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Abstract

A new control methodology derived from higher order sliding mode control (HOSMC) strategy

has been recently presented. It ensures high accuracy and requires reduced control effort and

chattering; however, only finite time convergence has been proven. In this paper, this controller

is revisited and domains of convergence are given for some cases. The second objective is to use

this controller to stabilize a twin wind turbine (TWT) system. The performance of the proposed

control strategy is evaluated and compared to HOSMC.

Keywords: Uncertain nonlinear systems, Higher order sliding mode control, Robust control,

Homogeneous control, Wind turbine.

1. Introduction

Sliding mode control (SMC) [1],[2] is a very well known robust control method for uncertain

nonlinear systems. It is mainly recognized for its robustness against perturbations/uncertainties

and high accuracy where these features make it ideal for many applications [3],[4],[5]. However,

the main drawback of the standard SMC is the chattering phenomenon i.e. high frequency os-

cillations which may damage physical components such as actuators and decrease the accuracy

with respect to a sampled controller. It is also restricted to systems with input-output relative

degree equal to 1.

Higher order sliding mode control (HOSMC) techniques have been designed to deal with these

drawbacks. Typically, they have been designed using homogeneity tools [6], [7], [8] and more

recently using a Lyapunov framework [9], [10], [11]. They relieve the restriction on the relative

degree and increase the closed-loop system accuracy. Despite that, the chattering reduction is

limited due to the existence of a discontinuous control action in the higher derivatives of the

sliding variable.

In this paper, the problem under interest is the stabilization of a perturbed chain of integrators

with arbitrary degree, retaining the advantages of HOSM control (accuracy and robustness) but

with their drawbacks reduced (chattering and high energy consumption). Such attempts have

been made for second order systems [12, 13]. The proposed solution was based on linear and
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twisting controllers: a time-varying parameter allows the controller to balance between a linear

controller and the twisting one. The obtained controller has the advantages of the twisting con-

troller [14] (accuracy and robustness) and of the second order linear state feedback (low energy

consumption). It was also successfully implemented on an experimental setup in [15]. A solution

that generalizes this task to a system of arbitrary order has been introduced in [16] that is based

on the homogeneous controller proposed in [17]. The latter is a HOSM controller recognized for

its high accuracy and robustness. However, the gains are overestimated resulting in a high energy

consuming controller. Controller [16] has the advantages of the homogeneous one in [17] (accu-

racy and robustness), but with its drawbacks (chattering and high energy consumption) strongly

reduced. This is made possible by introducing a parameter on the exponent term of the homo-

geneous controller [17], this parameter varying between 0 and 1 and depending on the accuracy

of the tracking. However, the convergence domain of this controller has not been calculated and

only finite time convergence is proven. The first objective of this paper is to formally give the

convergence domain of the proposed controller in [16] when the relative degree is equal to 1 and

2.

The second objective is the design and implementation of a controller for a twin wind turbine

system, SEREO [18]. It includes two identical wind turbines mounted on to the same tower.

Due to this fact, no additional yaw actuator is required to follow the wind direction; this is done

by creating a difference in the drag force of both wind turbines which in turn induces the yaw

motion. The TWT belongs to the family of uncertain nonlinear systems and therefore could be

difficult to control. Indeed, it is a delicate task to mathematically model its dynamics as well as

the perturbations that are acting on it. This makes the proposed controller an ideal tool to achieve

the control objectives given its robustness with respect to matching perturbations/uncertainties.

It is shown via simulations that the designed control scheme successfully forces the structure to

face the wind while keeping optimal energy production. Two aspects of the control are consid-

ered

• mechanical: controlling the yaw motion of the structure in order to orient it face the wind

by acting on the blade pitch angle of both twin turbines.

• electrical: forcing the direct current of both generators to 0 to limit the ripple effect on

the electromagnetic torque and controlling the angular velocities of both generators in

order to optimize the electrical power output. This is achieved by acting on the direct and

quadrature stator voltages.

Once the system is decoupled, the input-output relative degrees of each decoupled part are 1, 2

and 3. This makes the proposed control strategy ideal given that the proposed controller has no

restriction on the relative degree.

The paper is organized as follows. Section 2 defined the TWT model. Section 3 details the

control objective. Section 4 details the controller and the convergence domain for some cases.

Section 5 the proposed controllers are implemented via simulation and their performances are

evaluated.

2. Model of the SEREO structure

The SEREO Twin Wind Turbine (TWT) (see Figure 1 and 2) is made of two identical wind

turbines mounted on a tower. The rotation face the wind needs no yaw driving motor. The yaw

motion is generated by creating a drag forces difference between both wind turbines, thanks to an
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Figure 1: The SEREO structure [18].

