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On characteristic forms of positive vector bundles,

mixed discriminants and pushforward identities.

Siarhei Finski

Abstract. We prove that Schur polynomials in Chern forms of Nakano and dual Nakano posi-

tive vector bundles are positive as differential forms. Moreover, modulo a statement about the pos-

itivity of a “double mixed discriminant” of linear operators on matrices, which preserve the cone of

positive-definite matrices, we establish that Schur polynomials in Chern forms of Griffiths-positive

vector bundles are weakly-positive as differential forms.

An important step in our proof is to establish a certain pushforward identity for characteristic

forms, refining the determinantal formula of Kempf-Laksov for homolorphic vector bundles on the

level of differential forms. In the same vein, we establish a local version of Jacobi-Trudi identity.

1 Introduction

The main goal of this paper is to study positivity of characteristic forms for positive vector bundles.

To fix the notation, let X be a smooth complex manifold of dimension n. Let (E, hE) be a

Hermitian vector bundle of rank r over X , and let RE := (∇E)2 be the curvature of the Chern

connection ∇E of (E, hE). We consider the Chern forms ci(E, hE), i = 0, . . . , r, defined by

det
(
IdE +

√
−1tRE

2π

)
=

r∑

i=0

ci(E, hE)ti. (1.1)

By Chern-Weil theory, for i = 0, . . . , r, the Chern form ci(E, hE) is a d-closed real (i, i)-form on

X , lying in the cohomology class of the i-th Chern class of E, denoted here by ci(E).
Fix k ∈ N and denote by Λ(k, r) the set of all partitions of k by decreasing non negative

integers ≤ r, i.e. a ∈ Λ(k, r) is a sequence r ≥ a1 ≥ a2 ≥ . . . ≥ ak ≥ 0 such that

a1 + . . .+ ak = k. (1.2)

Each a ∈ Λ(k, r) gives rise to a Schur polynomial Pa ∈ Z[c1, . . . , cr] of weighted degree 2k (with

deg ci = 2i), defined through the following determinant

Pa(c) = det(cai−i+j)
k
i,j=1, (1.3)

where by convention c0 = 1 and ci = 0 if i > r or i < 0. Schur polynomials Pa, for a ∈ Λ(k, r),
form a basis of the vector space of polynomials of weighted degree 2k, and the product of two

Schur polynomials is a linear combination of Schur polynomials with positive coefficients, cf. [16].

Now, for every Hermitian vector bundle (E, hE) of rank r over X , k ∈ N, k ≤ n, and a ∈
Λ(k, r), we consider a differential form on X , obtained by substitution of ci(E, hE) for ci in (1.3).
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The resulting (k, k)-differential form, Pa(c(E, hE)), which we later call a Schur form, is closed.

We denote the associated cohomological class by Pa(c(E)). Interesting examples are

Pa(c(E)) =






ck(E), for a = k00 . . . ,

Segre class sk(E), for a = 11 . . . 10 . . . 0,

c1(E)ck−1(E)− ck(E), for a = k − 110 . . . 0.

(1.4)

Griffiths in [19] gave a conjectural analytic description of the cone of numerically positive

homogeneous polynomials P ∈ R[c1, . . . , cr] (with deg ci = 2i), i.e. such that for any Griffiths

positive vector bundle (E, hE) over a complex manifold X (see Section 2 for a definition) and any

analytical subset V ⊂ X , P satisfies

∫

V

P (c1(E), . . . , cr(E)) ≥ 0. (1.5)

In [4], Bloch-Gieseker proved that Chern classes of ample vector bundles (see Section 2 for a

definition) satisfy (1.5). By using this result and Kempf-Laksov [22] formula, Fulton-Lazarsfeld

in [16] proved that (1.5) holds for any ample vector bundle E and any Schur polynomial P . This

extends the previous works of Kleiman [23] who proved it for surfaces, Gieseker [18] who proved

it for monomials of Chern classes, Usui-Tango [38], who established (1.5) for ample and glob-

ally generated E. Demailly-Peternell-Schneider in [11] extended this result to nef vector bundles

on compact Kähler manifolds. Fulton-Lazarsfeld also proved in [16] that if (1.5) holds for any

ample E, then P should be a linear combination with positive coefficients of Schur polynomials.

This gives an answer to the question of Griffiths and provides an algebraic description (through

Schur polynomials) of the cone of numerically positive polynomials. In [16, Appendix A], Fulton-

Lazarsfeld proved that this description coincides with the analytic description of Griffiths.

Griffiths in [19, p. 247] proposed to refine the positivity in (1.5) in differential-geometric

sense. For this, recall that a (i, i)-differential form α on X is called weakly-positive, see Reese-

Knapp [33], if at any point x ∈ X , the restriction of α to any i-dimensional complex plane in

TxX ⊗R C gives a non negative volume form with respect to the canonical orientation class of

the complex structure. Using the description of the Griffiths cone due to Fulton-Lazarsfeld [16,

Appendix A], we can reformulate the question from [19, p. 247] in the following way.

Question of Griffiths. Let P ∈ R[c1, . . . , cr] be a a non negative homogeneous linear combination

of Schur polynomials. Are the forms P (c1(E, h), . . . , cr(E, h)) weakly-positive for any Griffiths

positive vector bundle (E, h) over a complex manifold X?

Studying this question is one of the main goals of this article. To formulate our first result,

recall that a (i, i)-differential form α on X is called positive, cf. [33], if for any (n − i, 0)-form

β, the form α ∧ (
√
−1)n−kβ ∧ β is non negative. As name suggests, positivity is a more stronger

notion than weak positivity, see [33], cf. Section 2.

Theorem 1.1. Let (E, hE) be a Nakano or dual Nakano positive (see Section 2 for definitions)

vector bundle of rank r over a complex manifold X of dimension n. Then for any k ∈ N, k ≤ n,

and a ∈ Λ(k, r), the (k, k)-differential form Pa(c(E, hE)) is positive.
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Remark 1.2. This theorem permits to construct positive characteristic classes for Griffiths positive

vector bundles (E, hE), as from Demailly-Skoda [12], the induced metric on E⊗detE is Nakano

positive. See Berndtsson [3], Liu-Sun-Yang [26] for related results on ample vector bundles.

To formulate our second result, recall that for a complex vector space V , dimV = r, the mixed

discriminant DV : End(V )⊗r → C was defined by Alexandroff [1, §1] as the polarization of the

determinant. In coordinates, for matrices Ai := (aikl)
r
k,l=1, i = 1, . . . , r, we have

DV (A
1, . . . , Ar) =

1

r!

∑

σ∈Sr

det(a
σ(i)
ik )ri,k=1, (1.6)

where Sr is the permutation group on {1, 2, . . . , r}. We use the natural duality End(V ) ≃ End(V )∗

and denote by D∗
V : C → End(V )⊗r

the dual of DV .

For Hermitian vector spaces V,E, a linear operator P : End(V ) → End(E) is called a positive

(semi)definite linear preserver (the terminology is from Li-Pierce [24], see also Størmer [37]) if

P (CV ) ⊆ CE for positive (semi)definite operators CV in End(V ) (resp. CE in End(E)).

