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Abstract1

Two infinite families of Z4-codes with two nonzero Lee weights are constructed by their2

generator matrices. Their Gray images are nonlinear with the same weight distribution as3

that of the two-weight binary codes of type SU1 in the sense of (Calderbank, Kantor, 1986).4

Keywords Two-weight codes · Projective codes · Strongly regular graphs5

Mathematics Subject Classification 94B 05 · 05E 306

1 Introduction7

An organic connection between two-weight codes over fields and strongly regular graphs8

(SRGs) was discovered in the 1970s [3], and is well-documented in [1]. A partial census9

of known constructions based on the arithmetic of finite fields appeared in the classic paper10

[2]. More recently, several new techniques of construction involve trace codes over different11

rings, and Gray maps [9–13,15]. Especially, in [14], the authors focused on the construction12

of one-weight and two-weight codes over Z4. Later, in [16], the authors considered the13

linearity of the constructed codes. A natural question then, is whether there are other kinds14

of constructions of two-weight codes over Z4.15

Motivated by the works listed above, in the present paper, we revisit two-weight codes16

over Z4 and their linearity. This alphabet has been on the forefront of research in the domain17

of codes over rings since the prize awarded paper [4]. More background material can be found18

in the recent book [7]. We give an infinite family of two-weight projective codes over Z4 by19

their explicit generator matrices. Their Gray images are proved to be nonlinear with the same20

weight distribution as the two-weight binary codes of type SU1 from [2]. The coset graphs21

of the dual codes are shown to be SRGs, and determined completely. Thus they produce the22
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same SRG’s as those given by the SU1 codes, but described as Cayley graphs on a different23

abelian group.24

This note is organized in the following way. The next section contains notations and defini-25

tions. Section 3 is dedicated to preliminary material. Section 4 derives the main construction.26

Section 5 studies the linearity of the Gray images of our codes. Section 6 determines the27

SRGs attached to the Z4 codes of Sect. 4. Section 7 concludes the note.28

2 Notations and definitions29

2.1 Z4 codes30

We first recall necessary notations and definitions about codes over Z4 in [17] and [7]. Let Z431

denote the ring of integers modulo four Z4 = {0, 1, 2, 3}. A linear code C over Z4 of length32

n is a Z4-submodule of Z
n
4. The Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1 respectively. For33

any vector x = (x1, x2, . . . , xn) ∈ Z
n
4, we define its Lee weight as WL(x) =

n∑

i=1
WL (xi ).34

An N -Lee weight code is a code such that the cardinality of the set of nonzero Lee weights35

is N .36

Moreover, Awi is the number of codewords of the nonzero Lee weight wi in C , where37

1 ≤ i ≤ N .38

The order of a nonzero codeword c ∈ C, is the smallest positive integer k such that kc = 0.39

Each element x ∈ Z4 has a 2-adic expansion x = α(x) + 2β(x), where α(x), β(x) ∈ F2.40

The Gray map from Z4 to F
2
2 is defined by �(x) = (β(x), α(x) + β(x)). This map can41

be extended to Z
n
4 naturally. � is a weight-preserving map from (Zn

4, Lee weight) to (F2n
2 ,42

Hamming weight), that is to say WL (x) = WH (�(x)).43

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two arbitrary elements of Z
n
4, the44

inner product of x and y in Z
n
4 is defined by x · y = x1 y1 + x2 y2 + · · · + xn yn , and the45

componentwise multiplication ∗ of x and y is x ∗ y = (x1 y1, x2 y2, . . . , xn yn), where the46

operation is performed in Z4. The dual code of C is defined as C⊥ = {x ∈ Z
n
4 |x · y =47

0,∀ y ∈ C}. A Lee weight projective code C of length n over Z4 is a linear code such that48

the minimum nonzero Lee weight of its dual code is at least three.49

2.2 Graphs50

In this note, all graphs are undirected, without loops or multiple edges. A graph is k-regular51

if all vertices have exactly k neighbors.52

A k-regular graph on v vertices is a strongly regular graph (SRG) with parameters53

(v, k, λ, μ) if the number of common neighbors of any pair of vertices is λ or μ depending54

on the pair being connected or not.55

The spectrum of a graph is the set of eigenvalues of its adjacency matrix. A standard56

characterization of SRGs is that their spectrum consists of exactly three eigenvalues, namely57

k and two eigenvalues called the unrestricted eigenvalues [1].58
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3 Preliminaries59