Figure 2: Simplified model (top view).

action on the blade pitch angles. The difference between the blade pitch angles is made around

the blade pitch optimal angle. The SEREO model reads as (x being the state vector and u the

control input vector)[5]

ẋ = f (x) + g(x) · u (1)

with

x =
[

β1 β2 ψ ψ̇ id1 iq1 Ω1 id2 iq2 Ω2

]T
,

u =
[

∆β1 ∆β2 Vd1 Vq1 Vd2 Vq2

]T
(2)
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and

f (x) =





1

Tβ1

(β
opt

1
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1
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(
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Lq

iq2 −
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(3)

g(x) =





1

Tβ1

0 0 0 0 0

0
1

Tβ2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0
1

Ld

0 0 0

0 0 0
1

Lq

0 0

0 0 0 0 0 0

0 0 0 0
1

Ld

0

0 0 0 0 0
1

Lq

0 0 0 0 0 0





(4)

where

• the first two equations are the pitch angle dynamics with βi (◦) (i ∈ {1, 2}) the pitch angles,

β
opt

i
the optimal pitch angle giving maximum power output and considered constant and
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Tβi the time constant of the blades actuation systems. ∆βi is the control input acting on the

structure’s rotation.

• the third and fourth equations are yaw-dynamics where Kr (kg.m2) and Dr (N.m/(rad/s))

are respectively the moment of inertia and the coefficient of friction associated to the yaw

motion. L represents the distance between each hub and the tower axis (Figure 2). Fd,i (N)

are the drag forces given as

Fd,i =
1

2
ρπ(RV cos(ψ − α))2Cd,i (5)

with R (m) the wind turbines’ blade radius, ρ (kg/m3) the density of air, Vm/s the velocity

of the wind, α (◦) the angle between the wind direction and the true north, ψ (◦) the angle

between the true north and the orientation of the TWT given by the perpendicular to the

arm joining the two turbines (see Figure 2) and Cd,i the drag force coefficient which is a

nonlinear function of the pitch angle and the tip-speed ratio (TSR), λi,[19] which is defined

as

λi =
Ωi

V cos(ψ − α)
R. (6)

• The last six equations represent the electrical model with Ωi (rad/s) the rotational speed,

Γai (N.m) the aerodynamic torque, idi, iqi (A),Vdi,Vqi (V) respectively the direct/quadrature

currents and voltages, Ld, Lq (H) the dq-axis inductances, Rs (Ω) the stator winding re-

sistance, p the number of pole pairs, J (kg.m2) the total moment of inertia, φ f (Wb) the

flux of the permanent-magnet and fv the coefficient of friction. Note that the considered

generator for each twin turbine is a permanent magnet synchronous generator (PMSG).

As it will be presented in Section 3, Ω1 and Ω2 are forced to follow the reference Ω∗. In this

case, considering that Ω1 ≈ Ω2, then

λ1 ≈ λ2 ≈ λ and β
opt

1
≈ β

opt

2
≈ βopt. (7)

Taking into account that the rotation is obtained by the difference between Fd,1 and Fd,2, a sym-

metric behavior is stated such that ∆β1 = −∆β2 = ∆β. A new control input ū is defined as

ū =
[

∆β Vd1 Vq1 Vd2 Vq2

]T
(8)

In fact, the control inputs u and ū are 6 × 1 and 5 × 1 vectors respectively and are linearly linked

as follows

u =





1 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





· ū. (9)

3. Control Problem

The primary control objective is to ensure that the SEREO Twin Wind Turbines has optimum

power production. This objective is achieved by orienting the structure facing the wind, while
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each turbine must operate at its maximum conversion efficiency. Therefore, a yaw angle control

is required to maintain the nacelle at optimal orientation [20], together with a MPPT control

setup acting on the turbines rotational speeds. Hence, three control problems are considered

• forcing the TWT face the wind, i.e. ψ − α = 0; when it is not the case, the pitch angle

of each wind turbine blade is changed producing a difference between the drag forces Fd1

and Fd2. A yawing torque is then induced forcing the rotating motion;

• controlling the wind turbines angular velocities as to optimize electrical power. This is

performed by maintaining the TSRs at their optimal values λopt, for given blades pitch

angles. Hence, the rotational speeds of both wind turbines are controlled to track the

reference

Ω∗ =
V cos(ψ − α)

R
λopt, (10)

• forcing both generators direct currents id,1 and id,2 to 0 to avoid electromagnetic torques

ripple effects, which may increase the fatigue loads in the mechanical shaft of the wind

turbine and affect power production.

4. New control methodolody

As seen in Section 2, the TWT is a system with nonlinear dynamics. It is not a trivial task to

identify many of its generators’ parameters such as the stator winding resistances Rs and the in-

ductances Lq. These parametric uncertainties strongly affect the dynamics of the system. Then, in

order to achieve the control objective defined in the previous section, the chosen control strategy

is based on sliding mode control (SMC). Indeed, SMC is known for its robustness to matching

perturbations/uncertainties. Other advantages of SMC are finite time convergence and its relative

simplicity for application. A first attempt to control the TWT has been presented in [5]. A first

order sliding mode controller [1] has been used to stabilize the system. However, it suffers from

the chattering phenomena which may degrade the accuracy of the tracking and renders the con-

troller high energy consuming. Chattering also induces oscillations to the electromagnetic torque

which may increase the fatigue loads in the mechanical shaft of the wind turbine and affect power

production.