Open problem. Let P : End(V ) → End(E) be a positive semidefinite linear preserver, and

dimV = dimE. Is it true that DE ◦ P⊗r ◦D∗
V ∈ R is non negative?

In the special case when P is zero on non diagonal matrices for some basis of V , Open problem

holds due to the Alexandroff inequality [1, §1], stating non negativity of the mixed discriminant

for positive semidefinite matrices. See also Panov [31], Bapat [2] for refinements of this inequality

and Florentin-Milman-Schneider [14] for a characterization of the mixed discriminant through it.

Theorem 1.3. The answers to Open problem and Question of Griffiths coincide.

Now, although we couldn’t find a complete proof to Open problem, we have a partial result.

Proposition 1.4. The answer to Open problem is positive under any of the additional assumptions

a) We have P (CV ) = CE .

b) Among the operators P ′ : Hom(V,E) → Hom(V,E), P ′′ : Hom(V,E∗) →
Hom(V,E∗), associated by the natural isomorphismsHom(End(V ),End(E)) ≃ End(Hom(V,E))
and Hom(End(V ),End(E)) ≃ End(Hom(V,E∗)) to P , there is at least one positive semidefinite.

c) Among the operators P⊗r : End(V ⊗r) → End(E⊗r), (P T )⊗r : End(V ⊗r) → End((E∗)⊗r),
for P T (X) = P (X)T , X ∈ End(V ), there is at least one positive semidefinite linear preserver.

d) We have dimV = dimE = 2.

Let’s now put Theorems 1.1, 1.3 in the context of previous results. Griffiths in [19] verified his

own question for c2(E, hE) by explicit evaluation. Bott-Chern in [6, Lemma 5.3] gave an algebraic

proof of the fact the top Chern class of a Bott-Chern positive vector bundle (see Section 2 for a

definition, the terminology is due to P. Li [25]) is strongly-positive (see Section 2 for a definition),

and then P. Li in [25] extended the methods of Bott-Chern for all Schur forms. As we explain in

Proposition 2.3, Bott-Chern positivity is equivalent to dual Nakano positivity. As strong positivity

is stronger than positivity, Theorem 1.1 for dual Nakano positive metrics is then a weak version of

Li’s result (our methods are drastically different). Guler in [20] verified the question of Griffiths

for Serge forms, see (1.4). See Diverio [13], Pingali [32], Ross-Toma [34] for related results.
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Now, let’s describe some applications of Theorem 1.1. Recall that very recently, Demailly

in [10] proposed an elliptic system of differential equations of Hermitian-Yang-Mills type for the

curvature tensor of a vector bundle with an ample determinant. This system of differential equa-

tions is designed so that the existence of a solution to it implies the existence of a dual Nakano

positive Hermitian metric on the vector bundle. So if it can be proved that for any ample vec-

tor bundle a solution exists, then it would imply a strong version of Griffiths conjecture on the

equivalence between ampleness and Griffiths-positivity for vector bundles. This has led Demailly

to conjecture in [10, Basic question 1.7] that the ampleness for a vector bundle over a compact

manifold is equivalent to the existence of a dual Nakano positive metric. Theorem 1.1 implies

Corollary 1.5. If Demailly’s conjecture [10, Basic question 1.7], described above, is true, then

for any ample vector bundle E of rank r over a compact manifold X , and any k ∈ N, k ≤ n,

a ∈ Λ(k, r), the cohomological class of Pa(c(E)) contains a positive form.

The last statement was proved (unconditionally on [10, Basic question 1.7]) by Xiao in [39] for

k = n− 1 in a different way. The general case was conjectured in [39, Conjecture 1.4].

Let’s now describe our strategy of the proofs of Theorems 1.1, 1.3. Similarly to [16], the

proof decomposes into two separate statements. The first one is a refinement of the determinantal

formula of Kempf-Laksov [22] on the level of differential forms. It expresses the Schur forms as

a certain pushforward of the top Chern form of a Hermitian vector bundle obtained as a quotient

of the tensor power of (E, h). The second statement establishes the positivity of the top Chern

form of a (dual) Nakano positive vector bundle and relates the positivity of the top Chern form of

a Griffiths positive vector bundle to the Open problem.

This article is organized as follows. In Section 2, we recall several concepts of positivity for

vector bundles and differential forms. In Section 3, we prove Theorems 1.1, 1.3 modulo some

results which are established later in the article. In Section 4, we establish the refinement of

Kempf-Laksov formula on the level of differential forms. In Section 5, we discuss the positivity

of the top Chern form and its relation with Open problem. In Section 6, we establish Proposition

1.4. Finally, in Section 7, we use the methods developed in Section 4, to give a local version of the

Jacobi-Trudi identity for holomorphic vector bundles.

Acknowledgements. Author would like to express his deepest gratitude for Jean-Pierre De-

mailly for numerous discussions on the subject of this article. He also thanks the colleagues and

staff from Institute Fourier, University Grenoble Alps for their hospitality. This work is supported

by the European Research Council grant ALKAGE number 670846 managed by J.-P. Demailly.

Notation. For a Hermitian vector bundle (F, hF ), we denote by RF := (∇F )2 the curvature of

the associated Chern connection ∇F .

2 Positivity concepts for vector bundles and differential forms

The main goal of this section is to review several notions of positivity for Hermitian vector bundles

and differential forms, and to describe relations between them.

Following Hartshorne, [21, §2], we say that a vector bundle E over a complex manifold X is

ample if for every coherent sheaf F , there is an integer n0 > 0, such that for every n > n0, the

sheaf F⊗SnE is generated as an OX-module by its global sections. According to [21, Proposition

3.2], ampleness of E is equivalent to the ampleness of the line bundle OP(E∗)(1) over P(E∗).
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We fix a Hermitian vector bundle (E, hE). We let r := rk(E), n := dimX . Fix some

holomorphic coordinates (z1, . . . , zn) on X , an orthonormal frame e1, . . . , er of E, and decompose

the curvature as follows
√
−1RE

2π
=

∑

1≤j,k≤n

∑

1≤λ,µ≤r

cjkλµ
√
−1dzj ∧ dzk ⊗ e∗λ ⊗ eµ. (2.1)

We say that (E, hE) is Griffiths positive if the associated quadratic form

Θ̃E(v ⊗ ξ) :=
1

2π
〈
√
−1RE(v, v)ξ, ξ〉hE =

∑

1≤j,k≤n

∑

1≤λ,µ≤r

cjkλµξλξµvjvk (2.2)

takes positive values on non zero tensors v⊗ ξ ∈ T 1,0X⊗E. Griffiths in [19] proved that Griffiths

positivity implies ampleness.