If k = 1, let Yk = (1), when k ≥ 2, define60

Yk =
⎛

⎝
Yk−1 Yk−1 Yk−1 Yk−1 Bk−1

0 1 2 3 1 1 · · · 1︸ ︷︷ ︸
2k−1

⎞

⎠ (1)61

where Bk−1 is a (k − 1) × 2k−1 matrix over 2Z4 with all different columns and i is the row62

vector (i, i, . . . , i) of length 2k−2(2k−1 − 1), i ∈ Z4.63

Obviously, Yk is a k × n matrix over Z4 where n = 2k−1(2k − 1). Let xi and x j be two64

columns of Yk , then it is easy to check that xi �= mx j , where m = 1, 2, 3 and 1 ≤ i, j ≤ n.65

Besides, if we delete 0 ( a column of Bk ) from Bk , then we get a k × (2k − 1) matrix B ′
k66

over 2Z4. Let C ′ be the code generated by B ′
k . It’s easy to check that C ′ is a special case of67

the code obtained in Theorem 4.5 in [14], when k1 = 0, k2 = k, then C ′ is a one-Lee weight68

linear code with the nonzero Lee weight w′ = 2k .69

The following proposition is an alternative proof of Property 5.68 in (Handbook of Coding70

Theory, North Holland, 1998, WC Huffman, V. Pless eds, p. 1561).71

Proposition 3.1 If C is the code generated by Yk, then C is a two-Lee weight code of length72

n = 2k−1(2k − 1), with the nonzero Lee weight w1 = 2k−1(2k − 1), w2 = 22k−1. Moreover,73

Aw1 = 4k − 2k and Aw2 = 2k − 1, respectively.74

Proof Let75

Gk = (
Yk 3Yk Bk

)
, (2)76

then Gk is a k × 4k matrix over Z4. Since Bk is a k × 2k matrix over 2Z4 with all different77

columns, then all columns of Gk are pairwise different. If we delete the 0 from Gk ( in fact78

we delete 0 from Bk ), then we get a k × (4k − 1) matrix G ′
k . Therefore, G ′

k is a matrix with79

all nonzero different columns over Z4.80

Let C ′
k be the code generated by G ′

k . It’s easy to check that C ′
k is a special case of the code81

obtained in Theorem 4.5 in [14], when k1 = k, k2 = 0, then C ′
k is a one-Lee weight linear82

code with the nonzero Lee weight w′ = 4k .83

Let c = (x, 3x, y) ∈ C ′ and the lengths of x and y are 2k−1(2k −1) and 2k −1, respectively.84

Obviously, WL(y) = 2k or 0, and85

WL(c) = WL(x) + WL(3x) + WL(y) = 2WL(x) + WL(y),86

then, we have87

WL(x) = WL(c) − WL(y)

2
= 4k − WL(y)

2
. (3)88

If WL(y) �= 0, then WL(x) = w1 = 2k−1(2k − 1). Otherwise, WL(x) = w2 = 22k−1. It is89

not difficult to get Aw2 = 2k − 1 when WL(y) = 0. 
�90

Corollary 3.2 Let C be the code generated by Yk, c ∈ C and c �= 0, then91

WL (c) =
{

22k−1 if the order of c is 2,

2k−1(2k − 1) if the order of c is 4.
92
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Proof Let r1, r2, . . ., rk be the rows of Yk . From the proof of Proposition 3.1, WL(ri ) =93

w1 = 2k−1(2k − 1), but WL (2ri ) = w2 = 22k−1.94

Step 1 Let95

c = p1r1 + p2r2 + · · · + pkrk,96

where pi ∈ Z4, 1 ≤ i ≤ k and there exists pi �= 0. We can prove that pi = 0 or 2 for all97

1 ≤ i ≤ k, if the order of c is 2. By (1), let98

rk = (0 1 2 3

2k−1

︷ ︸︸ ︷
1 1 . . . 1),99

where i is the row vector (i, i, . . . , i) of length 2k−2(2k−1 − 1), i ∈ Z4. If the order of100

c is 2, and pk = 1 or 3, then c contains at least a 1 or a 3 according to the definition of101

Yk in (1), contradiction. Therefore, pk = 0 or 2 and pkrk = 0 or 2rk . So the order of102

p1r1 + p2r2 + · · · + pk−1rk−1 is 2. Similarly, by (1), we can get pk−1 = 0 or 2. Then we103

can prove pi = 0 or 2 for all 1 ≤ i ≤ k.104

Step 2 By (3), we can get if pi = 2 or 0, then WL(pi ri ) = 22k−1 or 0, 1 ≤ i ≤ k.105

Similarly,106

WL(p1r1 + p2r2 + · · · + pkrk) = 22k−1 = w2,107

where pi = 0 or 2, 1 ≤ i ≤ k and there exists pi �= 0. By Step 1, these are all the codewords108

of order 2. Therefore, if the order of c is 2, then WL (c) = 22k−1 = w2. Since Aw2 = 2k − 1109

by Proposition 3.1 and C is a two-Lee weight code, we can get if the order of c is 4, then110

