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Abstract

This paper is concerned with the investigation of accurate parameter identification method

and state of charge (SoC) estimation for Lion Lithium battery. The proposed identification

method is implemented using an accurate state space model obtained from electric equiva-

lent circuit. The process of parameter identification is expressed as nonlinear optimization

problem. An Enhanced sunflower optimization algorithm (ESFOA) is employed to solve such

problem. The search space is managed by applying the reduction strategy. This strategy

is accomplished with the sunflower optimization algorithm to enhance the solution quality.

Three cases studied are considered as single and multi-objective frameworks. In these cases,

battery voltage or SoC or combined between them as objective functions are optimized for

the three cases studied. Numerical simulations as well as experimental implementation are

executed on 40 Ah Kokam Li-Ion Battery to prove the capability of the proposed param-

eter identification method. The ability of the proposed ESFOA is accomplished with high

accuracy is proven compared with Water-Cycle and Whale optimization algorithms for two

driving cycle profiles. Added to that, high closeness is achieved compared with the exper-
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imental measurements for battery parameters and SoC. The solution quality improvement

of the proposed ESFOA is noticed as it achieves the lowest the fitness function levels (in the

range 60-90%) of the cases studied compared with the competitive optimization algorithms.

Keywords: Electrical model, Experimental analysis, Lithium-Polymer battery cells,

Sunflower optimization algorithm, Parameter identification, State of charge estimation,

optimization algorithms, driving cycle, reduction strategy.

1. Introduction

1.1. Motivation

The technology of Lithium-polymer cells is very attractive in the domain of energy-

storage devices [1], [2]. This technology combines the following merits: very high energy

and power densities allowing to use for plug-in hybrid electric vehicles (PHEVs). One of the

major development of this technology is the lithium-ion (Li-ion) battery [3], [4]. The battery

management systems have a crucial role for the power efficiency of transportation systems.

Their role ensures the optimal energy consumption and to make energy management system

information to be available for the vehicular in normal and abnormal operating conditions [5].

The SoC estimation is an urgent prerequisite to achieve a good supervising and controlling of

battery charging and discharging [6]. Moreover, accurate estimation of battery parameters

and SoC represents an urgent need for many reasons such as extending battery life, battery

state of charge controlling, improving the battery performances [7], optimizing the energy

management, supervising the safety of the battery [8], [9], [10].

1.2. Literature Review

The battery is a complex non-linear and non-stationary electrochemical system. This

non-linearity of the battery is due to the fact that the relationship between the current

applied at the input and the voltage recovered at the output cannot be expressed by a linear
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relationship. The battery is non-stationary because the characteristics of the internal elec-

trical parameters of the battery are variable during a charge/discharge cycle and during its

life cycle [11]. The definition of the parameters value and equation type of a battery model

is based on the exploitation of the battery voltage curves (output) as a function of a current

profile input). However, the power or current profiles directly derived from measurements

or estimated in relation to normalized driving cycles in electric vehicle applications are rel-

atively complex. There are several approaches in the literature to simplify these profiles,

based on statistical counting and classification methods.

Different battery models have been investigated in the literature according to the target

accuracy degree and the practical application such as electric vehicles. An efficient dynamic

model that comprising two elements, resistance and capacitor (RC) in its equivalent cir-

cuit was proposed [12]. Several works have been proposed in the literature to address the

parameters identification and SoC estimation. These methods can be classified as follows:

• Ampere-hour counting method which has economical and technical benefits, low cur-

rent sensors costs and low power consumption [13].

• Open-circuit voltage (OCV) estimation method, the OCV and SoC relationship is

exploited for all battery technologies SoC estimation [14]. This relationship changes

slightly over battery lifetime, which represents one of the most advantages of this

method.

• Impedance-based estimation method, the battery SoC is dependent on some of its

impedance parameters which boost researchers to identify this parameters for the SoC

estimation [15]. The dependence of the SoC on the impedance parameters changes

significantly over the battery lifetime which represents the main drawbacks of this

method [16].

• Static battery characteristics estimation method, it consists to use the battery voltage,
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current and temperature relationship when the battery load rests constant to estimate

the SoC [17].

• Artificial intelligence estimation methods [18], the artificial intelligence methods have

been applied for SoC estimation, such as fuzzy logic (FL), neural network (NN) [19],

ANFIS, support vector machines (SVMs).

• Measurement techniques based estimation, sevral approach have been proposed in

this category one of them uses additional sensors are used for the battery magnetic

characteristic measurement which can be considered as an indicator for the SoC [20].