Let’s now construct the linear operator PE
x : T 1,0

x X ⊗ Ex → T 1,0
x X ⊗ Ex by

PE
x (τ) =

∑

1≤j,k≤n

∑

1≤λ,µ≤r

cjkλµτjλ
∂

∂zk
⊗ eµ, (2.3)

where τ =
∑

τjλ
∂
∂zj

⊗ eλ. Nakano positivity, see [30], demands positive definiteness of PE
x (we

endow T 1,0
x X with the Hermitian metric making the basis ∂

∂zi
, i = 1, . . . , n, orthonormal).

Dual Nakano positivity stipulates that the linear operator PE∗
x : T 1,0

x X ⊗ E∗
x → T 1,0

x X ⊗ E∗
x,

associated to PE∗
x by the natural isomorphism End(T 1,0

x X ⊗Ex) ≃ End(T 1,0
x X ⊗ E∗

x), is positive

definite. In local coordinates the operator takes form

PE∗
x (τ ∗) :=

∑

1≤j,k≤n

∑

1≤λ,µ≤r

cjkµλτjλ
∂

∂zk
⊗ e∗µ, (2.4)

where τ =
∑

τjλ
∂
∂zj

⊗ e∗λ in T 1,0
x X ⊗ E∗

x. Griffiths positivity is weaker than (dual) Nakano

positivity, cf. Demailly [9, Proposition 6.6].

Let’s reformulate the notion of Griffiths positivity in terms of linear preservers. We denote by

PE,Hom
x : End(T 1,0

x X) → End(Ex) the linear operator associated to PE
x by the natural isomor-

phism End(T 1,0
x X ⊗ Ex) ≃ Hom(End(T 1,0

x X),End(Ex)).

Proposition 2.1. A Hermitian vector bundle (E, hE) is Griffiths positive if and only if at any point

x ∈ X , the operator PE,Hom
x sends non zero positive semidefinite operators to positive definite

operators. In particular, PE,Hom
x is a positive semidefinite linear preserver in this case.

Remark 2.2. The operator PE,Hom
x is a positive semidefinite linear preserver if and only if the asso-

ciated operator PE∗,Hom
x ∈ Hom(End(Ex),End(T 1,0

x X)) is a positive semidefinite linear preserver,

cf. [37, Proposition 1.4.3a)].

Proof. As any Hermitian positive definite matrix has an orthonormal basis of eigenvectors with

positive eigenvalues, it is enough to verify that for any v ∈ T 1,0
x X , the positivity of the form

Θ̃E(· ⊗ v) : E⊗2
x → C is equivalent to the positive definiteness of PE,Hom

x (v∗ ⊗ v). This follows

directly from the definition of PE,Hom
x .
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Proposition 2.3. A Hermitian vector bundle (E, hE) is dual Nakano positive if and only if at any

point x ∈ X , there exists a vector space V and an element A ∈ T
∗(1,0)
x X⊗Hom(V,Ex), satisfying

RE
x = A ∧ A∗, for the adjoint A∗ ∈ T

∗(0,1)
x X ⊗ Hom(Ex, V ).

Remark 2.4. It seems that the positivity condition, requiring the existence of A as above, has first

appeared in the paper of Bott-Chern [6]. P. Li [25] calls it Bott-Chern positivity.

Proof. In one direction, assume that there is Ax as described. Then in the notation of (2.4),

〈PE∗(τ ∗), τ ∗〉 =
∥∥A∗τ ∗

∥∥2
, so (E, hE) is dual Nakano positive. In other direction, assume PE∗

is positive definite. We denote by τi ∈ T 1,0
x X⊗E∗

x, i = 1, . . . , N , the basis of eigenvectors of PE∗

of the norm
√
λi, where λi is the corresponding eigenvalue. Then one can take V := CN and A to

be the operator sending the standard basis of CN to τ ∗i ∈ T
∗(1,0)
x X ⊗Ex.

Proposition 2.5. A quotient of a dual Nakano positive vector bundle is dual Nakano positive. The

analogical statement holds for Griffiths positive vector bundles.

Remark 2.6. For Nakano positive vector bundles, the quotients are not necessarily Nakano positive,

cf. [9, Example 6.8, end of §VII.6].

Proof. For Griffiths positive vector bundles, it is proved in [9, Proposition VII.6.10]. For dual

Nakano positive vector bundles, establishing Proposition 2.5 is equivalent to proving that a sub

bundle of a Nakano negative vector bundle is a Nakano negative vector bundle. The last statement

is proved in [9, Proposition VII.6.10] using the curvature formula for sub bundle.

Now let’s study positivity for differential forms. Recall that a (i, i)-differential form α on X
is called strongly-positive, cf. [33], if it can be represented as a linear combination with positive

coefficients of the forms
√
−1β1 ∧ β1 ∧ . . . ∧

√
−1βi ∧ βi for some (1, 0)-forms βj , j = 1, . . . , i.

For i = 0, 1, n − 1, n, all the concepts of positivity for differential forms from this article

coincide. For other i, all strongly-positive (i, i) forms are positive, and all positive (i, i) forms are

weakly-positive. Moreover, those are strict inclusions, see [33, Corollary 1.6].

The products of positive forms is positive and the product of strongly-positive forms is strongly-

positive, [33, Corollary 1.3]. The analogical statement for weakly-positive forms is known to be

false, [33, Proposition 1.5], see, however, Błocki-Pliś [5] for a related result.

Proposition 2.7 ( Reese-Knapp [33, Definition 1.1, (1.4’)] ). A (i, i)-differential form α on X is

weakly-positive if and only if for any local holomorphic chart (z1, . . . , zn) on X , α ∧
√
−1dz1 ∧

dz1 ∧ · · · ∧
√
−1dzn−i ∧ dzn−i is a positive multiple of

√
−1dz1 ∧ dz1 ∧ · · · ∧

√
−1dzn ∧ dzn.

Proposition 2.8 ( Reese-Knapp [33, Theorem 1.2] ). A (i, i)-differential form α on X is positive

if and only if for some Hermitian product on T 1,0X , the operator in End(ΛiT 1,0X), associated to

α, is positive-definite.

Corollary 2.9. Let α be a (weakly-)positive differential form on a complex manifold Y , and let

π : Y → B be a proper holomoprhic map between complex manifolds. Then π∗[α] is also a

(weakly-)positive differential form.
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Proof. By the definition of pushforward, we have

π∗[α] ∧
n−i∧

i=1

√
−1αi ∧ αi = π∗

[
α ∧

n−i∧

i=1

√
−1π∗αi ∧ π∗αi

]
. (2.5)

We conclude by Proposition 2.7 and (2.5). Positive forms are treated in the same way, we only

need to use the definition of positive forms instead of Proposition 2.7.

3 Positivity of Schur forms, proofs of Theorems 1.1, 1.3

In this section we describe the proofs for Theorems 1.1, 1.3 modulo some technical statements,

which will be treated in further sections. The first step of the proof is common for both theorems,

and it uses a refinement of the determinantal formula of Kempf-Laksov, [22].

To start with, let’s recall the original statement from [22]. We fix r, k and a partition a ∈
Λ(k, r). Let E be a smooth complex vector bundle of rank r over a smooth real manifold X . Let

V be a complex vector space of dimension k + r and let VX be the trivial vector bundle X × V .