WL(c) = 2k−1(2k − 1). 
�111

When k ≥ 2, let112

Xk =
(

Yk−1 Yk−1 Yk−1 Yk−1

0 1 2 3

)

, (4)113

where i is the row vector (i, i, . . . , i) of length 2k−2(2k−1 − 1), i ∈ Z4.114

Similar to Proposition 3.1, we have115

Proposition 3.3 If C is the code generated by Xk, then C is a two-Lee weight code of length116

n = 2k(2k−1 − 1) with the nonzero Lee weight w1 = 2k(2k−1 − 1), and w2 = 22k−1.117

Moreover, Aw1 = 4k − 2k−1 and Aw2 = 2k−1 − 1, respectively.118

Proof From the structure of Xk and Proposition 3.1, we know there are 2k−1 − 1 codewords119

of weight 22k−1 generated by the first k − 1 rows. Let r1, r2, . . . , rk be the rows of Xk , and120

denote the codeword generated by the first k − 1 rows by c. Without loss of generality, by121

(4), let122

rk = (0 1 2 3),123

where i is the row vector (i, i, . . . , i) of length 2k−2(2k−1 − 1), i ∈ Z4.124

It is sufficient to prove WL(rk + c) = WL(2rk + c) = 2k(2k−1 − 1). It is easy to check125

that WL(rk) = WL(2rk) = 2k(2k−1 − 1). Let c = (c′, c′, c′, c′), ni be the number of i in c′
126

and n′ be the length of c′. So n = 4n′ = 2k(2k−1 − 1).127

(1) If the order of c is 2, according to Corollary 3.2, WL(c) = 22k−1, n′ = n0 + n2, and128

WL(rk + c) = WL (c′) + WL(c′ + 1) + WL (c′ + 2) + WL (c′ + 3)

= 2n2 + n′ + 2(n′ − n2) + n′ = 4n′ = 2k(2k−1 − 1).
129
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(2) If the order of c is 4, n′ = n0 + n1 + n2 + n3, and130

WL(rk + c) = WL(c′) + WL (c′ + 1) + WL(c′ + 2) + WL (c′ + 3)

= (n1 + 2n2 + n3) + (n0 + 2n1 + n2)

+ (2n0 + n1 + n3) + (n0 + n2 + 2n3)

= 4(n1 + n3 + n2 + n0) = 4n′ = 2k(2k−1 − 1).

131

Similarly, we can also prove WL(2rk +c) = 2k(2k−1 −1) = w1. Therefore, Aw2 = 2k−1 −1,132

and Aw1 = 4k − 2k−1. 
�133

Example 3.4 If k = 3, then n = 24, w1 = 24, w2 = 32, then, according to Proposition 3.3,134

there is a two-Lee weight code with the generator matrix:135

⎛

⎝
111102 111102 111102 111102
012311 012311 012311 012311
000000 111111 222222 333333

⎞

⎠ . (5)136

4 Two-lee weight projective codes over Z4137

In this section, we will give some structures of two-Lee weight projective codes over Z4.138

Lemma 4.1 Let C be a linear code over Z4 with type 4k1 2k2 of length n. If k2 = 1139

and the columns of the generator matrix G(k1+1)×n are all distinct nonzero vectors140

(c1, c2, . . . , ck1 , ck1+1)
T , where (c1, c2, . . . , ck1)

T is one column of Yk1 , ck1+1 = 0 or 2,141

then C is a two-Lee weight code of length n = 2k1(2k1 − 1) with the nonzero Lee weights142

w1 = 2k1(2k1 − 1) and w2 = 22k1 . Moreover, Aw1 = 2k1(2k1+1 − 1) and Aw2 = 2k1 − 1,143

respectively.144

Proof Without loss of generality, let145

G(k1+1)×n =
(

Yk1 Yk1

0 2

)

