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Proximal Gradient Algorithm in the Presence of
Adjoint Mismatch

Marion Savanier(1:2)

(1)
(2)

Abstract—The proximal gradient algorithm is a popular itera-
tive algorithm to deal with penalized least-squares minimization
problems. Its simplicity and versatility allow one to embed non-
smooth penalties efficiently. In the context of inverse problems
arising in signal and image processing, a major concern lies
in the computational burden when implementing minimization
algorithms. For instance, in tomographic image reconstruction,
a bottleneck is the cost for applying the forward linear operator
and its adjoint [1], [2]. Consequently, it often happens that these
operators are approximated numerically, so that the adjoint
property is no longer fulfilled. In this paper, we focus on the
proximal gradient algorithm stability properties when such an
adjoint mismatch arises. By making use of tools from convex
analysis and fixed point theory, we establish conditions under
which the algorithm can still converge to a fixed point. We
provide bounds on the error between this point and the solution
to the minimization problem. We illustrate the applicability of
our theoretical results through numerical examples in the context
of computed tomography.

Index Terms—Proximal gradient algorithm, adjoint mismatch,
convergence analysis, fixed point methods, image reconstruction,
computed tomography.

I. INTRODUCTION

Inverse problems appear in various fields of science and
engineering. Linear inverse problems stem from observation
models of the form:

y =HxXx+ b, (1)

where y € RM is the vector of observed data, X € RY is
the unknown signal, H € RM*N s a linear operator, and
b € RM is a noise term. The aim is then to recover an
estimate of X given H and y. The fact that H is usually
poorly conditioned makes the inverse problem solution very
sensitive to noise. An efficient strategy of resolution is to
recast the problem as the minimization of a sum of two terms:
a data fidelity term and a penalization term. When the data
fidelity term is quadratic, the problem falls into the class of
penalized least-squares minimizations. A very simple way for
minimizing such a composite cost function is the proximal
gradient algorithm (PGA) [3]], which is an instance of the
forward-backward algorithm [4]. The basic idea behind this
scheme is to alternate an explicit step of gradient descent on
the data fidelity term with an implicit proximity step on the non
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necessarily smooth penalization term. The observation matrix
H and its adjoint HT are involved in the computation of the
gradient step. In practical implementations of PGA, it may
however happen that the adjoint of the forward operator H
is purposefully replaced by an approximation of it, denoted
hereafter by K € RV*M

For instance, approximation of the adjoint operator occurs in
large scale tomographic imaging [5]], as practiced in industrial
non-destructive testing and diagnostic medical imaging [6],
[7]. The acquisition pipeline consists in rotating an X-ray
source and a detector around an object of interest. The forward
operation is named the projector and its adjoint, the backpro-
jector. These operators are acting in a continuous domain, and
their discretization is not straightforward because the sampling
rate on a Cartesian grid is not constant by rotation. Accuracy
is increased when the discretization is performed at a high
sampling rate, at the price of a high computation burden.
Symmetric projection/backprojection pairs are available but
they rely on advanced interpolation schemes and are not GPU-
friendly [8]], [9]. Thus, in practice, while oversampling in
the image domain is performed and leads to an accurate
projection operator, the discretization of the backprojector
is often simplified, resulting in an adjoint mismatch [10],
[11]. Hence, instabilities are expected in the convergence of
the reconstruction algorithm, as errors may accumulate over
iterations [12].

Recently, some authors have investigated conditions of
convergence of specific forms of PGA in the presence of
adjoint mismatch and the impact over its asymptotic solution.
Among them [13|] gave conditions of convergence in the
finite dimensional case without regularization, generalizing the
earlier work of [5]]. They later proposed in [14] a modification
of the iterative scheme to ensure convergence despite the
mismatch. However, up to our knowledge, those works only
focus on the case when the cost function is a least-squares term
without any regularization, PGA being reduced to a simple
iterative linear scheme. The approach followed in the analysis
of [13]] could be extended in a direct manner to the case when
the regularization term is a quadratic function. However, in
the presence of a more generic prior, inducing a nonlinear
proximal operator, the convergence of PGA becomes much
more challenging to study. It is worth mentioning the work
in [15], which also dealt with a least-squares cost function
reformulated as a set of constraints onto convex sets that,



