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Introduction

An organic connection between two-weight codes over fields and strongly regular graphs (SRGs) was discovered in the 1970s [START_REF] Delsarte | Weights of linear codes and strongly regular normed spaces[END_REF], and is well-documented in [START_REF] Brouwer | Strongly regular graphs[END_REF]. A partial census of known constructions based on the arithmetic of finite fields appeared in the classic paper [START_REF] Calderbank | The geometry of two-weight codes[END_REF]. More recently, several new techniques of construction involve trace codes over different rings, and Gray maps [START_REF] Shi | Two new families of two-weight codes[END_REF][START_REF] Shi | Optimal two-weight codes from trace codes over F 2 + uF 2[END_REF][START_REF] Shi | Two and three weight codes over F p + uF p[END_REF][START_REF] Shi | On two-weight Z 2 k -codes[END_REF][START_REF] Shi | Optimal p-ary codes from one-weight codes and two-weight codes over F p + vF p[END_REF][START_REF] Shi | One-weight and two-weight Z 2 Z 2 [u, v]-additive codes[END_REF]. Especially, in [START_REF] Shi | Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over Z 4[END_REF], the authors focused on the construction of one-weight and two-weight codes over Z 4 . Later, in [START_REF] Shi | A note on one weight and two weight projective Z 4 -codes[END_REF], the authors considered the linearity of the constructed codes. A natural question then, is whether there are other kinds of constructions of two-weight codes over Z 4 .

Motivated by the works listed above, in the present paper, we revisit two-weight codes over Z 4 and their linearity. This alphabet has been on the forefront of research in the domain of codes over rings since the prize awarded paper [START_REF] Hammons | The Z 4 -linearity of kerdock, preparata, goethals and related codes[END_REF]. More background material can be found in the recent book [START_REF] Shi | Codes and Rings: Theory and Practice[END_REF]. We give an infinite family of two-weight projective codes over Z 4 by their explicit generator matrices. Their Gray images are proved to be nonlinear with the same weight distribution as the two-weight binary codes of type SU1 from [START_REF] Calderbank | The geometry of two-weight codes[END_REF]. The coset graphs of the dual codes are shown to be SRGs, and determined completely. Thus they produce the Communicated by P. Charpin.

any vector x = (x 1 , x 2 , . . . , x n ) ∈ Z n 4 , we define its Lee weight as

W L (x) = n i=1 W L (x i ).
An N -Lee weight code is a code such that the cardinality of the set of nonzero Lee weights is N .

Moreover, A w i is the number of codewords of the nonzero Lee weight w i in C, where

1 ≤ i ≤ N .
The order of a nonzero codeword c ∈ C, is the smallest positive integer k such that kc = 0.

Each element x ∈ Z 4 has a 2-adic expansion x = α(x) + 2β(x), where α(x), β(x) ∈ F 2 .

The Gray map from Z 4 to F 2 2 is defined by (x) = (β(x), α(x) + β(x)). This map can be extended to Z n 4 naturally. is a weight-preserving map from (Z n 4 , Lee weight) to (F 2n 2 ,

Hamming weight), that is to say W L (x) = W H ( (x)).

If x = (x 1 , x 2 , . . . , x n ) and y = (y 1 , y 2 , . . . , y n ) are two arbitrary elements of Z n 4 , the inner product of x and y in Z n 4 is defined by x • y = x 1 y 1 + x 2 y 2 + • • • + x n y n , and the componentwise multiplication * of x and y is x * y = (x 1 y 1 , x 2 y 2 , . . . , x n y n ), where the operation is performed in Z 4 . The dual code of C is defined as

C ⊥ = {x ∈ Z n 4 |x • y = 0, ∀ y ∈ C}.
A Lee weight projective code C of length n over Z 4 is a linear code such that the minimum nonzero Lee weight of its dual code is at least three.

Graphs

In this note, all graphs are undirected, without loops or multiple edges. A graph is k-regular if all vertices have exactly k neighbors.

A k-regular graph on v vertices is a strongly regular graph (SRG) with parameters (v, k, λ, μ) if the number of common neighbors of any pair of vertices is λ or μ depending on the pair being connected or not.

The spectrum of a graph is the set of eigenvalues of its adjacency matrix. A standard characterization of SRGs is that their spectrum consists of exactly three eigenvalues, namely k and two eigenvalues called the unrestricted eigenvalues [START_REF] Brouwer | Strongly regular graphs[END_REF]. 3 Preliminaries

If k = 1, let Y k = (1), when k ≥ 2, define Y k = ⎛ ⎝ Y k-1 Y k-1 Y k-1 Y k-1 B k-1 0 1 2 3 1 1 • • • 1 2 k-1 ⎞ ⎠ (1) 
where B k-1 is a (k -1) × 2 k-1 matrix over 2Z 4 with all different columns and i is the row

vector (i, i, . . . , i) of length 2 k-2 (2 k-1 -1), i ∈ Z 4 .
Obviously, Y k is a k × n matrix over Z 4 where n = 2 k-1 (2 k -1). Let x i and x j be two columns of Y k , then it is easy to check that x i = mx j , where m = 1, 2, 3 and 1 ≤ i, j ≤ n. Let c = (x, 3x, y) ∈ C and the lengths of x and y are 2 k-1 (2 k -1) and 2 k -1, respectively.