Then, a solution consists in using higher order sliding mode control (HOSMC) as the one pre-

sented in [17], but the chattering reduction is limited since the sign function is still used in the

control (main cause of chattering in the case where a digital controller is used). A way to reduce

the chattering and the energy consumption even further has been presented in [16]. It introduces

a parameter µ to the exponent term of the controller presented in [17]. However, the convergence

domain is not determined. In the sequel, the controller from [16] is recalled. Then,

• the convergence domain of the closed loop is calculated for some cases;

• the design of a controller for the TWT is based on this controller that achieves the control

objectives defined in the previous section.
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4.1. Some recalls

As previously mentioned, the purpose of SMC is to propose a control law that forces the

output of the system to track a reference trajectory. Consider the following system 1

ξ̇ = f (ξ, t) + g(ξ, t)u

s = s(ξ, t)
(11)

with ξ ∈ Ξ ⊂ R
n the state vector (Ξ being an open bounded subset of Rn and n being the state

dimension), f and g sufficiently differentiable uncertain functions, u ∈ U ⊂ R the control input

(U being a bounded open subset of R) and s the sliding variable. Assume that

A1. The relative degree of (11), ρ ≥ 1 ∈ N (where N is the set of natural numbers), is constant

and known, i.e.

s(ρ) = a(ξ, t) + b(ξ, t)u (12)

A2. The internal dynamics of the system are bounded.

A3. a(ξ, t) and b(ξ, t) are unknown but bounded functions such that ∀ξ ∈ Ξ and t ∈ R+

|a(ξ, t)| ≤ aM, 0 < bm ≤ b(ξ, t) ≤ bM (13)

with aM, bm, bM ∈ R
+.

Remark 1. If the system is at least Lyapunov stable, it is enough to verify that the initial state is

bounded because in this case, the state stays in the bounded space Ξ.

Under these assumptions, s satisfies the following differential equations

żi = zi+1, i = 1, · · · , ρ − 1

żρ = a(ξ, t) + b(ξ, t)u
(14)

with z = [z1, · · · , zρ]
T = [s, · · · , s(ρ−1)]T ∈ Z ⊂ R

ρ. The control objective is achieved when z

evolves around a vicinity of the origin in finite time regardless of perturbations/uncertainties.

In the sequel, the controller introduced in [16] and inspired by [17] is recalled. This latter is a

homogeneous controller which allows the establishment of a ρth order sliding mode i.e. z reaches

zero in finite time. However, as recalled previously, this controller is high energy consuming from

a control effort point of view (high gain value). It also engenders the chattering phenomenon

caused by the sign function used in the control. This effect is further amplified by the gain

overestimation.

The controller in [16] deals with these drawbacks by introducing a parameter µ. This latter is

time-varying and gives rise to an efficient trade-off between accuracy and energy consumption.

1For a sake of clarity, the recalls and control methodology are presented in SISO context.
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In the next section, this controller is formalized and the convergence domain is evaluated when

ρ equals 1 and 2.

The controller proposed in [16] reads as 2 3

u = − kρ⌈σρ⌋
µ,

σi =⌈zi⌋
r1
ri + k

r1
ri

i−1
σi−1

(15)

with i ∈ {2, · · · , ρ}, σ1 = z1 and r = (r1, · · · , rρ) = (ρ, ρ− 1, · · · , 1). The parameter µ reads as the

following variation law4

µ = max
(

− β

ρ∑

i=1

|zi|

|zi| + εzi

+ 1, 0
)

(16)

with εzi
> 0 (i ∈ {1, · · · , ρ}) and β > 1 tuned by the user. It means that 0 ≤ µ ≤ 1. In fact, when

the trajectory of the system is far from the origin, µ = 0 and the standard SMC [1] is obtained

for ρ = 1 whereas for ρ > 1, controller [17] is obtained. Hence, for ρ = 1, the controller gain k1

is tuned as for the standard SMC

bmk1 − aM > 0 (17)

in order to ensure trajectory convergence to a vicinity of the origin. Analogously, for ρ ≥ 2,

(k1, · · · , kρ) are the controller gains tuned as for controller [17] with (k2, · · · , kρ) parameterized

with respect to k1 as follows

ki = γi−1k
ρ

ρ−(i−1)

1
, ∀i = 2, · · · , ρ − 1

kρ ≥
γρ−1k

ρ

1
+ aM

bm

(18)

where γi, i ∈ {1, · · · , ρ − 1} are suitable positive constants.They are derived from Lyapunov

based stability analysis [17]. In fact, they are calculated by evaluating homogeneous functions

and numerically finding their maxima on a homogeneous sphere. The proposed values of γi, i ∈

{1, · · · , ρ − 1} for ρ = 2, 3, 4 in [17] are given in Table 1.

ρ Parameters

2 γ1 = 1.26

3 γ2 = 9.62, γ1 = 1.5

4 γ3 = 739.5, γ2 = 8.1, γ1 = 2

Table 1: Values of parameters γi (i = 1, · · · , ρ − 1).

On the other hand, when the trajectory of the system is close to the origin is close to the

origin, µ evolves between 0 and 1. This fact will be discussed in more detail in the sequel.