therefore, does not rely on a proximal gradient-based scheme.
In this paper, we provide the first analysis of PGA in the
presence of adjoint mismatch, when solving a penalized least-
squares problem. In Section [lIL we give necessary conditions
to preserve the convergence of PGA with an adjoint mismatch.
Furthermore, we study how this mismatch converts into a
discrepancy between the fixed point of the algorithm and the
“true” minimizer of the original objective function. Finally,
a numerical example arising from computed tomography is
provided in Section Section [V] concludes this work.

II. OPTIMIZATION BACKGROUND
A. Notation and definitions

In this paper, the underlying signal space is the N-
dimensional Euclidean space R" endowed with the standard
scalar product (-, -) and the norm ||-||. Moreover, |||L||| denotes
the spectral norm of squared matrix L and Ker L designates
its nullspace. The class of functions which are proper, convex,
lower-semicontinuous on R and take values in R U {400}
is denoted by I'g(RY). For every g € I'o(R"), domg is the
domain of ¢ and Jyg is the subdifferential of ¢. If x € RV the
proximity operator of g at x is defined as [|16]

prox,,(x) = argmin (g(z) + %Hx - z||2> ) (2)
zeRN

We say that f : RN — RY is coercive if

lim
[Ix|| =00

f(x) = +o0 3)

A key property to ensure the convergence of PGA is the
cocoercivity of the involved gradient operator or of its ap-
proximation. Let us recall that operator A: RY — RY is n-
cocoercive with 7 € [0, +oo[ if, for every (x,y) € (RV)2,

nlAx — Ay|]* < (x — y, Ax — Ay). )

B. Proximal gradient algorithm for the penalized least-
squares criterion

To find an estimate of X, defined in ([II), we focus on solving
the following penalized least squares criterion:

| K
minimize — |y — Hx|? 4+ g(x) + = ||x||?, )
x€RY 2 2

where g € T'o(R”) is a suitable possibly non-smooth regular-
ization function and x € [0, +0o[. When x > 0, the objective
function in (3)) is strongly convex and we deal with an elastic
net-like penalization [17]. For optimization problem (), PGA
reads, for every n € N,

Xni1 = Xp+0, (proxvg((l—wﬁ)xn—vHT (Hxn—y))—xn),

(6)
where xo € RY is the initial estimate, (6,,)nen €]0,1] are
relaxation parameters and v € |0, +oo[ is the gradient step
size. An instance of this algorithm is the well-known iterative
soft-thresholding algorithm (ISTA), obtained when x = 0
and ¢ is the /1 norm used to promote the sparsity of the
resulting solution [[18[]-[20]] (see [21]] for extensions to other

regularization functions).

If 0,, € [¢,1] with € €]0,1[ and v €]0,2/(||[H|||? + &), the
sequence (X, )nen generated by Algorithm (6) converges to a
solution to Problem @ when such a solution exists [4], [19],
[22]. Note that, although there exist variants of PGA which
use an iteration dependent step size, we will assume for the
sake of simplicity that the step size remains fixed.

III. ADJOINT MISMATCH
A. Mismatched algorithm

As mentioned earlier, in some practical implementations, the
adjoint H' is approximated by an operator K. This leads to
the following modified PGA iteration where, for every n € N,

Xni1 = Xpn+0n (proxw((l — k)%, —YKHx,, —y)) —Xn).

(7
We propose to analyze the convergence properties of Algo-
rithm (7)), by relying on fixed point theory. To this end, we
introduce operator

T,: RN - RN
x = prox,,((1 — yk)x — yK(Hx —y)) ®)

with v € ]0,4o00[. This operator will play a key role in
the characterization of the limit points of (7). We will show
that the convergence of Algorithm (7) is guaranteed under
cocoercivity conditions on matrix L = KH + xId.