, (6)146

where i is the row vector (i, i, . . . , i)of length 2k1−1(2k1−1), i ∈ 2Z4 and r1, r2, . . . , rk1, rk1+1147

be the rows of G(k1+1)×n . Since the columns of G(k1+1)×n are all nonzero distinct vectors, it148

follows that n = 2k1(2k1 − 1). Let c = (x, x) ∈ C , where x is generated by Yk1 . According149

to Proposition 3.1, then WL(c) = 2WL(x) = 2k1(2k1 − 1) or 22k1 . Denote the number of i150

in x by ni , and the length of x by n′. Obviously, n = 2n′ = 2k1(2k1 − 1).151

(1) If the order of x is 4, n′ = n0 + n1 + n2 + n3, then we have152

WL (rk1+1 + c) = WL(x) + WL(x + 2) = n1 + 2n2 + n3 + 2n0 + n1 + n3

= 2(n0 + n1 + n2 + n3) = 2n′ = 2k1(2k1 − 1).
153

(2) If the order of x is 2, n′ = n0 + n2, n1 = n3 = 0, then we have154

WL(rk1+1 + c) = WL (x) + WL (x + 2) = 2n2 + 2n0

= 2n′ = 2k1(2k1 − 1).
155

Hence, C is a two-Lee weight code with the nonzero Lee weights w1 = 2k1(2k1 − 1), and156

w2 = 22k1 . Obviously, Aw2 does not change comparing with Yk1 , i .e. Aw2 = 2k1 − 1, thus,157

Aw1 = 2k1(2k1+1 − 1). 
�158
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Theorem 4.2 Let C be a linear code over Z4 with type 4k1 2k2 of length n. If the159

columns of the generator matrix G(k1+k2)×n are all distinct nonzero vectors (c1, c2, . . . , ck1 ,160

ck1+1, . . . , ck1+k2)
T , where (c1, c2, . . . , ck1)

T is one column of Yk1 , ci = 0 or 2, k1 +1 ≤ i ≤161

k1 + k2, then C is a two-Lee weight code of length n = 2k1+k2−1(2k1 − 1) with the nonzero162

Lee weights w1 = 2k1+k2−1(2k1 −1) and w2 = 22k1+k2−1. Moreover, Aw1 = 2k1(2k1+k2 −1)163

and Aw2 = 2k1 − 1, respectively.164

Proof If k2 = 1, the result follows from Lemma 4.1. Assume the result is valid for any165

k2 = m, we denote the generator matrix and the nonzero weights by Gk1,m and by w′
1 =166

2k1+m−1(2k1 − 1), w′
2 = 22k1+m−1, respectively, then for k2 = m + 1, without loss of167

generality, the generator matrix Gk1,m+1 of C can be expressed as168

Gk1,m+1 =
(

Gk1,m Gk1,m

0 2

)

, (7)169

where i is the row vector (i, i, . . . , i) of length 2k1+m−1(2k1 − 1), i ∈ 2Z4. It’s easy to verify170

that C is a two-Lee weight code with w1 = 2w′
1 = 2k1+m(2k1 −1) and w2 = 2w′

2 = 22k1+m .171

Similar to the proof of Lemma 4.1, we can get Aw2 = 2k1 − 1 and Aw1 = 2k1(2k1+k2 − 1).172

By induction hypothesis, the results are valid. 
�173

Example 4.3 If k1 = 2, k2 = 1, then n = 12, w1 = 12, w2 = 16, then, according to174

Theorem 4.2, there is a two-Lee weight code with the generator matrix:175

G2,1 =
⎛

⎝
111102 111102
012311 012311
222222 000000

⎞

⎠ . (8)176

Example 4.4 If k1 = 2, k2 = 2, then n = 24, w1 = 24, w2 = 32, then, according to177

Theorem 4.2, there is a two-Lee weight code with the generator matrix:178

G2,2 =

⎛

⎜
⎜
⎝

111102111102 111102111102
012311012311 012311012311
222222000000 222222000000
222222222222 000000000000

⎞

⎟
⎟
⎠ . (9)179

Corollary 4.5 Let C be a linear code over Z4 with type 4k1 2k2 of length n. When180

k1 ≥ 2, the columns of the generator matrix G ′
(k1+k2)×n are all distinct nonzero vec-181

tors (c1, c2, . . . , ck1 , ck1+1, . . . , ck1+k2)
T , where (c1, c2, . . . , ck1)

T is one column of Xk1182

defined above, ci = 0 or 2, k1 + 1 ≤ i ≤ k1 + k2, then C is a two-Lee weight code of183

length n = 2k1+k2(2k1−1 − 1) with the nonzero Lee weights w1 = 2k1+k2(2k1−1 − 1),184

w2 = 22k1+k2−1. Moreover, Aw1 = 4k1 2k2 − 2k1−1 and Aw2 = 2k1−1 − 1, respectively.185

Proof Assume that k1 ≥ 2, then according to Theorem 4.2, we can construct a code C ′ with186

type 4k1−12k2 , and denote its generator matrix by G ′. By the definition of Xk in (4), without187

loss of generality, let188

G ′
(k1+k2)×n =

(
0 1 2 3

G ′ G ′ G ′ G ′
)