2⌈σρ⌋
µ = |σρ|

µ sign(σρ).
3This control law (that is homogenuous for constant µ) has been chosen due to its quality of robustness. Note that

ρ = 1 yields in the classical first order SMC and therefore not treated in [16]. However, it will be treated in this paper

since it is relevant to the application in section 5.
4The choice of the variation law of µ is arbitrary. The rules must be fulfilled are to guarantee a sliding mode be-

haviour when closed-loop system trajectories are far from the desired ones, and close to a linear behaviour when system

trajectories are close from the desired ones.
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Controller behavior: LetD be the region around the origin where the variation of µ occurs, i.e.

(see Figure 3) 5

D = {(z1, · · · , zρ) ∈ Z | −β

ρ∑

i=1

|zi|

|zi| + εzi

+ 1 > 0}

Suppose that the trajectory of (14) does not evolve inD; then µ = 0 and either the classical SMC

or controller [17] is applied (depending on the value of ρ). Given their finite time convergence

property and supposing Q as the initial coordinates, the trajectory reaches D in finite time (see
>

QR in Figure 3). Once the trajectory is inside D, the variation of µ takes effect following (16)

decreasing the energy consumption, by a control effort point of view, and the chattering effect.

Due to the loss of robustness to perturbation/uncertainties (µ , 0), the trajectory might leave

D (see
>

RS in Figure 3). Hence following (16), µ = 0 forcing the trajectory back to D (see
>

ST

in Figure 3) and so on. In fact, after the system trajectory converges to D for the first time, it

evolves in a domainD′ (seeD′ in Figure 3) that is slightly larger thanD. εzi
(i ∈ {1, · · · , ρ}) and

β influence the size of D and subsequentlyD′; hence, they influence the global accuracy of the

controller. Note that the explicit expression ofD′ is given in sequel for ρ = 1 and ρ = 2.

As previously mentioned, an important property of the proposed control strategy is the re-

duction of the energy consumption versus the standard SMC or controller [17]. Therefore, one

should tune εzi
(i = {1, · · · , ρ}) and β in a way to make sure that when |σρ| ≥ 1, µ is equal to 0

which is ensured by introducing the following condition on the parameters of µ in (16): 6

σρ(
εz1

β − 1
, · · · ,

εzρ

β − 1
) < 1. (19)

This discussion is formalized in the following theorem.

Theorem 1 [16]: Consider system (14) under assumptions A1-A3 with ρ ≥ 2 and controlled

by (15)-(16). If (k1, · · · , kρ) are tuned following (18), then there exist ρ positive parameters

εzi
, (i = {1, · · · , ρ}) and β satisfying (19) with β > 1 such that the trajectories of system (14)

converge to a vicinity of the origin in a finite time.

Note that this result is given for ρ = 1 in the sequel and the explicit expression of D′ for ρ = 1

and ρ = 2 is stated.

4.2. Main results

This section formally provides the convergence domain of the system trajectories for both cases

ρ = 1 and ρ = 2.

Theorem 2: Consider system (14) under assumptions A1-A3 with ρ = 1 and controlled by (15)-

(16). If k1 fulfills (17), then there exist εz1
> 0 and β > 1 satisfying (19) such that the trajectory

of system (14) converges, in a finite time, to

|z1| ≤
εz1

β − 1
. (20)

5For clarity and illustration purposes and without loss of generality, Figure 3 is given for ρ = 2. The logic can be

generalizable for ∀ρ ≥ 1.
6With abuse of notation, σρ(

εz1
β−1

, · · · ,
εzρ

β−1
) is the value of σρ for z = (

εz1
β−1

, · · · ,
εzρ

β−1
).
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Figure 3: Description of the system trajectory

Proof. Consider the case such that x < D = {z1 ∈ Z | |z1| < −β
|z1|

|z1|+εz1

+ 1} i.e. when z1 is

such that

|z1| >
εz1

β − 1
. (21)

Therefore, according to (16), µ = 0 and a first order SMC is applied. Hence, thanks to the

features of SMC, the trajectory of the system converges in finite time toD.

Once the system trajectory has reachedD, the variation starts, µ begins evolving between 0 and

1 following (16) and the system trajectories evolve in D. Suppose that the trajectories reach the

boundary ofD, i.e. |z1| =
εz1

β−1
: in this case, from (16), µ = 0. Then, ż1-dynamics read as

ż1 = a(x, t) − b(x, t)k1 sign(z1). (22)

As k1 is tuned as (17), one has ż1 sign(z1) < 0 ∀a(x, t), b(x, t) satisfying A3. Thus, as long as

µ = 0 and the trajectories reach the boundary of D, |z1| decreases; then, the trajectory is kept in

D.

Theorem 3: Consider system (14) under assumptions A1-A3 with ρ = 2 and controlled by (15)-

(16). If k1 and k2 fulfill (18), then there exist εz1
> 0, εz2

> 0 and β > 1 satisfying (19) such that

the trajectory of system (14) converges, in a finite time, to

|z1| < max





εz1

β − 1
,

ε2
z2

2(β − 1)2K∗





|z2| < max





√√

2K∗k2
1
εz1

(

k2
1
+ 2K∗

)

(β − 1)
,
εz2

β − 1





(23)

with K∗ = bmk2 − aM.

