other. For

the waves generated by oscillatory flow over an isolated Gaussian bump at the ocean
bottom, Peacock, Echeverri & Balmforth (2008) used the analysis of Balmforth, Ierley
& Young (2002) for periodic bottom topography, obtaining first a viscous attenuation
factor depending on the vertical coordinate, then switching to one depending on the
along-cross coordinate, attributing the switch to the change from periodic to isolated
topography. Kistovich &Chashechkin (1994, 1995) considered the reflection of the wave
beam generated by a point source at an inclined plane; they obtained first a reflected
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beam whose integral expression included a viscous attenuation factor depending on the
normal coordinate to the plane, then changed variable and deformed the contour of
integration in the complex wavenumber plane to switch to a new expression in which
the viscous attenuation factor depended on the along-beam coordinate.
The present paper is part of a two-step effort to build a new theory of the generation

of internal waves by an oscillating body, valid for low viscosity and at arbitrary distance
from the body. First, applying the boundary integral method, a representation of the
body is devised as a distribution of singularities at its surface; at this stage, viscosity is
ignored. The theoretical foundations of the method have been discussed by Kapitonov
(1980), Skazka (1981), Gabov & Shevtsov (1983, 1984) and Martin & Llewellyn Smith
(2012a). Themethod has been applied analytically to a horizontal plate by Gabov (1985),
an inclined plate by Gabov & Pletner (1985), one or several vertical plates by Gabov &
Krutitskii (1987), Llewellyn Smith &Young (2003), Nycander (2006) andMusgrave et al.
(2016), a horizontal disc by Gabov & Pletner (1988) and a circular cylinder by Sturova
(2001). Numerically it has been applied to various topographies by Pétrélis, Llewellyn
Smith & Young (2006), Balmforth & Peacock (2009), Echeverri & Peacock (2010) and
Echeverri et al. (2011), and to circular and elliptic cylinders by Sturova (2006, 2011).
Secondly, the representation being known, Fourier analysis is used to calculate thewaves
that it generates in a viscous fluid. This proceduremay be viewed as a generalization and
systematization of the approach of Hurley (1997) and Hurley & Keady (1997).
We consider the second step here, in the two-dimensional case. Section 2 presents the

classical approach of Lighthill (1978, §4.10) for the far field and discusses its extension
to the near field; the forcing is assumed isotropic, namely of circular shape. After a brief
derivation of the wave equation in §3, the simplest type of anisotropy is investigated
in §4, namely forcing of elliptic shape. As will be seen, it is not meant by this that the
source function needs to be exactly in the shape of a circle in §2 and an ellipse in §4, but,
rather, that its support is included inside this shape for the duration of the calculation.
The particular case of line forcing is considered in §5. The use of alternative integration
strategies, yielding simpler expressions valid in less extended domains, is presented in
§6, while §7 discusses unsteady effects. Section 8 applies the theory to four anisotropic
sources of particular interest, for which experimental measurements are available: an
elliptic cylinder, a vertical barrier, a wave generator and a thin Gaussian bump. Finally
§9 discusses the relevance of the approach, and points out the usefulness of the Green’s
function method. It is followed by Appendix A presenting the modifications to the the-
ory when, as is generally the case, the source function is not a standard function but a
distribution, and by Appendix B calculating the Green’s function.

2. Wave structure
2.1. Inviscid case

Any quantity, 𝜓 say, associated with internal gravity waves in an inviscid uniformly
stratified Boussinesq fluid satisfies an equation of the form

( ∂
2

∂𝑡2∇
2 + 𝑁2∇2

h) 𝜓 = 𝑞, (2.1)

where 𝑁 is the buoyancy frequency, 𝑧 the vertical coordinate, 𝛁 = (∂/∂𝑥, ∂/∂𝑦, ∂/∂𝑧)
the del operator, 𝛁h = (∂/∂𝑥, ∂/∂𝑦, 0) its original projection and 𝑞 a source term; see
for example Lighthill (1978, §4.1) or Voisin (1991). Assuming the source to be two-
dimensional and monochromatic, 𝑞 = 𝑓(𝑥, 𝑧) exp(−i𝜔0𝑡) with 𝜔0 < 𝑁, and introducing
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Fourier transforms according to

𝑓(𝑘,𝑚) =∬𝑓(𝑥, 𝑧) exp[−i(𝑘𝑥 + 𝑚𝑧)] d𝑥 d𝑧, (2.2a)

𝑓(𝑥, 𝑧) = 1
(2π)2

∬𝑓(𝑘,𝑚) exp[i(𝑘𝑥 + 𝑚𝑧)] d𝑘 d𝑚, (2.2b)

the solution of (2.1) follows as

𝜓 =
exp(−i𝜔0𝑡)

4π2 ∬
𝑓(𝑘,𝑚) exp[i(𝑘𝑥 + 𝑚𝑧)]

𝜔2
0𝜅2 − 𝑁2𝑘2

d𝑘 d𝑚, (2.3)

with 𝒙 = (𝑥, 𝑧) the position, 𝒌 = (𝑘,𝑚) the wavenumber vector and 𝑟 = (𝑥2 +𝑧2)1/2 and
𝜅 = (𝑘2 +𝑚2)1/2 their moduli.
Lighthill devised a method for the asymptotic evaluation of such Fourier integral in

the far field, as 𝑟 → ∞, first for a rapidly decreasing source (1960) then for a source of
compact support (1978, §4.9), with identical results. We adopt the former, more general
presentation; namely, the source function 𝑓(𝑥, 𝑧) is assumed to decrease asymptotically
faster than any inverse power of 𝑥 or 𝑧, so that its spectrum 𝑓(𝑘,𝑚) is a regular function
of the real variables 𝑘 and𝑚.
The asymptotic behaviour of the integral is expressed in terms of the singularities

of the integrand (Lighthill 1958, ch. 4). Given the regularity of 𝑓(𝑘,𝑚), these are the
solutions of the dispersion relation

𝐵(𝜔0, 𝒌) = 𝜔2
0𝜅2 − 𝑁2𝑘2 = 0. (2.4)

In the wavenumber plane this defines a wavenumber curve, represented in figure 1, in
the shape of a St. Andrew’s Cross with arms inclined at the angle 𝜃0 = arccos(𝜔0/𝑁) to
the horizontal. Writing

𝜔0 = 𝑁
|𝑘|
𝜅 , 𝒄g = (

∂𝜔0
∂𝑘 ,

∂𝜔0
∂𝑚 ) = 𝑁𝑚𝜅3 (𝑚,−𝑘) sign 𝑘, (2.5)

the group velocity 𝒄g, at which the wave energy propagates, is seen to be perpendicular
to 𝒌. Accordingly, each arm of the cross radiates waves perpendicular to itself, forming
another St. Andrew’s Cross in the physical plane, represented in figure 2, with arms
inclined at the angle 𝜃0 to the vertical.
We introduce characteristic coordinates (𝑥±, 𝑧±) such that

𝑥± = 𝑥 cos 𝜃0 ∓ 𝑧 sin 𝜃0, 𝑧± = ±𝑥 sin 𝜃0 + 𝑧 cos 𝜃0, (2.6)

and associated wavenumbers (𝑘±, 𝑚±) such that

𝑘± = 𝑘 cos 𝜃0 ∓𝑚sin 𝜃0, 𝑚± = ±𝑘 sin 𝜃0 +𝑚cos 𝜃0, (2.7)

as shown in figures 1 and 2. The dispersion relation simplifies to

𝐵(𝜔0, 𝒌) = 𝑁2𝑚+𝑚− = 0, (2.8)

and the equation of the wavenumber curve to

𝑚± = 0. (2.9)

The group velocity becomes

𝒄g = ±
𝑁sin 𝜃0
𝑘±

𝒆𝑧±, (2.10)
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with
𝒆𝑧± = ±𝒆𝑥 sin 𝜃0 + 𝒆𝑧 cos 𝜃0 (2.11)

a unit vector along the 𝑧±-axis. The two halves 𝑘± < 0 and 𝑘± > 0 of each arm 𝑚± = 0
of the cross are seen to radiate waves in opposite directions, shown in figure 1.
The contribution of each arm to integral (2.3) is evaluated in coordinates (𝑘±, 𝑚±),

writing

𝜓 =
exp(−i𝜔0𝑡)

4π2 ∫
∞

−∞
d𝑘± exp(i𝑘±𝑥±)∫

∞

−∞

𝑓±(𝑘±, 𝑚±)
𝐵(𝜔0, 𝒌)

exp(i𝑚±𝑧±) d𝑚±, (2.12)

where 𝑓±(𝑘±, 𝑚±) = 𝑓(𝑘,𝑚), then allowing 𝑚± to become complex and applying the
residue theorem to the inner integral. An additional condition is required to displace
the real pole (2.9) slightly off the path of integration. For this, Lighthill (1960, 1978, §4.9)
introduced an innovative formulation of the radiation condition, giving the frequency
an infinitesimal positive imaginary part 𝜖 ≪ 𝑁. The dispersion relation becomes

𝐵(𝜔0 + i𝜖, 𝒌) ∼ 𝑁2 [𝑚±𝑚∓ + 2i 𝜖𝑁(𝑘
2
± +𝑚2

±) cos 𝜃0] = 0, (2.13)

where
𝑚∓ = ∓𝑘± sin(2𝜃0) + 𝑚± cos(2𝜃0), (2.14)

providing a second-order equation for 𝑚± as a function of 𝑘±. To leading order in 𝜖/𝑁,
the pole (2.9) is displaced to

𝑚± ∼ ±i 𝜖
𝑁 sin 𝜃0

𝑘±. (2.15)

The path of integration is raised or lowered a distance 𝜇 depending on whether 𝑧± > 0
or 𝑧± < 0, respectively, so as to make the integral 𝑂[exp(−𝜇|𝑧±|)]. With an error of this
order, the integral evaluates to 2iπ sign 𝑧± times the sum of the residues of the integrand
at any poles passed over in deforming the path. Given the regularity of 𝑓±(𝑘±, 𝑚±) for
real 𝑚±, and provided that 𝜖 is small enough, 𝜇 may be chosen such that no complex
singularity of 𝑓±(𝑘±, 𝑚±) is passed over, if any, and the only pole to consider is (2.15).
This procedure picks the pole with imaginary part of the same sign as 𝑧±, namely

𝑚± ∼ i 𝜖
𝑁 sin 𝜃0

|𝑘±| sign 𝑧±, (2.16)

subject to the condition
sign 𝑘± = ±sign 𝑧±, (2.17)

thereby allowing only one half of the arm of the cross to contribute to the radiation.
Physically, this amounts to imposing 𝒄g ⋅ 𝒙 > 0, with 𝒙 = (𝑥, 𝑧) the position, namely
to selecting the part of the wavenumber curve such that the component of the group
velocity along the direction of observation points outwards not inwards, consistent with
figure 1. The introduction of 𝜖 has fulfilled its use, and we may now let 𝜖 → 0, to get

𝑚± = 0 with sign 𝑘± = ±sign 𝑧±. (2.18)

An asymptotic expansion of the waves follows,

𝜓 ∼ −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∫

±∞sign𝑧±

0
𝑓±(𝑘±, 𝑚± = 0) exp(i𝑘±𝑥±)

d𝑘±
𝑘±

, (2.19)

valid in the far field as |𝑧±| → ∞. It was first obtained by Lighthill (1978, §4.10).
We are looking for an exact expression of the waves in the near field, at finite |𝑧±|. For
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this, more restrictive assumptions must be made about the source, which is assumed to
be of compact support of radius 𝑎, in the sense that 𝑓(𝑥, 𝑧) = 0 for 𝑟 > 𝑎. The spectrum
𝑓±(𝑘±, 𝑚±), being an integral over a finite domain, is an analytic function of the complex
wavenumbers 𝑘± and𝑚±; for each of them its modulus decreases asymptotically along
the real axis, is small for | Re 𝑘±| ≳ 1/𝑎 or | Re𝑚±| ≳ 1/𝑎, and grows exponentially along
the imaginary axis. Specifically, we have

|𝑓±(𝑘±, 𝑚±)| < exp[𝑎(| Im𝑘±| + | Im𝑚±|)]∬
𝑟<𝑎

|𝑓(𝑥, 𝑧)| d𝑥 d𝑧. (2.20)

This bound allows the path of integration of the inner integral in (2.12) to be closed
by a semi-circle at infinity in the half-plane where the imaginary part of 𝑚± is of the
same sign as 𝑧±: by a straightforward extension of Jordan’s lemma, the contribution of
the semi-circle vanishes provided that |𝑧±| > 𝑎, and the integral evaluates to 2iπ sign 𝑧±
times the sum of the residues of the integrand at any poles with imaginary part of the
same sign as 𝑧±.
Given the analyticity of 𝑓±(𝑘±, 𝑚±), the only pole to consider is, again, (2.16). The

waves follow immediately, when both |𝑧+| > 𝑎 and |𝑧−| > 𝑎, as

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

±∞sign𝑧±

0
𝑓±(𝑘±, 𝑚± = 0) exp(i𝑘±𝑥±)

d𝑘±
𝑘±

, (2.21)

or equivalently

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

∞

0
𝑓±(𝑘± = ±𝜅 sign 𝑧±, 𝑚± = 0)

× exp(±i𝜅𝑥± sign 𝑧±)
d𝜅
𝜅 . (2.22)

As a result, if four wave beams are defined as the contributions of the four half-arms of
the wavenumber curve, then at any given location two beams are received, one for the
half sign 𝑘+ = sign 𝑧+ of the arm𝑚+ = 0, and the other for the half sign 𝑘− = −sign 𝑧−
of the arm 𝑚− = 0. In the far field, as |𝑧±| → ∞ with 𝑥± fixed, the contribution of
one arm 𝑚± = 0 becomes dominant compared with that for the other arm 𝑚∓ = 0;
then (2.19) is recovered and each beam turns into a half-arm of the St. Andrew’s Cross
shown in figure 2 and observed experimentally by Görtler (1943), Mowbray & Rarity
(1967), Sutherland et al. (1999) and Zhang et al. (2007), among others.
Conversely, the line 𝑧+ = 0 is seen to separate the two beams 𝑘+ < 0 and 𝑘+ > 0

originating from the arm 𝑚+ = 0 of the wavenumber curve, and the line 𝑧− = 0 the
two beams 𝑘− < 0 and 𝑘− > 0 originating from the arm𝑚− = 0. For each beam, (2.22)
is ascertained to be valid from the distance |𝑧±| = 𝑎 where the beam leaves the source
behind, up to infinity. Being based on an upper bound (2.20), it can be valid closer to the
source, depending on the exact form of 𝑓±(𝑘±, 𝑚±); this, however, can only be assessed
on a case-by-case basis, as will be seen later in §8.1.

2.2. Viscous case
Viscosity acts as another equivalent way of setting which part of the wavenumber

curve is received at which location. The wave equation becomes

[( ∂∂𝑡 − 𝜈∇2) ∂
∂𝑡∇

2 + 𝑁2∇2
h] 𝜓 = 𝑞, (2.23)
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with 𝜈 the kinematic viscosity; see for example Voisin (2003). The response to two-
dimensional monochromatic forcing becomes

𝜓 =
exp(−i𝜔0𝑡)

4π2 ∬
𝑓(𝑘,𝑚) exp[i(𝑘𝑥 + 𝑚𝑧)]
𝜔2
0𝜅2 − 𝑁2𝑘2 + i𝜔0𝜈𝜅4

d𝑘 d𝑚. (2.24)

Lighthill (1978, §4.10) did not evaluate this integral directly. Instead, he calculated
the shear-induced rate of energy dissipation along the rays of a plane internal wave
(Lighthill 1978, §4.7), then deduced from it an exponential attenuation factor to be
added inside the inviscid expansion (2.19).
We proceed from (2.24), on the assumption 𝜈𝜅2/𝑁 ≪ 1 of small viscous effects. The

addition of viscosity transforms the dispersion relation (2.8) into

𝐵(𝜔0, 𝒌) = 𝑁2 [𝑚±𝑚∓ + i 𝜈𝑁(𝑘
2
± +𝑚2

±)2 cos 𝜃0] = 0, (2.25)

with𝑚∓ given by (2.14), thus providing a fourth-order equation for𝑚±. To leading order
in 𝜈𝑘2±/𝑁, the pole (2.9) is displaced to

𝑚± ∼ ±i𝛽𝑘3±, (2.26)

where
𝛽 = 𝜈

2𝑁 sin 𝜃0
. (2.27)

The above deformations of contour pick

𝑚± ∼ i𝛽|𝑘3±| sign 𝑧± with sign 𝑘± = ±sign 𝑧±, (2.28)

yielding for a rapidly decreasing source the far-field expansion, as |𝑧±| → ∞,

𝜓 ∼ −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∫

±∞sign𝑧±

0
𝑓±(𝑘±, 𝑚± = i𝛽|𝑘3±| sign 𝑧±)

× exp(−𝛽|𝑘3±𝑧±|) exp(i𝑘±𝑥±)
d𝑘±
𝑘±

, (2.29)

and for a source of compact support the exact expression, valid when both |𝑧+| > 𝑎 and
|𝑧−| > 𝑎,

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

±∞sign𝑧±

0
𝑓±(𝑘±, 𝑚± = i𝛽|𝑘3±| sign 𝑧±)

× exp(−𝛽|𝑘3±𝑧±|) exp(i𝑘±𝑥±)
d𝑘±
𝑘±

, (2.30)

or equivalently

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

∞

0
𝑓±(𝑘± = ±𝜅 sign 𝑧±, 𝑚± = i𝛽𝜅3 sign 𝑧±)

× exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±)
d𝜅
𝜅 . (2.31)

A new difference arises with Lighthill’s (1978, §4.10) far-field analysis, in addition to the
superposition of two wave beams at any given location; namely, the occurrence of the
viscous correction (2.28) to the wavenumber not only for the propagation of the waves,
as an attenuation factor, but also for their generation, inside the source spectrum. The
relevance of this correction will be discussed later in §8.1.
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2.3. Validity
The preceding analysis is essentially a reformulation of the far-field expansion of

Lighthill (1978, §4.10) for rapidly decreasing sources, and its extension to the near field
for the smaller class of sources of compact support. The solutions of Hurley (1997)
and Hurley & Keady (1997) for the oscillations of an elliptic cylinder are of the type
anticipated by Lighthill. When the cylinder is circular, the experiments of Sutherland
et al. (1999) and Zhang et al. (2007) have confirmed their quantitative validity not only
in the far field but also in the near field. When the cylinder is elliptic, the comparison
with the experiments of Sutherland & Linden (2002) has been less conclusive. The
wave structure for the circular cylinder is illustrated in figure 3(a), where both beam
separation and viscous attenuation are set by the along-beam coordinates 𝑧±.
The same is not true of all sources though: when the source is infinitely thin, beam

separation and viscous attenuation are set by the normal coordinate to the source, 𝑧 for
the horizontal segment in figure 3(b). Adapting the results of Tilgner (2000), Bardakov
et al. (2007), Davis & Llewellyn Smith (2010) and Le Dizès (2015) for the oscillations of
a horizontal circular disc to the line source 𝑞 = 𝑔(𝑥)𝛿(𝑧) exp(−i𝜔0𝑡), with 𝛿 the Dirac
delta function, we obtain

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

±∞sign𝑧

0
𝑔(𝑘 = 𝑘± cos 𝜃0)

× exp(−𝛽|𝑘3±𝑧|/ cos 𝜃0) exp(i𝑘±𝑥±)
d𝑘±
𝑘±

, (2.32)

or equivalently

𝜓 = −i
exp(−i𝜔0𝑡)

4π𝑁2 sin 𝜃0 cos 𝜃0
∑
±
∫

∞

0
𝑔(𝑘 = ±𝜅 cos 𝜃0 sign 𝑧)

× exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) exp(±i𝜅𝑥± sign 𝑧)
d𝜅
𝜅 . (2.33)

At first glance the two wave structures, shown in figures 3(a,b), appear incompatible
with each other. In particular, the spectrum 𝑓(𝑘,𝑚) = 𝑔(𝑘) of the line source leaves
the normal wavenumber 𝑚 arbitrary, thereby allowing |𝑘±| to become infinitely large
and preventing the pole displacements (2.15) and (2.26) from remaining small, however
small 𝜖/𝑁 and 𝛽𝜅2 can be.
In order to elucidate the effect of the geometry of the source on its wave radiation,

we consider a source of elliptic shape in the following. The anticipated wave structure is
illustrated in figure 3(c) for an elliptic cylinder, with both beam separation and viscous
attenuation set by the normal distance to the line joining the two critical points where
critical wave rays are tangential to the cylinder on either side. After a brief derivation of
the wave equation in the following section, we will move on to the determination of the
fluid velocity.