B. Regularity of the modified gradient descent operator

When K # HT, the main difficulty is that the operator
kId + K(H - —y) is no longer guaranteed to be the gradient
of the smooth part of our objective function. We however
give conditions under which it remains a cocoercive operator,
thus allowing to preserve a stable behavior of the iterative
scheme (7). The following result can be established:

Proposition III.1  Let A\, (resp. Amax) be the minimum
(resp. maximum) eigenvalue of (L + LT)/2. Let A}, be
the minimum positive eigenvalue of (L + LT)/2 and let
B=IIIL-LT||/2

(1) If Amin = 0O, then L is cocoercive with constant

1 (Vs + )

= if dim(Ker(L + LT)) = dim(Ker L)
]-/>\max Ucﬁ =0.
(i) If Amin > O, then L is cocoercive with constant

2
TTI0d + @ LHET L) L+ L2

Remark IIL.2 A simple condition for ensuring that Ap;iy is
positive is to choose £ > —Anin Where Ay is the minimum
eigenvalue of (KH+H K T)/2. In this case, A" = Apin >

0, while Ker(L + L") and Ker L reduce to the null space.



C. Fixed points

Although our mismatched PGA may no longer minimize
an objective function, it still converges to a fixed point under
suitable conditions. It is easy to check that the fixed points
of iteration (7) are those of operator T',. We now provide
conditions ensuring that such a set of fixed points Fix T, is
non empty and reduces to a singleton.

Proposition II1.3
(i) Let v €10, +oc[ and let x € RN. We have x € Fix T, if
and only if X belongs to

F={xeR" |0eKHx—y)+dg(x)+ rx}. (9

(1) If Admin = 0, then F is a closed and convex set.
(iii) Assume that L is cocoercive. F is nonempty if one of the
following condition holds:

a) domdg = R and

x b 5| L) + 9(x) (10)

s coercive;
b) dom g is bounded.
@iv) In addition, F is a singleton if Ayin = 0 and one of the
following condition holds:
d) )\min 7é 0;
e) g is strongly convex.

Eq. (O) highlights the fact that any fixed point of T, is a
solution to an equilibrium rather than satisfies some optimality
condition.

Furthermore, when the conditions in Remark [[IL.2] are met,
the above result guarantees the existence of a unique fixed
point X for T, which can be viewed as an approximation to
the minimizer of Problem (3). We now quantify the distance
between these vectors.

Proposition III.4 Let X be the minimizer of Problem (). The
following upper bound on the error incurred by the mismatch
holds:

I — x| < x|[H" — K| [Hx | (11)

where X = (K + 2 min) L.

The resulting upper bound on the error is thus proportional to
the product of the norm of the mismatch on the adjoint and
the norm of an approximation of the noise in the observation
model. When & is large, the distance to the “true” minimizer
is smaller but the obtained solution becomes more biased with
respect to the ground truth.

D. Convergence result

The convergence of the mismatched PGA follows from
standard results concerning the forward-backward algorithm
for solving monotone inclusion problems [16]:

Proposition IIL.5 Assume that L is n-cocoercive. Let v €
10,2n[ and 6 = 2—~/(2n). Let (0,,)nen be a sequence in [0, d]

such that ), . 0,,(6—0,) = +o00. Suppose that F # @. Then
the sequence (Xp)nen generated by Algorithm converges
to a point X € F.

If L is self-adjoint positive semidefinite (i.e. 3 = 0 and
Amin = 0), then A\y.x = |||L||| and Propositions and
I11.5| provide 2/|||L||| as a strict upper bound on step size -y
in order to guarantee the convergence of the algorithm. This
recovers the classical upper bound on the step size value for
the algorithm (7) in the special case when K = H'.