= 2 k-1 (2 k -1), with the nonzero Lee weight w 1 = 2 k-1 (2 k -1), w 2 = 2 2k-1 . Moreover, A w 1 = 4 k -2 k and A w 2 = 2 k -1, respectively. Proof Let G k = Y k 3Y k B k , ( 2 
)
then G k is a k × 4 k matrix over Z 4 . Since B k is a k × 2 k matrix
Obviously, W L (y) = 2 k or 0, and

W L (c) = W L (x) + W L (3x) + W L (y) = 2W L (x) + W L (y),
then, we have 

W L (x) = W L (c) -W L (y) 2 = 4 k -W L (y) 2 . ( 3 
) If W L (y) = 0, then W L (x) = w 1 = 2 k-1 (2 k -1). Otherwise, W L (x) = w 2 = 2 2k-1 . It is not difficult to get A w 2 = 2 k -1 when W L (y) = 0.
(r i ) = w 1 = 2 k-1 (2 k -1), but W L (2r i ) = w 2 = 2 2k-1 .
Step 1 Let

c = p 1 r 1 + p 2 r 2 + • • • + p k r k ,
where p i ∈ Z 4 , 1 ≤ i ≤ k and there exists p i = 0. We can prove that p i = 0 or 2 for all 1 ≤ i ≤ k, if the order of c is 2. By (1), let

r k = (0 1 2 3 2 k-1 1 1 . . . 1),
where i is the row vector (i, i, . . . , i) of length 2 k-2 (2 k-1 -1), i ∈ Z 4 . If the order of c is 2, and p k = 1 or 3, then c contains at least a 1 or a 3 according to the definition of Y k in (1), contradiction. Therefore, p k = 0 or 2 and p k r k = 0 or 2r k . So the order of [START_REF] Brouwer | Strongly regular graphs[END_REF], we can get p k-1 = 0 or 2. Then we can prove p i = 0 or 2 for all 1 ≤ i ≤ k.

p 1 r 1 + p 2 r 2 + • • • + p k-1 r k-1 is 2. Similarly, by
Step 2 By (3), we can get if

p i = 2 or 0, then W L ( p i r i ) = 2 2k-1 or 0, 1 ≤ i ≤ k.
Similarly,

W L ( p 1 r 1 + p 2 r 2 + • • • + p k r k ) = 2 2k-1 = w 2 ,
where p i = 0 or 2, 1 ≤ i ≤ k and there exists p i = 0. By Step 1, these are all the codewords of order 2. Therefore, if the order of c is 2, then W L (c) = 2 2k-1 = w 2 . Since A w 2 = 2 k -1 by Proposition 3.1 and C is a two-Lee weight code, we can get if the order of c is 4, then

W L (c) = 2 k-1 (2 k -1). When k ≥ 2, let X k = Y k-1 Y k-1 Y k-1 Y k-1 0 1 2 3 , ( 4 
)
where i is the row vector

(i, i, . . . , i) of length 2 k-2 (2 k-1 -1), i ∈ Z 4 .
Similar to Proposition 3.1, we have

Proposition 3.3 If C is the code generated by X k , then C is a two-Lee weight code of length n = 2 k (2 k-1 -1) with the nonzero Lee weight w 1 = 2 k (2 k-1 -1), and w 2 = 2 2k-1 . Moreover, A w 1 = 4 k -2 k-1 and A w 2 = 2 k-1 -1, respectively.
Proof From the structure of X k and Proposition 3.1, we know there are 2 k-1 -1 codewords of weight 2 2k-1 generated by the first k -1 rows. Let r 1 , r 2 , . . . , r k be the rows of X k , and denote the codeword generated by the first k -1 rows by c. Without loss of generality, by (4), let

r k = (0 1 2 3),
where i is the row vector

(i, i, . . . , i) of length 2 k-2 (2 k-1 -1), i ∈ Z 4 . It is sufficient to prove W L (r k + c) = W L (2r k + c) = 2 k (2 k-1 -1). It is easy to check that W L (r k ) = W L (2r k ) = 2 k (2 k-1 -1). Let c = (c , c , c , c ), n i be the number of i in c
and n be the length of c . So n = 4n = 2 k (2 k-1 -1).