3. Wave equation
We consider a viscous uniformly stratified Boussinesq fluid of buoyancy frequency

𝑁 = −[(𝑔/𝜌0)(d𝜌0/d𝑧)]1/2 and kinematic viscosity 𝜈, having density distribution 𝜌0(𝑧)
and pressure distribution 𝑝0(𝑧) at rest, related by the hydrostatic balance equation
d𝑝0/d𝑧 = −𝑔𝜌0, where 𝑧 is the upward vertical coordinate and 𝑔 the acceleration due to
gravity. The linearized equations of motion for the density disturbance 𝜌, the pressure
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Figure 3. Structure of the beams propagating upward to the right and downward to the left, for (a) a
circular cylinder, (b) a horizontal segment and (c) an elliptic cylinder. The beams are delimited by the
critical rays grazing the oscillating body at critical points on either side. The grey areas represent the
zones where the validity of the theory is not ascertained.
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disturbance 𝑝 and the velocity 𝒖 are

𝜌0
∂𝒖
∂𝑡 = −𝛁𝑝 + 𝜌𝑔𝒆𝑧 + 𝜌0𝜈∇2𝒖, (3.1)

𝛁 ⋅ 𝒖 = 𝑞, (3.2)

∂𝜌
∂𝑡 = 𝜌0

𝑁2

𝑔 𝑤, (3.3)

respectively theNavier–Stokes equation, the equation of continuity, and the incompress-
ible equation of state d(𝜌0 + 𝜌)/d𝑡 = 0. The source of the waves is modelled as a source
of mass releasing the volume 𝑞 of fluid per unit volume per unit time.
The combination of these equations yields a single equation for the velocity,

[( ∂∂𝑡 − 𝜈∇2) ∂
∂𝑡∇

2 + 𝑁2∇2
h] 𝒖 = [( ∂∂𝑡 − 𝜈∇2) ∂

∂𝑡𝛁 + 𝑁2𝛁h] 𝑞, (3.4)

which will be our wave equation of choice in the following. For a two-dimensional
monochromatic source 𝑞 = 𝑓(𝑥, 𝑧) exp(−i𝜔0𝑡) of frequency𝜔0 < 𝑁, introducing Fourier
transforms according to (2.2), the velocity follows as

𝒖 = i
exp(−i𝜔0𝑡)

4π2 ∬
𝑘𝒆𝑥 sin2 𝜃0 −𝑚𝒆𝑧 cos2 𝜃0 − i(𝜈𝜅2/𝑁)𝒌 cos 𝜃0
𝑚2 cos2 𝜃0 − 𝑘2 sin2 𝜃0 + i(𝜈𝜅4/𝑁) cos 𝜃0

× 𝑓(𝑘,𝑚) exp[i(𝑘𝑥 + 𝑚𝑧)] d𝑘 d𝑚, (3.5)

where 𝜃0 = arccos(𝜔0/𝑁) is the direction of propagation of the waves and 𝜅 = |𝒌| the
modulus of the wavenumber vector 𝒌 = (𝑘,𝑚).

4. Bluff forcing
We consider a source of elliptic shape, having principal directions inclined at the an-

gles 𝜑0 and 𝜑0 + π/2 to the 𝑥-axis, with −π/2 < 𝜑0 ≤ π/2, and semi-axes 𝑎 and 𝑏,
respectively. Introducing coordinates (𝑥0, 𝑧0) such that

𝑥0 = 𝑥 cos 𝜑0 + 𝑧 sin 𝜑0, 𝑧0 = −𝑥 sin 𝜑0 + 𝑧 cos 𝜑0, (4.1)

the source satisfies 𝑓0(𝑥0, 𝑧0) = 𝑓(𝑥, 𝑧) = 0 for 𝑥20/𝑎2 + 𝑧20/𝑏2 > 1. The characteristic
coordinates (2.6) become

𝑥± = 𝑥0 cos(𝜃0 ±𝜑0) ∓ 𝑧0 sin(𝜃0 ±𝜑0), 𝑧± = ±𝑥0 sin(𝜃0 ±𝜑0) + 𝑧0 cos(𝜃0 ±𝜑0), (4.2)

and similarly for the wavenumbers (2.7). The velocity (3.5) becomes

𝒖 = i
exp(−i𝜔0𝑡)

4π2 ∬
𝑘𝒆𝑥 sin2 𝜃0 −𝑚𝒆𝑧 cos2 𝜃0 − i(𝜈𝜅2/𝑁)𝒌 cos 𝜃0
𝑚2 cos2 𝜃0 − 𝑘2 sin2 𝜃0 + i(𝜈𝜅4/𝑁) cos 𝜃0

× 𝑓0(𝑘0, 𝑚0) exp[i(𝑘0𝑥0 +𝑚0𝑧0)] d𝑘0 d𝑚0, (4.3)

where 𝑓0(𝑘0, 𝑚0) = 𝑓(𝑘,𝑚). We rescale coordinates and wavenumbers according to

(𝑋0, 𝑍0) = (𝑥0/𝑎, 𝑧0/𝑏), (𝐾0,𝑀0) = (𝑘0𝑎,𝑚0𝑏), (4.4)

so that 𝐹0(𝑋0, 𝑍0) = 𝑓0(𝑥0, 𝑧0) = 0 for |𝑿0| > 1.
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4.1. Inviscid case
To proceed further, we start with the inviscid case and introduce the lengths

𝑐± = [𝑎2 cos2(𝜃0 ± 𝜑0) + 𝑏2 sin2(𝜃0 ± 𝜑0)]1/2, (4.5)

the angles 𝛩± such that

cos𝛩± =
𝑎
𝑐±
cos(𝜃0 ± 𝜑0), sin𝛩± =

𝑏
𝑐±
sin(𝜃0 ± 𝜑0), (4.6)

and the rescaled characteristic coordinates

𝑋± = 𝑋0 cos𝛩± ∓ 𝑍0 sin𝛩±, 𝑍± = ±𝑋0 sin𝛩± + 𝑍0 cos𝛩±, (4.7)

and similarly (𝐾±,𝑀±) in the wavenumber plane. These quantities are best interpreted
by considering an elliptic cylinder of semi-axes 𝑎 and 𝑏, illustrated in figure 4. Then, as
pointed by Hurley (1997), 𝑐+ and 𝑐− are the half-widths of the wave beams delimited by
the critical rays tangential to the cylinder on either side.
The dispersion relation (2.8) becomes

𝐵(𝜔0, 𝒌) = 𝑁2 𝑐+𝑐−
𝑎2𝑏2𝑀+𝑀− = 0, (4.8)

implying that the wavenumber curve is still a St. Andrew’s Cross but its arms nowmake
different angles to the horizontal, 𝛩+ for the arm𝑀+ = 0 and 𝛩− for the arm𝑀− = 0.
Proceeding as in §2, we evaluate the contribution of each arm in coordinates (𝐾±,𝑀±),
allowing𝑀± to become complex and applying the residue theorem. The radiation con-
dition transforms the dispersion relation into

𝐵(𝜔0 + i𝜖, 𝒌) ∼ 𝑁2 (
𝑐+𝑐−
𝑎2𝑏2𝑀±𝑀∓ + 2i 𝜖𝑁𝜅

2 cos 𝜃0) = 0, (4.9)

where
𝑀∓ = ∓𝐾± sin(𝛩+ + 𝛩−) + 𝑀± cos(𝛩+ + 𝛩−), (4.10)

and

𝜅2 = 1
𝑐2±
𝐾2
± + (

sin2𝛩±
𝑎2 +

cos2𝛩±
𝑏2 )𝑀2

± ± 2 ( 1𝑎2 −
1
𝑏2 ) 𝐾±𝑀± sin𝛩± cos𝛩±, (4.11)

displacing the pole𝑀± = 0 to

𝑀± ∼ ±i𝑎𝑏
𝑐2±

𝜖
𝑁 sin 𝜃0

𝐾±. (4.12)

Now, the spectrum 𝐹±(𝐾±,𝑀±) = 𝐹0(𝐾0,𝑀0) = 𝑓0(𝑘0, 𝑚0) is an analytic function of
the complex wavenumbers 𝐾± and 𝑀±, for each decreasing asymptotically along the
real axis, small for | Re𝐾±| ≳ 1 or | Re𝑀±| ≳ 1, and growing exponentially along the
imaginary axis, with

|𝐹±(𝐾±,𝑀±)| < exp(| Im𝐾±| + | Im𝑀±|)∬
|𝑿0|<1

|𝐹0(𝑋0, 𝑍0)| d𝑋0 d𝑍0. (4.13)

Accordingly, the real path of integration for the variable 𝑀± may be closed by a semi-
circle at infinity in the half-plane where the imaginary part of 𝑀± is of the same sign
as 𝑍±, in such a way that the contribution of the semi-circle vanishes for |𝑍±| > 1. The
integral follows as 2iπ sign 𝑍± times the sum of the residues of the integrand at any poles
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Figure 4. Geometry of the beams propagating (a) upward to the right and downward to the left, and
(b) upward to the left and downward to the right, for the oscillations of an elliptic cylinder.

with imaginary part of the same sign as 𝑍±. This procedure picks the pole

𝑀± ∼ i𝑎𝑏
𝑐2±

𝜖
𝑁 sin 𝜃0

|𝐾±| sign 𝑍± with sign𝐾± = ±sign𝑍±. (4.14)

With 𝜖/𝑁 ≪ 1 and |𝐾±| = 𝑂(1), the displacement is small and the limit 𝜖 → 0 may be
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applied, so that
𝑀± = 0 with sign𝐾± = ±sign𝑍±. (4.15)

The evaluation of the waves is then immediate when |𝑍+| > 1 and |𝑍−| > 1, yielding

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
(±)

𝒆𝑧±
𝑐±

∫
±∞sign𝑍±

0
𝐹±(𝐾±,𝑀± = 0) exp(i𝐾±𝑋±) d𝐾±. (4.16)

To go back to unscaled coordinates, we introduce the new lengths

𝑑± = (𝑎2 cos2𝛩± + 𝑏2 sin2𝛩±)1/2 =
[𝑎4 cos2(𝜃0 ± 𝜑0) + 𝑏4 sin2(𝜃0 ± 𝜑0)]1/2

𝑐±
, (4.17)

the new angles 𝜒± such that

cos 𝜒± =
𝑎
𝑑±

cos𝛩± =
𝑎2
𝑐±𝑑±

cos(𝜃0 ± 𝜑0), (4.18a)

sin 𝜒± =
𝑏
𝑑±

sin𝛩± =
𝑏2
𝑐±𝑑±

sin(𝜃0 ± 𝜑0), (4.18b)

and the new coordinates

𝜉± = 𝑥0 cos 𝜒± ∓ 𝑧0 sin 𝜒±, 𝜁± = ±𝑥0 sin 𝜒± + 𝑧0 cos 𝜒±, (4.19)

and similarly (𝜅±, 𝜇±) in the wavenumber plane. For the elliptic cylinder, 𝑑+ and 𝑑−
are the half-lengths of the critical segments joining the critical points where the critical
rays are tangential to the cylinder on either side, and 𝜒+ and 𝜒− are the angles of these
segments to the positive 𝑥0-axis, counted clockwise for 𝜒+ and counterclockwise for 𝜒−,
as shown in figure 4.
We have

𝑋± =
𝑥±
𝑐±
, 𝑍± = 𝜁±

𝑑±
𝑎𝑏, 𝐾± = 𝜅±𝑑±, 𝑀± = 𝑚±

𝑎𝑏
𝑐±
. (4.20)

Further, on the wavenumber curve𝑀± = 0, we also have𝑚± = 0 and 𝐾± = 𝑘±𝑐±. It then
follows that, when both |𝜁+| > 𝑎𝑏/𝑑+ and |𝜁−| > 𝑎𝑏/𝑑−,

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧± sign 𝜁±∫

∞

0
𝑓±(𝑘± = ±𝜅 sign 𝜁±, 𝑚± = 0)

× exp(±i𝜅𝑥± sign 𝜁±) d𝜅, (4.21)

where 𝜅 = |𝑘±| = |𝐾±|/𝑐±. Consistent with figure 3(c), beam separation is set by the
coordinates 𝜁± normal to the critical lines.

4.2. Viscous case
The presence of viscosity transforms the dispersion relation (4.8) into

𝐵(𝜔0, 𝒌) = 𝑁2 (
𝑐+𝑐−
𝑎2𝑏2𝑀±𝑀∓ + i 𝜈𝑁𝜅

4 cos 𝜃0) = 0. (4.22)

There are now four poles, whose contributions are evaluated in the small-viscosity limit
𝑁𝑐+𝑐−/𝜈 ≫ 1, corresponding to large Stokes number.
Two poles are associated with waves,

𝑀± ∼ ±i𝛽𝑎𝑏
𝑐4±
𝐾3
±, (4.23)
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where 𝛽 has been defined in (2.27). Closing the path of integration as above picks the
pole

𝑀± ∼ i𝛽𝑎𝑏
𝑐4±
|𝐾±|3 sign 𝑍± with sign𝐾± = ±sign𝑍±. (4.24)

The assumptions 𝛽/𝑐2± ≪ 1 and |𝐾±| = 𝑂(1) ensure its smallness. Setting it to zero in the
slowly varying rational fraction in the integrand of (4.3) when evaluating the residue,
but keeping it nonzero in the spectrum and in the rapidly varying complex exponential,
the velocity follows for |𝑍+| > 1 and |𝑍−| > 1 as

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
(±)

𝒆𝑧±
𝑐±

∫
±∞sign𝑍±

0
𝐹± (𝐾±,𝑀± = i𝛽𝑎𝑏

𝑐4±
|𝐾±|3 sign 𝑍±)

× exp (−𝛽𝑎𝑏
𝑐4±
|𝐾3

±𝑍±|) exp(i𝐾±𝑋±) d𝐾±, (4.25)

that is in unscaled coordinates, for |𝜁+| > 𝑎𝑏/𝑑+ and |𝜁−| > 𝑎𝑏/𝑑−,

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧± sign 𝜁±∫

∞

0
𝐹± (𝐾± = ±𝜅𝑐± sign 𝜁±,𝑀± = i𝛽𝜅3𝑎𝑏𝑐±

sign 𝜁±)

× exp (−𝛽𝜅3
𝑑±
𝑐±
|𝜁±|) exp(±i𝜅𝑥± sign 𝜁±) d𝜅, (4.26)

where 𝜅 = | Re 𝑘±| = |𝐾±|/𝑐± and

𝑑±
𝑐±
𝜁± = ±𝑏

2

𝑐2±
𝑥0 sin(𝜃0 ± 𝜑0) +

𝑎2

𝑐2±
𝑧0 cos(𝜃0 ± 𝜑0). (4.27)

Consistent with figure 3(c), viscous attenuation is set by 𝜁±. When the source is circular
(𝑎 = 𝑏), we have 𝑐± = 𝑑± = 𝑎 and 𝜒± = 𝜃0 ± 𝜑0, so that 𝜁± = 𝑧± and the pattern in
figure 3(a) is recovered; when the source is a horizontal segment (𝑏 = 0 and 𝜑0 = 0),
we have 𝑐± = 𝑎 cos 𝜃0 and 𝑑± = 𝑎, and also 𝜒± = 0, so that 𝜁± = 𝑧 and the pattern in
figure 3(b) is recovered.
The other two poles are associated with boundary layers along the lines 𝑍± = 0, hence

𝜁± = 0. To leading order they satisfy

𝑀2
± ∼ i

𝑁𝑐+𝑐−
𝜈

𝑎2𝑏2

𝑑4±
cos(𝛩+ + 𝛩−)

cos 𝜃0
, (4.28)

which combined with the condition |𝑍±| > 1means that their contributions are

𝑂{exp [− (
𝑁𝑐+𝑐−
𝜈 )

1/2 𝑎𝑏
𝑑2±

|||
cos(𝛩+ + 𝛩−)

cos 𝜃0
|||

1/2

]} . (4.29)

Given the small-viscosity assumption𝑁𝑐+𝑐−/𝜈 ≫ 1, the onlyway for these contributions
to be significant, apart from the pathological case

𝑎2 cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0) = 𝑏2 sin(𝜃0 + 𝜑0) sin(𝜃0 − 𝜑0), (4.30)

corresponding to cos(𝛩+ + 𝛩−) = 0, is that 𝑎 = 0 or 𝑏 = 0, namely that the source be
infinitely thin. Accordingly, consistent with physical intuition, no boundary layer forms
for bluff forcing of nonzero 𝑎 and 𝑏, and for line forcing the boundary layer forms along
the line itself.
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5. Line forcing
We consider line forcing separately in this section. Without loss of generality, the

source is assumed to have finite and nonzero size 2𝑎 along the 𝑥0-axis, and zero size
along the 𝑧0-axis. Forcing is assumed to be inviscid, with implications discussed later
in §5.3. Then, using (3.2), (3.3) and the inviscid version of (3.1), either the pressure is
prescribed on both sides of the line 𝑧0 = 0 yielding a velocity discontinuity 2𝑤0(𝑥0)
across it, so that

𝑓0(𝑥0, 𝑧0) = 2𝑤0(𝑥0)𝛿(𝑧0), (5.1)
or the velocity is prescribed yielding a pressure discontinuity 2𝑝0(𝑥0), so that

𝑓0(𝑥0, 𝑧0) = 2i
cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)𝑝0(𝑥0)𝛿′(𝑧0) + sin 𝜑0 cos 𝜑0𝑝′0(𝑥0)𝛿(𝑧0)

𝜌0𝜔0 sin2 𝜃0
. (5.2)

For a horizontal disc, Gabov & Pletner (1988) considered the former forcing and Martin
& Llewellyn Smith (2011, 2012b) the latter. We take

𝑓0(𝑥0, 𝑧0) = 𝑔(𝑥0)𝛿(𝑛)(𝑧0), 𝑓0(𝑘0, 𝑚0) = 𝑔(𝑘0)(i𝑚0)𝑛, (5.3)

where 𝛿(𝑛) is the 𝑛-th derivative of theDirac delta function, with 𝑛 = 0 or 1. The function
𝑔(𝑥0) is assumed to decrease rapidly for |𝑥0| ≳ 𝑎, so that its spectrum 𝑔(𝑘0) is appreciable
only for |𝑘0| ≲ 1/𝑎 and small at larger |𝑘0|. This assumption, less restrictive than the
compact support assumption, leaves the possibility for the forcing to be Gaussian, as in
§8.4 below.
We follow the approach introduced by Kistovich & Chashechkin (1994, 1995) for the

reflection of the wave beam from a point source at an inclined plane, and Chashechkin
& Kistovich (1997) and Kistovich & Chashechkin (1999a, b) for the generation of wave
beams by the oscillations of an inclined plate; namely, we proceed in coordinates (𝑥0, 𝑧0),
applying the residue theorem to integration over𝑚0 anddealing directlywith the viscous
case in the small-viscosity limit 𝑁𝑎2/𝜈 ≫ 1.