IV. APPLICATION TO TOMOGRAPHIC RECONSTRUCTION
A. Problem statement

We now illustrate our theoretical results through an example
of tomographic image reconstruction in fan-beam geometry
with a truncated field of view. This acquisition model arises
for instance in medical application for image-guidance in
interventional radiology and surgery, where the detector has
a limited size and truncation is unavoidable when scanning
large body parts such as the abdomen. For such an under-
determined inverse problem, iterative reconstruction methods
have proven their superiority over filtered backprojection [23]].
In observation model (]I[) H is the projection matrix, y
represents the tomographic measurements, X is a phantom,
and b an additive i.i.d. Gaussian noise drawn from N (0, 0.2).
To quantify the error introduced by K, we compute § as the
average over 20 realizations of the ratio (Hu,v)/(u,Kv)
with (u,v) uniformly sampled in ([0,1]")2. The farther §
from 1, the farther K from HT.

B. Implementation

@ K byHT

Fig. 1: Zoom on the backprojection of a uniform view

We consider a grid of N = 128 x 128 pixels of size
1 mm sampling a geometrical abdomen phantom (values
between 0.036 and 1.5). The source-to-object distance and
the source-to-image distance were respectively set to 180 mm
and 270 mm. The detector has 128 bins of size 0.53 mm.
We simulated 90 projections at uniformly spaced angular
positions within interval [0°,180°], so that M = 90 x 128.
This simulation was performed with the ASTRA Toolbox [24]]
on Matlab, which allows the explicit computation of matrices
H and K. ASTRA GPU implementation of the projector and
backprojector is such that the operators are not matched: the
backprojector is pixel-driven [25] as it is always the case in
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Fig. 2: Decay of the error along iterations for Algorithms (8) and (7) and two
choices of k parameter.

Fig. 3: Original phantom (top left), and reconstruction results using Algorithm
with k1 (top right), Algorithm (B) with k2 (bottom left) and Algorithm
with k2 (bottom right).

analytical reconstruction approaches, whereas the projector is
ray-driven [26]. Matrix H was computed using ASTRA line-
length ray driven projector and K was generated using
a pixel-driven backprojector, which led to 6 = 1.0076. In
our settings, H' contains 1.0778% nonzero elements whereas
this percentage decreases to 0.89% for K. Figure [I] shows
the backprojection of constant measurements at a single angle
using either H' or K.

An estimate of X is obtained by adopting a compressed sensing
approach [28]-[30]. More precisely, we solve the penalized
least squares problem (3) with g = \|[W - ||;, W being the
Symlet 2 wavelet transform, and A > 0 the regularization
parameter. We ran algorithms (6) and (7)), for two choices of
k. With value k = k1, L is not cocoercive, while with value
Kk = Ko, L becomes cocoercive, and thus the convergence

of scheme (7) is ensured. In practice, we computed the
smallest negative eigenvalue A, of the symmetric matrix
(KH-+HTKT")/2. Then ry was chosen slightly greater than
[Amin| s0 that Ay, > 0, while 1 is taken as a small value not
satisfying this requirement. Altogether, we have x; = 0.01,
Ky = 6.5, A\ =0.45, 0, = 1, and v = 1.9/(|||H]||* + ).

The stopping precision on the relative distance between
two consecutive iterates is 107 and the maximum number
of iterations is 10%.

C. Results

Figure [2| displays the reconstruction error ||T — || with
respect to the iterations when applying either Algorithm (6)) or
(7). The plots confirm that, with value 1, PGA only converges
when the exact adjoint H is used but diverges when using K,
as was expected from our theoretical analysis. More precisely,
in the latter case, Algorithm (7) shows an initial convergence
trend that reaches a minimum discrepancy point close to the
minimizer obtained with HT before diverging. Nevertheless
it would be difficult for the user to know when to stop the
iterations so as to obtain this intermediary good solution. For
value ko, both (6) and (7) converge to fixed points that are
close to each other, again confirming our theoretical analysis.
The corresponding reconstruction errors are 0.3512 and 0.3625
respectively. Note that PGA without mismatch requires less
iterations to reach convergence than PGA using K.