Fix a flag of subspaces {0} ⊂ V1 ⊂ . . . ⊂ Vk ⊂ V with dimVi = r+ i−ai. Consider the cone

Ωa(E) ⊂ Hom(VX , E), whose fiber over x ∈ X consists of u ∈ Hom(V,Ex), satisfying

dim(ker u ∩ Vi) ≥ i. (3.1)

We denote by PHom := P(Hom(VX , E) ⊕ O) the compactification of Hom(VX , E) by the

hyperplane at infinity and by π : PHom → X the obvious projection. We denote by

Ωa(E) = P(Ωa(E)⊕O), πa : Ωa(E) → X (3.2)

the closure of Ωa(E) in PHom and the restriction of π to Ωa(E). Note that Ωa(E) is locally a

trivial cone bundle with analytic fibers over X of codimension k in Hom(VX , E). We denote

by ZHom(VX ,E) ⊂ PHom the image of the zero section of Hom(VX , E). There are well-defined

cohomology classes

{ZHom(VX ,E)} ∈ H2(r+k)r(PHom,R), {Ωa(E)} ∈ H2k(PHom,R), (3.3)

which can be seen as the cohomology classes of the induced closed currents [ZHom(VX ,E)], [Ωa(E)].

Theorem 3.1 (Kempf-Laksov [22]). The following identity between cohomology classes holds

Pa(c(E)) = π∗

[
{ZHom(VX ,E)} · {Ωa(E)}

]
. (3.4)

Now, we would like to prove a refinement of Theorem 3.1 on the level of differential forms

in the holomorphic setting. We assume from now on that X is a complex manifold and E is a

holomorphic vector bundle. We denote by OPHom
(−1) the tautological line bundle on PHom, and

define the hyperplane bundle Q := (π∗Hom(VX , E)⊕O)/OPHom
(−1) on PHom.

Since Ωa(E) is locally a trivial cone bundle with analytic fibers over X of codimension k
in Hom(VX , E), for any smooth (l, l)-differential form α, l ∈ N

∗, on PHom, one can define the

pushforward πa
∗ [α] as a (max{l − k, 0},max{l − k, 0})-differential form over X .
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Theorem 3.2. We endow E with a Hermitian metric hE . Denote by hQ the Hermitian metric on Q
induced by the trivial metric on O and hE . The following identity of (k, k)-differential forms holds

Pa(c(E, hE)) = πa
∗
[
crk(Q)(Q, hQ)

]
. (3.5)

Remark 3.3. We say that Theorem 3.2 is a local version of Theorem 3.1, because (3.5) is a point-

wise identity and it makes sense even over contractible manifolds X , whereas the original state-

ment from [22] becomes a triviality for such X .

In Section 4, we prove Theorem 3.2 and show that it is compatible with Theorem 3.1. One

ingredient of the proof is the formula for the curvature of the hyperplane bundle over the projec-

tivization of a vector bundle due to Mourougane [29].

Now, Theorem 3.2 and Corollary 2.9 clearly suggest that it is enough to study the positivity of

the top Chern form. We do so directly by giving alternative expressions for the top Chern form

through tensor calculus in Section 5. Below, we give the first two main result of Section 5.

Proposition 3.4. For any Nakano or dual Nakano positive vector bundle (E, hE) over a complex

manifold X , the form crk(E)(E, hE) is positive.

Proposition 3.5. Let (E, hE) be a Nakano positive vector bundle over a complex manifold X . Let

Ξ ⊂ P(E) be a locally a trivial bundle with analytic fibers over X . Denote by π′ the restriction of

the projection π : P(E) → X to Ξ. Define Q0 := π∗E/OP(E)(−1) and endow it with the induced

Hermitian metric hQ0 . Then the differential form π′
∗[crk(Q0)(Q0, h

Q0)] is positive.

Remark 3.6. It is known that (Q0, h
Q0) is neither Nakano, nor dual Nakano positive in general, so

Proposition 3.5 doesn’t follow directly from Proposition 3.4 and Corollary 2.9.

Proof of Theorem 1.1. We conserve the notation from Theorem 1.1 and Theorem 3.2. Let’s treat

the dual Nakano positive case first. First of all, since (E, hE) is dual Nakano positive, the vector

bundle π∗(Hom(VX , E)) ⊕ O is non strictly dual Nakano positive. From Proposition 2.5, we

conclude that (Q, hQ) is non strictly dual Nakano positive. By Theorem 3.2, Proposition 3.4 and

Corollary 2.9, we prove Theorem 1.1 for dual Nakano positive vector bundles. For Nakano positive

vector bundles, the result follows from Theorem 3.2 and Proposition 3.5.

Now, to establish Theorem 1.3, we need the following proposition. See Section 5 for a proof.

Proposition 3.7. The following statements are equivalent.

a) For any Griffiths positive vector bundle (E, hE) over any complex manifold X , the form

crk(E)(E, hE) is weakly-positive.

b) The answer to Open question is positive.

Proof of Theorem 1.3. By Proposition 3.7, it is enough to prove that if the answer to Open question

is positive, then the answer to Griffiths question is positive as well. We use the notation from

Theorem 1.3 and Theorem 3.2. As (E, hE) is Griffiths positive, (Q, hQ) is non strictly Griffiths

positive by Proposition 2.5. By Proposition 3.7, the top Chern form of (Q, hQ) is weakly-positive.

We conclude by Corollary 2.9 and Theorem 3.2.
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4 Refinement of the determinantal formula of Kempf-Laksov

The main goal of this section is to establish Theorem 3.2. We start by verifying that Theorem 3.2

is compatible with Theorem 3.1. We conserve the notation from Theorems 3.1, 3.2.

Since the canonical section of Q (i.e. image of 0⊕ 1 in Q) admits ZHom(VX ,E) as its transversal

zero locus, we have crk(Q)(Q) = {ZHom(VX ,E)}. But as Ωa(E) is locally a product over X , we have

π∗

[
{ZHom(VX ,E)} · {Ωa(E)}

]
= πa

∗
[
crk(Q)(Q)

]
, (4.1)

which proves the compatibility of Theorem 3.2 with Theorem 3.1 by Chern-Weil theory.

The proof of Theorem 3.2 consists of two steps. The first step, encapsulated in Lemma 4.1,

says that the right-hand side of (3.5) is a polynomial in terms of the components of the curvature

of (E, hE) with respect to some fixed basis of E. In the second step, using a topological argument,

we show that this polynomial coincides with the left-hand side of (3.5).