5.1. Inclined source
The dispersion relation (2.25) writes

𝐵(𝜔0, 𝒌) = 𝑁2 [𝑚+𝑚− + i 𝜈𝑁(𝑘
2
0 +𝑚2

0)2 cos 𝜃0] = 0, (5.4)

where
𝑚± = 𝑘0 sin(𝜑0 ± 𝜃0) + 𝑚0 cos(𝜑0 ± 𝜃0). (5.5)

Two of its solutions are associated with waves,

𝑚0 ∼ −𝑘0 tan(𝜑0 ± 𝜃0) ± i
𝛽𝑘30

cos4(𝜑0 ± 𝜃0)
, (5.6)

the condition |𝑘0|𝑎 = 𝑂(1) combined with the assumption 𝛽/𝑎2 ≪ 1 ensuring that they
remain close to their inviscid values 𝑚0 ∼ −𝑘0 tan(𝜑0 ± 𝜃0). Closing the real path of
integration by a semi-circle at infinity in the half-plane where the imaginary part of 𝑚0
is of the same sign as 𝑧0, we keep the solution

𝑚0 ∼ −𝑘0 tan(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0) + i
𝛽|𝑘0|3 sign 𝑧0

cos4(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0)
, (5.7)
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and obtain

𝒖 =
exp(−i𝜔0𝑡)

4π ∫
∞

−∞

𝒆𝑥 sin 𝜃0 sign 𝑘0 + 𝒆𝑧 cos 𝜃0 sign 𝑧0
cos(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0)

𝑔(𝑘0)

× [−i𝑘0 tan(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0)]𝑛 exp [−
𝛽|𝑘30𝑧0|

cos4(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0)
]

× exp{i𝑘0[𝑥0 − 𝑧0 tan(𝜑0 + 𝜃0 sign 𝑘0 sign 𝑧0)]} d𝑘0, (5.8)

or equivalently

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧±[−i sin(𝜃0 ± 𝜑0)]𝑛[sign 𝑧0 sign cos(𝜃0 ± 𝜑0)]𝑛+1

×∫
∞

0
𝜅𝑛𝑔[𝑘0 = ±𝜅| cos(𝜃0 ± 𝜑0)| sign 𝑧0] exp [−

𝛽𝜅3|𝑧0|
| cos(𝜃0 ± 𝜑0)|

]

× exp[±i𝜅𝑥± sign 𝑧0 sign cos(𝜃0 ± 𝜑0)] d𝜅, (5.9)

where 𝜅 = | Re 𝑘±| = |𝑘0|/| cos(𝜃0 ± 𝜑0)|, consistent with (4.26).
The other two solutions are

𝑚0 ∼ [i𝑁𝜈
cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)

cos 𝜃0
]
1/2
+ 𝑘0

sin 𝜑0 cos 𝜑0
cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)

, (5.10)

where the undetermined square root in the first term can take either value. Closing the
path of integration as above, we pick

𝑚0 ∼ 𝑘b[i + sign cos(𝜃0 + 𝜑0) sign cos(𝜃0 − 𝜑0)] sign 𝑧0

+ 𝑘0
sin 𝜑0 cos 𝜑0

cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)
, (5.11)

where

𝑘b = (
𝜔0
2𝜈 )

1/2 | cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)|1/2

cos 𝜃0
. (5.12)

The associated velocity disturbance is

𝒖b =
(√2𝑘b)𝑛 sin 𝜑0 cos 𝜑0

2 cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)
𝒆𝑥0 exp(−i𝜔0𝑡)(− sign 𝑧0)

𝑛+1

× 𝑔 [𝑥0 + 𝑧0
sin 𝜑0 cos 𝜑0

cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)
] exp(−𝑘b|𝑧0|)

× exp [i (𝑘b|𝑧0| − 𝑛π4 ) sign cos(𝜃0 + 𝜑0) sign cos(𝜃0 − 𝜑0)] , (5.13)

and corresponds to a boundary layer of thickness 1/𝑘b, small compared with 𝑎, around
the line 𝑧0 = 0. The velocity within the layer is𝑂[(𝑁𝑎2/𝜈)𝑛/2] compared with that for the
waves, hence of the same order for 𝑛 = 0 and large compared with it for 𝑛 = 1. As for
the classical Stokes layer, the velocity is directed along the source, in the 𝑥0-direction.
Its variations combine transverse propagation at the velocity 𝜔0/𝑘b in the 𝑧0-direction,
and reproduction of the longitudinal variations 𝑔(𝑥0) imposed at the source, shifted in
proportion to 𝑧0. When the source is either horizontal (𝜑0 = 0) or vertical (𝜑0 = π/2),
the leading-order term (5.13) vanishes and the expansion must be carried to the next
order.
In the event 𝑛 = 1 that Jordan’s lemma does not apply, a third contribution to the
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velocity is associated with the semi-circle closing the path of integration at infinity. This
possibility is considered in Appendix A.

5.2. Horizontal and vertical sources
For a horizontal line source, we have 𝑥0 = 𝑥 and 𝑧0 = 𝑧. Separating the exponential

transform 𝑔(𝑘) into cosine and sine transforms

𝑔(c)(𝑘) = ∫𝑔(𝑥) cos(𝑘𝑥) d𝑥, 𝑔(s)(𝑘) = ∫𝑔(𝑥) sin(𝑘𝑥) d𝑥, (5.14)

the original source distribution 𝑔(𝑥) separates into even and odd parts, respectively, and
we obtain for the waves

𝒖 =
exp(−i𝜔0𝑡)

2π (−i sin 𝜃0 sign 𝑧)𝑛∫
∞

0
𝜅𝑛 exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) exp(−i𝜅|𝑧| sin 𝜃0)

× {𝑔(c)(𝑘 = 𝜅 cos 𝜃0)[𝒆𝑧 cos 𝜃0 cos(𝜅𝑥 cos 𝜃0) sign 𝑧 + i𝒆𝑥 sin 𝜃0 sin(𝜅𝑥 cos 𝜃0)]
+ 𝑔(s)(𝑘 = 𝜅 cos 𝜃0)[𝒆𝑧 cos 𝜃0 sin(𝜅𝑥 cos 𝜃0) sign 𝑧 − i𝒆𝑥 sin 𝜃0 cos(𝜅𝑥 cos 𝜃0)]} d𝜅.

(5.15)

The boundary layer is given by

𝒖b = −
(√2𝑘b)𝑛−1

2 cos2 𝜃0
𝒆𝑥 exp(−i𝜔0𝑡)(− sign 𝑧)𝑛𝑔′(𝑥)

× exp(−𝑘b|𝑧|) exp {i [𝑘b|𝑧| − (𝑛 − 1)π4 ]} , (5.16)

where

𝑘b = (
𝜔0
2𝜈 )

1/2
. (5.17)

It is 𝑂[(𝑁𝑎2/𝜈)(𝑛−1)/2] compared with the waves, hence negligible for 𝑛 = 0 and of the
same order for 𝑛 = 1. Its structure is the same as before, with longitudinal velocity and
transverse propagation, except for the longitudinal variations which are the derivative
𝑔′(𝑥) of those imposed at the source.
For a vertical line source, we have 𝑥0 = 𝑧 and 𝑧0 = −𝑥. Introducing the cosine and

sine transforms

𝑔(c)(𝑚) = ∫𝑔(𝑧) cos(𝑚𝑧) d𝑧, 𝑔(s)(𝑚) = ∫𝑔(𝑧) sin(𝑚𝑧) d𝑧, (5.18)

we obtain

𝒖 =
exp(−i𝜔0𝑡)

2π (−i cos 𝜃0 sign 𝑥)𝑛∫
∞

0
𝜅𝑛 exp(−𝛽𝜅3|𝑥|/ sin 𝜃0) exp(i𝜅|𝑥| cos 𝜃0)

× {𝑔(c)(𝑚 = 𝜅 sin 𝜃0)[𝒆𝑥 sin 𝜃0 cos(𝜅𝑧 sin 𝜃0) sign 𝑥 − i𝒆𝑧 cos 𝜃0 sin(𝜅𝑧 sin 𝜃0)]
+ 𝑔(s)(𝑚 = 𝜅 sin 𝜃0)[𝒆𝑥 sin 𝜃0 sin(𝜅𝑧 sin 𝜃0) sign 𝑥 + i𝒆𝑧 cos 𝜃0 cos(𝜅𝑧 sin 𝜃0)]} d𝜅.

(5.19)

The boundary layer is given by

𝒖b = −
(√2𝑘b)𝑛−1

2 sin2 𝜃0
𝒆𝑧 exp(−i𝜔0𝑡)(sign 𝑥)𝑛𝑔′(𝑧)

× exp(−𝑘b|𝑥|) exp {−i [𝑘b|𝑥| − (𝑛 − 1)π4 ]} , (5.20)
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where

𝑘b = (
𝜔0
2𝜈 )

1/2
tan 𝜃0, (5.21)

implying the same structure as for a horizontal source.

5.3. Relevance
At this stage, no assumption has been made regarding the actual boundary condition

at the source. The aim was to point that, in a viscous fluid, when forcing takes place at
a line, in the form (5.3), the solution of the wave equation contains not only waves but
also a boundary layer, and to highlight how stratification affects this layer. In particular,
when the line is horizontal, the layer thickness, 1/𝑘b say, is the same penetration depth
(2𝜈/𝜔0)1/2 as in a homogeneous fluid according to (5.17); when the line is inclined, it
varies with the angle of propagation of the waves according to (5.12), becoming (5.21)
when the line is vertical.
In practice, the actual mechanism by which the waves are generated is the imposition

of a no-slip condition at a rectilinear boundary. Accordingly, the representation of the
forcing arises as a consequence of solving the full boundary-value problem, not as an
ingredient of its formulation; in other words, the knowledge of the boundary layer is a
prerequisite for the representation of the forcing, not the other way round. Consider a
plate or a disc.When its oscillations are broadside, forcing becomes free-slip in the limit
of large Stokes number 𝜔0𝑎2/𝜈 ≫ 1. For a horizontal disc, Davis & Llewellyn Smith
(2010) have shown that, in this limit, the force exerted on the disc approaches its in-
viscid value. In these circumstances, the forcing can be represented by a distribution
of mass sources taken from inviscid (but stratified) flow theory. When the oscillations
are edgewise, forcing is no-slip and wave generation is entirely attributable to viscosity.
For a two-dimensional inclined plate, Chashechkin & Kistovich (1997) and Kistovich &
Chashechkin (1999a, b) have considered the possibility of representing the plate by a
distribution of force sources taken from homogeneous (but viscous) flow theory. They
found that, although the waves and the boundary layer have identical structures for the
force sources and for the actual boundary condition, their amplitudes are different, es-
pecially in the pathological cases 𝜑0 = ±(π/2 − 𝜃0).
The particular case of a two-dimensional horizontal boundary has been considered by

Hurley &Hood (2001) and Renaud &Venaille (2019).When the same vertical velocity is
imposed on both sides of the boundary, corresponding to the oscillations of a rigid plate,
the present analysis for 𝑛 = 1 yields a boundary layer of the same order as the waves; the
same conclusion has been reached by Hurley & Hood (2001) using a free-slip boundary
condition.When a given vertical velocity profile is imposed on part of an otherwise fixed
boundary, as for the wave generator in §8.3, and the image of the profile through this
boundary is added, the present analysis for 𝑛 = 0 predicts that the boundary layer is
negligible compared with the waves; for an undulating horizontal wall, the boundary
layer has been found by Renaud & Venaille (2019) to be negligible compared with the
waves when a free-slip boundary condition is used, and of the same order as themwhen
a no-slip condition is used.

6. Alternative approaches
It follows from the preceding sections that, for a given source function𝑓(𝑥, 𝑧), different

expressions of the waves may be obtained, depending on the direction along which the
residue theorem is applied in the wavenumber plane. Each expression has a domain
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of validity set by the extent of the source along that direction, the various expressions
becoming equivalent wherever their domains of validity intersect. We investigate some
expressions in the present section.

6.1. Inclined source
Consider first the characteristic coordinates (𝑥±, 𝑧±) as in §2, and integrate over𝑚± to

get

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧± sign 𝑧±∫

∞

0
𝑓±(𝑘± = ±𝜅 sign 𝑧±, 𝑚± = i𝛽𝜅3 sign 𝑧±)

× exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅. (6.1)

If the support of the source is circular of radius 𝑎, such that 𝑓±(𝑥±, 𝑧±) = 0 for |𝑧±| > 𝑎,
this result is valid when both |𝑧+| > 𝑎 and |𝑧−| > 𝑎. If the support is elliptic of semi-axes
𝑎 and 𝑏, such that 𝑓±(𝑥±, 𝑧±) = 0 for |𝑧±| > [𝑎2 sin2(𝜃0 ± 𝜑0)2 + 𝑏2 cos(𝜃0 ± 𝜑0)2]1/2,
the result becomes valid when both |𝑧+| > [𝑎2 sin2(𝜃0 + 𝜑0)2 + 𝑏2 cos(𝜃0 + 𝜑0)2]1/2 and
|𝑧−| > [𝑎2 sin2(𝜃0 − 𝜑0)2 + 𝑏2 cos(𝜃0 − 𝜑0)2]1/2.
Alternatively, consider the original Cartesian coordinates (𝑥0, 𝑧0) as in §5, and inte-

grate over𝑚0 to get

𝒖 =
exp(−i𝜔0𝑡)

4π sign 𝑧0∑
±
𝒆𝑧± sign cos(𝜃0 ± 𝜑0)∫

∞

0
𝑓0(𝑘0 = 𝑘′0, 𝑚0 = 𝑚′

0)

× exp [−
𝛽𝜅3|𝑧0|

| cos(𝜃0 ± 𝜑0)|
] exp[±i𝜅𝑥± sign cos(𝜃0 ± 𝜑0) sign 𝑧0] d𝜅, (6.2)

where
𝑘′0 = ±𝜅| cos(𝜃0 ± 𝜑0)| sign 𝑧0, (6.3a)

𝑚′
0 = −𝜅 sin(𝜃0 ± 𝜑0) sign cos(𝜃0 ± 𝜑0) sign 𝑧0 + i

𝛽𝜅3 sign 𝑧0
| cos(𝜃0 ± 𝜑0)|

. (6.3b)

This result corresponds to a source contained inside the strip |𝑧0| < 𝑏, such that
𝑓0(𝑥0, 𝑧0) = 0 for |𝑧0| > 𝑏, and is valid outside this strip for |𝑧0| > 𝑏.

6.2. Source with horizontal and vertical axes
The relation between the different expressions of the waves is tedious to investigate in

the general case, owing to the number of possibilities to consider depending on the value
of 𝜑0 compared with ±𝜃0 and ±(π/2 − 𝜃0). With future application to §8.1 in mind, we
consider the particular case of a source of horizontal semi-axis 𝑎 and vertical semi-axis
𝑏, and focus on expressions (4.26) and (6.2). For the former, we set 𝜑0 = 0. The lengths
𝑐+ and 𝑐− merge into a single 𝑐, and 𝑑+ and 𝑑− into a single 𝑑, with

𝑐 = (𝑎2 cos2 𝜃0 + 𝑏2 sin2 𝜃0)1/2, 𝑑 =
(𝑎4 cos2 𝜃0 + 𝑏4 sin2 𝜃0)1/2

𝑐 . (6.4)

Similarly, 𝛩+ and 𝛩− merge into 𝛩0, and 𝜒+ and 𝜒− into 𝜒0, with

𝛩0 = arctan (𝑏𝑎 tan 𝜃0) , 𝜒0 = arctan (𝑏
2

𝑎2 tan 𝜃0) . (6.5)
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Expression (4.26) becomes, for |𝜁+| > 𝑎𝑏/𝑑 and |𝜁−| > 𝑎𝑏/𝑑,

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧± sign 𝜁±∫

∞

0
𝐹± (𝐾± = ±𝜅𝑐 sign 𝜁±,𝑀± = i𝛽𝜅3𝑎𝑏𝑐 sign 𝜁±)

× exp (−𝛽𝜅3𝑑𝑐 |𝜁±|) exp(±i𝜅𝑥± sign 𝜁±) d𝜅, (6.6)

where
𝑑
𝑐 𝜁± = ±𝑥𝑏

2

𝑐2 sin 𝜃0 + 𝑧𝑎
2

𝑐2 cos 𝜃0. (6.7)

For (6.2), we set first 𝜑0 = π/2 to obtain, for |𝑥| > 𝑎,

𝒖 =
exp(−i𝜔0𝑡)

4π sign 𝑥∑
±
(±)𝒆𝑧± ∫

∞

0
exp(−𝛽𝜅3|𝑥|/ sin 𝜃0) exp(i𝜅𝑥± sign 𝑥)

× 𝑓[𝑘 = 𝜅 cos 𝜃0 sign 𝑥 + i𝛽𝜅3 sign 𝑥/ sin 𝜃0, 𝑚 = ∓𝜅 sin 𝜃0 sign 𝑥] d𝜅, (6.8)

and then 𝜑0 = 0 to obtain, for |𝑧| > 𝑏,

𝒖 =
exp(−i𝜔0𝑡)

4π sign 𝑧∑
±
𝒆𝑧± ∫

∞

0
exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) exp(±i𝜅𝑥± sign 𝑧)

× 𝑓[𝑘 = ±𝜅 cos 𝜃0 sign 𝑧,𝑚 = −𝜅 sin 𝜃0 sign 𝑧 + i𝛽𝜅3 sign 𝑧/ cos 𝜃0] d𝜅. (6.9)

The relations between these expressions follow from the low-viscosity assumption
𝛽/𝑐2 ≪ 1. Consider (6.6), where the condition |𝐾±| = 𝜅𝑐 = 𝑂(1) implies 𝛽𝜅2 ≪ 1.
In the sectors 𝑏2|𝑥| sin 𝜃0 > 𝑎2|𝑧| cos 𝜃0, where sign 𝜁± = ±sign 𝑥, the change of variable

𝜅′ = 𝜅 − i𝛽𝜅3𝑎
2

𝑐2 cot 𝜃0 (6.10)

maps, to leading order, the path of integration onto itself and reduces (6.6) to (6.8). In
the sectors 𝑏2|𝑥| sin 𝜃0 < 𝑎2|𝑧| cos 𝜃0, where sign 𝜁± = sign 𝑧, the change of variable

𝜅′ = 𝜅 + i𝛽𝜅3𝑏
2

𝑐2 tan 𝜃0 (6.11)

reduces (6.6) to (6.9). Such changes of variable were first introduced by Kistovich &
Chashechkin (1994, 1995).