The reconstructed solutions are shown on Figure [3] We also
computed the signal-to-noise ratio (SNR) over a central region
of interest of 10 x 10 pixels. When value k5 is used, the
reconstructed image obtained with K (SNR = 25.06 dB) looks
almost the same as the image obtained without mismatch (SNR
= 26.02 dB). In contrast, value x; yields a reconstruction with
K that is deteriorated by artifacts and a lower SNR (SNR
22.32 dB) compared to the solution given by H'" (SNR
= 2441 dB). In a nutshell, as soon as the convergence of
PGA is ensured, an unmatched projector/backprojector pair
gives a similar reconstruction quality than the matched pair but
may lead to a slower convergence. Let us emphasize that, in a
practical context, the decrease of the convergence rate would
be compensated by a reduced computation cost for operator K.

V. CONCLUSION

In this paper, we have presented necessary conditions to en-
sure the convergence of the proximal gradient algorithm when
the adjoint of the linear operator involved in the differentiable
part of the cost function is not fully computed but approxi-
mated. We have characterized the distance between the final
solution and the solution to the original optimization problem.
The technical conditions we obtained reconcile theory with
practical implementations of PGA iteration in the context of
X-ray tomographic imaging. A natural extension to this work
will be to mitigate convergence instabilities when the adjoint
operator is obtained by simplifying the physical model of the
forward operator, as happens for instance in the context of

SPECT imaging [5]], [31].



[1]

[2]

[4]

[5]

[6]
[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

E. Chouzenoux, F. Zolyniak, E. Gouillart, and H. Talbot, “A majorize-
minimize memory gradient algorithm applied to X-ray tomography,”
in Proceedings of the 20th IEEE International Conference on Image
Processing (ICIP 2013), Melbourne, Australia, 15-18 Sep. 2013, pp.
1011-1015.

L. E. Gueddari, E. Chouzenoux, A. Vignaud, J.-C. Pesquet, and
P. Ciuciu, “Online MR image reconstruction for compressed sensing
acquisition in T2* imaging,” in Proceedings of SPIE 11138, Wavelets
and Sparsity XVIII, no. 1113819, 9 Sep. 2019.

P. L. Combettes and J.-C. Pesquet, “Proximal Splitting Methods in
Signal Processing,” in Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, Bauschke, H. Burachik, R. Combettes,
P. Elser, V. Luke, D. Wolkowicz, and H. (Eds.), Eds., 2011, pp. 185-212.
P. L. Combettes and V. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling and Simulation: A SIAM
Interdisciplinary Journal, vol. 4 n°4, pp. 1164-1200, 2005.

G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector
pairs in an iterative reconstruction algorithm,” IEEE Transactions on
Medical Imaging, 2000.

A. Kak and M. Slaney, Principles of computerized tomographic imaging,
ser. Classics in Applied Mathematics. Philadelphia: SIAM, 1988.
J.-Y. Buffiere, E. Maire, J. Adrien, J.-P. Masse, and E. Boller, “In situ
experiments with X-ray tomography: an attractive tool for experimental
mechanics,” Experimental Mechanics, vol. 50, no. 3, pp. 289-305, Mar.
2010.

C. Chapdelaine, N. Gac, A.-M. Djafari, and E. Parra-Denis, “New GPU
implementation of Separable Footprint (SF) Projector and Backprojector
: first results,” in Proceedings of the 5th International Conference on
Image Formation in X-Ray Computed Tomography, May 2018, pp. 314—
317.

R. Liu, L. Fu, B. De Man, and H. Yu, “GPU-based branchless distance-
driven projection and backprojection,” IEEE Transactions on Computa-
tional Imaging, pp. 1-1, Mar 2017.

R. R. Galigekere, K. Wiesent, and D. W. Holdsworth, “Cone-beam
reprojection using projection-matrices,” IEEE Transactions on Medical
Imaging, vol. 22, no. 10, Oct. 2003.

G. Zeng, “Counter examples for unmatched projector/backprojector in
an iterative algorithm,” Chinese Journal of Academic Radiology, Apr
2019.

F. Arcadu, M. Stampanoni, and F. Marone, “On the crucial impact of
the coupling projector-backprojector in iterative tomographic reconstruc-
tion,” CoRR, 2016.