, (10)189

where i is the row vector (i, i, . . . , i) of length 2k1+k2−2(2k1−1 − 1), i ∈ Z4. It is easily190

seen that C is a two-Lee weight code with the nonzero weight w1 = 2k1+k2(2k1−1 − 1) and191

w2 = 22k1+k2−1. By induction hypothesis, C is a two-Lee weight code over Z4. 
�192
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Example 4.6 If k1 = 2, k2 = 2, then n = 16, w1 = 32, w2 = 16, according to Corollary 4.5,193

there is a two-Lee weight code with the generator matrix:194

G ′
2,2 =

⎛

⎜
⎜
⎝

1111 1111 1111 1111
0123 0123 0123 0123
0000 0000 2222 2222
0000 2222 0000 2222

⎞

⎟
⎟
⎠ . (11)195

Example 4.7 If k1 = 3, k2 = 1, then n = 48, w1 = 48, w2 = 64, according to Corollary 4.5,196

there is a two-Lee weight code with the generator matrix G ′
3,1:197

⎛

⎜
⎜
⎝

111102 111102 111102 111102 111102 111102 111102 111102
012311 012311 012311 012311 012311 012311 012311 012311
000000 111111 222222 333333 000000 111111 222222 333333
222222 222222 222222 222222 000000 000000 000000 000000

⎞

⎟
⎟
⎠. (12)198

Next, we are ready to give the sufficient and necessary conditions for a two-Lee weight199

linear code to be projective over Z4.200

Lemma 4.8 Let C be a linear code over Z4 with type 4k1 2k2 of length n and with the generator201

matrix G. Then C is projective if and only if the following conditions hold:202

(1) every column of G contains 1 or 3;203

(2) any two columns of G are not multiple of each other by ±1.204

Proof Let x1, x2, . . . , xn be the columns of G. Let us first prove the sufficiency. Let C⊥ be205

the dual code of C . If c ∈ C⊥, then we only need to prove WL(c) ≥ 3. Obviously, WL(c)206

cannot be 1 because all columns are nonzero. Assume WL(c) = 2. Obviously, c cannot be207

written as c = (0, . . . , 0, 2, 0, . . . , 0) due to (1). Then we have 2 cases:208

Case 1 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where209

ci = c j = 1, i < j . Then xi + x j = 0. Thus, x j = 3xi , xi and x j are in proportion by the210

unit 3, contradiction.211

Case 2 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 3, 0, . . . , 0), where212

ci = 1, c j = 3, i < j . Then xi + x j = 0. Thus, x j = xi , contradiction.213

Therefore, WL(c) ≥ 3. By definition, C is projective.214

Now we begin to prove the necessity. If (1) doesn’t hold, let x j ∈ 2Z
k1+k2
4 , then the215

codeword c = (0, . . . , 0, 2, 0, . . . , 0) ∈ C⊥, where c j = 2. If (2) doesn’t hold, xi = ±x j216

for some pair of indices i < j .217

Case 1 If xi = x j , we can construct c′ = (0, . . . , 0, 1, 0, . . . , 0, 3, 0, . . . , 0), where218

c′
i = 1, c′

j = 3, i < j and c′ ∈ C⊥.219

Case 2 If xi = 3x j , then c′′ = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ C⊥, where c′′
i =220

c′′
j = 1.221

But the Lee weight of c, c′ and c′′ is 2. Contradict with wL(C⊥) = 3. 
�222

Theorem 4.9 Let C be a linear code over Z4 with type 4k1 2k2 of length n obtained in Theo-223

rem 4.2, then C is projective.224

Proof Denote the generator matrix of C by Gk1,k2 , then it is sufficient to prove that Gk1,k2225

satisfies Lemma 4.8.226

Step 1 Prove Yk1 defined in (1) can make it. The result is obvious.227

Step 2 Use induction for k2. If k2 = 1, we know the generator matrix has the form228

(6) in Lemma 4.1. And by Step 1 and Lemma 4.8, we can easily prove that the code is229
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projective. Assume the result is valid for any k2 = m, then for k2 = m + 1, according to (7)230

in Theorem 4.2, without loss of generality, the generator matrix Gk1,m+1 of C is231

Gk1,m+1 =
(

Gk1,m Gk1,m

0 2

)

, (13)232

where i is the row vector (i, i, . . . , i) of length 2k1+m−1(2k1 −1), i ∈ 2Z4. So, all the columns233

of Gk1,m+1 contain a 1 or a 3. If there are two columns in proportion by ±1, then there are two234

columns of Gk1,m in proportion by ±1, a contradiction. So the result is valid for k2 = m +1.235