• Model-based estimation method, Its principle is the use of the battery measurements

such as the voltage, the current and the temperature to design such battery model.

The relationship of the battery SoC and OCV is used to incorporate the SoC into the

battery model. In this model the SoC is represented by a state equation. This model

can be used therefore to estimate the SoC using the measurements as inputs. Two

model types are generally employed, the electrical one is the famous model type for

SoC estimation [6].

Among the previous estimation methods,the electrical battery model is widely used to iden-

tify the battery parameters and to estimate the SoC. Based on this model, several parameter

estimation methods were developed such as observers in [21], classical identification methods

[22], on-line estimation procedure was presented in [23].

The state observer based methods have been largely used in the literature allowing to an

online identification of battery parameters. The used methods are sliding-mode observer,

Luenberger observer [24], Kalman filter, adaptive observers [25]. For these methods, the

observability of battery models is rarely studied. Moreover it not always easy to prove the

stability of the proposed observer. Machine learning and artificial intelligence techniques

such as neural network [26] have been used to estimate the SoC and the battery parameters,
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support vector machine [27] and multi-variable adaptive regression splines [28].

In recent decades, continuous development is noticed in the application of recent evolution-

ary optimization techniques in variant engineering and science fields. These algorithms have

been adopted to solve various engineering optimization problems such as neural network

algorithm [29] and particle swarm optimization (PSO) [30], have been employed in opti-

mization and applied inverse methods due to their excellent global search abilities. The

estimation algorithms and on-line parameter identification methods are needed to guarantee

the accuracy of the model-based SOC estimation with nonlinear battery models. On the

other hand, numerous the parameters and SoC estimation based on optimization algorithms

such as particle swarm optimization [30], Hybrid Particle swarm-Nelder-Mead algorithm

[31] and some other classical optimization algorithms have been proposed to estimate the

machine parameters based generally on algebraic models. In [32] grey wolf optimization al-

gorithm has been compared with PSO and genetic algorithm techniques for only parameters

estimation of lithium battery based on algebraic model.

Several efforts with the application of recent optimization algorithms were developed for

solving energy applications such as parameter estimation of solar cells such as [33], techni-

cal, economical and environmental scheduling of energy resources [34], [35], electrical based

integration of renewable energy into stand-alone systems [36], and for energy management

of hybrid renewable energy resource as presented in [37] and [38]

In 2018, the SFOA is one of the meta-heuristic algorithms that was firstly proposed by

Gomes and others [39] in their work about identification of damage on laminated composite

plates. Another application of SFOA for parameter estimation of three diode models of solar

cell in [40]. SFOA stimulated by the sunflowers movement towards the sunlight [39]. The

SFOA is stimulated by the inverse-square law of radiation intensity, where the amount of

heat is proportional to the squared distance between sunflowers and the sun.
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1.3. Paper contribution

In this paper, an enhanced version of sunflower optimization algorithm is investigated for

parameter identification and SoC estimation. The salient features of the proposed method

can be summarized as follows:

1. Using the non-linear electrical circuit for modeling lithium battery with state space

representation .

2. Developing the ESFOA based on reduction strategy to enhance the search space in

order to obtain the optimal parameters and to estimate SoC of lithium ion battery.

3. Three cases are considered to simulate single and multi-objective frameworks. The

objectives measure the closeness between the estimated and experimental recorded for

the terminal battery voltage and state of charge.

4. A comparison study is employed to show the capability of the proposed ESFOA.

5. Assessing the sunflower optimization algorithm with water-cycle and whale optimiza-

tion algorithms.

1.4. Paper structure

The following sections of the current work are organized as follows: Section 2 presents

to the state space dynamic modeling of the lithium ion battery. The estimation problems of

battery parameters and state of charge are formulated as optimization problem with single

and multiobjective frameworks in Section 3. Section 4 presents the sunflower optimization

algorithm for solving the predefined problem in section 3. Section 5 presents the setup of

experimental works and the related bench marking driving cycle. Section 6 concludes the

current research findings.