The proof of this theorem is given in Appendix A.
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4.3. Application to TWT Control

The controller proposed in the previous section is applied to the TWT whose nonlinear model is

given by (1). The output vector is defined as

y =





yψ
yΩ1

yid1

yΩ2

yid2





=





ψ − α

Ω1 −Ω
∗

id1

Ω2 −Ω
∗

id2





. (24)

Note that each element of y corresponds to a sliding variable s, as defined in (11). Recall that the

control objective is to force y to a vicinity of 0. The relative degree of yψ with respect to system

(1) is equal to 3 given that

y
(3)
ψ = Θ1(x, t) + Λ1(x, t) · ∆β (25)

The relative degree of yΩ1
and yΩ2

with respect to (1) is 2 given that

ÿΩ1
= Θ2(x, t) + Λ2,1(x, t) · Vd1 + Λ2,2(x, t) · Vq1

ÿΩ2
= Θ4(x, t) + Λ4,1(x, t) · Vd2 + Λ4,2(x, t) · Vq2

(26)

whereas the relative degree of yid1
and yid2

with respect to (1) is 1 given that

ẏid1
= Θ3(x, t) + Λ3(x, t) · Vd1

ẏid2
= Θ5(x, t) + Λ5(x, t) · Vd2

(27)

Remark 2. Given the relative degree vector of y and the dimension of state space, it gives an

internal dynamics that can be defined as z10 = β1+β2. Indeed, the following state transformation





z1

z2

z3

z4

z5

z6

z7

z8

z9

z10





=





yψ
ẏψ
ÿψ
yΩ1

ẏΩ1

yΩ2

ẏΩ2

yid1

yid2

β1 + β2





:= φ(x) (28)

is a diffeomorphism and transforms the nonlinear system into a canonical form. Then, the inter-

nal dynamics reads as (Tβ > 0)

ż10 =
−z10

Tβ
+

2βopt

Tβ
(29)

This dynamics is totally independent of the other state components and is input-to-state stable

(ISS) with respect to the input βopt, then the zero dynamics converges exponentially to 2βopt. It is

the only value injected in the other state components (no peaking phenomena).
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Then, the system can be written as





y
(3)

ψ

ÿΩ1

ẏid1

ÿΩ2

ẏid2





= Θ(x, t) + Λ(x, t) · ū (30)

where

Θ(x, t) =





Θ1(x, t)

Θ2(x, t)

Θ3(x, t)

Θ4(x, t)

Θ5(x, t)





and Λ(x, t) =





Λ1(x, t) 0 0 0 0

0 Λ2,1(x, t) Λ2,2(x, t) 0 0

0 Λ3(x, t) 0 0 0

0 0 0 Λ4,1(x, t) Λ4,2(x, t)

0 0 0 0 Λ5(x, t)





the expressions of Θ(x, t) and Λ(x, t) being given in Appendix B.

The parameters on which uncertainties have been considered are the inductance Ld, the stator

resistance Rs and the drag force coefficients Cd,i. Therefore, each of these parameters is divided

to a nominal and an uncertain part. Subsequently, Θ(x, t) and Λ(x, t) can be written as follows

Θ(x, t) = Θ̄(x, t) + ∆Θ(x, t), Λ(x, t) = Λ̄(x, t) + ∆Λ(x, t) (31)

where Θ̄(x, t) and Λ̄(x, t) are the nominal parts of Θ(x, t) and Λ(x, t), respectively, and ∆Θ(x, t)

and ∆Λ(x, t) are the uncertain parts, respectively.

Define the control input ū as

ū =
[

Λ̄(x, t)
]−1[

− Θ̄(x, t) + ϑ
]

(32)

which gives





y
(3)
ψ

ÿΩ1

ẏid1

ÿΩ2

ẏid2





=
(

∆Θ(x, t) − ∆(x, t)Λ̄(x, t)−1Θ̄(x, t)
)

︸                                       ︷︷                                       ︸

ϕ1

+
(

I5×5 + ∆Λ(x, t)Λ̄(x, t)−1
)

︸                          ︷︷                          ︸

ϕ2

ϑ (33)

with ϑ, the “new” control defined in the sequel. The matrix Λ(x, t) and its nominal value ΛN(x, t)

can be inverted if

ψ − α , (±2̺ + 1)
π

2
(34)

where ̺ ∈ N. If ψ − α = (±2̺ + 1) π
2
, the arm linking the wind turbines is strictly parallel to the

direction of the wind: no drag force can be created. Hence, one considers that condition (34) is

satisfied.

A4. The parametric uncertainties have limites magnitudes with respect to their nominal value,

and there is no lose of structural properties.

Assumption A4 implies that ϕ2 has eigenvalues close to zero: as a consequence, the matrix I5×5
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is a dominant matrix with respect to ϕ2. Moreover, the term ϕ1 can be considered as a matching

perturbation.

As shown previously, the zer-dynamics is stable. Supposing that initial conditions are bounded

(that is practically reasonable), and given Remark 1, ϕ1 and ϕ2 are bounded satisfying Assump-

tion 3. Hence, control law (32) yields in almost decoupled dynamics of the MIMO system (30).