Let’s fix some further notation. We fix a point x ∈ X and a local holomorphic frame e1, . . . , er
for E, orthonormal at x. For 1 ≤ i, j ≤ r, we denote

cij :=
1

2π
〈(
√
−1RE)ei, ej〉hE . (4.2)

Lemma 4.1. For any r ∈ N∗, there is a polynomial P (dij) in the entries of a self-adjoint matrix

D = (dij)
r
i,j=1, such that for any X , (E, hE), πa, (Q, hQ), cij as in Theorem 3.2 and (4.2), we have

πa
∗
[
crk(Q)(Q, hQ)

]
= P (cij). (4.3)

Now, for p,N ∈ N, p < N , we denote by GrC(p,N) the complex Grassmannian, and by E ′ the

tautological vector bundle of rank p over GrC(p,N). The proof of the following lemma is given in

the end of this section.

Lemma 4.2. Let k ∈ N satisfy k ≤ N − p. Then the cohomology group H2k(GrC(p,N),C) is

freely generated as a vector space by the monomials of c1(E
′), . . . , cp(E

′) of degree 2k.

Proof of Theorem 3.2. We conserve the notation from Theorem 3.2. Let P (dij) be as in Lemma

4.1. Clearly, the right-hand side of (4.3) is invariant under the action of the group U(r) on the ma-

trix (cij), 1 ≤ i, j ≤ r, by conjugation, as this only amounts to choosing another frame e1, . . . , er,
and the left-hand side of (4.3) is independent of this choice.

This implies that the polynomial P (dij) is invariant under the action of the group U(r) on

D := (dij). In particular, for a diagonal matrix D, the polynomial P (dij) can be expressed as

a linear combination of symmetric polynomials in diagonal entries of D. But any self-adjoint

matrix can be diagonalized by the action of the group U(r), so P (dij) is actually a polynomial of

Tr
[
D
]
,Tr

[
Λ
2D

]
, . . . ,Tr

[
Λ
rD

]
, where Λ

iD is the i-th wedge power of D. In other words, for any

b ∈ Λ(k, r), there is a coefficient ab ∈ R, which is universal in the same sense as P , so that

P (dij) =
∑

b∈Λ(k,r)

ab · Tr
[
D
]b(1) · Tr

[
Λ
2D

]b(2) · . . . · Tr
[
Λ
rD

]b(r)
, (4.4)

where b(i), i = 1, . . . , r is the number of times i appears in the partition b.
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Recall that for any b ∈ Λ(k, r), we have defined a Schur form Pb(c(E, hE)) after (1.3). Clearly,

proving Theorem 3.2 is now equivalent by (1.1) to proving that for any b ∈ Λ(k, r), we have

ab = cb, where the coefficients cb ∈ R are defined by expanding (1.3) to

Pa(c(E, hE)) =
∑

b∈Λ(k,r)

cb · c1(E, hE)∧b(1) ∧ . . . ∧ cr(E, hE)∧b(r). (4.5)

Let’s now establish that ab = cb. By Theorem 3.1 and the discussion after it, Lemma 4.1,

Chern-Weil theory and (4.4), (4.5), on the level of cohomology, we have

∑

b∈Λ(k,r)

ab · c1(E)b(1) · . . . · cr(E)b(r) =
∑

b∈Λ(k,r)

cb · c1(E)b(1) · . . . · cr(E)b(r). (4.6)

It is only left to apply (4.6) for X := GrC(r,N), N > k − r, and E the tautological r-bundle to

see that Lemma 4.2 implies ab = cb.

Now, to establish Lemma 4.1, we need a formula for the curvature of the hyperplane bundle on

the projectivization of a vector bundle due to Mourougane [29], which we recall below.

Let (F, hF ) be a Hermitian vector bundle over X of rank r′. Let OP(F )(−1) be the tautological

bundle over P(F ), π0 : P(F ) → X , and let Q′ := π∗
0F/OP(F )(−1) be the quotient bundle. We

endow Q′ with the metric hQ′

induced by hF .

We fix a point x ∈ X , some local coordinates z := (z1, . . . , zn) on X , centered at x, and a

local normal frame f1, . . . , fr′ of F at x, defined in a neighborhood U of x. By a normal frame

we mean one satisfying 〈fi, fj〉hF = δij −
∑

λµ dλµijzλzµ +O(|z|3) for some constants dλµij . For

1 ≤ i, j ≤ r′, we denote

gij :=
1

2π
〈
√
−1RFfi, fj〉hF . (4.7)

The data above defines a trivialization of U × P(Cr′) → P(F ) near π−1
0 (x) as follows. For

a := (a1, . . . , ar′), where ai ∈ C, 1 ≤ i ≤ r′, and not all ai are equal to zero, the trivialization is

given by the following map

(z, [a]) →
[ r′∑

i=1

aiei(x)
]
∈ P(F ). (4.8)

Now we take a1 = 1 and denote bi := ai, 2 ≤ i ≤ r′, b := (bi). Then (z, b) gives a chart

for P(F ) by (4.8). Mourougane in [29, (2.1)] proved that in this chart, at the point (x, 1) :=
(x, [1, 0, . . . , 0]) ∈ P(F ), the following formula holds

√
−1

2π
RQ′

(x,1) =
∑

2≤j,k≤r′

(
gij +

√
−1

2π
dbj ∧ dbk

)( ∂′

∂bk

)∗
⊗

( ∂′

∂bj

)
, (4.9)

where ∂′

∂bj
:= ∂

∂bj
⊗(f1+

∑
bifi) (we implicitly used an isomorphism Q′ ∼= TP(F )/X ⊗OP(F )(−1)).

Proof of Lemma 4.1. First of all, we would like to extend the formula (4.9) to the whole fiber

π−1
0 (x). As we will not make use of an explicit formula, we will content ourselves with some



On positivity of polynomials in Chern forms. 11

general remarks in this direction. Clearly, if the frame f1, . . . , fr′ is a normal basis of F at x, then

by Gram-Schmidt process, there are some universal functions pij(b, b), 2 ≤ i ≤ r′, 1 ≤ j ≤ r′, so

that the the following local frame is also normal

1√
1 + |b|2

(
f1 +

∑

i≥2

bifi
)
,
∑

j≥1

p2j(b, b)fj , . . . ,
∑

j≥1

pr′j(b, b)fj. (4.10)

By universal we mean that those functions depend only on r′ and on nothing more. Now, if we use

the above fact and apply the formula (4.9), we obtain that for any r′ ∈ N, there are some functions

Pij(b, b), 1 ≤ i, j ≤ r′, and Rγµ(b, b), 2 ≤ γ, µ ≤ r′, such that for any (F, hF ), (Q′, hQ′

) as

above, in the chart (z, b), the following formula holds

√
−1RQ′

(x,b) =
∑

2≤α,β≤r

( ∑

1≤i,j≤r

Pij(b, b) · gij +
∑

2≤γ,µ≤r

Rγµ(b, b) ·
√
−1dbγ ∧ dbµ

)
·

·
( ∂

∂bα

)∗
⊗

( ∂

∂bβ

)
. (4.11)

From (4.11), applied to F := Hom(VX , E) ⊕ O with the metric hF induced by hE and the

trivial metric on O, we see that for any r, k ∈ N∗, a ∈ Λ(k, r), there are some constants aIJ ,

I, J ∈ {1, 2, . . . , r}×k, such that the polynomial P (dij) :=
∑

aI,J · di1j1 · . . . · dikjk in the entries

of a self-adjoint matrix D := (dij) satisfies (4.3).