2. Lithium Ion Battery modeling

The common used equivalent circuit model is constructed with n times RC elements

denoted by nRC model [41], normally up to 3 RC elements are used [42]. In this paper, a
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reduced model with n=1 i.e single RC model is considered as shown in Fig. 1. The battery

model is modeled by using RC equivalent circuit as shown in Fig. 1. The relaxation effect

is represented by RC group. This model avoids the complexity raised for the problem of

parameters identification. The following subsections describe the mathematical and state

space model of the battery. Equation (1) presents a linear relationship to describe the

static characteristic of the battery under predetermined conditions of temperature and age,

between the Voc and SoC is assumed as [43] as:

VOC = f(SOC) = b0 + b1SOC. (1)

Figure 1: Battery equivalent circuit.

The parameters identification and SoC estimation problem is formulated as state space

model. Based on Fig. 1 and Eq. (1), the state space model for the battery dynamics is

represented in the following form:

Ẋ = AX +Bu (2)

y = CX +Du+ b0 (3)
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where,

X =

SOC
Vrc

 ,

A =

0 0

0 − 1
RC

, B =

 1
QR

1
C

, C =

[
b1 1

]
, D = R0.

VT and IL are the battery terminal voltage and current, respectively. R0 is the internal

resistance. Qr is assumed to be the nominal battery capacity. In the current work, the

terminal voltage (VT ) and current (IL) values are assumed to be accessible from the state

space dynamic model in Fig.1. Both the temperature and ageing of the battery effects are

not considered in this work.

According to the system Eqs. (2) and (3), the battery parameters are identified for state of

charge estimation as well as computing the terminal battery voltage.

3. Problem formulation

3.1. Parameterization model development

The dynamic model of the battery described in the previous section is used to identify

the battery parameters to estimate state of charge. To optimize the parameters of the Li-ion

battery model, an objective function has to be set for fitting the estimated output voltages

with the corresponding recorded voltage in the experimental tests. The proposed objective

function is based on the minimization of Squares Error Sum (SSE) between the experimental

data and the model-based simulation results. The general representation of the proposed

optimization problem takes the following form:

minuFi(u), i = 1, 2..nobf (4)

umin ≤ u ≤ umax
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where, Fi(u) is the objective function i, u is the estimated parameters of the battery,N is

the number of the estimated and umin, umax are the parameter bounds of control variable’s

vector u that are reflected the accepted research domain , nobf is the number of objective

functions.

The identification of the model parameters is based on the exploitation of the battery ex-

perimental data.

3.2. Objective functions

In the proposed method, three cases studied are considered. these cases can be defined

as follows:

1. Minimizing the normalized deviation between the estimated and experimental battery

voltage F1(u) with Equation (5) which is considered as the primary objective function

of the considered problem as

F1(u) =
∑

(
ˆV bat− V ex
V max
bat

)2; (5)

where V̂bat is the value of the estimated battery model voltage. However, Vbat is the

recorded experimental battery voltage.

2. Minimizing the normalized deviation between the estimated and experimental state

F2(u) of charge with aid of Equation (6). this equation is considered as the primary

objective function instead of 5 in the previous case as

F2(u) =
∑

(
ˆSOC − soc
socmax

)2; (6)

where ˆSOC is the value of the estimated battery state of charge.

3. Providing a multi-objective function MoF for parameter estimation of the battery by

combining Equations (5) and (6). This objective function aims to minimize simultane-
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ously the deviation between the estimated and experimental battery voltage and state

of charge. The common multi-objective function of the battery model identification is

given by:

MoF (u) = w1 ×
n∑

i=1

(
ˆV bat− V ex
V max
bat

)2 + w2 ×
n∑

i=1

| (
ˆSOC − soc
socmax

)2 | (7)

where, w1 and w2 represent the weighting factors that reflect the degree importance of F1

and F2.

3.3. Constraints

The previous objective functions, Eqs. (5)–(7), are solved by using ESFOA subject to

the following constraints:

Rmin ≤ R ≤ Rmin (8)

R0min
≤ R0 ≤ R0min

(9)

Cmin ≤ C ≤ Cmin (10)

b0min
≤ b0 ≤ b0min

(11)

b1min
≤ b1 ≤ b1min

(12)

Qrmin
≤ Qr ≤ Qrmin

(13)

where min and max operators refer the minimum and the maximum values of he identified

parameters.
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4. Sunflower solution methodology

4.1. ESFOA concept and mathematical representation

The concept of sunflower optimization algorithm (ESFOA) simulates the motion of the

sun flowers toward the sunlight. It is dependent on pollination intensity between the close-

ness sunflowers. ESFOA is considered as a new optimization algorithm that is dependent

on the inverse square law radiation [39], [40], [44] as:

Sr =
Sp

4πd2
(14)

where Sr is the solar radiation intensity, Sp is defined as the sun power, d is the distance

between the sun and the sunflower. Sunflower (si) is moved toward the sun, and its direction

is determined by equation

−→
Si =

X∗ −Xi

‖X∗ −Xi‖
, i = 1, 2, ..., np. (15)

where Xi is the current position of sunflower i, X∗ is the best solution among np sunflowers.