Then, the “new” control input, ϑ, is given as follows

ϑ =





−kρ,ψ ⌈σρ,ψ⌋
µψ

−kρ,Ω1⌈σρ,Ω1
⌋µΩ1

−kρ,id1
⌈σρ,id1

⌋µid1

−kρ,Ω2 ⌈σρ,Ω2
⌋µΩ2

−kρ,id2
⌈σρ,id2

⌋µid2





. (35)

Accordingly with the output relative degree

• σρ,ψ and µψ are calculated following (15) and (16) respectively for ρ = 3 and z1 = yψ.

• σρ,Ω1
and µΩ1

(respectively σρ,Ω2
and µΩ2

) are calculated for ρ = 2 and z1 = yΩ1
(respec-

tively z1 = yΩ2
).

• σρ,id1
and µid1

(respectively σρ,id2
and µid2

) are calculated for ρ = 1 and z1 = yid1
(respec-

tively z1 = yid2
).

By setting the gains Kρ,⋆ with ⋆ = {ψ,Ω1,Ω2, id1, id2} such that conditions (17) (ρ = 1) and (18)

(ρ = {2, 3}) are satisfied, the finite time convergence to a vicinity of the origin of the output vector

y is ensured. The parameter tuning will be detailed in the next subsection.

5. Simulation results

The proposed controller is implemented on the twin wind turbine structure. The main pa-

rameters of the twin wind turbines [21] can be found in Table 10 in [5]. βopt and λopt are set

at 2◦ and 7.3 respectively. Simulations have been performed using MATLAB/Simulink with

sampling period Te = 0.1ms. A filter of the form s
τs+1

is used to estimate the first and second

order time derivatives of ψ and the first order time derivative of Ω. The performances of the

proposed controller are compared to controller [17] by evaluating the mean generated power and

the oscillations of the pitch angles and electromagnetic torques. The indicator used to evaluate

the oscillations is the function Var defined as

Var[ζ1 ,ζ2](h) =

N−1∑

i=0

|h(ti+1) − h(ti)| (36)

where h is a real valued function and the set of instants {t0, t1, · · · , tN} is a partition of [ζ1, ζ2].

Given that the simulation results of both wind turbines are similar, only the ones of wind turbine

1 will be displayed. The wind speed is modeled as

V = (Vm + Vd) · cos(ψ − α)

with Vm the average wind speed taken equal to 10 m/s, and Vd a time-varying term defined as a

white noise. In order to test the robustness of the controllers to parametric uncertainties, a 20%-

variation with respect to their nominal value is taken on Rs and Ld and a 50%-variation is taken
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on Cdi. The proposed controller parameters are tuned as given in Table 2. Recall that controller

[17] has the same structure as the proposed controller but with µ = 0, ∀t > 0. Hence, the latter’s

gains are taken equal to those of the proposed controller (see gain kρ in Table 2) for an effective

performance comparison between the two.

Controlled variable Gain kρ,⋆ β εz1
εz2

εz3

Yaw angle ψ (ρ = 3) 2.2 1.1 5 · 10−5 10−3 10−1

Velocities Ω1 and Ω2 (ρ = 2) 100 11 2 · 10−1 5 -

Direct currents (ρ = 1) 10 11 3 · 10−3 - -

Table 2: Proposed controller parameters.

The wind direction α changes between 10◦ and −10◦ (Figure 4 - Top). When the direction of

the wind changes, the pitch angles β1 and β2 are actuated (Figure 4 - Bottom) and a drag force

difference is generated which in its turn leads to the rotation of the whole structure (Figure 4 -

Top).

Initially the value of µψ is equal to zero (see Figure 5 - Left) this is because the yaw angle ψ

does not track the wind direction α; hence, µψ = 0 forcing ψ to α. When the latter is achieved

and a steady state is attained (10 < t < 35 sec), then µ starts varying between 0 and 1 reducing

the chattering phenomena. A similar logic can be applied to µΩ1
(see Figure 5 - Right) and µid1

(in fact in this case µid1
= 1 almost all the time meaning that the direct currents are not affected

by the uncertainties considered in this simulation).

The reduction in the chattering in the steady state caused by the variation of µ (µ , 0) is mani-

fested by the reduction of the oscillations of the electromagnetic torque Γem1 and that of the pitch

angle β1 (Figure 6 - Middle, see Figure 4 - Middle, and Var(Γem1) and Var(β1) in Table 6) all

while keeping good yaw tracking and optimal power production. This fact is important in de-

creasing the fatigue loads hence increasing the lifetime of the structure.Notice that the current id1

(see Figure 6-Bottom) with the proposed controller is smoother than with controller [17] (which

is the first order sliding mode controller used for the control of the TWT in [5]) with a better

accuracy tracking since chattering is reduced.

Notice that controller [17] has a faster convergence to the required yaw angle than the proposed

controller (see Figure 4 - Top 43 < t < 45 sec); however it does not affect the mean power

produced by the system (see power generated in Figure 6 and mean power in Table 3).
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Figure 4: Comparison controller [17] and the proposed controller - Top - Yaw angle tracking ψ−α (◦) versus time (sec).