(1) If the order of c is 2, according to Corollary 3.2, W L (c) = 2 2k-1 , n = n 0 + n 2 , and (2) If the order of c is 4, n = n 0 + n 1 + n 2 + n 3 , and

W L (r k + c) = W L (c ) + W L (c + 1) + W L (c + 2) + W L (c + 3) = 2n 2 + n + 2(n -n 2 ) + n = 4n = 2 k (2 k-1 -1).
W L (r k + c) = W L (c ) + W L (c + 1) + W L (c + 2) + W L (c + 3) = (n 1 + 2n 2 + n 3 ) + (n 0 + 2n 1 + n 2 ) + (2n 0 + n 1 + n 3 ) + (n 0 + n 2 + 2n 3 ) = 4(n 1 + n 3 + n 2 + n 0 ) = 4n = 2 k (2 k-1 -1).
Similarly, we can also prove

W L (2r k +c) = 2 k (2 k-1 -1) = w 1 . Therefore, A w 2 = 2 k-1 -1,
and (

A w 1 = 4 k -2 k-1 . Example 3.4 If k = 3, then n = 24, w 1 = 24, w 2 = 32,
) 5 
4 Two-lee weight projective codes over Z 4

In this section, we will give some structures of two-Lee weight projective codes over Z 4 .

Lemma 4.1 Let C be a linear code over

Z 4 with type 4 k 1 2 k 2 of length n. If k 2 = 1
and the columns of the generator matrix G (k 1 +1)×n are all distinct nonzero vectors

(c 1 , c 2 , . . . , c k 1 , c k 1 +1 ) T , where (c 1 , c 2 , . . . , c k 1 ) T is one column of Y k 1 , c k 1 +1 = 0 or 2,
then C is a two-Lee weight code of length n = 2 k 1 (2 k 1 -1) with the nonzero Lee weights

w 1 = 2 k 1 (2 k 1 -1) and w 2 = 2 2k 1 . Moreover, A w 1 = 2 k 1 (2 k 1 +1 -1) and A w 2 = 2 k 1 -1,

respectively.

Proof Without loss of generality, let

G (k 1 +1)×n = Y k 1 Y k 1 0 2 , ( 6 
)
where i is the row vector

(i, i, . . . , i) of length 2 k 1 -1 (2 k 1 -1), i ∈ 2Z 4 and r 1 , r 2 , . . . , r k 1 , r k 1 +1
be the rows of G (k 1 +1)×n . Since the columns of G (k 1 +1)×n are all nonzero distinct vectors, it

follows that n = 2 k 1 (2 k 1 -1). Let c = (x, x) ∈ C, where x is generated by Y k 1 . According to Proposition 3.1, then W L (c) = 2W L (x) = 2 k 1 (2 k 1 -1) or 2 2k 1 .
Denote the number of i in x by n i , and the length of x by n . Obviously,

n = 2n = 2 k 1 (2 k 1 -1).
(1) If the order of x is 4, n = n 0 + n 1 + n 2 + n 3 , then we have

W L (r k 1 +1 + c) = W L (x) + W L (x + 2) = n 1 + 2n 2 + n 3 + 2n 0 + n 1 + n 3 = 2(n 0 + n 1 + n 2 + n 3 ) = 2n = 2 k 1 (2 k 1 -1).
(2) If the order of x is 2, n = n 0 + n 2 , n 1 = n 3 = 0, then we have

W L (r k 1 +1 + c) = W L (x) + W L (x + 2) = 2n 2 + 2n 0 = 2n = 2 k 1 (2 k 1 -1).
Hence, C is a two-Lee weight code with the nonzero Lee weights w 1 = 2 k 1 (2 k 1 -1), and 

w 2 = 2 2k 1 . Obviously, A w 2 does not change comparing with Y k 1 , i.e. A w 2 = 2 k 1 -1, thus, A w 1 = 2 k 1 (2 k 1 +1 -1).
c k 1 +1 , . . . , c k 1 +k 2 ) T , where (c 1 , c 2 , . . . , c k 1 ) T is one column of Y k 1 , c i = 0 or 2, k 1 + 1 ≤ i ≤ k 1 + k 2 , then C is a two-Lee weight code of length n = 2 k 1 +k 2 -1 (2 k 1 -1) with the nonzero Lee weights w 1 = 2 k 1 +k 2 -1 (2 k 1 -1) and w 2 = 2 2k 1 +k 2 -1 . Moreover, A w 1 = 2 k 1 (2 k 1 +k 2 -1)
and

A w 2 = 2 k 1 -1, respectively.
Proof If k 2 = 1, the result follows from Lemma 4.1. Assume the result is valid for any k 2 = m, we denote the generator matrix and the nonzero weights by G k 1 ,m and by w 1 =

2 k 1 +m-1 (2 k 1 -1), w 2 = 2 2k 1 +m-1
, respectively, then for k 2 = m + 1, without loss of generality, the generator matrix G k 1 ,m+1 of C can be expressed as