6.3. Relevance
Several equivalent expressions of the waves have been obtained, showing that the

incompatibility highlighted in figure 3 was only apparent. At each location two wave
beams are received, corresponding to two half-arms of the wavenumber curve. The
separation line between the beams originating from the two halves of each arm, and
the attenuation of the waves at each wavenumber in proportion to the distance to this
line, are all artifacts of the way the waves are calculated. When the beams are properly
superposed, the three approaches illustrated in figures 3(a), (b) and (c), corresponding
to (6.1), (6.9) and (6.6), respectively, yield identical results in their common areas of
validity. Each expression is better suited to a particular type of source: (6.1) to a circular
source, (4.26) and (6.6) to an elliptic source, (6.2), (6.8) and (6.9) to a source contained
in a strip, and (5.9), (5.15) and (5.19) to a line source. Before applying these expressions
to specific sources and comparing them with experiment, we briefly consider unsteady
effects.
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7. Unsteady effects
In laboratory experiments, depending on the setup, it may not be possible to wait

long enough after the source of the waves has started to operate, for a steady state to
be reached. Unsteady effects are observed, which must be taken into account when
comparingwith the theory (Ermanyuk&Gavrilov 2005; Voisin, Ermanyuk&Flór 2011).
A simple way of achieving this aim is to consider impulsive start-up, namely to write
𝑞 = 𝑓(𝑥, 𝑧)𝐻(𝑡) exp(−i𝜔0𝑡), with 𝐻(𝑡) = 0 for 𝑡 < 0 and 1 for 𝑡 > 0 the Heaviside step
function, and investigate the large-time limit 𝑁𝑡 ≫ 1. This procedure has been outlined
by Lighthill (1960).
Neglecting viscosity and using the transform, taken from table 5 of Voisin (2003),

∫
∞

0
ei𝜔𝑡 d𝑡 = i

𝜔 + i0 = lim
𝜖→0+

i
𝜔 + i𝜖 , (7.1)

we obtain

𝒖 = 1
8π3 lim𝜖→0+

∭𝜔2𝒌 − 𝑁2𝑘𝒆𝑥
𝜔2𝜅2 − 𝑁2𝑘2

𝑓(𝑘,𝑚)
𝜔 − 𝜔0 + i𝜖 exp[i(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)] d𝑘 d𝑚d𝜔. (7.2)

For large times𝑁𝑡 ≫ 1, the dominant asymptotic contribution to this inverse transform
arises from an 𝑂(1/𝑡) vicinity of the singular frequency 𝜔 = 𝜔0 − i𝜖, yielding

𝒖 ∼ 1
8π3 lim𝜖→0+

∫d𝜔
exp(−i𝜔𝑡)
𝜔 − 𝜔0 + i𝜖∬d𝑘d𝑚𝑓(𝑘,𝑚) exp[i(𝑘𝑥 + 𝑚𝑧)]

×
𝑚𝒆𝑧 cos2 𝜃0 − 𝑘𝒆𝑥 sin2 𝜃0 + 2[(𝜔 − 𝜔0 + i𝜖)/𝑁]𝒌 cos 𝜃0
𝑚2 cos2 𝜃0 − 𝑘2 sin2 𝜃0 + 2[(𝜔 − 𝜔0 + i𝜖)/𝑁]𝜅2 cos 𝜃0

, (7.3)

where |𝜔 − 𝜔0 + i𝜖|/𝑁 = 𝑂[1/(𝑁𝑡)] ≪ 1. The resulting dispersion relation,

𝐵(𝜔 + i𝜖, 𝒌) ∼ 𝑁2 [𝑚±𝑚∓ + 2
𝜔 − 𝜔0 + i𝜖

𝑁 (𝑘2± +𝑚2
±) cos 𝜃0] = 0, (7.4)

is of the same form as that (2.13) including Lighthill’s radiation condition. Proceeding
as in §4.1, we obtain the poles

𝑀± ∼ ±𝑎𝑏
𝑐2±

𝜔 − 𝜔0 + i𝜖
𝑁 sin 𝜃0

𝐾±, (7.5)

of which the appropriate deformation of contour selects

𝑀± ∼
𝑎𝑏
𝑐2±

𝜔 − 𝜔0 + i𝜖
𝑁 sin 𝜃0

|𝐾±| sign 𝑍± with sign𝐾± = ±sign𝑍±. (7.6)

Applying the residue theorem to integration over𝑀±, and the inverse transform

lim
𝜖→0+

∫ e−i𝜔𝑡
𝜔 + i𝜖 d𝜔 = ∫ e−i𝜔𝑡

𝜔 + i0 d𝜔 = 2π𝐻(𝑡) (7.7)

to integration over 𝜔, the result only differs from (4.16) by the inclusion of a factor

𝐻(𝑡 − 𝑎𝑏
𝑐2±

|𝐾±𝑍±|
𝑁 sin 𝜃0

) = 𝐻(1 − 𝛼𝜅
𝑑±
𝑐±
|𝜁±|) (7.8)

inside the integrand, with

𝛼 = 1
𝑁𝑡 sin 𝜃0

. (7.9)
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To leading order, viscosity and unsteadiness are seen to induce independent low-pass
cutoff factors, respectively exponential and step-like, in the integral expression of the
waves. Accordingly, their effects can be simply superposed yielding, for |𝜁+| > 𝑎𝑏/𝑑+
and |𝜁−| > 𝑎𝑏/𝑑−,

𝒖 =
exp(−i𝜔0𝑡)

4π ∑
±
𝒆𝑧± sign 𝜁±∫

∞

0
𝐹± (𝐾± = ±𝜅𝑐± sign 𝜁±,𝑀± = i𝛽𝜅3𝑎𝑏𝑐±

sign 𝜁±)

× 𝐻(1 − 𝛼𝜅
𝑑±
𝑐±
|𝜁±|) exp (−𝛽𝜅3

𝑑±
𝑐±
|𝜁±|) exp(±i𝜅𝑥± sign 𝜁±) d𝜅. (7.10)

The alternative expressions of the waves for bluff forcing in §6 and the expressions for
line forcing in §5 can easily be modified in the same way.

8. Applications
The analysis of the preceding sections is now applied to four oscillating bodies: an

elliptic cylinder, a vertical barrier, a wave generator and a thin topography. Experimental
measurements are available for all of them, to which the theory can be compared. All
measurements were made once a steady state had been reached, removing the need for
the unsteady correction of §7. On the assumption of large Stokes number, the viscous
boundary layer around the body is negligible and the boundary condition approximately
free-slip. The first body is of the bluff type considered in §§4 and 6, and the next three of
the line type considered in §5.

8.1. Elliptic cylinder
For a long time, following the pioneering experiments of Mowbray & Rarity (1967),

the preferred way of generating monochromatic internal waves in the laboratory has
been the oscillations of a horizontal circular cylinder. Hurley (1997) andHurley&Keady
(1997) calculated the waves analytically, and Sutherland et al. (1999, 2000) and Zhang
et al. (2007) compared their predictions with experiment, the latter paying particular
attention to the near field.Winters & Armi (2013) investigated the flow numerically. For
this particular geometry, the present theory and theHurley–Keady theory yield identical
results.
The same is not true for the elliptic cylinder. The predictions of Hurley (1997) and

Hurley &Keady (1997) were comparedwith experiment by Sutherland& Linden (2002),
for the case when the elliptic cross section has horizontal and vertical axes. To apply the
present theory to this configuration, a representation of the cylinder as a source of mass
is required. It is obtained by combining the boundary integral method with the method,
based on coordinate stretching and analytic continuation, introduced by Bryan (1889)
for inertial waves and Hurley (1972) for internal waves. The derivation will be reported
elsewhere; a summary may be found in Voisin (2009) for a sphere.
An elliptic cylinder of horizontal semi-axis 𝑎 and vertical semi-axis 𝑏, oscillating at

the velocity (𝑈,𝑊)e−i𝜔0𝑡, has the representation

𝑓(𝑥, 𝑧) = [(1 + i𝑏𝑎 tan 𝜃0)𝑈
𝑥
𝑎2 + (1 − i𝑎𝑏 cot 𝜃0)𝑊

𝑧
𝑏2 ] 𝛿 [(

𝑥2
𝑎2 +

𝑧2
𝑏2 )

1/2

− 1] , (8.1)
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of spectrum

𝑓(𝑘,𝑚) = −2iπ𝑎𝑏 [(1 + i𝑏𝑎 tan 𝜃0)𝑈𝑘 + (1 − i𝑎𝑏 cot 𝜃0)𝑊𝑚]
J1[(𝑘2𝑎2 +𝑚2𝑏2)1/2]
(𝑘2𝑎2 +𝑚2𝑏2)1/2

,

(8.2)
with J1 a Bessel function. At this stage two remarks must be made. First, the spectrum
may only be derived from known integrals for real wavenumbers 𝑘 and𝑚, and the result
has been continued analytically to complex wavenumbers. Secondly, the source being a
distribution of order 0 rather than a proper function, the analysis of §§4 and 6 has been
extended as discussed in Appendix A, with identical result.
We introduce, as did Hurley (1997), the notation

𝛼± =
ei𝛩0

2 (𝑎𝑐𝑊 ∓ i𝑏𝑐𝑈) =
(𝑎 cos 𝜃0 + i𝑏 sin 𝜃0)(𝑎𝑊 ∓ i𝑏𝑈)

2𝑐2 , (8.3)

such that
𝑓±(𝑘±, 𝑚± = 0) = ±4π𝑐𝛼± J1(𝑘±𝑐). (8.4)

When using (6.6), the viscous correction to the wavenumber inside the source spectrum
is of the second order in the small parameter 𝛽/𝑐2, since 𝑘2𝑎2 + 𝑚2𝑏2 = 𝐾2

± + 𝑀2
± with

|𝐾±| = 𝜅𝑐 = 𝑂(1) and |𝑀±| = 𝑂(𝛽𝜅2) = 𝑂(𝛽/𝑐2). It is thus negligible. We obtain, for
|𝜁+| > 𝑎𝑏/𝑑 and |𝜁−| > 𝑎𝑏/𝑑,

𝒖 = 𝑐 exp(−i𝜔0𝑡)∑
±
𝛼±𝒆𝑧± ∫

∞

0
J1(𝜅𝑐) exp (−𝛽𝜅3

𝑑
𝑐 |𝜁±|) exp(±i𝜅𝑥± sign 𝜁±) d𝜅. (8.5)

By contrast, when using the other expressions, the viscous correction is of the first
order inside the source spectrum, hence significant. We obtain from (6.1), for |𝑧+| >
(𝑎2 sin2 𝜃0 + 𝑏2 cos2 𝜃0)1/2 and |𝑧−| > (𝑎2 sin2 𝜃0 + 𝑏2 cos2 𝜃0)1/2,

𝒖 = 𝑐 exp(−i𝜔0𝑡)∑
±
𝛼±𝒆𝑧± ∫

∞

0
J1 (𝜅𝑐 + i𝛽𝜅3𝑎

2 − 𝑏2
𝑐 sin 𝜃0 cos 𝜃0)

× exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅, (8.6)

and similarly from (6.8), for |𝑥| > 𝑎,

𝒖 = exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
J1 (𝜅𝑐 + i𝛽𝜅3𝑎

2

𝑐 cot 𝜃0) exp(−𝛽𝜅3|𝑥|/ sin 𝜃0)

× exp(i𝜅|𝑥| cos 𝜃0){𝒆𝑧 cos 𝜃0[𝑎𝑊cos(𝜅𝑧 sin 𝜃0) − 𝑏𝑈 sin(𝜅𝑧 sin 𝜃0) sign 𝑥]
− i𝒆𝑥 sin 𝜃0[𝑎𝑊 sin(𝜅𝑧 sin 𝜃0) sign 𝑥 + 𝑏𝑈 cos(𝜅𝑧 sin 𝜃0)]} d𝜅, (8.7)

and from (6.9), for |𝑧| > 𝑏,

𝒖 = exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
J1 (𝜅𝑐 − i𝛽𝜅3𝑏

2

𝑐 tan 𝜃0) exp(−𝛽𝜅3|𝑧|/ cos 𝜃0)

× exp(−i𝜅|𝑧| sin 𝜃0){𝒆𝑧 cos 𝜃0[𝑎𝑊cos(𝜅𝑥 cos 𝜃0) + 𝑏𝑈 sin(𝜅𝑥 cos 𝜃0) sign 𝑧]
+ i𝒆𝑥 sin 𝜃0[𝑎𝑊 sin(𝜅𝑧 cos 𝜃0) sign 𝑧 − 𝑏𝑈 cos(𝜅𝑧 cos 𝜃0)]} d𝜅. (8.8)

The classical theory of Hurley & Keady (1997) corresponds to applying (8.6) everywhere
while omitting the viscous correction inside the Bessel function.
Now, as discussed in §2.1, the above domains of applicability are those for which the

validity of the results has been ascertained for a generic elliptic source, based on bounds
such as (2.20) and (4.13). If we consider instead the convergence of the above integrals
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for the elliptic cylinder, larger domains are obtained, starting from the lines where the
coordinates involved in beam separation and viscous attenuation take their values at
the critical points where the critical wave rays are tangential to the cylinder. Specifically,
(8.5) converges everywhere, (8.6) for

|𝑧+| >
|𝑎2 − 𝑏2|

𝑐 sin 𝜃0 cos 𝜃0 and |𝑧−| >
|𝑎2 − 𝑏2|

𝑐 sin 𝜃0 cos 𝜃0, (8.9)

(8.7) for

|𝑥| > 𝑎2
𝑐 cos 𝜃0, (8.10)

and (8.8) for

|𝑧| > 𝑏2
𝑐 sin 𝜃0. (8.11)

These domains remain relevant even in the absence of viscosity, if the infinitesimal
imaginary part 𝜖 added to the frequency by the radiation condition is kept during the
whole calculation and the limit 𝜖 → 0 applied only at the very end.
In the inviscid case, the Fourier transform

∫
∞

0
J1(𝑘) exp(i𝑘𝑥) d𝑘 = 1 − 𝑥

[(𝑥 + i0)2 − 1]1/2
, (8.12)

taken from table 5 of Voisin (2003), turns (8.5) into

𝒖 = exp(−i𝜔0𝑡)∑
±
𝛼±𝒆𝑧± {1 −

𝑥±
[(𝑥± ± i0 sign 𝜁±)2 − 𝑐2]1/2

} , (8.13)

and similarly for (8.6), (8.7) and (8.8) with sign 𝜁± replaced by sign 𝑧±, sign 𝑥 and sign 𝑧,
respectively. Solution (8.13) is identical to that (3.28)–(3.29) from Hurley (1997). At the
cylinder, we introduce the excentric angle 𝜂 such that

𝑥 = 𝑎 cos 𝜂, 𝑧 = 𝑏 sin 𝜂, (8.14)

to obtain

𝑥± = 𝑐 cos(𝜂 ± 𝛩0), 𝜁± =
𝑎𝑏
𝑑 sin(𝜂 ± 𝛩0). (8.15)

The solution becomes

𝒖 = exp(−i𝜔0𝑡)∑
±
𝛼±𝒆𝑧±[1 ± i cot(𝜂 ± 𝛩0)], (8.16)

and satisfies the free-slip boundary condition at the cylinder,

𝒏 ⋅ 𝒖 = 𝒏 ⋅ (𝑈𝒆𝑥 +𝑊𝒆𝑧) exp(−i𝜔0𝑡), (8.17)

where the outward normal 𝒏 is given by

𝒏 =
𝑏𝒆𝑥 cos 𝜂 + 𝑎𝒆𝑧 sin 𝜂

(𝑎2 sin2 𝜂 + 𝑏2 cos2 𝜂)1/2
. (8.18)

Accordingly, (8.13) applies everywhere in the fluid. For the other solutions, we write

𝑥
[(𝑥 ± i0)2 − 1]1/2

=
|𝑥|

|𝑥2 − 1|1/2 (|𝑥| > 1), (8.19a)

= ∓i 𝑥
|1 − 𝑥2|1/2 (|𝑥| < 1). (8.19b)
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All four solutions are identical outside the wave beams, for |𝑥±| > 𝑐. Inside the beams,
for |𝑥±| < 𝑐, the solutions (8.6), (8.7) and (8.8) are valid wherever 𝑧±, 𝑥 and 𝑧 have the
same sign as 𝜁±, that is for (8.9), (8.10) and (8.11), respectively.
Consistent with (8.19b), the velocity is discontinuous across the portion |𝑥±| < 𝑐 of

the beam separation lines and singular at their extremities |𝑥±| = 𝑐, where the lines
intersect the critical rays. The discontinuity persists in the presence of viscosity, since
the effect of viscosity vanishes at the separation lines. When (8.5) is used, the separa-
tion lines are 𝜁± = 0 and the discontinuity takes place in between the critical points
[|𝑥| = (𝑎2/𝑐) cos 𝜃0, |𝑧| = (𝑏2/𝑐) sin 𝜃0], that is inside the cylinder. When (8.6) is used,
the separation lines are 𝑧± = 0 and the discontinuity penetrates into the fluid, up to
the points (|𝑥| = 𝑐 cos 𝜃0, |𝑧| = 𝑐 sin 𝜃0). When (8.7) is used, the discontinuity extends
along the line 𝑥 = 0 up to |𝑧| = 𝑐/ sin 𝜃0 inside the fluid, and similarly when (8.8) is
used it extends along the line 𝑧 = 0 up to |𝑥| = 𝑐/ cos 𝜃0. Once the domains of validity
(8.9)–(8.11) are taken into account, the discontinuities become irrelevant.
Sutherland & Linden (2002) considered the vertical oscillations of two elliptic cylin-

ders: one, with horizontal semi-axis 𝑎 = 2.10 cm, vertical semi-axis 𝑏 = 1.12 cm and
aspect ratio 𝑎/𝑏 ≈ 2; the other, with horizontal semi-axis 𝑎 = 2.52 cm, vertical semi-axis
𝑏 = 0.86 cm and aspect ratio 𝑎/𝑏 ≈ 3. These dimensions were chosen so as to keep the
average radius (𝑎 + 𝑏)/2 approximately the same, close to 1.67 cm. Synthetic schlieren
was used to measure the time derivative of the buoyancy frequency disturbance, 𝑁2

𝑡 =
−𝑁2∂𝑤/∂𝑧. The outcome was compared with the predictions of Hurley & Keady (1997).
The buoyancy frequency was 𝑁 = 0.97 s−1. The kinematic viscosity was not specified
and has been taken as 𝜈 = 1 mm2 s−1.
Choosing, as did Sutherland & Linden (2002), the phase of the oscillation 𝜙 = 𝜔0𝑡

to be zero at the instant when the cylinder moves downwards through the midpoint of
its oscillation, and introducing the (real positive) oscillation amplitude 𝐴, we write the
position of the cylinder as Re[−i𝐴𝒆𝑧 exp(−i𝜔0𝑡)], so that𝑊 = −𝜔0𝐴. Normalizing with

𝐴𝑁2
𝑡
= 𝑁3 𝑎𝐴

2𝑐2 sin 𝜃0 cos
2 𝜃0, (8.20)

we obtain

𝑁2
𝑡

𝐴𝑁2
𝑡

= −i𝑐2 exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
𝜅 J1(𝜅𝑐)

×∑
±
sign 𝜁± exp (−𝛽𝜅3

𝑑
𝑐 |𝜁±|) exp(±i𝜅𝑥± sign 𝜁±) d𝜅, (8.21)

valid everywhere;

𝑁2
𝑡

𝐴𝑁2
𝑡

= −i𝑐2 exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
𝜅 J1 (𝜅𝑐 + i𝛽𝜅3𝑎

2 − 𝑏2
𝑐 sin 𝜃0 cos 𝜃0)

×∑
±
sign 𝑧± exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅, (8.22)

valid for |𝑧+| > (|𝑎2 − 𝑏2|/𝑐) sin 𝜃0 cos 𝜃0 and |𝑧−| > (|𝑎2 − 𝑏2|/𝑐) sin 𝜃0 cos 𝜃0;

𝑁2
𝑡

𝐴𝑁2
𝑡

= −2𝑐2 exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
𝜅 J1 (𝜅𝑐 + i𝛽𝜅3𝑎

2

𝑐 cot 𝜃0)

× exp(−𝛽𝜅3|𝑥|/ sin 𝜃0) exp(i𝜅|𝑥| cos 𝜃0) sin(𝜅𝑧 sin 𝜃0) d𝜅, (8.23)
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valid for |𝑥| > (𝑎2/𝑐) cos 𝜃0; and

𝑁2
𝑡

𝐴𝑁2
𝑡

= −2i𝑐2 exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
𝜅 J1 (𝜅𝑐 − i𝛽𝜅3𝑏

2

𝑐 tan 𝜃0)

× sign 𝑧 exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) cos(𝜅𝑥 cos 𝜃0) exp(−i𝜅|𝑧| sin 𝜃0) d𝜅, (8.24)

valid for |𝑧| > (𝑏2/𝑐) sin 𝜃0. The classical theory of Hurley & Keady (1997) gives

( 𝑁
2
𝑡

𝐴𝑁2
𝑡

)
c

= −i𝑐2 exp[−i(𝜔0𝑡 − 𝛩0)]∫
∞

0
𝜅 J1(𝜅𝑐)