Middle -Rotational speed Ω1 and rotational speed reference Ω∗(rad/s) versus time (sec). Bottom - Pitch angle for Wind

Turbine 1 (◦) versus time (sec).
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Figure 5: Left - µψ versus time (sec). Right - µΩ1
versus time (sec).
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Figure 6: Comparison controller [17] and the proposed controller - Top - Electromagnetic torque Γem1 (N.m) versus time

(sec). Bottom - Generated power for Wind Turbine 1 (W) versus time (sec).

Controller [17] Proposed controller

Var(Γem1) (N · m) 9.487 · 106 7.800 · 106

Var(β1) (◦) 75.030 18.994

Mean power (W) 1.153 · 106 1.151 · 106

Table 3: Comparison controller [17] and proposed controller - Var(Γem1) (N · m) and Var(β1) (◦) in the steady state

(10 < t < 35 sec) and mean power.

6. Conclusion

The domain of convergence of a new control methodology has been given for input-output

relative degree equal to 1 and 2. The proposed controller ensures high accuracy tracking while

decreasing the control effort and the chattering. The effectiveness of the new methodology for

the control of a TWT is shown. The proposed control law ensures power output maximization,

with reduced electromagnetic torque and pitch angle oscillations, resulting in the improvement

of the structure lifetime. Future works will be dedicated to study the closed-loop stability of

the proposed controller coupled with differentiators as well as applying this control strategy to

floating wind systems that have an increased implementation complexity.
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Appendix A: Proof of Theorem 3

When the relative degree of the system is equal to 2, i.e. ρ = 2, the controller from [17] is discon-

tinuous on the same curve in the phase plan as the controller from [7] (u = −k2

⌈

z2 + k1⌈z1⌋
1
2
⌋0

)

described as z2 = −k1⌈z1⌋
1
2 (see L in Figure 7). Hence, following [22], if the gains are tuned

as (18), the system trajectory inevitably hits the manifold L and then will slide on it until the

origin is reached. This fact is essential in the determination of the domain of convergence of the

trajectory when controller (15)-(16) is applied to system (14) when ρ = 2 which will be detailed

in the following.

By a general point-of-view, the trajectory of the system is outside D: therefore, µ = 0 and

the controller from [17] is applied. As previously mentioned, the system trajectory will hit L

and slide on it; therefore, it will reach D in a finite time. However, due to the presence of

perturbations and uncertainties, the trajectory will potentially leaveD from

Case 1.
>

AB (resp.
>

CD)

Case 2.
>

BE (resp.
>

DF)

The trajectory cannot leave D through
>

EC since at
>

EC, µ = 0 meaning that ż2 > 0 and

z2 < 0; therefore, z2 cannot decrease and z1 cannot increase. Similarly, the trajectory cannot

leaveD through
>

FA.

The domain of convergence for each case will be presented in the sequel.

Case 1: Suppose that the trajectory leaves D through
>

AB at a point M (see M in Figure 7a).

Considering the worst case, ż2 = −K∗ = −bmk2 + aM gives the most external trajectory from the

origin. Therefore, the expression of
>

MN is7

z1 =
−z2

2
+ z2

2
(M)

2K∗
+ z1(M) (37)

From (16) and for ρ = 2 one has that α = 0 when

|z1| ≥
εz1
εz2
− (β − 1)εz2

z2(M)

(2β − 1)z2(M) + εz2
(β − 1)

(38)

then, the expression of z1(M) is

z1(M) =
εz1
εz2
− (β − 1)εz2

z2(M)

(2β − 1)z2(M) + εz2
(β − 1)

(39)

Hence, combining (37) and (39) the expression of z1(N) is deduced:

z1(N) =
z2

2
(M)

2K∗
+

εz1
εz1
− (β − 1)εz2

z2(M)

(2β − 1)z2(M) + εz2
(β − 1)

. (40)

7Denote z1(M) (resp. z2(M)) as the z1 (resp. z2) coordinate of point M.
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The maximum of this expression on the interval z2(M) ∈
[

0,
εz2

β−1

]

is

max(z1(N)) = max





εz1

β − 1
,

ε2
z2

2(β − 1)2K∗



 (41)

After the trajectory crosses the z1 − axis it will enter againD through
>

BC (see
>

NO in Figure 7a).

This is due to the fact that
>

MN and
>

NO are symmetric with respect to z1 − axis. Note that in case

the trajectory hits L before hitting
>

BC (see
>

NO’ in Figure 7a) then it will slide on L and then

enterD through
>

BC (see
>

O’E in Figure 7a). This fact, combined with the result from (41) gives

that when the trajectory leavesD from
>

AB and
>

CD (due to symmetry) then

|z1| ≤max





εz1

β − 1
,

ε2
z2

2(β − 1)2K∗





|z2| ≤
εz2

β − 1

(42)

Case 2. When the trajectory leaves D at a point H on
>

BC (see H in Figure 7b), µ = 0; then, the

controller from [17] is applied. As previously mentioned, the manifold defined byL in the phase

plan is attractive; therefore, the trajectory will hit L at point I and start converging towards the

origin (see
>

IE in Figure 7b). Still considering the worst case, ż2 = −K∗, the expression of
>