By induction hypothesis, Gk1,k2 satisfies Lemma 4.8 for any k1, k2 ≥ 1, then C is projective236

by Lemma 4.8. 
�237

Similar to the proof of Theorem 4.9, we have the following corollary.238

Corollary 4.10 The linear code obtained in Corollary 4.5 is projective.239

5 Gray images240

For x = (x1, x2, . . . , xn) ∈ Z
n
4, define α(x) = (α(x1), α(x2), . . . , α(xn)), where α(0) =241

α(2) = 0 and α(1) = α(3) = 1.242

Lemma 5.1 (See [4]) Let C be a linear code over Z4, x1, x2, . . . , xm be a set of generators of243

C, then �(C) is linear if and only if 2α(xi)∗α(xj) ∈ C for all i, j , satisfying 1 ≤ i ≤ j ≤ m.244

Let q = pm , where p is prime and m is a positive integer. According to [2], an [n, k]245

code C over G F(q) is a k-dimensional subspace of G F(q)n . Next proposition is from the246

classical paper in [2] about the survey of two weight codes over finite fields.247

Proposition 5.2 (See [2]) Example SU 1: Let � be the complement of a t-dimensional sub-248

space of G F(q)k where 1 ≤ t ≤ k −1. If v is a non-zero vector then |v⊥ ∩�| = qk−1 −qt or249

qk−1 − qt−1. For a two-weight code with Example SU1, if the field is G F(q), its parameters250

are (see FIGURE 1a and FIGURE 2a in [2])251

n = ql − qt

q − 1
, k = l, w1 = ql−1 − qt−1, w2 = ql−1, Aw1 = ql − ql−t , Aw2 = ql−t − 1.252

where 1 ≤ t ≤ l − 1.253

Proposition 5.3 The Gray images of the codes of Theorem 4.2 and Corollary 4.5 are binary254

distance invariant codes with the weights given w1 = ql−1 − qt−1 and w2 = ql−1.255

Note that we do not claim these binary codes to be linear.256

Here is a table about the parameters of the Gray images �(C1), �(C2) and �(C3), where257

C1 and C2 are the codes obtained in Theorem 4.2 and Corollary 4.5 in this paper, respectively,258

and C3 is the code obtained in Theorem 5.6 in [14].259

Remark 5.4 If k1 = 1, �(C1) and �(C3) have the same parameters. Besides, due to Corol-260

lary 6.8 in [14], when k1 = 1, �(C1) reaches the Plotkin bound and Griesmer bound.261

Remark 5.5 It can be seen that the values of l for �(C1), �(C2) and �(C3) are all 2k1 + k2.262

But the values of t are k1 + k2, k1 + k2 + 1, 2k1 + k2 − 1 for �(C1), �(C2) and �(C3),263

respectively. Therefore, these three families of codes lead to non-equivalent two-Lee weight264

linear codes.265
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Table 1 The parameters of �(C1), �(C2) and �(C3)

n w1 w2 Aw1 Aw2

SU 1 ql−qt

q−1 ql−1 − qt−1 ql−1 ql − ql−t ql−t − 1

�(C1) 2k1+k2 (2k1 − 1) 2k1+k2−1(2k1 − 1) 22k1+k2−1 4k1 2k2 − 2k1 2k1 − 1

�(C2) 2k1+k2 (2k1 − 2) 2k1+k2 (2k1−1 − 1) 22k1+k2−1 4k1 2k2 − 2k1−1 2k1−1 − 1

�(C3) 22k1+k2−1 22k1+k2−2 22k1+k2−1 4k1 2k2 − 2 1

Finally, we will consider the linearity of the image codes in Theorem 4.2 and Corollary 4.5.266

Theorem 5.6 If the columns of the generator matrix of C satisfy the conditions of Theorem 4.2,267

then �(C) is linear when k1 = 1 and nonlinear when k1 ≥ 2.268

Proof When k1 = 1, the result can be obtained in Corollary 6.8 in [14]. When k1 ≥ 2, denote269

the generator matrix of C by Gk1,k2 and let r1, r2, . . ., rk1 , . . ., rk1+k2 be the rows of Gk1,k2 ,270

where r j is a vector over 2Z4, k1 + 1 ≤ j ≤ k1 + k2. By Theorem 4.2,271

Gk1+1,k2 =
(

Gk1,k2 Gk1,k2

0 2

)

, (14)272

where i is the row vector (i, i, . . . , i) of length 2k1+k2−1(2k1 − 1), i ∈ 2Z4. Obviously, if273

either r1 or r2 is from the last k2 rows, it’s easy to check that 2α(r1) ∗ α(r2) = 0 ∈ C .274