T. Elfving and P. C. Hansen, “Unmatched projector/backprojector pairs:
Perturbation and convergence analysis,” SIAM Journal on Scientific
Computing, vol. 40, no. 1, pp. A573-A591, 2018.

Y. Dong, P. C. Hansen, M. E. Hochstenbach, and N. A. Brogaard Riis,
“Fixing nonconvergence of algebraic iterative reconstruction with an un-
matched backprojector,” SIAM Journal on Scientific Computing, vol. 41,
no. 3, pp. A1822-A1839, 2019.

D. A. Lorenz, S. Rose, and F. Schopfer, “The randomized kaczmarz
method with mismatched adjoint,” BIT Numerical Mathematics, vol. 58,
pp. 1079-1098, 2018.

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, 2017.

H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301-320, 2005.

M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-
based image restoration,” IEEE Transactions on Image Processing,
vol. 12, no. 8, pp. 906-916, Aug 2003.

I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
munications on Pure and Applied Mathematics, vol. 57, pp. 1413-1457,
2004.

J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle, “A 11-unified
variational framework for image restoration,” in Proceedings of the Sth
European Conference on Computer Vision (ECCV 2004), ser. Lecture
Notes in Computer Science, vol. 3024, May 2004, pp. 1-13.

C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A varia-
tional formulation for frame based inverse problems,” Inverse Problems,
vol. 23, no. 1, pp. 1495-1518, 2007.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

P. L. Combettes and J.-C. Pesquet, “Proximal thresholding algorithm for
minimization over orthonormal bases,” SIAM Journal on Optimization,
vol. 18, no. 4, pp. 1351-1376, 2007.

C. Riddell, A. Savi, M. Gilardi, and F. Fazio, “Frequency weighted least
squares reconstruction of truncated transmission SPECT data,” IEEE
Transactions on Nuclear Science, vol. 43, pp. 2292 — 2298, Sept 1996.
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,
A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast
and flexible x-ray tomography using the astra toolbox,” Optics Express,
vol. 24, no. 22, pp. 25129-25 147, Oct 2016.

F. Xu and K. Mueller, “A comparative study of popular interpolation and
integration methods for use in computed tomography,” in Proceedings
of the 3rd IEEE International Symposium on Biomedical Imaging: Nano
to Macro, 2006., Apr, pp. 1252-1255.

P. M. Joseph, “An improved algorithm for reprojecting rays through
pixel images,” IEEE Transactions on Medical Imaging, vol. 1, no. 3,
pp. 192-196, Nov 1982.

G. L. Zeng and G. T. Gullberg, “A ray-driven backprojector for backpro-
jection filtering and filtered backprojection algorithms,” in /993 IEEE
Conference Record Nuclear Science Symposium and Medical Imaging
Conference, Oct 1993, pp. 1199-1201.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp.
489-509, Feb 2006.

M. Guay, W. Czaja, M. Aronova, and R. Leapman, “Compressed sensing
electron tomography for determining biological structure,” Scientific
Reports, vol. 6, p. 27614, 06 2016.

L. El Gueddari, E. Chouzenoux, A. Vignaud, and P. Ciuciu, “Calibration-
less parallel imaging compressed sensing reconstruction based on
OSCAR regularization,” Tech. Rep., 2019, https://hal.inria.fr/hal-
02292372/document.

C. Riddell, B. Bendriem, M. H. Bourguignon, and J. P. Kernevez, “The
approximate inverse and conjugate gradient: non-symmetrical algorithms
for fast attenuation correction in SPECT,” Physics in Medicine and
Biology, vol. 40, no. 2, pp. 269-281, feb 1995.



	Introduction
	Optimization background
	Notation and definitions
	Proximal gradient algorithm for the penalized least-squares criterion

	Adjoint mismatch
	Mismatched algorithm
	Regularity of the modified gradient descent operator
	Fixed points
	Convergence result

	Application to tomographic reconstruction
	Problem statement
	Implementation
	Results

	Conclusion
	References