G k 1 ,m+1 = G k 1 ,m G k 1 ,m 0 2 , ( 7 
)
where i is the row vector (i, i, . . . , i) of length 2

k 1 +m-1 (2 k 1 -1), i ∈ 2Z 4 .
It's easy to verify that C is a two-Lee weight code with

w 1 = 2w 1 = 2 k 1 +m (2 k 1 -1) and w 2 = 2w 2 = 2 2k 1 +m .
Similar to the proof of Lemma 4.1, we can get

A w 2 = 2 k 1 -1 and A w 1 = 2 k 1 (2 k 1 +k 2 -1).
By induction hypothesis, the results are valid. 

tors (c 1 , c 2 , . . . , c k 1 , c k 1 +1 , . . . , c k 1 +k 2 ) T , where (c 1 , c 2 , . . . , c k 1 ) T is one column of X k 1 defined above, c i = 0 or 2, k 1 + 1 ≤ i ≤ k 1 + k 2 , then C is a two-Lee weight code of length n = 2 k 1 +k 2 (2 k 1 -1 -1) with the nonzero Lee weights w 1 = 2 k 1 +k 2 (2 k 1 -1 -1), w 2 = 2 2k 1 +k 2 -1 . Moreover, A w 1 = 4 k 1 2 k 2 -2 k 1 -1 and A w 2 = 2 k 1 -1 -1, respectively.
Proof Assume that k 1 ≥ 2, then according to Theorem 4.2, we can construct a code C with type 4 k 1 -1 2 k 2 , and denote its generator matrix by G . By the definition of X k in (4), without loss of generality, let

G (k 1 +k 2 )×n = 0 1 2 3 G G G G , ( 10 
)
where i is the row vector (i, i, . . . , i) of length 2

k 1 +k 2 -2 (2 k 1 -1 -1), i ∈ Z 4 .
It is easily seen that C is a two-Lee weight code with the nonzero weight w 1 = 2 k 1 +k 2 (2 k 1 -1 -1) and (1) every column of G contains 1 or 3;

w 2 = 2 2k
(2) any two columns of G are not multiple of each other by ±1. Case 1 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where c i = c j = 1, i < j. Then x i + x j = 0. Thus, x j = 3x i , x i and x j are in proportion by the unit 3, contradiction.

Proof

Case 2 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 3, 0, . . . , 0), where c i = 1, c j = 3, i < j. Then x i + x j = 0. Thus, x j = x i , contradiction.

Therefore, W L (c) ≥ 3. By definition, C is projective. Now we begin to prove the necessity. If (1) doesn't hold, let

x j ∈ 2Z k 1 +k 2 4
, then the codeword c = (0, . . . , 0, 2, 0, . . . , 0) ∈ C ⊥ , where c j = 2. If (2) doesn't hold, x i = ±x j for some pair of indices i < j.

Case 1 If x i = x j , we can construct c = (0, . . . , 0, 1, 0, . . . , 0, 3, 0, . . . , 0), where

c i = 1, c j = 3, i < j and c ∈ C ⊥ . Case 2 If x i = 3x j , then c = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ C ⊥ , where c i = c j = 1.
But the Lee weight of c, c and c is 2. Contradict with w L (C ⊥ ) = 3. Step 1 Prove Y k 1 defined in ( 1) can make it. The result is obvious.

Step 2 Use induction for k 2 . If k 2 = 1, we know the generator matrix has the form projective. Assume the result is valid for any k 2 = m, then for k 2 = m + 1, according to [START_REF] Shi | Codes and Rings: Theory and Practice[END_REF] in Theorem 4.2, without loss of generality, the generator matrix

G k 1 ,m+1 of C is G k 1 ,m+1 = G k 1 ,m G k 1 ,m 0 2 , ( 13 
)
where i is the row vector (i, i, . . . , i) of length 2 k 1 +m-1 (2 Similar to the proof of Theorem 4.9, we have the following corollary.

Corollary 4.10

The linear code obtained in Corollary 4.5 is projective.

Gray images

For x = (x 1 , x 2 , . . . , x n ) ∈ Z n 4 , define α(x) = (α(x 1 ), α(x 2 ), . . . , α(x n )), where α(0) = α(2) = 0 and α(1) = α(3) = 1.
Lemma 5.1 (See [START_REF] Hammons | The Z 4 -linearity of kerdock, preparata, goethals and related codes[END_REF]) Let C be a linear code over Z 4 , x 1 , x 2 , . . . , x m be a set of generators of

C, then (C) is linear if and only if 2α(x i ) * α(x j ) ∈ C for all i, j, satisfying 1 ≤ i ≤ j ≤ m.
Let q = p m , where p is prime and m is a positive integer. According to [START_REF] Calderbank | The geometry of two-weight codes[END_REF], an

[n, k] code C over G F(q) is a k-dimensional subspace of G F(q) n .
Next proposition is from the classical paper in [START_REF] Calderbank | The geometry of two-weight codes[END_REF] about the survey of two weight codes over finite fields.