Moreover, aIJ , I, J ∈ {1, 2, . . . , r}×k, can be expressed through integrals over the analytic

space Ωa(C
r) (where Cr is viewed as a vector bundle over a point, see (3.1) for the definition of

Ωa) of universal polynomials in functions Pij(b, b), Rγµ(b, b) from (4.11). This implies that aIJ
are universal constants, which concludes the proof.

Proof of Lemma 4.2. The proof can be found in the lecture notes of Fulton [15, §2]. Here we only

highlight the main steps, following closely the exposition from [15].

First of all, we recall that GrC(p,N) = M0
N×p/GLp(C), where M0

N×p ⊂ MN×p is the subset

of all full rank N × p matrices and the action is given by the right multiplication.

Now, the manifold M0
N×p is 2(N −p)-connected. Indeed, M0

N×p is the complement of a closed

algebraic set of codimension N − p + 1 in MN×p, and it is a general fact that πi(C
N \ Z) = {1}

for 0 < i ≤ 2d− 2 if Z is a Zariski closed subset of codimension d, cf. Fulton [15, §A.4].

Now, the cohomology ring of GrC(p,∞) is freely generated by the Chern classes of the tauto-

logical vector bundle of rank p, cf. [28, Theorem 14.5]. The result now follows from the following

lemma, cf. [15, §2, Proposition 2.2]: If E → B and E ′ → B′ are two principal right G-bundles for

a Lie group G, and H i(E) = H i(E ′) = 0 for 0 < i ≤ k, then there is a canonical isomorphism

H i(B) ∼= H i(B′) for i ≤ k.

5 The top Chern form and the mixed discriminant

The main goal of this section is to describe the connection between the top Chern form and the

mixed discriminant. In particular, we establish Propositions 3.7, 3.4, 3.5. To establish those propo-

sitions, we find alternative expressions for the top Chern form through tensor calculus.
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We fix a Hermitian vector bundle (E, hE) over a complex manifold X . We let r := rk(E),
n := dimX , fix some holomorphic coordinates (z1, . . . , zn) on X , an orthonormal frame e1, . . . , er
of E in the neighborhood of a point x ∈ X , and decompose the curvature of (E, hE) as in (2.1).

We endow T 1,0
x Xwith the Hermitian product which turns the vectors ∂

∂zi
into an orthonormal basis.

Now, let’s denote by c̃ ∈ End(ΛrT 1,0
x X) the operator associated to crk(E)(E, hE) as in Proposi-

tion 2.8. Recall that the operators PE
x , PE∗

x , PE,Hom
x were defined in (2.3), (2.4) and after (2.4)

respectively.

Now, define the map (T 1,0
x X)⊗r → Symr(T 1,0

x X ⊗Ex) as follows

(v1, v2, . . . , vr) 7→
∑

σ∈Sr

(−1)[σ] ·
r
⊙
i=1

(
vi ⊗ eσ(i)

)
. (5.1)

It is easy to see that this operator is antisymmetric with respect to the permutation of coordinates

in (T 1,0
x X)⊗r. We denote by W1 the induced operator on the antisymmetric tensors

W1 : (T
1,0
x X)∧r → Symr(T 1,0

x X ⊗ Ex). (5.2)

We denote by W ∗
1 : Symr(T 1,0

x X ⊗ Ex) → (T 1,0
x X)∧r the adjoint of W1. Similarly, we define the

operator W2 : (T
1,0
x X)∧r → Symr(T 1,0

x X ⊗ E∗
x) and its adjoint W ∗

2 .

The main technical statements of this section are given below.

Lemma 5.1. Assume r = n. Then at x ∈ X , the following identity holds

cr(E, hE) = (r!)2 ·
(
DE ◦ (PE,Hom

x )⊗r ◦D∗
T 1,0
x X

)
·
√
−1dz1 ∧ dz1 ∧ . . . ∧

√
−1dzn ∧ dzn. (5.3)

Lemma 5.2. The following identities hold

c̃ = W ∗
1 ◦ (PE

x )⊗r ◦W1 = W ∗
2 ◦ (PE∗

x )⊗r ◦W2. (5.4)

The proofs of Lemmas 5.1, 5.2 are given in the end of this section. Before this, let’s see how

they imply Propositions 3.4, 3.5, 3.7.

Proof of Proposition 3.4. For brevity, we restrict ourselves to Nakano positive vector bundles. By

definition, it means that the operator PE
x is positive definite. Hence (PE

x )⊗r is positive definite as

well. We conclude by Lemma 5.2.

Proof of Proposition 3.5. Clearly, it suffices to consider smooth Ξ. Let’s fix a point (x, [e1]) ∈
Ξ ⊂ P(E), hE(e1, e1) = 1. We denote by e2, . . . , ek ∈ T 1,0

(x,[e1])
Ξ the orthonormal basis for the

vertical vectors in T 1,0
(x,[e1])

Ξ. We fix a normal frame e1, . . . , er, r := rk(E), of E, defined in a

neighborhood of x, satisfying ei(x) = ei, i = 1, . . . , k, and denote by b1, . . . , br the associated

vertical coordinates from (4.8).

We conserve the notation for the (1, 1)-forms cij , i, j = 1, . . . , r from (4.2). Then by (1.1) and

(4.9), the restriction to the horizontal subspace (in coordinates (4.8), associated to e1, . . . , er) of the

contraction of crk(Q0)(Q0, h
Q0) with the vertical form dvΞ :=

√
−1db1 ∧ db1 ∧ . . . ∧

√
−1dbk−1 ∧

dbk−1, is given in the notations of (4.9), coincides at the point (x, [e1]) with

1

(2π)k−1
ΛΞV [A] · det



ck+1k+1 · · · ck+1r

...
. . .

...

crk+1 · · · crr


 , (5.5)
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where ΛΞV [·] is the contraction with dvΞ, and A is the differential form, given by the determinant

of the matrix (
√
−1dbi ∧ dbj)

k−1
i,j=1. An easy calculation shows that the contraction in (5.5) is equal

to (k − 1)!. Also, the matrix in (5.5) is just the restriction of the analogous matrix associated to

(E, hE). As we assumed that (E, hE) is Nakano positive, the matrix in (5.5) is associated to a

positive definite map from (2.3). By the proof of Proposition 3.4, we conclude that the differential

form (5.5) is positive. This finishes our argument by Corollary 2.9.

Proof of Proposition 3.7. First, let’s assume that b) holds and show that a) then holds as well.

By the definition of weak positivity, we may assume dimX = rk(E). Then we conclude by

Proposition 2.1, Lemma 5.1 and the fact that the answer to the Open question is positive.