HI is

also given by

z1 =
−z2

2
+ z2

2
(H)

2K∗
+ z1(H). (43)

At point I one has:

z1(I) =
1

k2
1

z2
2(I) (44)

Hence, by combining (44) and (43) the following expression of z2(I) is obtained:

z2
2(I) =

k2
1

k2
1
+ 2K∗

(

z2
2(H) + 2K∗

εz1
εz2
+ (β − 1)z2(H)εz1

−(2β − 1)z2(H) + (β − 1)εz2

)

(45)

The maximum of the latter is obtained when z2(H) = 0

z2(I) = −

√√

2K∗k2
1
εz1

(

k2
1
+ 2K∗

)

(β − 1)
(46)

or when H coincides with point E which is the intersection between L and D (see E in Figure

7b). Considering the worst case, that is, when z2(E) maximal in absolute value and therefore

coinciding with point C (i.e. k1 → ∞ and therefore z2(H) = −
εz2

β−1
)

z2(I) = −
εz2

β − 1

√

k2
1

k2
1
+ 2K∗

. (47)

Note that the latter expression gives a boundary for z2 smaller than that in (42) and therefore

will be discarded when calculating the ultimate convergence domain. In addition to that, with
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k1 → ∞ one has the same convergence domain as in (42). However, one states that if the system

trajectory leaves from
>

BE and
>

AF (due to symmetry) , the convergence boundary is

|z1| <
εz1

β − 1

|z2| < max





√√

2K∗k2
1
εz1

(

k2
1
+ 2K∗

)

(β − 1)
,
εz2

β − 1

√

k2
1

k2
1
+ 2K∗





(48)

As a conclusion, by combining the 2 previous cases, the ultimate convergence boundary of the

system is

|z1| < max





εz1

β − 1
,

ε2
z2

2(β − 1)2K∗





|z2| < max





√√

2K∗k2
1
εz1

(

k2
1
+ 2K∗

)

(β − 1)
,
εz2

β − 1





(49)

(a) Case 1 (b) Case 2

Figure 7: Description of the system trajectory in the phase plan (z1, z2).
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Appendix B

The expressions of Θ(x, t) and Λ(x, t) are given

Θ(x, t) =





−
Dr

Kr

ψ̈ +
CL

Kr Tβ
B (β1 − β2) +

CL

Kr

(β1 − β2) Ḃ +
BL

Kr

(β1 − β2) Ċ

1

J
Γ̇a1 − ( f1 + f2 id1)[− f3iq1 − f4 Ω1 id1 − f5 Ω1] − f2 iq1 [− f6 id1 + f7Ω1 iq1]−

fv

J
Ω̇1 − Ω̈

∗
1

−Rs

Ld

id1 +
P Lq

Ld

Ω1 iq1

1

J
Γ̇a2 − ( f1 + f2 id2)[− f3iq2 − f4 Ω2 id2 − f5 Ω2] − f2 iq2 [− f6 id2 + f7 Ω2 iq2] −

fv
J
Ω̇2 − Ω̈

∗
2

−Rs

Ld
id2 +

P Lq

Ld
Ω2 iq2





Λ(x, t) =





−2

Kr Tβ
LCB 0 0 0 0

0
− f2

Ld

iq1

−1

Lq

( f1 + f2 id1) 0 0

0
1

Ld

0 0 0

0 0 0
− f2

Ld

iq2

−1

Lq

( f1 + f2 id2)

0 0 0
1

Ld

0





.

with fi, i ∈ {1, 2, .., 7}

f1 =
pφ f

J
, f2 =

p(Ld − Lq)

J
, f3 =

Rs

Lq

, f4 =
pLd

Lq

, f5 =
pφ f

Lq

, f6 =
Rs

Ld

, f7 =
pLq

Ld

. (50)

Note that the expression of Fd,1 − Fd,2 is given as 8

Fd,1 − Fd,2 = CB(β1 − β2) (51)

where C = 1
2
ρπ(Vcos(ψ − α))2 and B = b0 + b1 λi + b2 λ

2
i
+ b3 λ

3
i

with b0 = −0.008608,

b1 = 0.0063, b2 = −0.0015 and b3 = 0.000118.

The time derivatives Ḃ and Ċ found in Θ(x, t) read as

Ḃ =
∂B

∂t
=
∂B

∂λ
·
∂λ

∂t
= (b1 + 2 b2 λ + 3 b3 λ

2) ·
∂

∂t

(

ΩR

V cos(ψ − α)

)

= (b1 + 2 b2 λ + 3 b3 λ
2) ·

(

R

V cos(ψ − α)
Ω̇ + λ tg(ψ − α) ψ̇ −

λ

V
V̇

)

Ċ =
∂C

∂t
=
∂C

∂V
·
∂V

∂t
+
∂C

∂ψ
·
∂ψ

∂t

=
2C

V
V̇ − 2 tg(ψ − α) ψ̇

8For more details on how this expression is obtained the reader is referred to [5].
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The filter
s

τ s + 1
is used to estimate the derivative of V .
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