Proposition 5.2 (See [START_REF] Calderbank | The geometry of two-weight codes[END_REF]) Example SU 1: Let be the complement of a t-dimensional subspace of G F(q) k where 1 ≤ t ≤ k -1. If v is a non-zero vector then |v ⊥ ∩ | = q k-1 -q t or q k-1q t-1 . For a two-weight code with Example SU1, if the field is G F(q), its parameters are (see FIGURE 1a and FIGURE 2a in [START_REF] Calderbank | The geometry of two-weight codes[END_REF])

n = q l -q t q -1 , k = l, w 1 = q l-1 -q t-1 , w 2 = q l-1 , A w 1 = q l -q l-t , A w 2 = q l-t -1.
where 1 ≤ t ≤ l -1.

Proposition 5.3

The Gray images of the codes of Theorem 4.2 and Corollary 4.5 are binary distance invariant codes with the weights given w 1 = q l-1q t-1 and w 2 = q l-1 .

Note that we do not claim these binary codes to be linear.

Here is a table about the parameters of the Gray images (C 1 ), (C 2 ) and (C 3 ), where Table 1 The parameters of (C 1 ), (C 2 ) and (C 3 )

n w 1 w 2 A w 1 A w 2 SU 1
q l -q t q-1 q l-1q t-1 q l-1 q lq l-t q l-t -1

(C 1 ) 2 k 1 +k 2 (2 k 1 -1) 2 k 1 +k 2 -1 (2 k 1 -1) 2 2k 1 +k 2 -1 4 k 1 2 k 2 -2 k 1 2 k 1 -1 (C 2 ) 2 k 1 +k 2 (2 k 1 -2) 2 k 1 +k 2 (2 k 1 -1 -1) 2 2k 1 +k 2 -1 4 k 1 2 k 2 -2 k 1 -1 2 k 1 -1 -1 (C 3 ) 2 2k 1 +k 2 -1 2 2k 1 +k 2 -2 2 2k 1 +k 2 -1 4 k 1 2 k 2 -2 1
Finally, we will consider the linearity of the image codes in Theorem 4. Proof When k 1 = 1, the result can be obtained in Corollary 6.8 in [START_REF] Shi | Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over Z 4[END_REF]. When k 1 ≥ 2, denote the generator matrix of C by G k 1 ,k 2 and let r 1 , r 2 , . . ., r k 1 , . . ., r k 1 +k 2 be the rows of

G k 1 ,k 2 ,
where r j is a vector over 2Z 4 ,

k 1 + 1 ≤ j ≤ k 1 + k 2 . By Theorem 4.2, G k 1 +1,k 2 = G k 1 ,k 2 G k 1 ,k 2 0 2 , ( 14 
)
where i is the row vector (i, i, . . . , i) of length 2

k 1 +k 2 -1 (2 k 1 -1), i ∈ 2Z 4 . Obviously, if
either r 1 or r 2 is from the last k 2 rows, it's easy to check that 2α(r 1 ) * α(r 2 ) = 0 ∈ C.

( 

) If k 1 = k + 1 ≥ 2, k 2 = 0, then r 1 , 1 
Y k+1 = Y k Y k Y k Y k B k 0 1 2 3 1
where k ≥ 1, B k is a k × 2 k matrix over 2Z 4 with all different columns, i is a row vector (i, i, . . . , i) of length 2 k-1 (2 k -1), i ∈ Z 4 and 1 is the row vector (1, 1, . . . , 1) of length

2 k .
Without loss of generality, let

r 1 = ( 2 k-1 (2 k -1) 0 0 . . . 0 2 k-1 (2 k -1) 1 1 . . . 1 2 k-1 (2 k -1) 2 2 . . . 2 2 k-1 (2 k -1) 3 3 . . . 3 2 k 1 1 . . . 1) (15) 
be the last row of Y k+1 , and (2) If k 2 ≥ 1, then the first k 1 rows of G k 1 ,k 2 can be written as:

r 2 = (x
Y k 1 Y k 1 . . . Y k 1 2 k 2
, and let

r i = (r i r i . . . r i ) 2 k 2
, where i = 1 or 2. Since k 1 = k + 1, we have

W L (2α(r 1 ) * α(r 2 )) = 2 k 2 W L (2α(r 1 ) * α(r 2 )) = 2 k 2 +2 W L (α(x)) ≤ 2 k 2 +2 × 2 k-1 (2 k -1) = 2 k 1 +k 2 (2 k 1 -1 -1).
By Theorem 4.2, C is a two-Lee weight code with the nonzero Lee weights 2

k 1 +k 2 -1 (2 k 1 -1)
and 2 2k 1 +k 2 -1 . And the nonzero smallest Lee weight is 2 

k 1 +k 2 -1 (2 k 1 -1) > 2 k 1 +k 2 (2 k 1 -1 -1).
+ 1 ≤ j ≤ k 1 + k 2 .
(1) By Corollary 4.5, if k 1 = 2, k 2 = 1, the generator matrix is:

G 2,1 = ⎛ ⎝ 1111 1111 0123 0123 2222 0000 ⎞ ⎠ .
So, if r 1 , r 2 , r j are the rows of G 2,k 2 , 3 ≤ j ≤ k 2 + 2, we can get r 1 is all 1 vector. Therefore,

α(r 1 ) = 1 and α(r j ) = 0. Besides, 2α(r 1 ) * α(r 2 ) = 2r 2 ∈ C, 2α(r 1 ) * α(r j ) = 0 ∈ C, 2α(r 2 ) * α(r j ) = 0 ∈ C, 2α(r j ) * α(r k ) = 0 ∈ C, where 3 ≤ j, k ≤ 2 + k 2 . By Lemma 5.1, (C) is linear when k 1 = 2, k 2 ≥ 0.
(2) If k 1 ≥ 3, by [START_REF] Shi | Optimal two-weight codes from trace codes over F 2 + uF 2[END_REF] in the proof of Corollary 4.5, where G k 1 -1,k 2 is the generator matrix of the code C obtained in Theorem 4.2, and i is the row vector (i, i, . . . , i) of length 2 k 1 +k 2 -2 (2 k 1 -1 -1), i ∈ Z 4 . Without loss of generality, let r 1 = (0 1 2 3) and r 2 = (r 0 r 0 r 0 r 0 )

G k 1 ,k 2 = 0 1 2 3 G k 1 -1,k 2 G k 1 -1,k 2 G k 1 -1,k 2 G k 1 -1,k 2 ,
where r 0 is one row of G k 1 -1,k 2 . Then 2α(r 1 ) * α(r 2 ) = 2(0 α(r 0 ) 0 α(r 0 )).

Since the length of r 0 is 2

k 1 +k 2 -2 (2 k 1 -1 -1), W L (2α(r 1 ) * α(r 2 )) = 4W L (α(r 0 )) ≤ 2 k 1 +k 2 (2 k 1 -1 -1). ( 16 
) If 0 = 2α(r 1 ) * α(r 2 ) ∈ C, since C is a two-Lee weight code by Corollary 4.5, W L (2α(r 1 ) * α(r 2 )) = 2 k 1 +k 2 (2 k 1 -1 -1) or 2 2k 1 +k 2 -1 . Thus 2 k 1 +k 2 (2 k 1 -1 -1) ≤ W L (2α(r 1 ) * α(r 2 )) = 4W L (α(r 0 )). ( 17 
)
Therefore, combining ( 16) and (17), we have

W L (2α(r 1 ) * α(r 2 )) = 4W L (α(r 0 )) = 2 k 1 +k 2 (2 k 1 -1 -1),
which forces α(r 0 ) to be all 1 vector. Thus we have

W L (r 0 ) = 2 k 1 +k 2 -2 (2 k 1 -1 -1), W L (2r 0 ) = 2 k 1 +k 2 -1 (2 k 1 -1 -1)
and then W L (2r 0 ) = 2W L (r 0 ). However, r 0 is one row of 

G k 1 -1,

Graphs

We recall the classic lemma from [START_REF] Shi | On two-weight Z 2 k -codes[END_REF]. From this classic lemma, and the characterization of SRGs given in §2.2, the following two results follow immediately. Their proofs are omitted. 

Remarks:

• Following [1, §1.1.3] we see that these graphs are complete multipartite of type K a×m with m = 2 k 1 +k 2 for Theorem 4.2 or m = 2 k 1 +k 2 -1 for Corollary 4.5, and, in both cases, a = |C| m .

• The graph corresponding to the code of Example 4.6 is bipartite complete, since the code is an Hadamard code of a kind studied in [START_REF] Krotov | Z 4 -linear perfect codes[END_REF][START_REF] Krotov | Z 4 -Linear Hadamard and Extended Perfect Codes, WCC2001[END_REF].

Conclusion

In this paper, we have constructed two infinite families of projective two-weight Z 4 -codes.

Further, their Gray images are nonlinear, and have the same weight distributions as a family of two-weight codes of [START_REF] Calderbank | The geometry of two-weight codes[END_REF], the SU1 family. In small values of parameters these codes can be implemented in the computer package Magma. It is a worthwhile project to check which families of binary two-weight codes from [START_REF] Calderbank | The geometry of two-weight codes[END_REF] admit Z 4 -linear analogues.
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Corollary 3 . 2

 32 Let C be the code generated by Y k , c ∈ C and c = 0, then W L (c) = 2 2k-1 if the or der o f c is 2, 2 k-1 (2 k -1) if the or der o f c is 4. R e v i s e d P r o o f M. Shi et al. Proof Let r 1 , r 2 , . . ., r k be the rows of Y k . From the proof of Proposition 3.1, W L
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  then, according to Proposition 3.3, there is a two-Lee weight code with the generator matrix:

123
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Example 4 . 3 Example 4 . 4 Corollary 4 . 5

 434445 If k 1 = 2, k 2 = 1, then n = 12, w 1 = 12, w 2 = 16, then, according to Theorem 4.2, there is a two-Lee weight code with the generator matrix: If k 1 = 2, k 2 = 2, then n = 24, w 1 = 24, w 2 = 32, then, according to Theorem 4.2, there is a two-Lee weight code with the generator matrix: Let C be a linear code over Z 4 with type 4 k 1 2 k 2 of length n. When k 1 ≥ 2, the columns of the generator matrix G (k 1 +k 2 )×n are all distinct nonzero vec-

Let x 1 ,

 1 x 2 , . . . , x n be the columns of G. Let us first prove the sufficiency. Let C ⊥ be the dual code of C. If c ∈ C ⊥ , then we only need to prove W L (c) ≥ 3. Obviously, W L (c) cannot be 1 because all columns are nonzero. Assume W L (c) = 2. Obviously, c cannot be written as c = (0, . . . , 0, 2, 0, . . . , 0) due to (1). Then we have 2 cases:

Theorem 4 . 9

 49 Let C be a linear code over Z 4 with type 4 k 1 2 k 2 of length n obtained in Theorem 4.2, then C is projective. Proof Denote the generator matrix of C by G k 1 ,k 2 , then it is sufficient to prove that G k 1 ,k 2 satisfies Lemma 4.8.

( 6 )

 6 in Lemma 4.1. And by Step 1 and Lemma 4.8, we can easily prove that the code is 123 Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small R e v i s e d P r o o f M. Shi et al.

C 1 andRemark 5 . 4 Remark 5 . 5

 15455 C 2 are the codes obtained in Theorem 4.2 and Corollary 4.5 in this paper, respectively, and C 3 is the code obtained in Theorem 5.6 in [14]. If k 1 = 1, (C 1 ) and (C 3 ) have the same parameters. Besides, due to Corollary 6.8 in [14], when k 1 = 1, (C 1 ) reaches the Plotkin bound and Griesmer bound. It can be seen that the values of l for (C 1 ), (C 2 ) and (C 3 ) are all 2k 1 + k 2 . But the values of t are k 1 + k 2 , k 1 + k 2 + 1, 2k 1 + k 2 -1 for (C 1 ), (C 2 ) and (C 3 ), respectively. Therefore, these three families of codes lead to non-equivalent two-Lee weight linear codes. 123 Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small R e v i s e d P r o o f Two families of two-weight codes over Z 4

2 and Corollary 4. 5 . 5 . 6

 556 Theorem If the columns of the generator matrix of C satisfy the conditions of Theorem 4.2, then (C) is linear when k 1 = 1 and nonlinear when k 1 ≥ 2.

x x x b), where x is

  a row of Y k , and b is a row of B k . Then2α(r 1 ) * α(r 2 ) = 2(α(0) α(1) α(2) α(3) α(1 ) * (α(x) α(x) α(x) α(x) α(b)) = 2(0 α(x) 0 α(x) 0), we get W L (2α(r 1 ) * α(r 2 )) = 4W L (α(x)). Since the length of x is 2 k-1 (2 k -1), then 4W L (α(x)) ≤ 4 × 2 k-1 (2 k -1) = 2 k+1 (2 k -1).123 Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small R e v i s e d P r o o f M. Shi et al. By Proposition 3.1, C is a two-Lee weight linear code with the nonzero Lee weights 2 k (2 k+1 -1), and 2 2k+1 . And the nonzero smallest Lee weight of C is 2 k (2 k+1 -1) > 2 k+1 (2 k -1). Thus, 2α(r 1 ) * α(r 2 ) / ∈ C. By Lemma 5.1, (C) is nonlinear when k 1 ≥ 2, k 2 = 0.
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k 2 ,Example 5 . 9

 259 the generator matrix obtained in Theorem 4.2, and the two Lee weights w 1 and w 2 can not satisfy w 2 = 2w 1 , contradiction. Thus there are at least 2 rows r 1 , r 2 satisfying 2α(r 1 ) * α(r 2 ) / ∈ C. Namely, (C) is nonlinear when k 1 ≥ 3, k 2 ≥ 0. Consider the code defined in Example 4.7. Let r 1 annd r 2 denote the first and second rows of G 3,1 in (12), respectively. Then the Lee weight of 2α(r 1 ) * α(r 2 ) = 2α(111102111102111102111102111102111102111102111102) * α(012311012311012311012311012311012311012311012311) = (020200020200020200020200020200020200020200020200) is 32 which can not be obtained in C since C is a two-Lee weight code with w 1 = 48, w 2 = 64.