(1) If k1 = k + 1 ≥ 2, k2 = 0, then r1, r2, . . ., rk and rk+1 become the rows of Yk+1. By275

the definition of Yk , we can get276

Yk+1 =
(

Yk Yk Yk Yk Bk

0 1 2 3 1′
)

277

where k ≥ 1, Bk is a k × 2k matrix over 2Z4 with all different columns, i is a row vector278

(i, i, . . . , i) of length 2k−1(2k − 1), i ∈ Z4 and 1′ is the row vector (1, 1, . . . , 1) of length279

2k .280

Without loss of generality, let281

r1 = (

2k−1(2k−1)
︷ ︸︸ ︷
0 0 . . . 0

2k−1(2k−1)
︷ ︸︸ ︷
1 1 . . . 1

2k−1(2k−1)
︷ ︸︸ ︷
2 2 . . . 2

2k−1(2k−1)
︷ ︸︸ ︷
3 3 . . . 3

2k

︷ ︸︸ ︷
1 1 . . . 1) (15)282

be the last row of Yk+1, and283

r2 = (x x x x b),284

where x is a row of Yk , and b is a row of Bk . Then285

2α(r1) ∗ α(r2) = 2(α(0) α(1) α(2) α(3) α(1′) ∗ (α(x) α(x) α(x) α(x) α(b))

= 2(0 α(x) 0 α(x) 0),
286

we get287

WL(2α(r1) ∗ α(r2)) = 4WL(α(x)).288

Since the length of x is 2k−1(2k − 1), then289

4WL(α(x)) ≤ 4 × 2k−1(2k − 1) = 2k+1(2k − 1).290
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By Proposition 3.1, C is a two-Lee weight linear code with the nonzero Lee weights 2k(2k+1−291

1), and 22k+1. And the nonzero smallest Lee weight of C is 2k(2k+1 − 1) > 2k+1(2k − 1).292

Thus, 2α(r1) ∗ α(r2) /∈ C . By Lemma 5.1, �(C) is nonlinear when k1 ≥ 2, k2 = 0.293

(2) If k2 ≥ 1, then the first k1 rows of Gk1,k2 can be written as:294

Yk1 Yk1 . . . Yk1︸ ︷︷ ︸
2k2

,295

and let296

r′
i = (ri ri . . . ri )︸ ︷︷ ︸

2k2

,297

where i = 1 or 2. Since k1 = k + 1, we have298

WL(2α(r′
1) ∗ α(r′

2)) = 2k2 WL(2α(r1) ∗ α(r2)) = 2k2+2WL(α(x))

≤ 2k2+2 × 2k−1(2k − 1) = 2k1+k2(2k1−1 − 1).
299

By Theorem 4.2, C is a two-Lee weight code with the nonzero Lee weights 2k1+k2−1(2k1 −1)300

and 22k1+k2−1. And the nonzero smallest Lee weight is 2k1+k2−1(2k1−1) > 2k1+k2(2k1−1−1).301

Thus, 2α(r′
1) ∗ α(r′

2) /∈ C . By Lemma 5.1, �(C) is nonlinear when k1 ≥ 2, k2 ≥ 0. 
�302

Example 5.7 Consider the code defined in Example 4.3. Let r1 and r2 denote the first and303

second rows of G2,1 in (8), respectively. Then the Lee weight of304

2α(r1) ∗ α(r2) = 2α(111102111102) ∗ α(012311012311)

= 2(111100111100) ∗ (010111010111)

= (020200020200)

305

is 8 which can not be obtained in C since C is a two-Lee weight code with w1 = 12, w2 = 16.306

Theorem 5.8 If the columns of the generator matrix of C satisfy the conditions of Corol-307

lary 4.5, then �(C) is linear when k1 = 2 and nonlinear when k1 ≥ 3.308

Proof Denote the generator matrix of C by Gk1,k2 . Let r1, r2, . . . , rk1 , . . . , rk1+k2 be the309

rows of Gk1,k2 , where r j is a vector over 2Z4, k1 + 1 ≤ j ≤ k1 + k2.310

(1) By Corollary 4.5, if k1 = 2, k2 = 1, the generator matrix is:311

G2,1 =
⎛

⎝
1111 1111
0123 0123
2222 0000

⎞

⎠ .312

So, if r1, r2, r j are the rows of G2,k2 , 3 ≤ j ≤ k2 +2, we can get r1 is all 1 vector. Therefore,313