The norm operator is denoted by ‖‖. The updating equation for sunflower direction toward

to the sun is represented by:

X i+1 = X i + di ∗ Si (16)

where Xi+1 is the updated position of sunflowers.

di = λ ∗ Pi(‖Xi +Xi−1‖) ∗ ‖Xi +Xi−1‖ (17)

where di is the step of sunflower toward the direction of the sun. Where λ is the sunflower

inertial displacement. Pi(‖Xi + Xi?1‖) refers to the probability of two adjacent sunflowers
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(i and i− 1) pollination. The step transition is limited by Eq. (18) as:

dmax =
Xmax −Xmin

2 ∗Npop

(18)

where Xmin and Xmax are the boundaries values, Npop is the population size of sunflowers.

Applying the reduction strategy aims to concentrate the search space and therefor enhance

the overall solution quality. In this strategy, the search space is managed through adaptive

variation of the upper and lower limits according to (19) and (20).

Xmin = Xmin + α ∗ (Xmax −Xmin) (19)

Xmax = Xmax − α ∗ (Xmax −Xmin) (20)

The factor α refers to the reduction coefficient that is applied in reduction strategy to manage

the minimum and maximum bounds.

4.2. Proposed ESFOA-based solution methodology

The procedure of sunflower solution methodology can be mentioned as:

1. Define the ESFOA parameters and building the state space model Eqs. (2) and (3).

2. Initialization process of the random position of nb flowers. Each sunflower represents

the decision variables i.e the target estimated parameters within their boundaries.

3. Evaluation process of the initial positions to catch the best solution S∗ using Eqs. (5)

and (6) for single objective cases and Eq. (7) for multi-objective case.

4. Employ the orientation of Npop sunflowers to the sun direction.

5. while (k < Maxiteration)

(a) Reduce the population size by m (%)

(b) Compute each plant step using state space model (2)-(3)
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(c) Re-evaluate the new position using Eqs. (5), (6) and (7)

(d) For the global best individual update the sunflower second level

6. Apply the reduction strategy to enhance the search space and enhance the solution

quality. The strategy is integrated using Eqs. (19) and (20). In this paper the factor

α equals 0.08.

7. For each plant compute the vector of the orientation

8. Check the stopping criteria

9. Print the identified variables

5. DESIGN OF EXPERIMENT

In this context, we have laboratory experimental tests based on constraints classification

in intensity levels. Its objective is to reduce cycling times while maintaining the most

important characteristic variables for test profiles, such as the maximum current intensity

and the amount of charge exchanged. The simplification adopted in this approach allows us

to move from a complex pulse current profile to a signal in the form of a current step with

well-defined current values. For more details about the simplification of the real current

profile, using the heuristic method based on constraints classification, please refer to [45],

[46]. Before applying this constraints classification, the common ARTEMIS driving cycle is

chosen for identifying the parameters of the battery model by using a dynamics model of

the urban electric vehicle (BollorÃ c© Bluecar).

5.1. Driving cycle

In the last few years, several normalized and non-normalized driving cycles have been

recently proposed with the aim of evaluating pollution emissions and fuel consumption of

gasoline-powered engines. One can cite for examples the UDC, ECE, NEDC, ARTEMIS,

FTP75, NYCC and WLTC [47].
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The representation of any driving cycle is generally based on speed-time sequences that

represent the traffic conditions and driving behavior in a specific area. For this study,

the ARTEMIS driving cycle (Assessment and Reliability of Transport Emission Models

Inventory Systems) is selected. The latter is considered as a part of the main European

project which induced in the creation of a transient driving cycle based on other European

driving cycles [8]. It is divided into three phases (urban, rural and highway), which are

representative of real-world driving behavior. In this study, the ARTEMIS cycle chosen is

represented by the urban and the rural cycle. Therefore, the distance covered is about 22km

in 2075 seconds for an average speed of 38.4km/h and a maximal speed of 111.5 km/h.

5.2. Laboratory test bench and battery technology

A test bench is used to carry out accelerated cycling aging tests while trying to be as close

as possible to the electric vehicle application. The laboratory test bench is as shown in Fig.