Now, let’s assume that b) doesn’t hold. We fix a semidefinite linear preserver P : End(V ) →
End(E), for which the quantity from Open problem is negative. Clearly, by making a small pertur-

bation, we may assume that P sends positive semidefinite operators to positive definite operators,

and the quantity from Open problem is still negative. We fix bases e1, . . . , er, v1, . . . , vr of E and

V respectively. We denote

dijkl :=
〈
P (e∗i ⊗ ej)vk, vl

〉
. (5.6)

We consider a trivial Hermitian vector bundle F = Cr × Cr of rank r over Cr, and fix the basis

f1, . . . , fr, given by the standard basis of Cr. For linear coordinates (z1, . . . , zr) on Cr, we define

hF (fi, fj) := δi,j +
r∑

k,l=1

dijklzkzl. (5.7)

Since P preserves positive semidefiniteness, and any Hermitian matrix can be written as a differ-

ence of two positive semidefinite matrices, P preserves the set of Hermitian matrices. From this,

we see that dijkl = djilk, which implies that hF induces a Hermitian metric on F (at least in a

small neighborhood of 0 ∈ Cr). Moreover, by using the formula for the curvature of the Chern

connection, cf. [9, Theorem V.12.4], we see that the operator, constructed by the same rules as in

Proposition 2.1 from the curvature of (F, hF ) at 0 ∈ Cr coincides with P . From this and Proposi-

tion 2.1, we conclude that (F, hF ) is Griffiths positive in the neighborhood of 0. We conclude by

the assumption on P and Lemma 5.1.

Proof of Lemma 5.1. Let’s first establish the following identity

cr(E, hE) =
∑

σ,ρ,µ∈Sr

(−1)[σ]+[ρ]+[µ]
r∏

i=1

cρ(i)µ(i)iσ(i) ·
r∧

i=1

√
−1dzi ∧ dzi, (5.8)

where by [σ] we mean the sign of a permutation σ. We conserve the notation for the (1, 1)-forms

cij , i, j = 1, . . . , r from (4.2). Then from (1.1), we have

cr(E, hE) = det



c11 · · · c1r
...

. . .
...

cr1 · · · crr


 . (5.9)
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By the definition of determinant and (5.9), we infer

cr(E, hE) =
∑

σ∈Sr

(−1)[σ]
r∧

i=1

ciσ(i). (5.10)

We now expand each summand in the right-hand side of (5.10) as follows

r∧

i=1

ciσ(i) =
∑

ρ,µ∈Sr

r∏

i=1

cρ(i)µ(i)iσ(i) ·
r∧

i=1

√
−1dzρ(i) ∧ dzµ(i)

=
∑

ρ,µ∈Sr

(−1)[ρ]+[µ]
r∏

i=1

cρ(i)µ(i)iσ(i) ·
r∧

i=1

√
−1dzi ∧ dzi (5.11)

From (5.9), (5.10) and (5.11), we deduce (5.8).

Let’s treat the right hand side of (5.3). From (1.6), we obtain

DE ◦ (PE,Hom
x )⊗r ◦D∗

T 1,0
x X

=
1

r!

∑

ρ∈Sr

(−1)[ρ]DE(c
1ρ(1), . . . , crρ(r)), (5.12)

where cij ∈ End(E), i, j = 1, . . . , r are defined by the contraction of
√
−1
2π

RE with
√
−1dzidzj .

Now, in the notations of (1.6), by renaming the permutations and using the fact that the sign of a

permutation is multiplicative, we have the following identity

DV (A
1, . . . , Ar) =

1

r!

∑

σ,τ∈Sr

(−1)[σ]+[τ ]

r∏

i=1

aiσ(i)τ(i). (5.13)

Now, by (5.13), we have

DE(c
1ρ(1), . . . , crρ(r)) =

1

r!

∑

σ,τ∈Sr

(−1)[σ]+[τ ]

r∏

i=1

ciρ(i)σ(i)τ(i). (5.14)

From (5.8), (5.12) and (5.14), we conclude by renaming the permutations and using the fact that

the sign of a permutation is multiplicative.

Proof of Lemma 5.2. Clearly, both identities are completely analogical, so we only concentrate on

proving the former one. As the proof of this lemma is similar in spirit to the proof of Lemma

5.1, we will be brief, and verify that both operators agree on ∂
∂z1

∧ . . . ∧ ∂
∂zr

. Let’s first give an

expression for c̃. By (5.10), we deduce

c̃
( ∂

∂z1
∧ . . . ∧ ∂

∂zr

)
=

∑

σ,µ∈Sr

(−1)[σ]+[µ]
∑

α

( r∏

i=1

cµ(i)α(i)iσ(i)

) ∂

∂zα(1)
∧ . . . ∧ ∂

∂zα(r)
, (5.15)

where the summation for α is done over the set of all maps from {1, . . . , r} to {1, . . . , n}. Now,

from (5.1), we deduce that for vi ∈ T 1,0
x X , we have

W ∗
1

( r
⊙
i=1

(
vi ⊗ eσ(i)

))
=

{
0, if σ is not a permutation,

(−1)[σ]v1 ∧ . . . ∧ vr if σ is a permutation.
(5.16)
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Hence, by (5.1) and (5.16), we have

W ∗
1 ◦ (PE

x )⊗r ◦W1

( ∂

∂z1
∧ . . . ∧ ∂

∂zr

)

=
∑

σ,µ∈Sr

(−1)[σ]+[µ]
∑

α

( r∏

i=1

ciα(i)σ(i)µ(i)

) ∂

∂zα(1)
∧ . . . ∧ ∂

∂zα(r)
, (5.17)

where the summation for α is done as in (5.15). From (5.15) and (5.17), we conclude by renaming

the permutations and using multiplicativity of the sign of permutations.

6 Linear preservers and double mixed discriminant, a proof of Proposition 1.4

The main goal of this section is to prove Proposition 1.4. For this, we first need to recall several

results from the theory of linear preservers. We fix two Hermitian vector spaces V,E of dimensions

n and e respectively.

Theorem 6.1 (Choi’s theorem, [7], cf. [36, Proposition 2.2] ). For a positive semidefinite linear

preserver P : End(V ) → End(E), the following statements are equivalent.

a) The induced operator P⊗k : End(V ⊗k) → End(E⊗k) is a positive semidefinite linear

preserver for k = min(dimV, dimE).
b) For a basis v1, . . . , vn of V , the bloc matrix (P (v∗j ⊗vi))

n
i,j=1 is positive semidefinite on E⊗n.

c) There are operators Vi : E → V , satisfying P (X) =
∑

V ∗
i XVi for any X ∈ End(V ).

Remark 6.2. Clearly, by the definition of the operator P ′ from Proposition 1.4, the condition The-

orem 6.1b) means that P ′ is positive semidefinite.

Theorem 6.3 (Schneider [35, Theorem 2]). Assume e = n. For a positive semidefinite linear

preserver P : End(V ) → End(E), the following statements are equivalent.

a) The identity P (CV ) = CE holds.

b) There exists an invertible A : E → V , satisfying P (X) = A∗XA or P (X) = A∗XTA.

Proof of Proposition 1.4. First of all, let’s treat the case d). Recall that in [19], Griffiths established

that for a Griffiths positive vector bundle (E, hE) of rank 2, the top Chern class is weakly-positive.