α(r1) = 1 and α(r j ) = 0. Besides,314

2α(r1) ∗ α(r2) = 2r2 ∈ C, 2α(r1) ∗ α(r j ) = 0 ∈ C,

2α(r2) ∗ α(r j ) = 0 ∈ C, 2α(r j ) ∗ α(rk) = 0 ∈ C,
315

where 3 ≤ j, k ≤ 2 + k2. By Lemma 5.1, �(C) is linear when k1 = 2, k2 ≥ 0.316

(2) If k1 ≥ 3, by (10) in the proof of Corollary 4.5,317

Gk1,k2 =
(

0 1 2 3
G ′

k1−1,k2
G ′

k1−1,k2
G ′

k1−1,k2
G ′

k1−1,k2

)

,318

123

Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small



R
ev

is
ed

Pr
oo

f

Two families of two-weight codes overZ4

where G ′
k1−1,k2

is the generator matrix of the code C ′ obtained in Theorem 4.2, and i is the319

row vector (i, i, . . . , i) of length 2k1+k2−2(2k1−1 −1), i ∈ Z4. Without loss of generality, let320

r1 = (0 1 2 3) and r2 = (r0 r0 r0 r0)321

where r0 is one row of G ′
k1−1,k2

. Then322

2α(r1) ∗ α(r2) = 2(0 α(r0) 0 α(r0)).323

Since the length of r0 is 2k1+k2−2(2k1−1 − 1),324

WL(2α(r1) ∗ α(r2)) = 4WL(α(r0)) ≤ 2k1+k2(2k1−1 − 1). (16)325

If 0 �= 2α(r1)∗α(r2) ∈ C , since C is a two-Lee weight code by Corollary 4.5, WL(2α(r1)∗326

α(r2)) = 2k1+k2(2k1−1 − 1) or 22k1+k2−1. Thus327

2k1+k2(2k1−1 − 1) ≤ WL (2α(r1) ∗ α(r2)) = 4WL(α(r0)). (17)328

Therefore, combining (16) and (17), we have329

WL(2α(r1) ∗ α(r2)) = 4WL(α(r0)) = 2k1+k2(2k1−1 − 1),330

which forces α(r0) to be all 1 vector. Thus we have WL(r0) = 2k1+k2−2(2k1−1 − 1),331

WL(2r0) = 2k1+k2−1(2k1−1 − 1) and then WL (2r0) = 2WL(r0). However, r0 is one row of332

G ′
k1−1,k2

, the generator matrix obtained in Theorem 4.2, and the two Lee weights w1 and333

w2 can not satisfy w2 = 2w1, contradiction. Thus there are at least 2 rows r1, r2 satisfying334

2α(r1) ∗ α(r2) /∈ C . Namely, �(C) is nonlinear when k1 ≥ 3, k2 ≥ 0. 
�335

Example 5.9 Consider the code defined in Example 4.7. Let r1 annd r2 denote the first and336

second rows of G ′
3,1 in (12), respectively. Then the Lee weight of337

2α(r1) ∗ α(r2) = 2α(111102111102111102111102111102111102111102111102)

∗ α(012311012311012311012311012311012311012311012311)

= (020200020200020200020200020200020200020200020200)

338

is 32 which can not be obtained in C since C is a two-Lee weight code with w1 = 48,339

w2 = 64.340

6 Graphs341

We recall the classic lemma from [12].342

Lemma 6.1 If C is a Z4-code of length n and weights w1, w2 the coset graph of C⊥ is an343

SRG on |C | vertices, degree 2n, unrestricted eigenvalues 2n − 2w1 and 2n − 2w2.344

From this classic lemma, and the characterization of SRGs given in §2.2, the following345

two results follow immediately. Their proofs are omitted.346

Theorem 6.2 (1) If C is the code of Theorem 4.2 then the coset graph of C⊥ is an SRG on347

|C | vertices, degree 2n, and unrestricted eigenvalues 0 and −2k1+k2 . (2) If C is the code348

of Corollary 4.5 then the coset graph of C⊥ is an SRG on |C | vertices, degree 2n, and349

unrestricted eigenvalues 0 and −2k1+k2+1.350
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Remarks:351

• Following [1, §1.1.3] we see that these graphs are complete multipartite of type Ka×m352

with m = 2k1+k2 for Theorem 4.2 or m = 2k1+k2−1 for Corollary 4.5, and, in both cases,353

a = |C |
m .354

• The graph corresponding to the code of Example 4.6 is bipartite complete, since the code355

is an Hadamard code of a kind studied in [5,6].356

7 Conclusion357

In this paper, we have constructed two infinite families of projective two-weight Z4-codes.358

Further, their Gray images are nonlinear, and have the same weight distributions as a family359

of two-weight codes of [2], the SU1 family. In small values of parameters these codes can360

be implemented in the computer package Magma. It is a worthwhile project to check which361

families of binary two-weight codes from [2] admit Z4-linear analogues.362
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