×∑
±
sign 𝑧± exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅. (8.25)

The relevant non-dimensional parameters are the Stokes number St = 𝜔0(𝑎 + 𝑏)2/(4𝜈)
and the Keulegan–Carpenter number e = 2𝐴/(𝑎 + 𝑏).
We focus on figures 8, 9 and 10 of Sutherland & Linden (2002), corresponding to the

range of parameters for which no second harmonic wave is generated and the waves are
close to linear. The waves were measured for 𝐴 = 0.32 cm in the first quadrant, where
the dominant beampropagates upward to the right. The along-beamprofiles at the beam
axis 𝑥+ = 0 in their figure 9 and the across-beam profile at distance 𝑧+ = 20 cm in
their figure 10 essentially belong to the far field, namely to distances from the cylinder
larger than one to three times its average radius say; there, the preceding expressions
all coincide with one another and with the Hurley–Keady theory. We switch instead to
the contour maps in their figure 8. Application of the present ‘best’ expression (8.21) is
shown in figure 5. In the far field, where (8.21) and theHurley–Keady theory (8.25) yield
identical results, the agreement with experiment is good.
The differences between the theories appear in the near field, shown in figure 6. To

better illustrate the underlying structure, the waves have been plotted both inside and
outside the cylinder. The present theory (8.21) predicts singularities at the critical points,
visible as maxima in Sutherland’s & Linden’s (2002) figure 8, especially subfigures (c,d).
By contrast, the Hurley–Keady theory (8.25) puts the singularities closer to the vertical,
inside the fluid and connected to the cylinder by segments of discontinuity.
The relation between all four solutions (8.21)–(8.24) is illustrated in figures 7 and 8

for the largest and smallest angles of propagation to the vertical, corresponding to sub-
figures (a) and (d) of Sutherland & Linden (2002), respectively. When viscosity is not
taken into account in the source spectrum, the critical points are put inside the fluid by
the last three solutions, connected to the cylinder by segments of discontinuity, and the
solutions exhibit significant differences with one another. When viscosity is taken into
account, all four solutions predict the correct positions of the critical points and are in
close agreement with one another in their common domains of validity.
The remaining small discrepancies are caused by the finite value of St. Consistent

with §6.2, when the waves propagate closer to the horizontal in figure 7, the region
𝑏2|𝑥| sin 𝜃0 > 𝑎2|𝑧| cos 𝜃0 is more extended and the solution (8.23) provides the best
approximation to (8.21). When the waves propagate closer to the vertical in figure 8,
the region 𝑏2|𝑥| sin 𝜃0 < 𝑎2|𝑧| cos 𝜃0 is more extended and (8.24) provides the best ap-
proximation. Accordingly, (8.23) and (8.24) offer simpler alternatives to (8.21), relevant
at low and high frequencies respectively. The solution (8.22) does not seem to offer any
particular advantage over (8.21).
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Figure 5. Contour maps of |𝑁2
𝑡 |/𝐴𝑁2

𝑡
, as predicted by (8.21), for the oscillations at relative frequencies

(a)𝜔0/𝑁 = 0.15, (b)𝜔0/𝑁 = 0.26, (c)𝜔0/𝑁 = 0.35 and (d)𝜔0/𝑁 = 0.44 of the elliptic cylinder of aspect
ratio 𝑎/𝑏 ≈ 3 in figure 8 of Sutherland & Linden (2002). The waves propagate at the angles (a) 𝜃0 = 81∘,
(b) 𝜃0 = 75∘, (c) 𝜃0 = 70∘ and (d) 𝜃0 = 64∘ to the vertical, with Stokes numbers (a) St = 42, (b) St = 72,
(c) St = 97 and (d) St = 120, and Keulegan–Carpenter number e = 0.19. The white areas correspond
to off-scale values of the plotted quantity.

8.2. Vertical barrier
The first study of monochromatic internal waves in the laboratory, by Görtler (1943),

used the horizontal oscillations of a vertical plate. The plate was thick, piercing through
the surface of the fluid down a depth 𝑏 = 6 mm and having a width 2𝑎 of the same
order. As a consequence a vortex patch formed along the edge of the plate, with diameter
roughly equal to its width, affecting wave generation significantly. Several decades later,
Peacock et al. (2008) repeated these investigations in a more controlled setting, using a
thin plate of height 𝑏 = 16.5 mm andwidth 2𝑎 = 1.28 mm,mounted on a rigid bottom in
a fluid of buoyancy frequency 𝑁 = 1.18 s−1 and kinematic viscosity 𝜈 = 1.10 mm2 s−1.
The oscillations had amplitude 𝐴 = 0.88 mm and frequency 𝜔0 = 0.836 s−1, yielding
Stokes number St = 𝜔0𝑏2/𝜈 = 210 and Keulegan–Carpenter number e = 𝐴/𝑏 = 0.05.
The high aspect ratio 𝑏/𝑎 ≈ 26 allows the plate to be considered as a knife edge, while

the presence of the rigid bottom adds the image of the edge through the line 𝑧 = 0,
hence turning the plate into the limit as 𝑎 → 0 of the elliptic cylinder. Its representation
follows as

𝑓(𝑥, 𝑧) = −2i𝑈 tan 𝜃0𝛿′(𝑥)𝐻(𝑏 − |𝑧|)(𝑏2 − 𝑧2)1/2, (8.26)
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Figure 6. Near field for figure 5, at (a,b) 𝜔0/𝑁 = 0.15, (c,d) 𝜔0/𝑁 = 0.26, (e,f ) 𝜔0/𝑁 = 0.35 and
(g,h) 𝜔0/𝑁 = 0.44, using (a,c,e,g) the classical theory (8.25) and (b,d,f,h) the present theory (8.21). The
waves are calculated both inside and outside the cylinder, whose outline is shown dashed.
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Figure 7. Near field for figure 5(a), using (8.21) in (a,b), (8.22) in (c,d), (8.23) in (e,f ) and (8.24) in (g,h),
ignoring the viscous correction in the argument of the Bessel function J1 in (a,c,e,g) and taking it into
account in (b,d,f,h). The regions excluded by the conditions (8.9), (8.10) and (8.11) for the convergence
of the integrals are shown in red in (d), (f ) and (h), respectively.
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Figure 8. Near field for figure 5(d). The mode of representation is the same as in figure 7.



32 B. Voisin

with spectrum

𝑓(𝑘,𝑚) = 2π𝑏𝑈 tan 𝜃0
𝑘
𝑚 J1(𝑚𝑏). (8.27)

The theory of §5.2 gives waves

𝒖 = 𝑏𝑈exp(−i𝜔0𝑡)∫
∞

0
J1(𝜅𝑏 sin 𝜃0) exp(−𝛽𝜅3|𝑥|/ sin 𝜃0) exp(i𝜅|𝑥| cos 𝜃0)

× [𝒆𝑥 cos(𝜅𝑧 sin 𝜃0) sin 𝜃0 − i𝒆𝑧 sin(𝜅𝑧 sin 𝜃0) cos 𝜃0 sign 𝑥] d𝜅, (8.28)

and a boundary layer

𝒖b = i𝑈𝒆𝑧 exp(−i𝜔0𝑡)
sign 𝑥

sin 𝜃0 cos 𝜃0
𝐻(𝑏 − |𝑧|) 𝑧

(𝑏2 − 𝑧2)1/2
exp(−𝑘b|𝑥|) exp(−i𝑘b|𝑥|),

(8.29)
with 𝑘b as in (5.21), while the classical theory of Hurley & Keady (1997) gives waves

𝒖c =
𝑏𝑈
2 exp(−i𝜔0𝑡)∑

±
(𝒆𝑥 sin 𝜃0 ± 𝒆𝑧 cos 𝜃0)

×∫
∞

0
J1(𝜅𝑏 sin 𝜃0) exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅, (8.30)

and no boundary layer.
Peacock et al. (2008) used synthetic schlieren to measure the buoyancy frequency dis-

turbance Δ𝑁2 = −i(𝑁2/𝜔0)(∂𝑤)/(∂𝑧), and compared the outcome with the predictions
of Hurley & Keady (1997). Choosing, as they did, the phase of the oscillation 𝜙 = 𝜔0𝑡
to be zero at the instant when the plate moves right to left through the midpoint of
its oscillation, we write the position of the plate as Re[−i𝐴𝒆𝑥 exp(−i𝜔0𝑡)], so that 𝑈 =
−𝜔0𝐴. The present theory gives waves

Δ𝑁2

𝑁2 = 𝑏𝐴exp(−i𝜔0𝑡) sin 𝜃0 cos 𝜃0 sign 𝑥∫
∞

0
𝜅 J1(𝜅𝑏 sin 𝜃0)

× exp(−𝛽𝜅3|𝑥|/ sin 𝜃0) exp(i𝜅|𝑥| cos 𝜃0) cos(𝜅𝑧 sin 𝜃0) d𝜅, (8.31)

and a boundary layer

(Δ𝑁
2

𝑁2 )
b
= −𝐴𝑏 exp(−i𝜔0𝑡)

sign 𝑥
sin 𝜃0 cos 𝜃0

𝐻(𝑏 − |𝑧|)
[1 − (𝑧/𝑏)2]3/2

exp(−𝑘b|𝑥|) exp(−i𝑘b|𝑥|),

(8.32)
while the Hurley–Keady theory gives only waves

(Δ𝑁
2

𝑁2 )
c
= 𝑏𝐴

2 exp(−i𝜔0𝑡) sin 𝜃0 cos 𝜃0∑
±
(±) sign 𝑧±

×∫
∞

0
𝜅 J1(𝜅𝑏 sin 𝜃0) exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅. (8.33)

As for the elliptic cylinder in §8.1, the transverse profiles at cross sections 𝑧+ = 3𝑏 and
10𝑏 in figure 7 of Peacock et al. (2008) belong to the far field, where the present theory
and the Hurley–Keady theory exhibit no significant difference. We consider instead the
contour map in their figure 6, and plot the outcome of the present theory in figure 9.
The agreement with experiment is good, especially in the far field. A close-up of the
near field is shown in figure 10: the discontinuity of the Hurley–Keady theory across the
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Figure 9. Contour map of Δ𝑁2 (in s−2) at phase 𝜙 = 0, as predicted by (8.31), for the vertical barrier
in figure 6 of Peacock et al. (2008). The waves propagate at the angle 𝜃0 = 45∘ to the vertical. The white
areas correspond to off-scale values of the plotted quantity.
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Figure 10. Near field for figure 9, using (a) the classical theory (8.33) and (b) the present theory
(8.31). The outline of the barrier is shown dashed.

portion |𝑥±| < 𝑏 sin 𝜃0 of the beam separation lines 𝑧± = 0 is strikingly visible, whereas
the present theory keeps the discontinuity at the knife edge (𝑥 = 0, 0 < 𝑧 < 𝑏).
Figure 11 shows the effect of adding the boundary-layer (8.32): singularities spread

through the fluid at the level 𝑧 = 𝑏 of the tip of the knife edge. This unphysical behaviour
illustrates the singular nature of the low-viscosity limit St → ∞, such that no free-slip
regime is reached at the horizontal line 𝑧 = 𝑏 through the tip; there, however large St
can be, a no-slip solution of the equations of motion is required. The interested reader
may check that the same inverse square root singularity of the velocity is obtained for
the broadside oscillations of a horizontal disc at the vertical cylinder through the rim of
the disc, when the large-St behaviour of the no-slip solution of Davis & Llewellyn Smith
(2010) is considered.

8.3. Wave generator
A major breakthrough for the laboratory study of internal waves has been the design

of a wave generator by Gostiaux et al. (2007) and Mercier et al. (2010), allowing the im-
position of an arbitrary wave profile at a plane boundary. In the original design, the
profile was discretized as a camshaft-driven stack of plates; this design has since been
improved and applied worldwide to a variety of problems, such as those described in the
reviews by Dauxois et al. (2018) and Sibgatullin & Ermanyuk (2019). Alternative designs
have also been developed, in which each generating element, either plate, bar or rod, is
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Figure 11. Contour maps of Δ𝑁2 (in s−2) for the boundary layer (8.32), shown either (a) in isolation
or (b) in combination with the waves (8.31), in the same conditions as for figure 10.

controlled by an individualmotor. In one design, calledGOAL (Generator of Oscillations
As you Like), the elements are in direct contact with the fluid (Dossmann et al. 2016,
2017; Brunet, Dauxois & Cortet 2019); in another, called ASWaM (Arbitrary Spectrum
Wave Maker), they operate behind a neoprene sheet smoothing out the discretization
(Dobra, Lawrie & Dalziel 2019).
Imposition of the velocity profile 𝑤0(𝑥0) on the positive side of a line 𝑧0 = 0, inclined

at the angle 𝜑0 to the horizontal, and addition, on the negative side, of the image of the
profile through this line, so as to transform the problem into one over the whole plane,
yield a velocity discontinuity 2𝑤0(𝑥0) at 𝑧0 = 0, hence a source of mass

𝑓0(𝑥0, 𝑧0) = 2𝑤0(𝑥0)𝛿(𝑧0), 𝑓0(𝑘0, 𝑚0) = 2𝑤0(𝑘0). (8.34)

Both waves and a boundary layer are produced, given by the formulae of §5. According
to them, the boundary layer is of the same order as the waves when the generator is
inclined, and negligible compared with the waves when the generator is horizontal or
vertical. As previously discussed, such prediction of a boundary layer based on a free-slip
boundary condition is questionable. Beckebanze et al. (2019) discussed the appropriate
condition at a vertical wave generator and concluded that the boundary layer may be
neglected and a free-slip condition used.
One of the experiments by Mercier et al. (2010) aimed at reproducing the self-similar

wave beam, propagating downward to the right, generated in a viscous fluid by a point
dipole source at (𝑥− = 0, 𝑧− = 𝑙). In this beam, calculated by Thomas & Stevenson
(1972) and Machicoane et al. (2015), the fluid velocity writes

𝒖c = − 3𝑈
Γ(2/3)

𝒆𝑧− exp(−i𝜔0𝑡) (
𝑙

𝑙 − 𝑧−
)
2/3
(𝑐2 + i𝑠2) {

𝑥−
[𝛽(𝑙 − 𝑧−)]1/3

} , (8.35)

where the real functions 𝑐𝜇 and 𝑠𝜇, defined as

(𝑐𝜇 + i𝑠𝜇)(𝑥) = ∫
∞

0
𝑘𝜇−1 exp(−𝑘3) exp(i𝑘𝑥) d𝑘, (8.36)

and such that (𝑐𝜇+i𝑠𝜇)(0) = Γ(𝜇/3)/3, have been introduced independently byMoore &
Saffman (1969) for rotating fluids and Thomas & Stevenson (1972) for stratified fluids,
with different notations, and their properties studied in greater detail by Voisin (2003)
and Le Dizès & Le Bars (2017).
The aim of the experiment was to impose the profile (8.35) along the line 𝑧− = 0,



Near-field internal wave beams in two dimensions 35

setting this profile such that the distance 𝑙 to the virtual source was large enough for the
beam to have reached self-similarity already, and then to check whether the resulting
waves evolved according to (8.35). To avoid having to reconfigure the generator to be
along the line 𝑧− = 0 for each frequency of oscillation, the generator was positioned
vertically and the profile 𝑢(𝑥 = 0, 𝑧) = −𝒖c(𝑥− = 𝑧, 𝑧− = 0) ⋅ 𝒆𝑧− imposed along it,
assuming the angle of propagation π/2− 𝜃0 to the horizontal to be small enough for the
approximation to be valid. The forcing becomes

𝑔(𝑧) = 4𝑈
Γ(2/3)

(𝑐2 + i𝑠2) [
𝑧

(𝛽𝑙)1/3 ]
, 𝑔(𝑚) = 12π𝑈

Γ(2/3)
(𝛽𝑙)2/3𝐻(𝑚)𝑚exp(−𝛽𝑙𝑚3), (8.37)

and the waves follow as

𝒖 = − 3𝑈
Γ(2/3)

𝒆𝑧− exp(−i𝜔0𝑡)
𝑙2/3 sin5/3 𝜃0

(𝑥 + 𝑙 sin4 𝜃0)2/3
(𝑐2+i𝑠2) {𝑥− [

sin 𝜃0
𝛽(𝑥 + 𝑙 sin4 𝜃0)

]
1/3

} . (8.38)

The experiment took place in a fluid of buoyancy frequency𝑁 = 0.82 s−1. The kinematic
viscosity was not specified and has been taken as 𝜈 = 1 mm2 s−1. The virtual origin was
at 𝑙 = 44 cm, determined from a fit to figure 2(a) of Mercier et al. (2010), and the am-
plitude of oscillation was 𝐴 = 10 mm. The phase of the oscillation 𝜙 = 𝜔0𝑡 was chosen
to be zero at the instant when the central plate of the generator was at the rightmost
point of its oscillation, yielding Re[𝐴𝒆𝑥 exp(−i𝜔0𝑡)] for the position of the plate, so that
𝑈 = −i𝜔0𝐴. Matching numerical simulations were also performed.
The plotted quantity was the buoyancy disturbance 𝐵 = −𝑔𝜌/𝜌0 = −i(𝑁2/𝜔0)𝑤, for

which the Thomas–Stevenson approach gives

𝐵c
𝑁2𝐴 =

3 cos 𝜃0
Γ(2/3)

exp(−i𝜔0𝑡) (
𝑙

𝑙 − 𝑧−
)
2/3
(𝑐2 + i𝑠2) {

𝑥−
[𝛽(𝑙 − 𝑧−)]1/3

} , (8.39)

and the present approach gives

𝐵
𝑁2𝐴 =

3 cos 𝜃0
Γ(2/3)

exp(−i𝜔0𝑡)
𝑙2/3 sin5/3 𝜃0

(𝑥 + 𝑙 sin4 𝜃0)2/3
(𝑐2 + i𝑠2) {𝑥− [

sin 𝜃0
𝛽(𝑥 + 𝑙 sin4 𝜃0)

]
1/3

} . (8.40)

Figures 12 and 13 of Mercier et al. (2010) present measurements for oscillations at the
frequency 𝜔0 = 0.20 s−1, corresponding to propagation at 14∘ to the horizontal. The
transverse profiles in their figure 13, measured at eleven cross sections every 2 cm from
𝑧− = −3 cm to 𝑧− = −23 cm, are all in the far field; this is because, with an across-beam
distance to the beam axis of at most 4.5 cm, corresponding to half the active region of
the generator, and an along-beam distance to the virtual origin of at least 44 cm, we are
already in the far field at the generator. As the result, the present theory is indistinguish-
able from the Thomas–Stevenson theory, considered by Mercier et al. (2010), at those
cross sections. This legitimates a posteriori the use of a vertical generator.
We focus instead on their figure 12, and presentmatching contourmaps in the present

figure 12. The Thomas–Stevenson theory and the present theory only differ from each
other in the close vicinity of the generator, the latter giving slightly larger values. The
theory agrees with both experiments and simulations, the agreement being better with
the latter owing to the more controlled numerical conditions.