Lemma 6 . 1

 61 If C is a Z 4 -code of length n and weights w 1 , w 2 the coset graph of C ⊥ is an SRG on |C| vertices, degree 2n, unrestricted eigenvalues 2n -2w 1 and 2n -2w 2 .

Theorem 6 . 2 ( 1 )

 621 If C is the code of Theorem 4.2 then the coset graph of C ⊥ is an SRG on |C| vertices, degree 2n, and unrestricted eigenvalues 0 and -2 k 1 +k 2 . (2) If C is the code of Corollary 4.5 then the coset graph of C ⊥ is an SRG on |C| vertices, degree 2n, and unrestricted eigenvalues 0 and -2 k 1 +k 2 +1 . 123 Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small R e v i s e d P r o o f M. Shi et al.

  Besides, if we delete 0 ( a column of B k ) from B k , then we get a k × (2 k -1) matrix B k over 2Z 4 . Let C be the code generated by B k . It's easy to check that C is a special case of the code obtained in Theorem 4.5 in[START_REF] Shi | Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over Z 4[END_REF], when k 1 = 0, k 2 = k, then C is a one-Lee weight linear code with the nonzero Lee weight w = 2 k .

The following proposition is an alternative proof of Property 5.68 in (Handbook of Coding Theory, North Holland, 1998, WC Huffman, V. Pless eds, p. 1561).

Proposition 3.1 If C is the code generated by Y k , then C is a two-Lee weight code of length n

  Theorem 4.2 Let C be a linear code over Z 4 with type 4 k 1 2 k 2 of length n. If the columns of the generator matrix G (k 1 +k 2 )×n are all distinct nonzero vectors (c 1 , c 2 , . . . , c k 1 ,

  1 

  Two families of two-weight codes over Z 4 If k 1 = 2, k 2 = 2, then n = 16, w 1 = 32, w 2 = 16, according to Corollary 4.5, there is a two-Lee weight code with the generator matrix: If k 1 = 3, k 2 = 1, then n = 48, w 1 = 48, w 2 = 64, according to Corollary 4.5,

	Example 4.6 G 2,2 =	⎛ ⎜ ⎜ ⎝	1111 1111 1111 1111 0123 0123 0123 0123 0000 0000 2222 2222	⎞ ⎟ ⎟ ⎠ .	(11)
				0000 2222 0000 2222	
	Example 4.7 there is a two-Lee weight code with the generator matrix G 3,1 :
	⎛	111102 111102 111102 111102 111102 111102 111102 111102	⎞
	⎜ ⎜ ⎝	012311 012311 012311 012311 012311 012311 012311 012311 000000 111111 222222 333333 000000 111111 222222 333333	⎟ ⎟ ⎠ .	(12)
		222222 222222 222222 222222 000000 000000 000000 000000

+k 2 -1 . By induction hypothesis, C is a two-Lee weight code over Z 4 . 123 Journal: 10623 Article No.: 0796 TYPESET DISK LE CP Disp.:2020/9/3 Pages: 13 Layout: Small R e v i s e d P r o o f

Next, we are ready to give the sufficient and necessary conditions for a two-Lee weight linear code to be projective over Z 4 . Lemma 4.8 Let C be a linear code over Z 4 with type 4 k 1 2 k 2 of length n and with the generator matrix G. Then C is projective if and only if the following conditions hold:

  k 1 -1), i ∈ 2Z 4 . So, all the columns of G k 1 ,m+1 contain a 1 or a 3. If there are two columns in proportion by ±1, then there are two columns of G k 1 ,m in proportion by ±1, a contradiction. So the result is valid for k 2 = m + 1. By induction hypothesis, G k 1 ,k 2 satisfies Lemma 4.8 for any k 1 , k 2 ≥ 1, then C is projective by Lemma 4.8.

  r 2 , . . ., r k and r k+1 become the rows of Y k+1 . By the definition of Y k , we can get

  Thus, 2α(r 1 ) * α(r 2 ) / ∈ C. By Lemma 5.1, (C) is nonlinear when k 1 ≥ 2, k 2 ≥ 0. Consider the code defined in Example 4.3. Let r 1 and r 2 denote the first and second rows of G 2,1 in (8), respectively. Then the Lee weight of

	Example 5.7

2α(r 1 ) * α(r 2 ) = 2α(111102111102) * α(012311012311) = 2(111100111100) * (010111010111) = (020200020200) is 8 which can not be obtained in C since C is a two-Lee weight code with w 1 = 12, w 2 = 16. Theorem 5.8 If the columns of the generator matrix of C satisfy the conditions of Corollary 4.5, then (C) is linear when k 1 = 2 and nonlinear when k 1 ≥ 3.

Proof Denote the generator matrix of C by G k 1 ,k 2 . Let r 1 , r 2 , . . . , r k 1 , . . . , r k 1 +k 2 be the rows of G k 1 ,k 2 , where r j is a vector over 2Z 4 , k 1
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