From this and Proposition 3.7, we deduce d).

By Theorems 6.1b,c), 6.3 and Remark 6.2, we see that Proposition 1.4a) follows from Proposi-

tion 1.4b). Similarly, Theorem 6.1b,c), applied for P and P T , reduces Proposition 1.4c) to Propo-

sition 1.4b). Proposition 1.4b), in its turn, follows from the proofs of Lemmas 5.1, 5.2.

7 A local version of Jacobi-Trudi identity

The main goal of this section is to establish another pushforward identity for Schur forms, similar

to Theorem 3.2, but based on Jacobi-Trudi identity.

Let’s first recall the original Jacobi-Trudi identity (the terminology is due to Fulton-Pragacz

[17, p. 42]). Let E be a smooth complex vector bundle of rank r over a smooth real manifold X .
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Consider the flag manifold FlX(E) associated to E. A point y ∈ FlX(E) parametrizes a pair of

x ∈ X and a complete flag (V0(y), . . . , Vr(y)) in Ex, where

Ex = V0(y) ⊃ V1(y) ⊃ · · · ⊃ Vr(y) = {0}, codim(Vi(y)) = i. (7.1)

We denote by π : FlX(E) → X the natural projection. On FlX(E), the flag (7.1) induces the

filtration of the natural vector bundles

π∗E = V0 ⊃ V1 ⊃ · · · ⊃ Vr = {0}. (7.2)

We introduce the line bundles Qµ := Vµ−1/Vµ, 1 ≤ µ ≤ r. Now for a given k ∈ N and a partition

a ∈ Λ(k, r), we denote by aT = (b1, . . . , br), bi ∈ N, a non increasing partition of k, obtained

through the transposition of the Young diagram associated to a.

Theorem 7.1 (Jacobi-Trudi identity, cf. [17, (4.1)], Manivel [27, Exercise 3.8.3]). The following

formula for Schur classes on X holds

Pa(c(E)) = π∗

[
c1(Q1)

b1+r−1 · . . . · c1(Qr)
br
]
. (7.3)

Now, we would like to prove a refinement of Theorem 7.1 on the level of differential forms

in the holomorphic setting. We assume from now on that X is a complex manifold and E is a

holomorphic vector bundle.

Theorem 7.2. We fix a Hermitian metric hE on E and denote by hQµ , µ = 1, . . . , r, the induced

metrics on the line bundles Qµ. The following identity between (k, k)-differential forms on X holds

Pa(c(E, hE)) = π∗

[
c1(Q1, h

Q1)∧(b1+r−1) ∧ . . . ∧ c1(Qr, h
Qr)∧br

]
. (7.4)

Let’s consider one special case of Theorem 7.2, when a = 11 . . . 10 . . . 0, where 1 is repeated k
times. By (1.4), on the left hand side of (7.3) for such a we have the Segre class, sk(E). Let’s study

the right-hand side. First, we have b1 = k, b2, . . . , br = 0. Now, consider the map π1 : P(E∗) →
X , and denote by H the hyperplane bundle on P(E∗). Recall that the flag manifold FlX(E) can

be constructed inductively through the following isomorphism

FlX(E) ≃ FlP(E∗)(H), (7.5)

and H corresponds to V1 in this identification. From this and the well-known isomorphism

(π1)∗E/H ≃ OP(E∗)(1), we see that the identity (7.3) reduces to the well-known interpretation

of Segre classes sk(E) = π1
∗ [c1(OP(E∗)(1))

k+r−1]. Theorem 7.2 in this case gives us

sk(E, hE) = π1
∗

[
c1(OP(E∗)(1), h

O)∧(k+r−1)
]
, (7.6)

where hO is the induced metric on OP(E∗)(1).
The identity (7.6) was obtained before by Mourougane in [29, Proposition 6] by explicit calcu-

lation. It played a crucial role in the proof of positivity of the Segre forms by Guler in [20]. In our

proof of Theorem 7.2, we use methods from the proof of Theorem 3.2, along with the curvature

formula for the line bundles Qµ, establishes by Demailly [8].
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Proof of Theorem 7.2. Let’s fix a point y ∈ FlX(E) and denote by e01, . . . , e
0
r the orthonormal basis

of E, which is compatible with the filtration of E associated to the flag of y in the sense that in the

notations of (7.1), we have Vi(y) = 〈e0i+1, e
0
i , . . . , e

0
r〉, 0 ≤ i ≤ r − 1.

Let’s describe a local chart of FlX(E) near y. For this, we fix a normal frame e1, . . . , er, defined

in a neighborhood of x ∈ X and satisfying ei(x) = e0i (see Section 4 for a definition of the normal

frame). Then for an arbitrary array of complex numbers (zλµ), 1 ≤ λ < µ ≤ r, we define a local

chart of π−1(x) near y as follows. Let ξµ := eµ +
∑

λ<µ zλµeλ for 1 ≤ µ ≤ r and denote the

associated flag Vi := 〈ξi+1, ξi, . . . , ξr〉, 0 ≤ i ≤ r − 1. Then the local chart for FlX(E) near y is

obtained by a product of this local chart on the fiber and a local chart on X near x.

We conserve the notation for the (1, 1)-forms cij , i, j = 1, . . . , r from (4.2). In the above chart,

at point y, Demailly [8, (4.9)] established for any µ = 1, . . . , r, the following curvature formula

c1(Qµ, h
Qµ) = cµµ +

∑

µ<λ

√
−1

2π
dzµλ ∧ dzµλ −

∑

λ<µ

√
−1

2π
dzλµ ∧ dzλµ. (7.7)

From this moment, our proof repeats the proof of Theorem 3.2, so we only highlight the main

steps. In the same way as in Lemma 4.1, but based on (7.7), we establish that for any r, k ∈ N∗,

a ∈ Λ(k, r), there is a polynomial P ′(dij) in the entries of a self-adjoint matrix D = (dij)
r
i,j=1,

such that for any X , (E, hE) as above, the right-hand side of (7.4) is equal to P ′(cij).
In the same way as in the beginning of the proof of Theorem 3.2, we establish that there are

coefficients tb ∈ R, b ∈ Λ(k, r), which are universal in the same sense as P ′, such that

P ′(dij) =
∑

b∈Λ(k,r)

tb · Tr
[
D
]b(1) · Tr

[
Λ
2D

]b(2) · . . . · Tr
[
Λ
rD

]b(r)
, (7.8)

where b(i), i = 1, . . . , r is the number of times i appears in the partition b. Then it is only left to

prove that tb = cb for any b ∈ Λ(k, r), where cb was defined in (4.5). This is done by Lemma 4.2

in the same way as we did in the end of Theorem 3.2.

To conclude, we note, however, that apart from the case considered in (7.6), the applications of

Theorem 7.2 to positivity of Schur forms are not evident, as the Demailly’s formula, (7.7), shows

that the line bundles Qµ, µ = 2, . . . , r, are not positive or negative in general.
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