8.4. Thin topography
The main manifestation of monochromatic internal waves in the environment is the

internal or baroclinic tide, generated in the ocean by the oscillation of the barotropic tide
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Figure 12. Contour maps of 𝐵 (inmm s−2) at phase 𝜙 = 0 for the wave generator in the ‘wave beam’
experiment in figure 12 of Mercier et al. (2010), using (a) the Thomas–Stevenson profile (8.39) and
(b) the present profile (8.40).

over bottom topography (Garrett & Kunze 2007). A convenient approximation, some-
times called ‘weak topography’, is the concept of a thin topography, that is a topography
of infinitesimal slope. It has been introduced by Cox & Sandstrom (1962), developed by
Bell (1975a, b) andLlewellyn Smith&Young (2002), and applied to the global calculation
of the internal tide by St. Laurent & Garrett (2002), Nycander (2005), Melet et al. (2013),
Falahat et al. (2014) and Vic et al. (2019).
The approximation requires the topographic slope to be small comparedwith the slope

of the wave rays. Topographies are said subcritical if their slope is everywhere smaller
than the slope of the rays, and supercritical otherwise. For two-dimensional topography
of profile ℎ(𝑥), Balmforth et al. (2002) introduced a ‘criticality parameter’

𝜀 =
max |ℎ′(𝑥)|
cot 𝜃0

, (8.41)

and studied the validity of the approximation, in theory 𝜀 ≪ 1, as 𝜀 increases from 0 to 1
for a variety of subcritical topographies. Among those was an isolated Gaussian bump.
In this respect, the elliptic cylinder of §8.1 and the vertical barrier of §8.2 are extreme
examples of supercritical topographies for which 𝜀 → ∞.
Consider the problem in the frame of reference of the barotropic tide. The topogra-

phy oscillates at the velocity (𝑈, 0) exp(−i𝜔0𝑡) in an otherwise quiescent fluid with rigid
bottom at 𝑧 = 0. Assuming the topography to be thin, the free-slip boundary condition
simplifies to 𝑤 = −𝑈ℎ′(𝑥) at 𝑧 = 0. Adding the image of the topography through the
bottom, the representation of the forcing follows as

𝑓(𝑥, 𝑧) = −2𝑈ℎ′(𝑥)𝛿(𝑧), 𝑓(𝑘,𝑚) = −2i𝑈𝑘ℎ(𝑘), (8.42)

yielding the internal tide

𝒖 = −i 𝑈2π exp(−i𝜔0𝑡) cos 𝜃0∑±
(𝒆𝑥 sin 𝜃0 ± 𝒆𝑧 cos 𝜃0)

×∫
∞

0
𝜅ℎ(𝑘 = ±𝜅 cos 𝜃0 sign 𝑧) exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) exp(±i𝜅𝑥± sign 𝑧) d𝜅. (8.43)

As already discussed, the boundary layer is negligible. For the same forcing, the classical
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theory of §2 gives

𝒖c = −i 𝑈2π exp(−i𝜔0𝑡) cos 𝜃0∑±
(𝒆𝑥 sin 𝜃0 ± 𝒆𝑧 cos 𝜃0)

×∫
∞

0
𝜅ℎ(𝑘 = ±𝜅 cos 𝜃0 sign 𝑧±) exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅. (8.44)

Applied to the Gaussian bump

ℎ(𝑥) = ℎ0 exp (−
𝑥2
2𝑎2 ) , ℎ(𝑘) = (2π)1/2𝑎ℎ0 exp (−

𝑘2𝑎2
2 ) , (8.45)

these results give, for the present theory,

𝒖 = ( 2π)
1/2
𝑎ℎ0𝑈exp(−i𝜔0𝑡) cos 𝜃0

×∫
∞

0
𝜅 exp(−𝜅2𝑎2 cos2 𝜃0/2) exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) exp(−i𝜅|𝑧| sin 𝜃0)

× [𝒆𝑧 cos 𝜃0 sin(𝜅𝑥 cos 𝜃0) sign 𝑧 − i𝒆𝑥 sin 𝜃0 cos(𝜅𝑥 cos 𝜃0)] d𝜅, (8.46)

and for the classical theory,

𝒖c = −i
𝑎ℎ0𝑈
(2π)1/2

exp(−i𝜔0𝑡) cos 𝜃0∑
±
(𝒆𝑥 sin 𝜃0 ± 𝒆𝑧 cos 𝜃0)

×∫
∞

0
𝜅 exp(−𝜅2𝑎2 cos2 𝜃0/2) exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅, (8.47)

on the assumption that the criticality parameter 𝜀 = (ℎ0 tan 𝜃0)/(𝑎√𝑒) is small.
In the inviscid case, the Fourier transform

∫
∞

0
𝑘 exp(−𝑘2) exp(i𝑘𝑥) d𝑘 = 1

2 [1 − 𝑥𝐹 (𝑥2 )] + iπ
1/2

4 𝑥 exp (−𝑥
2

4 ) , (8.48)

where 𝐹(𝑥) = e−𝑥2 ∫𝑥
0 e𝑡2 d𝑡 is Dawson’s integral, taken from table 5 of Voisin (2003),

yields

𝒖c = −i
ℎ0

𝑎 cos 𝜃0
𝑈

(2π)1/2
exp(−i𝜔0𝑡)∑

±
(𝒆𝑥 sin 𝜃0 ± 𝒆𝑧 cos 𝜃0)

× [1 −
√2𝑥±
𝑎 cos 𝜃0

𝐹 (
𝑥±

√2𝑎 cos 𝜃0
) ± i (π2 )

1/2 𝑥±
𝑎 cos 𝜃0

exp (−
𝑥2±

2𝑎2 cos2 𝜃0
) sign 𝑧±] . (8.49)

Accordingly, the classical solution (8.47) is discontinuous across the entirety of the lines
𝑧± = 0, while the discontinuity of the present solution (8.46) is limited to the forcing line
𝑧 = 0 where it is of no consequence. In practice, given the rapid decay of 𝑥 exp(−𝑥2/2)
past its maximum at 𝑥 = 1, such that the function is already negligible at 𝑥 = 4 say, the
discontinuity of the classical solution is only visible for |𝑥±| ≲ 4𝑎 cos 𝜃0.
In the same series of experiments as for the vertical barrier in §8.2, Peacock et al.

(2008) considered a Gaussian bump of height ℎ0 = 14.7 mm and standard deviation 𝑎 =
20 mm, hence maximum slope angle of 24∘, oscillating with amplitude 𝐴 = 2.79 mm,
hence Keulegan–Carpenter number e = 𝐴/𝑎 = 0.14, in a fluid of kinematic viscosity
𝜈 = 1.10 mm2 s−1. Two different criticality parameters were obtained by varying the
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Figure 13. Contour maps of Δ𝑁2 (in s−2) at phase 𝜙 = π/2, as predicted by (8.50), for the oscillations
at relative frequencies (a) 𝜔0/𝑁 = 0.80 and (b) 𝜔0/𝑁 = 0.48 of the Gaussian bump in figures 2 and 4,
respectively, of Peacock et al. (2008). The waves propagate at the angles (a) 𝜃0 = 37∘ and (b) 𝜃0 = 62∘
to the vertical, with criticality parameters (a) 𝜀 = 0.34 and (b) 𝜀 = 0.82.

frequency of oscillation: 𝜖 = 0.34, for 𝜔0 = 0.98 s−1 and 𝑁 = 1.23 s−1; and 𝜖 = 0.82, for
𝜔0 = 0.59 s−1 and 𝑁 = 1.24 s−1. The associated Stokes numbers St = 𝜔0𝑎2/𝜈 were 360
and 210, respectively.
The measured quantity was, again, the buoyancy frequency disturbance, compared

with an extension of the theory of Balmforth et al. (2002). Choosing the phase origin as
in §8.2, so that 𝑈 = −𝜔0𝐴, the present theory gives

Δ𝑁2

𝑁2 = ( 2π)
1/2
𝑎ℎ0𝐴exp(−i𝜔0𝑡) sin 𝜃0 cos2 𝜃0∫

∞

0
𝜅2 exp(−𝜅2𝑎2 cos2 𝜃0/2)

× exp(−𝛽𝜅3|𝑧|/ cos 𝜃0) sin(𝜅𝑥 cos 𝜃0) exp(−i𝜅|𝑧| sin 𝜃0) d𝜅, (8.50)

while the classical theory gives

(Δ𝑁
2

𝑁2 )
c
= −i

𝑎ℎ0𝐴
(2π)1/2

exp(−i𝜔0𝑡) sin 𝜃0 cos2 𝜃0∑
±
(±) sign 𝑧±

×∫
∞

0
𝜅2 exp(−𝜅2𝑎2 cos2 𝜃0/2) exp(−𝛽𝜅3|𝑧±|) exp(±i𝜅𝑥± sign 𝑧±) d𝜅. (8.51)

Figure 13 applies the present theory to the contour maps in figures 2 and 4 of Peacock
et al. (2008). The overall agreement with experiment is surprisingly good, given that the
topography is nowhere as thin as the theory assumes it to be. This is confirmed in the
far field by plotting in figures 14 and 15 the transverse profiles at cross sections 𝑧+ = 4𝑎
and 12𝑎, corresponding to figures 3 and 5 of Peacock et al. (2008), respectively: there is a
tendency to overprediction of the wave amplitudes by the thin-topography approxima-
tion, and a shift of the experiment to the left for 𝜀 = 0.34 in figure 14 compared with
this approximation, but otherwise the shape of the profile is relatively well predicted.
The theory of Balmforth et al. (2002) for finite topography seems to exhibit a similar
shift in their figures 8(a,b), obtained in an inviscid fluid for similar criticality parameters
𝜀 = 0.4 and 0.8. As a rule, in these figures, each beam seems to be shifted to the side of
the topography that it appears to emanate from, namely to the left for the beam pointing
upward to the right, and to the right for the beam pointing upward to the left, though it
is difficult to draw any definite conclusion based on such limited sample.
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Figure 14. Transverse variations of Δ𝑁2 at cross sections (a,b) 𝑧+/𝑎 = 4 and (c,d) 𝑧+/𝑎 = 12, at
phases (a,c) 𝜙 = 0 and (b,d) 𝜙 = π/2, for the oscillations at relative frequency 𝜔0/𝑁 = 0.80 of the
Gaussian bump in figure 3 of Peacock et al. (2008), with other parameters as in figure 13(a) above. The
experimental data are plotted together with the present theory (8.50).
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Figure 15. Same as figure 14, for the oscillations at relative frequency 𝜔0/𝑁 = 0.48 of the Gaussian
bump in figure 5 of Peacock et al. (2008), with other parameters as in figure 13(b) above.

Close-ups of the near field are provided in figures 16 and 17. Owing to the absence of
critical points, the wave variations are much smoother than for the supercritical sources
in figures 6 and 10. The classical theory still yields segments of discontinuity along the
lines 𝑧± = 0, whose extension into the fluid is consistent with the above prediction
|𝑥±| ≲ 4𝑎 cos 𝜃0. Coming back to figures 13(a,b) and comparing them with experiment,
the variations of the present theory are seen to differ from the experimental variations
close to the topography, probably owing to the combined effects of the thin-topography
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Figure 16. Near field for figure 13(a), using (a) the classical theory (8.51) and (b) the present theory
(8.50). The waves are calculated both inside and outside the bump, whose outline is shown dashed.
The white areas correspond to off-scale values of the plotted quantity.
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Figure 17. Near field for figure 13(b). The mode of representation is the same as in figure 16.

approximation and the free-slip boundary condition. Overall, comparing figures 9, 13(b)
and 13(a), the rate of decrease of thewave amplitudewith distance away from the forcing
seems to become smaller as the criticality parameter 𝜀 becomes smaller.

9. Conclusion
A new approach has been proposed for the generation of two-dimensional internal

wave beams in fluids of small viscosity, extending to the near field the classical approach
of Lighthill (1960, 1978, §4.10) for the far field. For this, the source of the waves has been
assumed to be of compact support, a subclass of the rapidly decreasing sources consid-
ered by Lighthill. The waves have been derived by Fourier integration and application
of the residue theorem in the wavenumber plane. Depending on the direction along
which the theorem is applied, several expressions of thewaves have been obtained: (6.1),
most appropriate for a circular source; (4.26), most appropriate for an elliptic source,
becoming (6.6) when the axes of the ellipse are horizontal and vertical; and (6.2), most
appropriate for a source in the shape of an inclined strip, becoming (6.8) when the strip
is horizontal and (6.9) when it is vertical. In each case, the indicated shape is the shape
of the support domain used for the calculation of the waves.
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This support does not need to exactly match the shape of the source; the closer it does,
the more accurate the expression of the waves, and the larger its domain of validity.
For a given source, each expression of the waves has a specific domain of validity, all
expressions becoming equivalent in the intersection of their domains. The equivalence
is exact when the fluid is inviscid, and asymptotic, in the limit of large Stokes number,
when the fluid is viscous.
These conclusions have been confirmed by application in §8.1 to the oscillations of a

horizontal cylinder.When the cylinder is circular and (6.1) is used, the theory of Hurley
&Keady (1997) is recovered, which the experiments of Sutherland et al. (1999, 2000) and
Zhang et al. (2007) have shown to apply everywhere in the fluid. When the cylinder is
elliptic and (6.6) is used, the result is seen to satisfy the free-slip condition at the surface
of the cylinder, hence to apply everywhere in the fluid, and to be consistent with the
experiments of Sutherland & Linden (2002). In both cases, viscosity arises only as an ex-
ponential attenuation factor in the integral expression of the waves. When the other ex-
pressions of the waves are used, associated with a support which does not match exactly
the shape of the cylinder, viscosity arises also as an additional term inside the source
spectrum. When this term, absent from the far-field theory of Lighthill (1978, §4.10), is
taken into account, every expression leads to correct prediction of the critical points at
which critical wave rays are tangential to the cylinder.
This is especially important with a view to later extension of the analysis to include

nonlinear effects and no-slip boundaries. For the former, the experimental investigations
of Zhang et al. (2007), Ermanyuk, Flór &Voisin (2011) and Shmakova, Ermanyuk&Flór
(2017), together with the numerical investigations of Tabaei, Akylas & Lamb (2005) and
Korobov & Lamb (2008), have shown that nonlinear higher harmonics are generated for
an oscillating body at the locations where the critical rays either intersect each other or
are tangential to the body; for the latter, Kerswell (1995) and Le Dizès & Le Bars (2017)
have shown that the internal shear layers forming the wave beams arise from eruptions
of the boundary layer at the critical points.
When the source reduces to a line, generating the waves (5.9) for an inclined line,

(5.15) for a horizontal line and (5.19) for a vertical line, a boundary layer is produced in
addition to the waves, given by (5.13), (5.16) and (5.20), respectively, with penetration
depth

𝛿b = (2𝜈𝜔0
)
1/2 cos 𝜃0

| cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)|1/2
, (9.1)

for a line inclined at the angle 𝜑0 to the horizontal generating waves propagating at the
angle 𝜃0 to the vertical, with 𝜈 the kinematic viscosity and 𝜔0 the oscillation frequency.
The other properties of the layer are, however, speculative, given themodel of the forcing
as a source term in the wave equation. The determination of this model for an actual
forcing mechanism, typically the oscillations of a plate, requires the calculation of the
boundary layer, which then predates the calculation of the waves. In three dimensions,
the boundary layer has been obtained by Davis & Llewellyn Smith (2010) and Le Dizès
(2015) by solving the no-slip boundary-value problem for oscillating horizontal discs.
The three applications in §§8.2, 8.3 and 8.4 to a vertical knife edge, a vertical wave

generator and a thin Gaussian bump, respectively, all involve line sources. For the knife
edge the boundary layer is predicted to be of the same order as the waves and to yield
singularities extending through the fluid at the level of the tip of the knife edge. This
unphysical result illustrates the singularity of the low-viscosity limit St → ∞ for the
boundary layer, where St is the Stokes number. As a rule, the present calculations for
oscillating bodies assume free-slip boundaries. Accordingly, the viscous attenuation of
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the waves is accounted for but not the viscous boundary layer around the body. In this
respect, as pointed out by an anonymous referee, the present study applies to the ‘near
field’ but not the ‘near near-field’.
Quantitative validation of the study has been limited to the far field, where most of

the available experimental measurements have been made. This is, unfortunately, also
the region where the present theory and the classical theory of Lighthill (1978, §4.10)
and Hurley & Keady (1997) become identical. In the near field, the validation has been
limited to showing that the unphysical lines of singularities predicted by the classical
theory are absent in the present theory, and that critical points are correctly accounted
for. These points are visible to some extent in the experiments of Sutherland & Linden
(2002), but a quantitative study of the near field though simulations, if not experiments,
remains to be done, which only will be able to provide independent verification of the
theory.
When the shape of the oscillating body becomes more involved, the description of the

wave field close to the body, where locally inward energy flux may be observed (Martin
& Llewellyn Smith 2012a), cannot be achieved via a Fourier-based method. The Green’s
function method provides a convenient alternative, in which the response to a point
source 𝛿(𝑥)𝛿(𝑧) is represented by the Green’s function 𝐺(𝑥, 𝑧) and the waves produced
by an arbitrary source 𝑓(𝑥, 𝑧) follow from its convolution with the Green’s function,

𝜓(𝑥, 𝑧) =∬𝑓(𝑥′, 𝑧′)𝐺(𝑥 − 𝑥′, 𝑧 − 𝑧′) d𝑥′ d𝑧′. (9.2)

Voisin (2003) and Martin & Llewellyn Smith (2012a) have applied this method to the
determination of the far field for a generic three-dimensional source and an oscillating
sphere, respectively, and Bühler &Muller (2007) have evaluated the convolution integral
numerically for a variety of thin topographies. The derivation of the two-dimensional
Green’s function is presented in Appendix B for both inviscid and viscous fluids.
The next step in this study is its adaptation to three dimensions. The expression (2.7)

of three-dimensional waves inVoisin et al. (2011), based on an extrapolation fromVoisin
(2003), is of the same type as the present (6.9), but misses the restriction |𝑧| > 𝑏 on its
validity and the viscous correction inside the spectrum of the forcing. As a result, its
application (2.16) to an oscillating sphere, though in agreement with the measurements
of Flynn, Onu & Sutherland (2003), King, Zhang & Swinney (2009), Voisin et al. (2011)
and Ghaemsaidi & Peacock (2013), performed mostly in the far field, yields spurious
singularities in the equatorial plane of the sphere in the near field, visible in figures 6
and 7 of Voisin et al. (2011). No such singularity has been found in the experiments
of Flynn et al. (2003), Sutherland, Flynn & Onu (2003) and King et al. (2009), or the
numerical simulations of King et al. (2009), Bigot et al. (2014) and Le Dizès & Le Bars
(2017). The interested reader may also check that, in the inviscid case, the expression
(2.16) of thewaves inVoisin et al. (2011) does not satisfy the free-slip boundary condition
at the sphere in between the critical latitudes, that is for |𝑧| < 𝑎 sin 𝜃0.
An added complexity in three dimensions is the existence of a complex continuation

to the real wavenumber surface. To illustrate this, we write the dispersion relation in
Cartesian components (𝑘, 𝑙, 𝑚) as

(𝑘2 + 𝑙2) sin2 𝜃0 = 𝑚2 cos2 𝜃0. (9.3)

In two dimensions, 𝑙 = 0 and for each real 𝑘 this equation has two real solutions 𝑚 =
±𝑘 tan 𝜃0, yielding the wavenumber surface in the shape of a St. Andrew’s Cross shown
in figure 1. In three dimensions, if 𝑘 and 𝑙 are real and integration is performed over𝑚,
as in Voisin (2003), the two solutions 𝑚 = ±(𝑘2 + 𝑙2)1/2 are real and define a conical
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wavenumber surface. If 𝑘 and 𝑚 are real and integration is performed over 𝑙, however,
the two solutions are 𝑙 = ±(𝑚2 cot2 𝜃0 − 𝑘2)1/2: if |𝑚| > |𝑘| tan 𝜃0 they belong to the
intersection of the conical surfacewith the plane of constant 𝑙, but if |𝑚| < |𝑘| tan 𝜃0 they
become imaginary andmigrate outside this surface; in either case they are valid solutions
whichneed to be taken into account, especially in the near field.This possibility, foreseen
by Lighthill (1990) for general waves, does not exist in two dimensions. Work to adapt
the analysis to this situation is under way.
Finally, it must be pointed out that other diffusive phenomena are present in real

fluids in addition to viscosity, affecting temperature and concentration. They have been
ignored to keep the analysis tractable, but may play a role in applications. As a rule,
the diffusivities add up to viscosity in the expression of the attenuation coefficient of
the waves, and give rise to new boundary layers, one per diffusivity. Their effect on
the dispersion relation has been investigated by Kistovich & Chashechkin (2007) and
Chashechkin (2018), the latter presenting experimental examples of the flow structure
near oscillating discs and spheres. Molecular diffusivity is a common occurrence in
stratified fluids at laboratory scale, and has been taken into account by Kistovich &
Chashechkin (1995) for the reflection of a two-dimensional wave beam at an inclined
plane, Bardakov et al. (2007) and Davis & Llewellyn Smith (2010) for the emission of
waves by an oscillating disc and Vasil’ev & Chashechkin (2012) for the emission by
an oscillating plate. In astrophysical conditions magnetic and thermal diffusivities may
also play a role, investigated for oscillating discs by Tilgner (2000) and Le Dizès (2015),
respectively.
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Appendix A. Higher-order sources
The bounds (2.20) and (4.13) are a lesser form of a family of theorems, known as