2, the bench includes two main components: a climatic chamber and charge/discharge setup.

The power that can be delivered by this bench in continuous operation is 10kW, by using a

programmable power supply. The latter is connected to a reversible four-leg power converter

(60V/ 600A). The FPGA compact RIO NIcRIO-9012/9014 real-time control system with

LabVIEW software is used for setting up the test procedure and for data acquisition [31] [46].

Battery cells are placed in the climatic chamber in order to perform the test at controlled

temperature conditions. These units can change the temperature from 0 to 100 Â◦C and are

able to change the temperatures at a rate of 3 ± 0.02Â◦C. The man-machine interface (MMI)

in Fig. 3 shows the front panel of RealTime (RT). It allows entering the parameters related

to control and acquisition, as well as the management of the safety of the bench (maximum

and minimum limits of the voltages and currents tolerated by the components, maximum

temperature limit...etc). This interface also allows us to visualize information on the state of

the bench (defects, type of defect, backup activation, number of cycles performed...etc) and

to visualize the evolution of the electrical values and the temperatures of the components.

14



Figure 2: (a) Laboratory test bench. (b) MMI interface for control and monitoring of the test bench.

Different types of batteries have been recently designed for electric and hybrid vehicles

with the aim of improving the tradeoff between drive performance and high reliability [48].

As an example, a commercial 40 Ah Li-ion battery cell produced by Kokam manufacturer,
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under the references HED- SLPB90216216 is used in our study. Table 1 gives the specifi-

cations of Li-ion battery cells, which present their most relevant specifications that can be

found in the datasheet.

Table 1: Characteristics Of Kokam Li-Ion Battery Technologies [31]

Battery Kokam 40 HED

Nominal voltage (V)

Internal resistance (m)

Capacity (Ah)

Specific Energy (Wh/kg)

Max current cha/dis (A)

Weight (kg)

3.7

0.9

40

167

40/40

0.885

Figure 6 (first figure) illustrates the cycling current profile 150 km ARTEMIS driving cycle

(setpoint current) superimposed on the real current profile by using the tested battery,

Kokam Ko40HE. With the heuristic method based on constraints classification, the duration

of cycles is reduced by 35% of the real profiles. As for the recharge phase, it occurs when

the desired depth of discharge is obtained. This recharging reduces the state of charge of the

batteries to 100%. The recharge follows the protocol defined by the manufacturer Kokam.

This profile consists of a CC/CV (Constant Current/Constant Voltage) recharge, preceded

by a rest phase. In this study, the used battery has been designed for a range of 150 km.

The cycling profiles are obtained by using the constraints classification method and it was

repeated seven times to correspond to the 150km distance and to obtain a depth of discharge

of 80%.

5.3. Evaluation of the estimated results

In this section, the simulation results obtained by applying the proposed ESFOA are as-

sessed with those recorded in the experimental results and two other optimization algorithms
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called water-cycle (WCOA) and whale (WOA). The WCOA parameters are customized from

[49] while the parameters of WOA are taken from [50].

Table 2 shows the parameters of the proposed ESFOA. Table 3 presented the boundaries

of the estimated battery parameters according the experimental tests. The discharge with

constant current and CC/CV charge protocol is used to record the experimental voltage

data of battery. In addition, the change of SoC during the test has been recorded with a

coulomb-accumulation method based on the history of current, including self-discharging

and current inefficiency on charge. As mentioned above three cases are studied. In the first

case, the primary objective function aims at minimizing the deviation between the estimated

and recorded battery voltages. According to Table 4, Figs 3 and 6 shows the battery per-

formance for two tested driving cycles. It is cleared that: the high closeness between the

estimated and measured variables are achieved for both battery voltages and the battery

state of charge. The primary objective function reaches 5.23×10−5 while the second objec-

tive reaches 6.58×10−6.

By the transition to Case 2, the minimizing of SOC is considered as the primary objective

function while the battery voltage is considered as secondary objective. In Case 2, high

closeness is noticed between the estimated and measured state of charge for both tested

driving cycles. The simulation results of the estimated SoC is presented in Table 5, Figs

4 and 7. The primary objective function reaches 7.8×10−5 while the secondary objective

function (battery voltage) reaches 2.1×10−8. A compromise solution is obtained between

the considered two objective functions, battery voltage and state of charge, in Case 3. The

two objective functions are simultaneously optimized for both tested driving cycles. The

simulation results are presented in Table 6, Figs 5 and 8. The considered objective functions

reaches 6.23×10−5 and 3.5×10−8, respectively.