Paley–Wiener theorems after their introduction by Paley &Wiener (1934, §6) for square-
integrable functions, relating the decay properties of a function to the behaviour of its
Fourier transform in the complex plane. For a function𝑓(𝑥) of compact support of radius
𝑎, such that 𝑓(𝑥) = 0 for |𝑥| > 𝑎, the theorem states that the transform

𝑓(𝑘) = ∫
𝑎

−𝑎
𝑓(𝑥) exp(−i𝑘𝑥) d𝑥 (A 1)

is an analytic function of the complex variable 𝑘, integrable along the real axis and grow-
ing exponentially along the imaginary axis; by the latter it is meant that there exists a
positive constant 𝐶 such that, for all complex 𝑘,

|𝑓(𝑘)| < 𝐶 exp(𝑎| Im𝑘|). (A 2)



44 B. Voisin

The theorem also states that the reciprocal is true: any function having these properties
is the Fourier transform of an integrable function of compact support of radius 𝑎. When
the original function is further smooth, namely differentiable to any order, then each
derivative 𝑓(𝑛)(𝑥), of transform (i𝑘)𝑛𝑓(𝑘), admits a bound of the form (A 2); as a result
𝑓(𝑘) is rapidly decreasing along the real axis, namely decreasing faster than any inverse
power of 𝑘, since for any non-negative integer 𝑛 there exists a positive constant 𝐶𝑛 such
that, for all complex 𝑘,

|𝑓(𝑘)| < 𝐶𝑛(1 + |𝑘|𝑎)−𝑛 exp(𝑎| Im𝑘|). (A 3)

Schwartz extended this theorem to distributions of order 𝑛, such as the 𝑛-th derivative of
theDirac delta function. According to the extension (Hörmander 1990, §7.3), the Fourier
transform 𝑓(𝑘) of a distribution 𝑓(𝑥) of order 𝑛 and compact support of radius 𝑎 is an
analytic function of the complex variable 𝑘, with slow polynomial growth along the real
axis and exponential growth along the imaginary axis; specifically, there exists a positive
constant 𝐶 such that, for all complex 𝑘,

|𝑓(𝑘)| < 𝐶(1 + |𝑘|𝑎)𝑛 exp(𝑎| Im𝑘|). (A 4)

Again, the reciprocal is true: any function having these properties is the Fourier trans-
form of a distribution of order 𝑛 and compact support of radius 𝑎.
Here, given (3.5), where the rational fraction multiplying the spectrum varies as the

inverse wavenumber, this means that the analysis of §§4 and 5 only applies to source
functions that are either proper functions or distributions of order 𝑛 = 0 (as in §8.1).
For higher 𝑛 = 1, 2, … (as in §8.2), the contribution of the semi-circle at infinity does not
vanish and must be evaluated.
We present a purely heuristic derivation for the line source (5.3). For simplicity we set

𝜈 = 0. The integrand in (4.3) behaves asymptotically for large |𝑚0| as

− i𝑛 [𝒆𝑧0 + 𝒆𝑥0
sin 𝜑0 cos 𝜑0

cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)
] 𝑔(𝑘0)𝑚𝑛−1

0 exp[i(𝑘0𝑥0 +𝑚0𝑧0)]. (A 5)

We use this estimate along the semi-circle at infinity, close the semi-circle by a straight
line along the real axis, use along this line the inverse transform

∫
∞

−∞
𝑘𝑛 exp(i𝑘𝑥) d𝑘 = 2π(−i)𝑛𝛿(𝑛)(𝑥), (A 6)

taken from table 4 of Voisin (2003), and apply Cauchy’s theorem. The result is a new
contribution to the velocity,

𝒖∞ = [𝒆𝑧0 + 𝒆𝑥0
sin 𝜑0 cos 𝜑0

cos(𝜃0 + 𝜑0) cos(𝜃0 − 𝜑0)
] exp(−i𝜔0𝑡)𝑔(𝑥0)𝛿(𝑛−1)(𝑧0), (A 7)

in the form of a singularity of order 𝑛− 1 at the source. Such singularity is an artifact of
the source model and has been ignored throughout.

Appendix B. Green’s function
The Green’s function is defined as the solution of the wave equation (2.1) or (2.23) for

unit point forcing 𝑓(𝑥, 𝑧) = 𝛿(𝑥)𝛿(𝑧). The flatness of the spectrum 𝑓(𝑘,𝑚) = 1 leaves the
wavenumber arbitrary, allowing |𝑘±| to become infinitely large and preventing the poles
(2.15) and (2.26) from remaining small, however small 𝜖/𝑁 and 𝛽𝜅2 can be. The deriva-
tions in §2 are invalidated and alternative derivations are necessary, presented briefly in
this appendix. The time dependence as exp(−i𝜔0𝑡) is implicit throughout.
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B.1. Inviscid case
The inviscid Green’s function satisfies

[(𝜔2
0 − 𝑁2) ∂

2

∂𝑥2 + 𝜔2
0
∂2
∂𝑧2 ]𝐺 = −𝛿(𝑥)𝛿(𝑧), (B 1)

an equation solved by the method of Bryan (1889) and Hurley (1972). For 𝜔0 > 𝑁 the
equation is elliptic. Stretching the coordinates according to

𝑥⋆ =
𝜔0
𝑁 𝑥, 𝑧⋆ =

(𝜔2
0 − 𝑁2)1/2

𝑁 𝑧, (B 2)

transforms it into a Poisson equation, of known Green’s function −1/(4π) ln(𝑥2⋆ + 𝑧2⋆).
The solution is continued analytically onto the upper half of the complex 𝜔0-plane, so
as to ensure causality. For real 𝜔0 this gives

𝐺 = −
ln[(𝜔0 + i0)2𝑟2 − 𝑁2𝑧2]
4π𝜔0[(𝜔0 + i0)2 − 𝑁2]1/2

, (B 3)

where the addition of an infinitesimal positive imaginary part to 𝜔0 is consistent with
Lighthill’s radiation condition.
For 0 < 𝜔0 < 𝑁 we may write, up to an insignificant constant,

𝐺 = i
ln(𝑥+𝑥− + i0)

4π𝑁2 sin 𝜃0 cos 𝜃0
, (B 4)

or equivalently in decomposed form,

𝐺 = i
4π𝑁2 sin 𝜃0 cos 𝜃0

[ln(𝑥+ + i0 sign 𝑥−) + ln(𝑥− + i0 sign 𝑥+)]. (B 5)

The fluid velocity follows by differentiation according to

𝒖𝐺 = 𝑁2 (𝒆𝑥 sin2 𝜃0
∂
∂𝑥 − 𝒆𝑧 cos2 𝜃0

∂
∂𝑧)𝐺, (B 6)

yielding

𝒖𝐺 = i
sin 𝜃0 cos 𝜃0

2π
𝒙

𝑥+𝑥− + i0 , (B 7)

or in decomposed form,

𝒖𝐺 =
i
4π (

𝒆𝑧+
𝑥+ + i0 sign 𝑥−

−
𝒆𝑧−

𝑥− + i0 sign 𝑥+
) . (B 8)

The phase variations are put forward by writing

ln(𝑥 ± i0) = ln |𝑥| ± iπ𝐻(−𝑥), 1
𝑥 ± i0 = pv (1𝑥) ∓ iπ𝛿(𝑥), (B 9)

with pv the principal value. These results have first been obtained by Hurley (1969),
considering the Boussinesq limit of the non-Boussinesq Green’s function, and Bühler &
Muller (2007).
As a verification, we note that the logarithm in (B 4) has the determination

ln |𝑥+𝑥−| + iπ2 (1 − sign 𝑥+ sign 𝑥−), (B 10)
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while the analysis of §2.1, using the inverse transform

∫
∞

0
exp(i𝑘𝑥) d𝑘𝑘 = iπ2 − ln(𝑥 + i0), (B 11)

taken from table 5 of Voisin (2003), would give instead

ln(𝑥+ + i0 sign 𝑧+) − iπ2 sign 𝑧+ + ln(𝑥− − i0 sign 𝑧−) + iπ2 sign 𝑧−, (B 12)

with determination

ln |𝑥+𝑥−| + iπ2 (sign 𝑥− sign 𝑧− − sign 𝑥+ sign 𝑧+), (B 13)

yielding incorrect phase jumps across the lines 𝑥± = 0 and adding spurious phase jumps
across the lines 𝑧± = 0.

B.2. Viscous case
The viscous Green’s function is given by (2.24) as the inverse transform

𝐺 = 1
4π2 ∬

exp[i(𝑘𝑥 + 𝑚𝑧)]
𝜔2
0𝜅2 − 𝑁2𝑘2 + i𝜔0𝜈𝜅4

d𝑘 d𝑚. (B 14)

We evaluate it by applying the residue theorem to integration over 𝑚. Jordan’s lemma
selects the two poles𝑚 = 𝑚1,2 sign 𝑧, where

𝑚2
1,2 = −𝑘2 + i

𝜔0
2𝜈 [1 ∓ 𝐷(𝑘)], Im𝑚1,2 > 0, (B 15)

and the square root

𝐷(𝑘) = (1 + i 4𝜈𝑘2

𝜔0 cos2 𝜃0
)
1/2

(B 16)

is taken in the first quadrant. This gives

𝐺 = i
4π𝑁2 cos2 𝜃0

∫
∞

−∞

exp(i𝑘𝑥)
𝐷(𝑘) [

exp(i𝑚1|𝑧|)
𝑚1

−
exp(i𝑚2|𝑧|)

𝑚2
] d𝑘. (B 17)

The fluid velocity follows by differentiation according to

𝒖𝐺 = 𝑁2 [𝒆𝑥 (sin2 𝜃0 + i cos2 𝜃0
𝜈∇2

𝜔0
) ∂
∂𝑥 − 𝒆𝑧 (cos2 𝜃0 − i cos2 𝜃0

𝜈∇2

𝜔0
) ∂
∂𝑧]𝐺, (B 18)

yielding

𝑢𝐺 =
1
8π ∫

∞

−∞
exp(i𝑘𝑥) {[1 −

1 + 2 tan2 𝜃0
𝐷(𝑘) ] 𝑘

𝑚1
exp(i𝑚1|𝑧|)

+ [1 +
1 + 2 tan2 𝜃0

𝐷(𝑘) ] 𝑘
𝑚2

exp(i𝑚2|𝑧|)} d𝑘, (B 19a)

𝑤𝐺 =
sign 𝑧
8π ∫

∞

−∞
exp(i𝑘𝑥) {[1 + 1

𝐷(𝑘)]
exp(i𝑚1|𝑧|)

+ [1 − 1
𝐷(𝑘)]

exp(i𝑚2|𝑧|)} d𝑘. (B 19b)
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These results have first been obtained by Ramachandra Rao & Balan (1977). Their
derivation closely follows those by Chashechkin, Vasil’ev & Bardakov (2004) and Davis
& Llewellyn Smith (2010) for the waves generated by an oscillating disc.
In the inviscid limit 𝜈 → 0 we have

𝑚1 ∼ −|𝑘| tan 𝜃0, 𝑚2 ∼ (
𝜔0
2𝜈 )

1/2
(1 + i), (B 20)

implying that the term of vertical wavenumber 𝑚2 vanishes and the term of vertical
wavenumber𝑚1 reduces to the inviscid Green’s function.

REFERENCES

Appleby, J. C. & Crighton, D. G. 1986 Non-Boussinesq effects in the diffraction of internal waves
from an oscillating cylinder. Q. J. Mech. Appl. Math. 39, 209–231.

Appleby, J. C. & Crighton, D. G. 1987 Internal gravity waves generated by oscillations of a sphere. J.
Fluid Mech. 183, 439–450.

Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J.
Phys. Oceanogr. 32, 2900–2914.

Balmforth, N. J. & Peacock, T. 2009 Tidal conversion by supercritical topography. J. Phys. Oceanogr.
39, 1965–1974.

Bardakov, R. N., Vasil’ev, A. Yu. & Chashechkin, Yu. D. 2007 Calculation and measurement of
conical beams of three-dimensional periodic internal waves excited by a vertically oscillating
piston. Fluid Dyn. 42, 612–626.

Beckebanze, F., Brouzet, C., Sibgatullin, I. N. & Maas, L. R. M. 2018 Damping of quasi-two-
dimensional internal wave attractors by rigid-wall friction. J. Fluid Mech. 841, 614–635.

Beckebanze, F., Raja, K. J. & Maas, L. R. M. 2019 Mean flow generation by three-dimensional non-
linear internal wave beams. J. Fluid Mech. 864, 303–326.

Bell, T. H. 1975a Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech.
67, 705–722.

Bell, T. H. 1975b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80,
320–327.

Bigot, B., Bonometti, T., Lacaze, L. & Thual, O. 2014 A simple immersed-boundary method for
solid–fluid interaction in constant- and stratified-density flows. Comput. Fluids 97, 126–142.

Boury, S., Peacock, T. & Odier, P. 2019 Excitation and resonant enhancement of axisymmetric in-
ternal wave modes. Phys. Rev. Fluids 4, 034802.

Brunet, M., Dauxois, T. & Cortet, P.-P. 2019 Linear and nonlinear regimes of an inertial wave at-
tractor. Phys. Rev. Fluids 4, 034801.

Bryan, G. H. 1889 The waves on a rotating liquid spheroid of finite ellipticity. Phil. Trans. R. Soc. A
180, 187–219.

Bühler, O. & Muller, C. J. 2007 Instability and focusing of internal tides in the deep ocean. J. Fluid
Mech. 588, 1–28.

Chashechkin, Yu. D. 2018 Singular perturbed components of flows – linear precursors of shock
waves.Math. Model. Nat. Phenom. 13, 17.

Chashechkin, Yu. D. & Kistovich, Yu. V. 1997 Generation of monochromatic internal waves: an
exact solution and the force-source model. Phys. Dokl. 42, 377–380.

Chashechkin, Yu. D., Vasil’ev, A. Yu. & Bardakov, R. N. 2004 Fine structure of beams of a three-
dimensional periodic internal wave. Dokl. Earth Sci. 397A, 816–819.

Cox, C. & Sandstrom, H. 1962 Coupling of internal and surface waves in water of variable depth. J.
Oceanogr. Soc. Jpn 20th Anniversary Volume, 499–513.

Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000Whole-field density measurements by ‘syn-
thetic schlieren’. Exp. Fluids 28, 322–335.

Dauxois, T., Joubaud, S., Odier, P. &Venaille, A. 2018 Instabilities of internal gravity wave beams.
Annu. Rev. Fluid Mech. 50, 131–156.

Davis, A. M. J. 2012 Generation of internal waves from rest: extended use of complex coordinates, for
a sphere but not a disk. J. Fluid Mech. 703, 374–390.

https://doi.org/10.1093/qjmam/39.2.209
https://doi.org/10.1093/qjmam/39.2.209
https://doi.org/10.1017/S0022112087002714
https://doi.org/10.1175/1520-0485(2002)032<2900:TCBST>2.0.CO;2
https://doi.org/10.1175/2009JPO4057.1
https://doi.org/10.1134/S0015462807040114
https://doi.org/10.1134/S0015462807040114
https://doi.org/10.1134/S0015462807040114
https://doi.org/10.1017/jfm.2018.107
https://doi.org/10.1017/jfm.2018.107
https://doi.org/10.1017/jfm.2019.22
https://doi.org/10.1017/jfm.2019.22
https://doi.org/10.1017/S0022112075000560
https://doi.org/10.1029/JC080i003p00320
https://doi.org/10.1016/j.compfluid.2014.03.030
https://doi.org/10.1016/j.compfluid.2014.03.030
https://doi.org/10.1103/PhysRevFluids.4.034802
https://doi.org/10.1103/PhysRevFluids.4.034802
https://doi.org/10.1103/PhysRevFluids.4.034801
https://doi.org/10.1103/PhysRevFluids.4.034801
https://doi.org/10.1098/rsta.1889.0006
https://doi.org/10.1017/S0022112007007410
https://doi.org/10.1051/mmnp/2018020
https://doi.org/10.1051/mmnp/2018020
https://doi.org/10.1007/s003480050391
https://doi.org/10.1007/s003480050391
https://doi.org/10.1146/annurev-fluid-122316-044539
https://doi.org/10.1017/jfm.2012.229
https://doi.org/10.1017/jfm.2012.229


48 B. Voisin

Davis, A. M. J. & Llewellyn Smith, S. G. 2010 Tangential oscillations of a circular disk in a viscous
stratified fluid. J. Fluid Mech. 656, 342–359.

Dobra, T. E., Lawrie, A. G. W. & Dalziel, S. B. 2019 The magic carpet: an arbitrary spectrum wave
maker for internal waves. Exp. Fluids 60, 172.

Dossmann, Y., Bourget, B., Brouzet, C., Dauxois, T., Joubaud, S. & Odier, P. 2016 Mixing by
internal waves quantified using combined PIV/PLIF technique. Exp. Fluids 57, 132.

Dossmann, Y., Pollet, F., Odier, P. & Dauxois, T. 2017 Mixing and formation of layers by internal
wave forcing. J. Geophys. Res. Oceans 122, 9906–9917.

Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography.
J. Fluid Mech. 659, 247–266.

Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave
attractors between double ridges. J. Fluid Mech. 669, 354–374.

Ermanyuk, E. V., Flór, J.-B. &Voisin, B. 2011 Spatial structure of first and higher harmonic internal
waves from a horizontally oscillating sphere. J. Fluid Mech. 671, 364–383.

Ermanyuk, E. V. & Gavrilov, N. V. 2005 Duration of transient processes in the formation of internal-
wave beams. Dokl. Phys. 50, 548–550.

Falahat, S., Nycander, J., Roquet, F. & Zarroug, M. 2014 Global calculation of tidal energy con-
version into vertical normal modes. J. Phys. Oceanogr. 44, 3225–3244.

Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave excitation by a vertically oscillating
sphere. J. Fluid Mech. 494, 65–93.

Gabov, S. A. 1985 The solution of a problem of stratified fluid dynamics and its stabilization as 𝑡 → ∞.
USSR Comput. Math. Math. Phys. 25 (3), 47–55.

Gabov, S. A. & Krutitskii, P. A. 1987 On the non-stationary Larsen problem. USSR Comput. Math.
Math. Phys. 27 (4), 148–154.

Gabov, S. A. & Pletner, Yu. D. 1985 An initial-boundary value problem for the gravitational-
gyroscopic wave equation. USSR Comput. Math. Math. Phys. 25 (6), 64–68.

Gabov, S. A. & Pletner, Yu. D. 1988 The problem of the oscillations of a flat disc in a stratified liquid.
USSR Comput. Math. Math. Phys. 28 (1), 41–47.

Gabov, S. A. & Shevtsov, P. V. 1983 Basic boundary value problems for the equation of oscillations
of a stratified fluid. Sov. Math. Dokl. 27, 238–241.

Gabov, S. A. & Shevtsov, P. V. 1984 On a differential equation of the type of Sobolev’s equation. Sov.
Math. Dokl. 29, 411–414.

Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39,
57–87.

Ghaemsaidi, S. J. & Peacock, T. 2013 3D Stereoscopic PIV visualization of the axisymmetric conical
internal wave field generated by an oscillating sphere. Exp. Fluids 54, 1454.

Görtler, H. 1943Über eine Schwingungserscheinung in Flüssigkeitenmit stabiler Dichteschichtung.
Z. Angew. Math. Mech. 23, 65–71.

Görtler, H. 1944 Einige Bemerkungen über Strömungen in rotierenden Flüssigkeiten. Z. Angew.
Math. Mech. 24, 210–214.

Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp.
Fluids 42, 123–130.

Hendershott, M. C. 1969 Impulsively started oscillations in a rotating stratified fluid. J. Fluid Mech.
36, 513–527.

Hörmander, L. 1990 The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer.
Hurley, D. G. 1969 The emission of internal waves by vibrating cylinders. J. Fluid Mech. 36, 657–672.
Hurley, D. G. 1972 A general method for solving steady-state internal gravity wave problems. J. Fluid

Mech. 56, 721–740.
Hurley, D. G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 1. Inviscid

solution. J. Fluid Mech. 351, 105–118.
Hurley, D. G. & Hood, M. J. 2001 The generation of internal waves by vibrating elliptic cylinders.

Part 3. Angular oscillations and comparison of theory with recent experimental observations. J.
Fluid Mech. 433, 61–75.

Hurley, D. G.&Keady,G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2.
Approximate viscous solution. J. Fluid Mech. 351, 119–138.

Kapitonov, B. V. 1980 Potential theory for the equation of small oscillations of a rotating fluid.Math.
USSR Sb. 37, 559–579.

https://doi.org/10.1017/S0022112010001205
https://doi.org/10.1017/S0022112010001205
https://doi.org/10.1007/s00348-019-2811-5
https://doi.org/10.1007/s00348-019-2811-5
https://doi.org/10.1007/s00348-016-2212-y
https://doi.org/10.1007/s00348-016-2212-y
https://doi.org/10.1002/2017JC013309
https://doi.org/10.1002/2017JC013309
https://doi.org/10.1017/S0022112010002417
https://doi.org/10.1017/S0022112010005069
https://doi.org/10.1017/S0022112010005069
https://doi.org/10.1017/S0022112010005719
https://doi.org/10.1017/S0022112010005719
https://doi.org/10.1134/1.2123308
https://doi.org/10.1134/1.2123308
https://doi.org/10.1175/JPO-D-14-0002.1
https://doi.org/10.1175/JPO-D-14-0002.1
https://doi.org/10.1017/S0022112003005937
https://doi.org/10.1017/S0022112003005937
https://doi.org/10.1016/0041-5553(85)90072-2
https://doi.org/10.1016/0041-5553(87)90025-5
https://doi.org/10.1016/0041-5553(85)90010-2
https://doi.org/10.1016/0041-5553(85)90010-2
https://doi.org/10.1016/0041-5553(88)90214-5
https://doi.org/10.1146/annurev.fluid.39.050905.110227
https://doi.org/10.1007/s00348-012-1454-6
https://doi.org/10.1007/s00348-012-1454-6
https://doi.org/10.1002/zamm.19430230202
https://doi.org/10.1002/zamm.19440240506
https://doi.org/10.1007/s00348-006-0225-7
https://doi.org/10.1017/S0022112069001807
https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1017/S0022112069001911
https://doi.org/10.1017/S0022112072002629
https://doi.org/10.1017/S0022112097007027
https://doi.org/10.1017/S0022112097007027
https://doi.org/10.1017/S0022112000003359
https://doi.org/10.1017/S0022112000003359
https://doi.org/10.1017/S0022112097007039
https://doi.org/10.1017/S0022112097007039
https://doi.org/10.1070/SM1980v037n04ABEH002095


Near-field internal wave beams in two dimensions 49

Kataoka, T. & Akylas, T. R. 2015 On three-dimensional internal gravity wave beams and induced
large-scale mean flows. J. Fluid Mech. 769, 621–634.

Kerswell, R. R. 1995On the internal shear layers spawned by the critical regions in oscillatory Ekman
boundary layers. J. Fluid Mech. 98, 311–325.

King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a
stratified fluid. Phys. Fluids 21, 116601.

Kistovich, A. V. & Chashechkin, Yu. D. 2007 Regular and singular components of periodic flows
in the fluid interior. J. Appl. Maths Mech. 71, 762–771.

Kistovich, Yu. V. & Chashechkin, Yu. D. 1994 Reflection of packets of internal waves from a rigid
plane in a viscous fluid. Izv. Atmos. Ocean. Phys. 30, 718–724.

Kistovich, Yu. V. & Chashechkin, Yu. D. 1995 The reflection of beams of internal gravity waves at
a flat rigid surface. J. Appl. Math. Mech. 59, 579–585.

Kistovich, Yu. V. & Chashechkin, Yu. D. 1999a Generation of monochromatic internal waves in a
viscous fluid. J. Appl. Mech. Tech. Phys. 40, 1020–1028.

Kistovich, Yu. V. & Chashechkin, Yu. D. 1999b An exact solution of a linearized problem of the
radiation of monochromatic internal waves in a viscous fluid. J. Appl. Math. Mech. 63, 587–594.

Korobov, A. S. & Lamb, K. G. 2008 Interharmonics in internal gravity waves generated by tide–
topography interaction. J. Fluid Mech. 611, 61–95.

Krishna, D. V. & Sarma, L. V. 1969 Motion of an axisymmetric body in a rotating stratified fluid
confined between two parallel planes. J. Fluid Mech. 38, 833–842.

Lai, R. Y. S. & Lee, C.-M. 1981 Added mass of a spheroid oscillating in a linearly stratified fluid. Int. J.
Engng Sci. 19, 1411–1420.

Le Dizès, S. 2015 Wave field and zonal flow of a librating disk. J. Fluid Mech. 782, 178–208.
Le Dizès, S. & Le Bars, M. 2017 Internal shear layers from librating objects. J. Fluid Mech. 826,

653–675.
Lighthill, M. J. 1958 An Introduction to Fourier Analysis and Generalised Functions. Cambridge Uni-

versity Press.
Lighthill, M. J. 1960 Studies on magneto-hydrodynamic waves and other anisotropic wave motions.

Phil. Trans. R. Soc. A 252, 397–430.
Lighthill, J. 1978Waves in Fluids. Cambridge University Press.
Lighthill, J. 1990 Emendations to a proof in the general three-dimensional theory of oscillating

sources of waves. Proc. R. Soc. A 427, 31–42.
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr.

32, 1554–1566.
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech.

495, 175–191.
Machicoane, N., Cortet, P.-P., Voisin, B. & Moisy, F. 2015 Influence of the multipole order of the

source on the decay of an inertial wave beam in a rotating fluid. Phys. Fluids 27, 066602.
Martin, P. A. & Llewellyn Smith, S. G. 2011 Generation of internal gravity waves by an oscillating

horizontal disc. Proc. R. Soc. A 467, 3406–3423.
Martin, P. A. & Llewellyn Smith, S. G. 2012a Internal gravity waves, boundary integral equations

and radiation conditions.Wave Motion 49, 427–444.
Martin, P. A. & Llewellyn Smith, S. G. 2012bGeneration of internal gravity waves by an oscillating

horizontal elliptical plate. SIAM J. Appl. Math. 72, 725–739.
Maurer, P., Ghaemsaidi, S. J., Joubaud, S., Peacock, T. & Odier, P. 2017 An axisymmetric inertia-

gravity wave generator. Exp. Fluids 58, 143.
Melet, A., Nikurashin, M., Muller, C., Falahat, S., Nycander, J., Timko, P. G., Arbic, B. K. &

Goff, J. A. 2013 Internal tide generation by abyssal hills using analytical theory. J. Geophys. Res.
Oceans 118, 6303–6318.

Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New
wave generation. J. Fluid Mech. 657, 308–334.

Moore, D.W. & Saffman, P. G. 1969 The structure of free vertical shear layers in a rotating fluid and
the motion produced by a slowly rising body. Phil. Trans. R. Soc. A 264, 597–634.

Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase
configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech.
28, 1–16.

https://doi.org/10.1017/jfm.2015.143
https://doi.org/10.1017/jfm.2015.143
https://doi.org/10.1017/S0022112095003326
https://doi.org/10.1017/S0022112095003326
https://doi.org/10.1063/1.3253692
https://doi.org/10.1063/1.3253692
https://doi.org/10.1016/j.jappmathmech.2007.11.009
https://doi.org/10.1016/j.jappmathmech.2007.11.009
https://doi.org/10.1016/0021-8928(95)00067-4
https://doi.org/10.1016/0021-8928(95)00067-4
https://doi.org/10.1016/S0021-8928(99)00073-8
https://doi.org/10.1016/S0021-8928(99)00073-8
https://doi.org/10.1017/S0022112008002449
https://doi.org/10.1017/S0022112008002449
https://doi.org/10.1017/S0022112069002631
https://doi.org/10.1017/S0022112069002631
https://doi.org/10.1016/0020-7225(81)90038-0
https://doi.org/10.1017/jfm.2015.530
https://doi.org/10.1017/jfm.2017.473
https://doi.org/10.1017/CBO9781139171427
https://doi.org/10.1098/rsta.1960.0010
https://doi.org/10.1098/rspa.1990.0003
https://doi.org/10.1098/rspa.1990.0003
https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2
https://doi.org/10.1017/S0022112003006098
https://doi.org/10.1063/1.4922735
https://doi.org/10.1063/1.4922735
https://doi.org/10.1098/rspa.2011.0193
https://doi.org/10.1098/rspa.2011.0193
https://doi.org/10.1016/j.wavemoti.2012.01.001
https://doi.org/10.1016/j.wavemoti.2012.01.001
https://doi.org/10.1137/110854965
https://doi.org/10.1137/110854965
https://doi.org/10.1007/s00348-017-2423-x
https://doi.org/10.1007/s00348-017-2423-x
https://doi.org/10.1002/2013JC009212
https://doi.org/10.1017/S0022112010002454
https://doi.org/10.1017/S0022112010002454
https://doi.org/10.1098/rsta.1969.0036
https://doi.org/10.1098/rsta.1969.0036
https://doi.org/10.1017/S0022112067001867
https://doi.org/10.1017/S0022112067001867


50 B. Voisin

Musgrave, R. C., Pinkel, R., MacKinnon, J. A., Mazloff, M. R. & Young, W. R. 2016 Stratified
tidal flow over a tall ridge above and below the turning latitude. J. Fluid Mech. 793, 933–957.

Nycander, J. 2005 Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110,
C10028.

Nycander, J. 2006 Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid
Mech. 567, 415–432.

Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid
Mech. 543, 19–44.

Oser, H. 1957 Erzwungene Schwingungen in rotierenden Flüssigkeiten. Arch. Ration. Mech. Anal. 1,
81–96.

Oser, H. 1958 Experimentelle Untersuchung über harmonische Schwingungen in rotierenden Flüs-
sigkeiten. Z. Angew. Math. Mech. 38, 386–391.

Paley, R. E. A. C. & Wiener, N. 1934 Fourier Transforms in the Complex Domain. American Mathe-
matical Society.

Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide
generation by two-dimensional topography. J. Phys. Oceanogr. 38, 235–242.

Pétrélis, F., Llewellyn Smith, S. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J.
Phys. Oceanogr. 36, 1053–1071.

Ramachandra Rao, A. & Balan, K. C. 1977 Effect of viscosity on internal waves from a source in a
wall. Proc. Indian Acad. Sci. A 85, 351–366.

Renaud, A. & Venaille, A. 2019 Boundary streaming by internal waves. J. Fluid Mech. 858, 71–90.
Reynolds, A. 1962 Forced oscillations in a rotating liquid (II). Z. Angew Math. Phys. 13, 561–572.
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell:

attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144.
Sarma, L. V. K. V. & Krishna, D. V. 1972 Oscillation of axisymmetric bodies in a stratified fluid.

Zastosow. Matem. 13, 109–121.
Shmakova, N., Ermanyuk, E. & Flór, J.-B. 2017 Generation of higher harmonic internal waves by

oscillating spheroids. Phys. Rev. Fluids 2, 114801.
Sibgatullin, I. N. & Ermanyuk, E. V. 2019 Internal and inertial wave attractors: a review. J. Appl.

Mech. Tech. Phys. 60, 284–302.
Skazka,V.V. 1981Asymptotic estimates for 𝑡 → ∞ of mixed problems for an equation of mathematical

physics. Sib. Math. J. 22, 95–106.
St. Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys.

Oceanogr. 32, 2882–2899.
Sturova, I. V. 2001 Oscillations of a circular cylinder in a linearly stratified fluid. Fluid Dyn. 36,

478–488.
Sturova, I. V. 2006 Oscillations of a cylinder piercing a linearly stratified fluid layer. Fluid Dyn. 41,

619–628.
Sturova, I. V. 2011 Hydrodynamic loads acting on an oscillating cylinder submerged in a stratified

fluid with ice cover. J. Appl. Mech. Tech. Phys. 52, 415–426.
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measure-

ment of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder. J. Fluid
Mech. 390, 93–126.

Sutherland, B. R., Flynn, M. R. & Onu, K. 2003 Schlieren visualisation and measurement of ax-
isymmetric disturbances. Nonlinear Process. Geophys. 10, 303–309.

Sutherland, B. R., Hughes, G. O., Dalziel, S. B. & Linden, P. F. 2000 Internal waves revisited.Dyn.
Atmos. Oceans 31, 209–232.

Sutherland, B. R. & Linden, P. F. 2002 Internal wave excitation by a vertically oscillating elliptical
cylinder. Phys. Fluids 14, 721–731.

Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141–161.
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal

wave beams. J. Fluid Mech. 526, 217–243.
Thomas, N.H.& Stevenson,T. N. 1972A similarity solution for viscous internal waves. J. FluidMech.

54, 495–506.

https://doi.org/10.1017/jfm.2016.150
https://doi.org/10.1017/jfm.2016.150
https://doi.org/10.1029/2004JC002487
https://doi.org/10.1017/S002211200600228X
https://doi.org/10.1017/S0022112005006580
https://doi.org/10.1007/BF00297997
https://doi.org/10.1002/zamm.19580380909
https://doi.org/10.1002/zamm.19580380909
https://doi.org/10.1175/2007JPO3738.1
https://doi.org/10.1175/2007JPO3738.1
https://doi.org/10.1175/JPO2879.1
https://www.ias.ac.in/describe/article/seca/085/05/0351-0366
https://www.ias.ac.in/describe/article/seca/085/05/0351-0366
https://doi.org/10.1017/jfm.2018.786
https://doi.org/10.1007/BF01595579
https://doi.org/10.1017/S0022112001003718
https://doi.org/10.1017/S0022112001003718
https://doi.org/10.4064/am-13-1-109-121
https://doi.org/10.1103/PhysRevFluids.2.114801
https://doi.org/10.1103/PhysRevFluids.2.114801
https://doi.org/10.1134/S002189441902010X
https://doi.org/10.1007/BF00968205
https://doi.org/10.1007/BF00968205
https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2
https://doi.org/10.1023/A:1019248404743
https://doi.org/10.1007/s10697-006-0080-5
https://doi.org/10.1134/S0021894411030126
https://doi.org/10.1134/S0021894411030126
https://doi.org/10.1017/S0022112099005017
https://doi.org/10.1017/S0022112099005017
http://www.nonlin-processes-geophys.net/10/303/2003/
http://www.nonlin-processes-geophys.net/10/303/2003/
https://doi.org/10.1016/S0377-0265(99)00034-2
https://doi.org/10.1063/1.1430438
https://doi.org/10.1063/1.1430438
https://doi.org/10.1017/S0022112003003902
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/S0022112004002769
https://doi.org/10.1017/S0022112072000837


Near-field internal wave beams in two dimensions 51

Tilgner, A. 2000 Oscillatory shear layers in source driven flows in an unbounded rotating fluid. Phys.
Fluids 12, 1101–1111.

Vasil’ev, A. Yu. &Chashechkin, Yu. D. 2003 The generation of beams of three-dimensional periodic
internal waves in an exponentially stratified fluid. J. Appl. Math. Mech. 67, 397–405.

Vasil’ev, A. Yu. & Chashechkin, Yu. D. 2006a Generation of beams of three-dimensional periodic
internal waves by sources of various types. J. Appl. Mech. Tech. Phys. 47, 314–323.

Vasil’ev, A. Yu. & Chashechkin, Yu. D. 2006b The generation of three-dimensional internal waves
and attendant boundary layers in a viscous continuously stratified fluid. Construction of an
analytical solution. Fluid Dyn. 41, 949–956.

Vasil’ev, A. Yu. & Chashechkin, Yu. D. 2012 Three-dimensional periodic flows of an
inhomogeneous fluid in the case of oscillations of part of an inclined plane. J. Appl.Math.Mech.
76, 302–309.

Vic, C., Naveira Garabato, A. C., Green, J. A. M., Waterhouse, A. F., Zhao, Z., Melet, A.,
de Lavergne, C., Buijsman, M. C. & Stephenson, G. R. 2019 Deep-ocean mixing driven by
small-scale internal tides. Nature Comm. 10, 2099.

Voisin, B. 1991 Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and
point sources. J. Fluid Mech. 231, 439–480.

Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243–293.
Voisin, B. 2009 Added mass in density-stratified fluids. In 19ème Congrès Français de Mécanique (ed.

C. Rey, P. Bontoux & A. Chrisochoos); http://hdl.handle.net/2042/37312.
Voisin, B., Ermanyuk, E. V. & Flór, J.-B. 2011 Internal wave generation by oscillation of a sphere,

with application to internal tides. J. Fluid Mech. 666, 308–357.
Walton, I. C. 1975 On waves in a thin rotating spherical shell of slightly viscous fluid.Mathematika

22, 46–59.
Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8,

1379–1392.
Winters, K. B. & Armi, L. 2013 The response of a continuously stratified fluid to an oscillating flow

past an obstacle. J. Fluid Mech. 727, 83–118.
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated

by supercritical topography. Phys. Fluids 19, 096602.

https://doi.org/10.1063/1.870364
https://doi.org/10.1016/S0021-8928(03)90023-2
https://doi.org/10.1016/S0021-8928(03)90023-2
https://doi.org/10.1007/s10808-006-0058-4
https://doi.org/10.1007/s10808-006-0058-4
https://doi.org/10.1007/s10697-006-0109-9
https://doi.org/10.1007/s10697-006-0109-9
https://doi.org/10.1007/s10697-006-0109-9
https://doi.org/10.1016/j.jappmathmech.2012.07.006
https://doi.org/10.1016/j.jappmathmech.2012.07.006
https://doi.org/10.1038/s41467-019-10149-5
https://doi.org/10.1038/s41467-019-10149-5
https://doi.org/10.1017/S0022112091003464
https://doi.org/10.1017/S0022112091003464
https://doi.org/10.1017/S0022112003006414
http://hdl.handle.net/2042/37312
https://doi.org/10.1017/S0022112010004209
https://doi.org/10.1017/S0022112010004209
https://doi.org/10.1112/S0025579300004496
https://doi.org/10.1088/0957-0233/8/12/002
https://doi.org/10.1017/jfm.2013.247
https://doi.org/10.1017/jfm.2013.247
https://doi.org/10.1063/1.2766741
https://doi.org/10.1063/1.2766741

	Abstract
	Introduction
	Wave structure
	Inviscid case
	Viscous case
	Validity

	Wave equation
	Bluff forcing
	Inviscid case
	Viscous case

	Line forcing
	Inclined source
	Horizontal and vertical sources
	Relevance

	Alternative approaches
	Inclined source
	Source with horizontal and vertical axes
	Relevance

	Unsteady effects
	Applications
	Elliptic cylinder
	Vertical barrier
	Wave generator
	Thin topography

	Conclusion
	Acknowledgments
	Appendix A
	Appendix B
	Inviscid case
	Viscous case

	References