From Tables 4-6, it is concluded that the ESFOA leads to the lowest fitness functions (in

the range 60-90%) and competitive parameter identification for the three cases compared
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with the WCOA and WOA.

Table 2: Sunflower optimization algorithm parameters

Population

size

Pollination

rate

Mortality

rate

survival

rate

Maximum

iteration

50 0.1 0.005 0.9 40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

-50

0

50

Ic
 [A

]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

3

3.5

4

V
ba

tt
 [V

]

expe
model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

0

0.5

1

so
c

Figure 3: Case 1 (a) Constant current profile with CC/CV charge protocol. (b) Experimental and modeling

responses of battery voltage . (c) Experimental and modeling responses of battery SoC .
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Figure 4: Case 2 :(a) Constant current profile with CC/CV charge protocol. (b) Experimental and modeling

responses of battery SoC .
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Figure 5: Case 3 (a) Constant current profile with CC/CV charge protocol.(b) Experimental and modeling

responses of battery voltage . (c) Experimental and modeling responses of battery SoC .

Table 3: Identified battery parameters

R (mΩ) Ci (F ) Ri (Ω) b0 (V) b1 (V) Qr

LB 3 4000 1000 -3 25 130000

UB 4 5000 1300 -5 40 170000
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Table 4: Identified battery parameters Case 1

R Ci Ri b0 b1 Qr F1 F2 Fitness

WCOA 3.77 4396.46 1110.30 -4.24 34.40 147320.27 5.23 10−5 6.58 10−6 5.23 10−5

WOA 3.38 4306.56 1001.49 -3.72 31.75 135999.34 3.3 10−4 2.6 10−4 3.3 10−4

ESFOA 3.77 4396.46 1110.30 -4.24 34.40 147320.27 5.23 10−5 6.58 10−6 5.23 10−5

Table 5: Identified battery parameters Case 2

R Ci Ri b0 b1 Qr F1 F2 Fitness

WCOA 3.65 4529.28 1101.74 -3.72 30.35 147963.81 5.7 10−4 1.68 10−7 1.68 10−7

WOA 3.81 4586.68 1183.69 -4.55 35.37 147963.81 6.2 10−4 5.82 10−7 5.82 10−7

ESFOA 3.77 4396.46 1110.30 -4.55 34.40 147320.27 7.8 10−5 2.1 10−8 2.1 10−8

Table 6: Identified battery parameters Case 3

R Ci Ri b0 b1 Qr F1 F2 Fitness

WCOA 3.77 4396.46 1110.30 -4.24 34.40 147320.27 6.2310−5 7.12 10−7 6.24 10−5

WOA 3.66 4515.54 1084.95 -3.72 32.38 145804.00 3.5 10−4 7.39 10−6 3.6 10−4

ESFOA 3.66 4634.52 1107.23 -4.13 32.71 1.4797 10 6.23 10−5 3.5 10−8 6.23 −5
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Figure 6: Case 1 (a) Laboratory current profile with 150 km ARTEMIS driving cycle. (b) Experimental

and modeling responses of battery voltage . (c) Experimental and modeling responses of battery SoC .
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Figure 7: Case 2 :(a) Laboratory current profile with 150 km ARTEMIS driving cycle. . (b) Experimental

and modeling responses of battery SoC .
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Figure 8: Case 3 (a) Laboratory current profile with 150 km ARTEMIS driving cycle. (b) Experimental

and modeling responses of battery voltage . (c) Experimental and modeling responses of battery SoC .

6. Conclusion

This paper has been proposed a n enhanced sunflower optimization algorithm for solving

the problem of parameter identification and state of charge estimation of Lithium Polymer

Battery Cells. An electrical dynamic equivalent circuit based on state space model has been

presented. The problem of parameter identification is formulated as non-linear optimization

problem. Multi-objective sunflower optimization algorithm is developed to simultaneously

optimize two objective functions and to obtain the optimal parameter identification and

estimate the state of charge. Both objectives aim at achieve the high closeness between

experimental and estimated values for voltage and state of charge of the considered battery.
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This paper proves the ability of the proposed sunflower optimization algorithm as accurate

method for obtaining the optimal battery parameters. The proposed parameter identifica-

tion procedure has been validated for constant and varied current profiles, that is reflected

real bench-marking driving cycles. The error levels among simulation results reflect high

closeness between the estimated and experimental data.
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